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Finite size consideration of matter significantly affects transport coefficients like shear viscosity, bulk
viscosity, electrical conductivity, which we have investigated here in the framework of the Polyakov–
Nambu–Jona-Lasinio model. Owing to the basic quantum mechanics, a nonzero lower momentum cutoff is
implemented in momentum integrations used in the expressions of constituent quark masses and transport
coefficients. When the system size decreases, the values of these transport coefficients are enhanced in low
temperature range. At high temperature domain, shear viscosity and electrical conductivity become
independent of system sizes. Whereas bulk viscosity, which is associated with scale violating quantities of
the system, faces some nontrivial size dependence in this regime. In the phenomenological direction, our
microscopic estimations can also be linked with the macroscopic outcome, based on dissipative
hydrodynamical simulation.
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I. INTRODUCTION

The experiment of the relativistic heavy ion collider
(RHIC) has created a nearly perfect fluid [1–3], whose
shear viscosity to entropy density (η=s) ratio is so small that
it almost reaches the lower bound (η=s ¼ 1=4π) [4]. In the
high temperature domain, however, the theoretical calcu-
lations using perturbative methods surprisingly do not lead
to such a small value of η=s. There it behaves as weakly
interacting gas, having a relatively large value (10–20 times
larger than the lower bound) [5]. To resolve this discrep-
ancy between experimental and theoretical values, different
alternative calculations, based on effective QCD models
[6–14] and hadronic models [15–24], have been studied in
recent times. Some estimations are also done from the
direction of transport simulations [25–28] and Lattice QCD
calculations [29,30]. Other transport coefficients like bulk
viscosity (ζ) [6–8,12–14,17,22–24,31–49] and electrical
conductivity (σ) [8,50–66] of this QCD medium have also
become matter of contemporary interest. From this earlier
research, we get a gross summary about the temperature
dependence of these transport coefficients. ηðTÞ and σðTÞ
decrease and increase in temperature domains of hadron
and quark phases, respectively, while ζðTÞ follows an
opposite trend. So, near transition temperature, one can
expect a maximum in ζðTÞ [6,7,37,49] and minimum in
ηðTÞ [6,7,9–11,13] and σðTÞ [57].
These analyses were carried out for infinite size systems.

Effects of finiteness in system volumes have not, however,

been considered, which we are studying in this work. We
know that the lower bound of shear viscosity to entropy
density ratio (η=s) is basically the lowest possible quantum
fluctuation of fluid, which can never vanish, even in the
infinite coupling limit [4]. However, in this infinite cou-
pling limit, we can think about a classical fluid, whose
η=s → 0. On the other hand, η=s of RHIC matter is
surprisingly close to its quantum lower bound, which
indicates that the matter is very sensitive to the quantum
fluctuations. Hence, other possible quantum effects like
finite size may be important to be considered. There is a
long list of Refs. [67–97], where finite size effects on
different physical quantities have been investigated. From
an experimental point of view as well, the produced fireball
might have a finite system volume, depending on the size of
the colliding nuclei, the center of mass energy, and central-
ity of the collision. The significance of these issues raises
immediate questions on its impact over the transport
coefficients of a system. In this manuscript, we intend to
explore the same in a qualitative manner. For this initial
work, we do so by implementing a lower momentum cutoff
following the same line of studies as in [92]. Our studies
have been carried out within the realm of the Polyakov–
Nambu–Jona-Lasinio (PNJL) model incorporating up to six
quark types of interactions. This finite volume effect on
transport coefficients is recently investigated in the Hadron
Resonance Gas (HRG) model by Samanta et al. [98] and
Sarkar et al. [99], which is valid for the hadronic temper-
ature domain only. Here we have explored this fact in the
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PNJL model, which can well describe the thermodynamics
of the QCD medium for the entire temperature domain,
which contains a quark and hadron in both phases. This
model also additionally contains the finite volume effect of
quark condensate, for which a major change in transport
coefficients is observed.
The article is organized as follows. The next section has

covered the finite system size picture of the PNJL model
and then a brief formalism part of transport coefficients.
Then our numerical outputs are analyzed in the result
section, and, at last, we summarize our studies.

