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A tensorial representation of ϕ4 field theory introduced by Herbut and Janssen [Phys. Rev. D 93, 085005
(2016)] is studied close to six dimensions, with an eye towards a possible realization of an interacting
conformal field theory in five dimensions. We employ the two-loop ϵ expansion, two-loop fixed-dimension
renormalization group, and nonperturbative functional renormalization group. An interacting, real,
infrared-stable fixed point is found near six dimensions, and the corresponding anomalous dimensions
are computed to the second order in the small parameter ϵ ¼ 6 − d. Two-loop epsilon expansion indicates,
however, that the second-order corrections may destabilize the fixed point at some critical ϵc < 1. A more
detailed analysis within all three computational schemes suggests that the interacting, infrared-stable fixed
point found previously collides with another fixed point and becomes complex when the dimension is
lowered from six towards five. Such a result would conform to the expectation of the triviality ofOð2Þ field
theories above four dimensions.
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I. INTRODUCTION

The question of the existence of conformally invariant
interacting field theories in (spacetime) dimensions higher
than four has recently stimulated efforts in two closely
related directions. In the first [1,2], it was shown that the
OðNÞ-symmetric ϕ4 theory with a negative self-interaction
can be Hubbard-Stratonovich decoupled in the scalar
channel, and then written in a form that admits a non-
Gaussian, real, infrared (IR)-stable interacting fixed point
close to and below six dimensions, for a sufficiently large
parameter N. In the related development [3], it was pointed
out that there exists an alternative decoupling of the same
theory in the tensor channel, in which the OðNÞ theory
would be written as

L¼ 1

2
ð∂μzaÞ2þ

1

2
ð∂μϕiÞ2þgzaϕiΛa

ijϕjþλTr½ðzaΛaÞ3�:
ð1Þ

Here i; j ¼ 1; 2;…N, ϕi and za are real fields, with
a ¼ 1;…MN , and MN ¼ ðN − 1ÞðN þ 2Þ=2 is the number
of components of the irreducible tensor of the second rank
underOðNÞ rotations. TheMN matrices Λa

ij provide a basis
in the space of traceless, real, symmetric N-dimensional

matrices, and the fields za transform as components of a
second-rank tensor. The theory (1) reproduces the original
formulation [1] if one retains a single matrix Λ and replaces
it with a unit matrix. The two IR-relevant mass terms for the
fields ϕi and za have been tuned to zero for simplicity. A
perturbative one-loop analysis [3] of Eq. (1) in dimension
d ¼ 6 − ϵ identified a nontrivial real IR-stable fixed point
in certain ranges of small values of N that include, most
interestingly, the physically relevant cases of N ¼ 2 and
N ¼ 3. Such an indication of the possibility of a successful
UV completion of OðNÞ theory above four dimensions, on
the other hand, would appear to be somewhat at odds with
expectations based on well-known earlier results on the
subject; in Refs. [4,5] it was proven, for example, that the
standard ϕ4 theory in (integer) dimensions d > 4 is bound
to be trivial for N ¼ 1 and N ¼ 2.
The structural equivalence of the standard ϕ4 theory

and our model can be established by integrating out the
za fields in Eq. (1). Doing so yields a negative quartic
coupling [3], with some residual momentum dependence,
so it seems unclear whether the above-mentioned no-go
theorems should indeed apply to the tensorial represen-
tation of the OðNÞ theory. At any rate, we take this
conceptual tension as an additional motivation for further
studies of the field theory (1). In this work we therefore
reconsider Eq. (1) for N ¼ 2 since it represents the most
convenient departure point for any deeper analysis due to
its particular simplicity: the matrices Λa

ij in this case
reduce to the two Pauli matrices σx and σz. Since any
trace over a product of three of these matrices vanishes,
so does the term cubic in the za fields in Eq. (1). This
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drastically reduces the computational cost of higher-order
(perturbative) investigations.
As a first step, we extend the ϵ expansion performed in

Ref. [3] to the two-loop level.While the nontrivial fixed point
of the beta function for the coupling g is of course a power
series and thus continuous in the parameter ϵ ¼ 6 − d, the ϵ2

correction to the leading result destabilizes it at a certain
critical value ϵ < 1. Examining the nontrivial roots of the
beta function, one finds that the fixed point is real only for
ϵ ≪ 1, being rendered complex on its way to the physical
ϵ ¼ 1 by the collision and annihilation with another fixed
point. This is less surprising after recalling that the same
occurs at some critical ϵ at every even order of expansion
around d ¼ 4 in the canonical ϕ4 theory as well [6]. It is
conceivable that in our theory this conclusion would change
from one order to the next, if no summation of the series is
performed. Nevertheless, since unlike in the standard ϕ4

case, here we do not a priori know that the critical point in
d ¼ 5 exists,we explicitly entertain the possibility that itmay
disappear on its way from six to five dimensions. The
reliability of any conclusion in d ¼ 5 is of course diminished
by the fact that there seem to be no signs of convergence of
the obtained series in powers of ϵ. This motivates us to
perform two additional, independent calculations in differ-
ent, yet comparable renormalization group (RG) schemes.
Directly at d ¼ 5, a technique known as fixed-dimension

renormalization group can be employed. Introduced by
Parisi [7], it has provided very precise estimates of critical
exponents for standard universality classes in three dimen-
sions [6]. Aside from minor quantitative variations, the
results in this scheme agree qualitatively with those of the ϵ
expansion: to two-loop order, besides the Gaussian, we
only find complex zeros of the beta function, and thus no
real nontrivial fixed point.
The destruction of the stable fixed point that exists near