II. THE MODEL FRAMEWORK

The framework that we shall be working with is that of
the 2þ 1-flavor PNJL model [100–108]. This model
entwines two very basic features of QCD viz. chiral
symmetry and its spontaneous breaking and confinement
physics. The quark dynamics is incorporated in the NJL
part through multiquark interaction terms. Here we shall
consider up to six quark types of interactions. The gluon
dynamics, on the other hand, is taken care of through a
background field representing Polyakov loop dynamics.
There has been considerable progress made in this direction
in order to understand properly the strongly interacting
system under this framework [8,11,49,89,90,109–124].
The Polyakov loop potential [125] is expressed as

U 0½Φ; Φ̄; T�
T4

¼ U½Φ; Φ̄; T�
T4

− κ lnðJ½Φ; Φ̄�Þ; ð1Þ

where the second term on the right hand side is the
Vandermonde term [106] reflecting the effect of the SU(3)
Haar measure. U½Φ; Φ̄; T� is the Landau-Ginzburg type
potential chosen to be of the form

U½Φ;Φ̄;T�
T4

¼−
b2ðTÞ
2

Φ̄Φ−
b3
6
ðΦ3þ Φ̄3Þþb4

4
ðΦΦ̄Þ2: ð2Þ

The coefficients b3 and b4 are kept constant, whereas the
temperature dependence is included in b2 with a form

b2ðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2

þ a2

�
T0

T

�
3

: ð3Þ

All the associated parameters are set [125] through few
physical constraints and the rest by fitting with available
results fromLatticeQCD. The set of parameters that we have
chosen for the present purpose can be found in [92].
For the quark dynamics, we shall use a similar frame-

work of the NJL model, except replacing with the covariant
derivative in the kinetic part of the Lagrangian in the
presence of the Polyakov loop. Under 2þ 1-flavor con-
sideration with up to six quark types of interactions, the
Lagrangian gets modified as is given in [125]. As a result of
dynamical breaking of chiral symmetry in the NJL model,

the chiral condensate hΨ̄Ψi acquires nonzero vacuum
expectation values. The constituent mass as a consequence
is given by

Mf ¼ mf − gSσf þ gDσfþ1σfþ2; ð4Þ
where σf ≡ hΨ̄fΨfi represents the chiral condensate. If
σf ¼ σu, then σfþ1 ¼ σd and σfþ2 ¼ σs, and in cyclic order.
Now in order to implement the effect of finite system

sizes, one is ideally supposed to choose the proper
boundary conditions: periodic for bosons and antiperiodic
for fermions. This, in effect, leads to a sum of infinite extent
over discretized momentum values, pi ¼ πni

R , R being the
dimension of cubical volume. ni are positive integers with
i ¼ x; y; z. This would then imply an infrared cutoff
pmin ¼ π

R ¼ λðsayÞ. Ideally the surface and curvature
effects should be taken care of as well. However, this
being the very first case study in this direction, we are
mostly interested in the qualitative changes of the transport
coefficients under finite system size consideration. To
obtain that, we incorporate a few simplifications. The
infinite sum over discrete momentum values will be
replaced by integration over continuum momentum varia-
tion, albeit with the infrared cutoff. Alongside, we are not
going to use any amendments in the mean-field values due
to finite system sizes. This, in effect, implies that the system
volume, V will be regarded as a parameter just like
temperature, T, and chemical potential, μ, on the same
footing. Parametrization will be the same as for zero T, zero
μ, and infinite V. Any variation therefore occurring due to
any of these parameters will be reflected in σf, Φ, etc., and
through them in meson spectra.
With these simplifications, the thermodynamic potential

thereafter takes the form,

Ω ¼ U 0ðΦ½A�; Φ̄½A�; TÞ þ 2gS
X

f¼u;d;s

σ2f −
gD
2
σuσdσs

− 6
X
f

Z
Λ

λ

d3p
ð2πÞ3 Epf

ΘðΛ − jp⃗jÞ − 2
X
f

T
Z

∞

λ

d3p
ð2πÞ3

× ln

�
1þ 3

�
Φþ Φ̄e

−ðEpf −μf Þ
T

�
e
−ðEpf −μf Þ

T þ e
−3ðEpf −μf Þ

T

�

− 2
X
f

T
Z

∞

λ

d3p
ð2πÞ3

× ln

�
1þ 3

�
Φþ Φ̄e

−ðEpfþμf Þ
T

�
e
−ðEpfþμf Þ

T þ e
−3ðEpfþμf Þ

T

�
;

ð5Þ
where each term bears its usual significance, which can be
found in [125].

III. TRANSPORT COEFFICIENTS

The Green-Kubo relation [126,127] connects transport
coefficients, like shear viscosity η, bulk viscosity ζ, and
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electrical conductivity σ, to their respective thermal
fluctuation or correlation functions, hπijðxÞπijð0Þiβ, hPðxÞ
Pð0Þiβ and hJiðxÞJið0Þiβ, where h…iβ stands for the
thermal average. The operators πij and P can be obtained
from energy-momentum tensor Tμν as

πij ≡ Tij − gijTk
k=3;

P ≡ −Tk
k=3 − c2sT00; ð6Þ

where cs is speed of sound in the medium. The operator Ji

is the electromagnetic current of medium constituents. The
transport coefficients in momentum space can be written
explicitly in spectral representations as

η ¼ 1

20
lim

q0;q⃗→0

R
d4xeiq·xh½πijðxÞ; πijð0Þ�iβ

q0
;

ζ ¼ 1

2
lim

q0;q⃗→0

R
d4xeiq·xh½PðxÞ;Pð0Þ�iβ

q0
;

σ ¼ 1

6
lim

q0;q⃗→0

R
d4xeiq·xh½JiðxÞ; Jið0Þ�iβ

q0
: ð7Þ

Our aim of this work is to calculate these transport
coefficients of quark matter under the framework of the
PNJL model and to notice their changes because of the
finite size consideration of the medium. As we know that
the mathematical expressions of transport coefficients
calculated from relaxation time approximation (RTA) in
the kinetic theory approach and the one-loop diagram in the
quasiparticle Kubo approach are exactly same, let us start
with the standard expressions of η [17,18,128], ζ [12,17],
and σ [17,63,129], given by

η ¼ g
15T

Z
d3k⃗
ð2πÞ3 τQ

�
k⃗2

ωQ

�2

½fþQð1 − fþQÞ þ f−Qð1 − f−QÞ�;

ð8Þ

ζ ¼ g
T

Z
d3k⃗

ð2πÞ3ω2
Q
τQ

��
1

3
− c2s

�
k⃗2 − c2sm2

Q

−c2smQT
dMQ

dT

�
2

½fþQð1 − fþQÞ þ f−Qð1 − f−QÞ�; ð9Þ

σ ¼ 6ẽ2Q
3T

Z
d3k⃗
ð2πÞ3 τQ

�
k⃗
ωQ

�2

½fþQð1 − fþQÞ þ f−Qð1 − f−QÞ�;

ð10Þ
where g ¼ 2 × 2 × 3 is the degeneracy factor of quark, f�Q
are the modified Fermi-Dirac (FD) distribution functions
of quarks and antiquarks, respectively, in the presence
of a Polyakov loop. ωQ ¼ fk⃗2 þm2

Qg1=2 is the single
quasiparticle energy, and

ẽ2Q ¼
��

þ 2

3

�
2

þ
�
−
1

3

�
2
�
e2: ð11Þ

IV. NUMERICAL RESULTS AND DISCUSSIONS

Let us first take a glance at the expressions of transport
coefficients, given in Eqs. (8)–(10). Replacing the k⃗ ¼ 0 by
k⃗ ¼ π=R in the lower limit of the integrations, we have
adopted the effect of the finite size of quark matter having
the dimension R. Along with this, there is another place in
Eqs. (8)–(10) where the finite size effect enters. This is the
integrand part of transport coefficients, which depends on
the constituent quark mass and thus changes due to
consideration of the finite size of quark matter. So there
are two sources from where the finite size effect will
modify our numerical estimations of transport coefficients.
Before analyzing the numerical outputs, let us discuss

the limitations of our present formalism. In finite temper-
ature quantum field theory, we have to introduce the
imaginary time parameter, which can vary from τ ¼ 0 to
τ ¼ −iβ. This finite time restriction makes the energy
component discretized via the Matsubara prescription
(imaginary time formalism). Similarly, restriction of finite
size or length (L) makes the momentum component
discretized; i.e., the four momentum variables ðk0; k⃗Þ will
be discretized as k0 → ωn ¼ 2π

β ðnþ 1=2Þ and k⃗ → k⃗n ¼
2π
L ðnþ 1=2Þ, where n ¼ 0;�1;�2;… because of the finite
temperature T ¼ 1=β and length L [85]. Following the
analytic continuation technique, the discrete sum of ener-
gies can be transformed to its continuous integration. For
three momentum components, their discrete sum is roughly
assumed as continuous integration starting from the lower
momentum cutoff. This simplified picture of the finite size
effect by implementing the lower momentum cutoff is
justified in Refs. [94,95]. It is nicely demonstrated in
Fig. (1) of Ref. [94]. Along with the discretization of
momentum, surface and curvature effects may appear in the
finite size picture [77], but we do not consider these effects
in the present work for simplicity.
Let us now start our numerical discussion from the size

dependency of the constituent quark mass, which is shown
in Figs. 1 and 2. As can be seen from Eq. (4), the
temperature dependent condensates determine the temper-
ature dependence of constituent quark masses, which are
plotted by red dotted lines in Figs. 1(a) and 2(a) for u and s
quarks. These are the results ofMuðTÞ andMsðTÞwhen we
have not considered any finite size effect. We have marked
this result by R ¼ ∞. Now, introducing finite size consid-
eration in the gap equation [Eq. (4)], we get the curves—
blue dashed line, green dashed dotted line, and black solid
line for R ¼ 4 fm, 3 fm, 2 fm, respectively, in Figs. 1(a)
and 2(a). To zoom in the changes of masses due to the finite
size effect, we have defined

ΔMu;s

Mu;s
¼ Mu;s −Mu;sðRÞ

Mu;s
; ð12Þ

where Mu;sðRÞ are u, s quark masses for the medium with
dimension R andMu;s for R ¼ ∞. These ΔMu;s

Mu;s
are plotted in
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Figs. 1(b) and 2(b) for R ¼ 4, 3, and 2 fm. We see that ΔMu;s

Mu;s

increases asR decreases, showing amild peak beforemelting
down at high temperature. The peaks mainly appear because
of faster melting rates of MðR ¼ ∞Þ compared to the rest.
The vanishing nature of ΔMu;s

Mu;s
at the high T limit is expected

because of the gradual restoration of chiral symmetry in that
regime for any system size. So one may safely ignore the
finite size effect of the quark gluon plasma (QGP) produced
in heavy ion experiments when it remains very hot, far above
transition temperature, Tc. The finite size effect of the QCD
medium becomes important near Tc and its nonperturbative
(hadronic) temperature domain. This general feature of the
finite size effect is observed for various quantities and
discussed later.
Now, using the expression of Mu;sðT; RÞ and the lower

momentum cutoff k⃗ ¼ π=R in Eq. (8), we can generate
ηðTÞ for different values of R. Following the same

definition given in Eq. (12), we have defined Δη=η, which
is plotted in Fig. 3(a). The negative values of Δη=η below
T ¼ 200 MeV indicate that the shear viscosity gets
enhanced because of the finite size effect. In one side, η
should be decreased because of the lower momentum cutoff
in Eq. (8), while on other side, reduction of the constituent
quark mass for finite R will act on the integrand part of
Eq. (8) to enhance the values of η. The latter source
dominates over the former one; therefore, a net enhance-
ment of ηðT < 200 MeVÞ is observed in our results. Next,
to discuss the finite size effect on η=s, shown in Fig. 3(b),
let us focus on entropy density s, obtained from the
thermodynamical potential Ω. Figs. 4(a) and 4(b) show
the T dependences of s=T3 and Δs=s for different values
of R. When this finite size effect of s at low T enters into
the quantity η=s, less enhancement of η=s has been found
with respect to the enhancement of η. For example, at
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T ¼ 170 MeV and R ¼ 2 fm in Fig. 3, we see that 70%
enhancement in η shrinks to 40% enhancement in η=s.
Also, for vanishing chemical potential, we observe only
crossover transitions, which is true for all R. So no
discontinuity in η or η=s is observed. However, with
decreasing R, Tc is supposed to decrease [92] and that
is visible in Fig. 3(b). The locations of slight bending there,
grossly representing the transition region, shift towards
lower T with a decrease in R.
Let us come to the next transport coefficient: bulk

viscosity ζ, which is a very interesting quantity because
of its relation with conformal symmetry of the system.
Compared to Eq. (8) for η, ζ in Eq. (9) contains additionally
a conformal breaking term

��
1

3
− c2s

�
k⃗2 − c2s

�
M2

Q þMQT
dMQ

dT

��
2

; ð13Þ

which vanishes in the limits of c2s → 1=3 andMQ → 0. The
QCD matter at high temperature can achieve these limits,
where it behaves as a scale independent or conformally
symmetric system. It can alternatively be realized from the
vanishing values of ζ for this QCD matter at high temper-
ature. Relating to this fact, our bulk viscosity estimation in
the PNJL model is trying to measure indirectly the breaking
of this conformal symmetric nature of QCD matter in both
the quark and hadronic domain. In this context, the present
investigation has tried to explore the finite system size
effect on this breaking of conformal symmetry by studying
the R dependence of ζ. For a constant value of relaxation
time (τ ¼ 1=Γ ¼ 1 fm), we have estimated ζðTÞ for R ¼ ∞
(red dotted line), 4 fm (blue dashed line), 3 fm (green
dashed dotted line), and 2 fm (black solid line), which are
drawn in Fig. 5(a). We see double peaklike structures in ζ,
which are also observed in other earlier calculations
[12,48]. These double peaklike structures start diluting
as we decrease system sizes, and for R ¼ 2 fm such nature

disappears, indicating some nontrivial contributions from
strange sectors. As we know, with decreasing system sizes,
the constituent masses acquire smaller values in the low
temperature domain, thereby tending towards restoring the
chiral symmetry over the entire temperature window.
To understand these facts, we have to focus on the

conformal breaking term given in Eq. (13), where
dMu;s=dT is one of the main controlling parameters, which
is shown in Fig. 6. We observe that the peak position of
dMu;d=dT in Fig. 6(a), which represents the transition
temperature (Tc) of the chiral phase, shifts towards a lower
temperature as R decreases. The peak strength of dMu;d=dT
also decreases when R decreases. If we focus on ζðTÞ for
light (u and d) quark matter only, then it follows exactly the
same pattern of dMu;d=dT; i.e., peak strength of ζðTÞ
reduces and its peak position shifts towards a lower T as R
decreases. The complex two peak structure comes into the
picture when we add the s quark contribution, which
participates partially in the chiral phase transition. Apart
from the expected peak near Tc, dMs=dT exhibits an
additional peak at a higher temperature, and, therefore, we
get the two peak structure in ζðTÞ for 2þ 1-flavor quark
matter. The first peak in dMs=dT is a little sharper than the
second one. Both are reduced when R decreases, but at
R ¼ 2 fm, the first peak almost vanishes. So only the
second peak survives in dMs=dT at R ¼ 2 fm, and its
magnitude is interestingly comparable to the corresponding
magnitude of dMu;d=dT. As a net effect, we get one
broadened (not sharp) peak at some intermediate location
between the peak positions of dMu;d=dT and dMs=dT
for R ¼ 2 fm.
Apart from the term dMu;d;s=dT, another component of

conformal breaking is c2s , which is shown in Fig. 7(a). As
c2s ¼ s=fTds=dTg, for vanishing quark chemical potential
the R dependence of c2s is quite similar to the R dependence
of s, shown in Fig. 4(a). The changes in c2s are shown more
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precisely in Fig. 7 by plotting Δc2s=c2s vs T for different
values of R. So from R dependences of dMu;d;s=dT and c2s ,
given in Figs. 6 and 7, we can grossly understand the
qualitative nature of ζðT; RÞ, given in Fig. 5(b). The
changes of ζ are explored in Fig. 5(b), where we notice
that Δζ=ζ remains nonzero at the high temperature zone,
unlike Δη=η or others. This is because of the strange quark
contribution. Unlike dMu;d=dT curves in Fig. 6(a),
dMs=dT curves for different values of R, shown in
Fig. 6(b), do not merge at the high temperature zone
(T ¼ 0.170–0.400 GeV). If we restrict our outcome to u
and d quarks, then wewill get a vanishingΔζ=ζ at that high
temperature region.
Now, normalizing the bulk viscosity by the entropy

density, we have plotted ζ=s and its change Δðζ=sÞ=ðζ=sÞ
for different values of R in Figs. 8(a) and 8(b), respectively.
Though ζ at the low temperature limit almost tends to zero,
ζ=s at that limit becomes finite because of its comparable
magnitudes. Interestingly, the second (mild) peak of ζ
almost disappears in ζ=s because sðTÞ at the high T domain

is strongly dominant and increases rapidly with respect to
ζðTÞ. Comparing Figs. 5(b) and 8(b), we notice that the
changes of ζ and ζ=s due to finite size are approximately
similar.
Next, let us come to the electrical conductivity σ of quark

matter, whose expression is given in Eq. (10). Using this
expression, we have generated σðTÞ with and without the
finite size effect and then following our earlier technique, we
defineΔσ=σ, which is plotted in Fig. 9 for different values of
R. As the expressions of η and σ are quite similar, therefore,
one can see a similarity between the results of Figs. 3(b)
and 9. However, one should notice that the integrand of σ is
k⃗2 times smaller than that of η, which is the main reason of
quantitative difference between Δσ=σ and Δη=η. For exam-
ple, at T ¼ 0.170 GeV R ¼ 2 fm, Δσ=σ ¼ −80% but
Δη=η ¼ −70%. One more interesting difference between
Δσ=σ and Δη=η is that at high T range, σðRÞ reduces with
respect to σðR ¼ ∞Þ. For example, at T ¼ 0.200 GeV,
R ¼ 2 fm, Δσ=σ ¼ þ8%, but Δη=η ¼ −4%. This clearly
happens because of the absence of a k⃗2 factor in σ compared
to that in η.

A. Comparison with NJL results

Without the Polyakov loop extension, we have also
generated the results for the NJL models, where the
straightforward Fermi-Dirac distribution function will
describe the statistical probability of quarks in medium.
So the finite size effect will enter here through the
modification of quark condensates or quark masses only.
Whereas in the PNJL model, the Polyakov loop fieldΦwill
also have the finite size effect along with the condensates.
Unlike the condensate, the Polyakov loop in present
formalism does not carry any momentum integration so
direct implementation of the finite size effect by introduc-
ing the lower momentum cutoff is not possible for this case.
However, one can do it by following some different
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FIG. 7. Same as Fig. (5) for square of speed of sound c2s .
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potentials which carry momentum integration [130,131]. In
the present framework, the Polyakov loop field faces an
indirect finite size effect. In Fig. 10(a), we see the field
variable Φ face a mild change when we jump from R ¼ ∞
to 2 fm, while a drastic change is noticed in quark massMu
for the same transition in R. Fig. 10(b) shows the T
dependent quark mass Mu at R ¼ ∞ and R ¼ 2 fm from
the PNJL model (dotted and solid lines) and NJL model
(dashed dotted and dashed lines). We notice that the
condensate starts to melt down at a lower temperature in
the NJL model than with respect to the PNJL model but the
strengths of their condensate at T ¼ 0 are exactly the same.
This observation is true for both infinite and finite matter,
but when one transits from the infinite to finite matter
picture for any model (NJL or PNJL), its vacuum con-
densate strength is abruptly reduced. When we see the
curves of Fig. 11(a), which are basically the temperature

derivatives of the curves in Fig. 10(b), we can visualize the
phase transition more clearly. We know that the peak
position of dMu=dT for the NJL model gives us the chiral
transition temperature, while the PNJL model contains
collectively both chiral and deconfinement transition. In
our present model, deconfinement transition takes place at a
higher temperature than the chiral transition temperature;
therefore, the peak position of dMu=dT for the PNJL model
shifts towards a higher temperature than the same for the
NJL model. When one transits from the infinite to finite
matter case for any model, the peak position shifts towards
a lower temperature. It means that the transition temper-
ature decreases by reducing the size of the medium, which
is also noticed in earlier Refs. [89,97]. Next, Fig. 11(b)
reveals a similar kind of peak shifting for the strange quark,
but it contains an additional hump structure in the higher
temperature, which is well discussed in earlier sections.
These peaks shifting will make a direct impact on the bulk
viscosity.
Following similar patterns of Figs. 10 and 11, the

entropy density s and speed of sound cs are shown in
Figs. 12(a) and 12(b), respectively. In the low temperature
range, both quantities are enhanced when one goes from the
PNJL to the NJL model as well as from infinite to finite
matter case. At the high temperature, an opposite behavior
is observed. Finally, we come to the transport coefficients,
η, ζ, and σ, in the NJL and PNJL models for R ¼ ∞ and
2 fm, which are shown in Figs. 13(a)–13(c), respectively.
We can grossly conclude that both η and σ are enhanced
during the transition from the PNJL to NJL model as well
as from the infinite to finite matter case. Although, all of the
curves merge at the high temperature region. This is
expected because the thermal distribution functions of
the NJL and PNJL models become the same at the high
temperature range. Again, the thermodynamic probability
of quarks at the lower momentum is negligible for this high
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FIG. 10. (a) T dependence of fieldΦ at R ¼ ∞ (dotted line) and
R ¼ 2 fm (solid line). (b) Quark mass MuðTÞ at R ¼ ∞ and
R ¼ 2 fm from PNJL model (dotted and solid lines) and NJL
model (dashed dotted and dashed lines).
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temperature domain, so impact of the lower momentum
cutoff for finite size consideration of medium will also be
negligible. Therefore, the curves for R ¼ ∞ and R ¼ 2 fm
both merge at the high temperature domain. For bulk
viscosity, dMu=dT and dMs=dT of Figs. 11(a) and 11(b)
will collectively build its profile, which is a little complex
in structure. In earlier sections, for the PNJL model, we
have already analyzed how the two peak structure of ζ is
converted to one broadened peak structure. The same event
is happening for the NJL model, also, but its positions of
peaks in the T axis are only different.

B. Phenomenological significance

Now let us see the connection or application of our
studies in heavy ion phenomenology. The expanding
medium, created in heavy ion collision experiments,
can be well described by dissipative hydrodynamic
simulations, where the transport coefficients like shear
and bulk viscosities are implemented as input parameters.
When the medium expands, its volume increases and the
temperature decreases with time. At a certain temperature,
called the freeze-out temperature, the medium loses its
many body identity. In the experiment, only this freeze-
out size of the medium can be measured. However, before
the freeze-out point, the size of the expanding medium can
be smaller than its freeze-out size. Our present inves-
tigation reveals that the values of η=s and ζ=s can be
changed for different system sizes, which are less than
6–7 fm (approx). So one should consider size dependent
(along with temperature dependent) η=s and ζ=s during
the complete evolution.
In the most central collision, the freeze-out size is quite

large (∼7–8 fm), but in the noncentral collision, it can be
smaller. So, at a different centrality, one can expect different
values of transport coefficients. In Ref. [3], the centrality
dependence of the invariant yield and the elliptic flow of

charged hadrons as a function of transverse momentum has
been investigated. They have matched the experimental
data of the PHENIX Collaboration [132,133] by taking
different guess values of η=s in the hydrodynamical
simulation, and they found the experimental data prefers
higher values of η=s as we go from central to peripheral
collisions. The same indication is found in our present
work. When one goes from central to peripheral collisions,
which means from higher to lower system sizes, our
estimated values of η=s are enhanced. From a microscopic
direction, our understanding is that the quantum effect due
to the finite size of the system is responsible for enhancing
the values of η=s.

V. SUMMARY AND PERSPECTIVES

As a first attempt to investigate the qualitative changes
brought about by the finite size effect on transport
coefficients of quark matter, we have adopted here a
simple idea of taking the nonzero lower momentum cutoff
under the framework of the PNJL model. The temperature
dependences of the constituent quark masses, obtained
from the gap equation, have been modified and they get
diminished as the size of the system decreases. When
these size dependent quark masses are plugged into the
integrands of different transport coefficients, some
enhancements in their values are found. Whereas the
expressions of the transport coefficients contain momen-
tum integrations as well, whose nonzero lower limit
contributes additionally to the effects of medium size
which basically decreases as we decrease the size. So,
there will be a competition between these two sources of
finite size, which will determine the net change in the
values of transport coefficients. In the low temperature
range, shear viscosity and electrical conductivity increase
as the system size is reduced. The size effect disappears at
the high temperature range as chiral symmetry gets
restored there for any system size. The bulk viscosity,
which basically measures the scale violation of the
medium, has a nontrivial link with the system size. The
rate of change of the constituent quark mass with respect
to temperature and speed of sound are two quantities
responsible for that.
We have also analyzed the same studies for the NJL

model case just to understand the transition between the
NJL and PNJL models. We have noticed that the values of
transport coefficients are grossly enhanced when we transit
from the PNJL to NJL model as well as from infinite matter
to finite matter. This enhancement mostly occurs in the
low temperature domain and almost vanishes at the high
temperature domain.
In the phenomenological direction, our microscopic

calculations say that η=s of the medium increases when
one goes from central to peripheral collisions. A similar
conclusion is also found from the macroscopic direction,
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FIG. 13. Following the same pattern of earlier figures, the
comparison between the NJL and PNJL model results for shear
viscosity η, bulk viscosity ζ, and electrical conductivity σ.
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where dissipative hydrodynamical simulation describes
the expanding medium by taking η=s as an input
parameter.
In order to see the qualitative changes in transport

coefficients for the finite system size consideration, we
have taken a constant value of relaxation time in this
present work. However, involved calculations of the relax-
ation time at a finite temperature as well as system sizes
incorporating different interaction channels might lead us
to a more realistic scenario. We intend to address the issue
in our future project.
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