six dimensions in the perturbative treatment occurs due to a
collision with another, non-Gaussian fixed point. The value
of the latter is not OðϵÞ and therefore, although being
accidentally small, strictly speaking not in a regime where
perturbative methods should be trusted. Our third approach
is therefore to utilize the functional RG (fRG), an inherently
nonperturbative technique.Whilewe can indeed confirm the
destruction of the fixed point at some intermediate dimen-
sion 5 < d < 6, a comparison with the first two calculations
is not as straightforward as between the latter, and calls for a
closer examination in the future.
This paper is organized as follows. In Sec. II, we extend

the ϵ expansion to the two-loop level and analyze the
ensuing RG flow equations. Section III is devoted to the
application of the fixed-dimension RG technique, while
Sec. IV discusses the functional RG approach. In Sec. V,
we offer some concluding remarks.

II. TENSORIAL Oð2Þ MODEL AND ϵ EXPANSION

For the remainder of this work we confine ourselves
to N ¼ 2. As argued in the Introduction, no term

cubic in the za fields is present in this case and Eq. (1)
is reduced to

L ¼ 1

2
ð∂μzaÞ2 þ

1

2
ð∂μϕiÞ2 þ gzaϕiσ

a
ijϕj; ð2Þ

where σa ∈ fσx; σzg. The corresponding one-loop RG
equations have already been computed in Ref. [3]. In
Fig. 1 we give the corresponding Feynman diagrams to
be evaluated for this purpose. It is particularly noteworthy
that the correction to the vertex [Fig. 1(C)] vanishes due to
the peculiarities of the Pauli algebra. This drastically reduces
the number of diagrams contributing at the two-loop level as
well. Every diagram that contains Fig. 1(C) as a substructure
is bound to vanish. Furthermore, two-loop vertex correction
diagrams which are built from Fig. 1(C) and propagator
correction diagrams such as Figs. 1(A) and 1(B) effectively
still exhibit the same Pauli structure and therefore vanish
as well.
The remaining two-loop diagrams are shown in Fig. 2.

Their evaluation in d ¼ 6 − ϵ dimensions is now a straight-
forward exercise in combinatorics and standard momentum

FIG. 1. One-loop diagrams contributing in principle to the RG
flows of ηϕ (A), ηz (B) and dgR=d ln b (C). The solid lines
correspond to ϕ (scalar field) propagators whereas the wiggly
lines symbolize za (tensor field) propagators. The diagram C
vanishes.

FIG. 2. Nonvanishing two-loop diagrams contributing to the
RG flows of ηϕ (A, B), ηz (C) and dgR=d ln b (D).
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integrals; see, e.g., Refs. [2,8]. The resulting anomalous
dimensions and the beta function are given by

ηϕ ¼ xR

�
8

3
−
22ϵ

9

�
− x2R

�
88

9
−
242ϵ

27

�
; ð3aÞ

ηz ¼ xR

�
4

3
−
11ϵ

9

�
− x2R

�
176

27
−
484ϵ

81

�
; ð3bÞ

and

dxR
dlnb

¼ ϵxR−x2R

�
20

3
−
55ϵ

9

�
þx3R

�
4160

27
−
1936ϵ

81

�
: ð4Þ

Here, ηϕ=z ¼ dZϕ=z=d ln bwhereZϕ=z are thewave-function
renormalization parameters of the respective fields
and b corresponds to the momentum shell scaling factor
in a Wilsonian RG picture [9]. Furthermore, xR¼g2R¼
ðg2Z2

gb6−dÞ=ðZ2
ϕZzÞ corresponds to the renormalized

Yukawa coupling and thus dxR=d ln b ¼ 2gR · dgR=d ln b.
For conciseness, the standard rescaling of xR with Sd=ð2πÞd
has also been performed.
For small ϵ, besides the Gaussian fixed point there are

two other fixed points, one Oð1Þ (“nonperturbative”) and
the other OðϵÞ (“perturbative”):

x�;nonp ¼
9

208
−
4947ϵ

27040
−
186337ϵ2

281216
; ð5aÞ

x�;pert ¼
3ϵ

20
þ 263ϵ2

400
; ð5bÞ

with

θnonp ¼
15

52
−
9421ϵ

2704
−
347939ϵ2

105456
; ð6aÞ

θpert ¼ −ϵþ 52ϵ2

15
: ð6bÞ

Here, θ ¼ ∂xRðdxR=d ln bÞxR¼x� denotes the universal expo-
nent which determines the stability of the fixed point. The
second fixed point (5b) is stable for small ϵ and corresponds
to the one found in Ref. [3]. The other one, x�;nonp, is
unstable for small epsilon, and also not OðϵÞ, and it is
therefore unclear whether it should be taken seriously
within the present approach.
It is now tempting to infer the value of the physical fixed

point (5b) and its concomitant critical exponents, such as
anomalous dimensions,

ηϕ;� ¼
2ϵ

5
þ 7ϵ2

6
; ηz;� ¼

ϵ

5
þ 41ϵ2

75
; ð7Þ

all the way to ϵ ¼ 1, i.e. in the physical dimension d ¼ 5;
see the dashed lines in Fig. 3. This, however, appears to be

of questionable validity. The ϵ-expanded θpert becomes
positive for ϵ > 15=52, and therefore the perturbative fixed
point loses its stability before d ¼ 5 is reached. Such a
change of stability can only occur due to a collision with
another fixed point. In fact, going back to the beta function
in Eq. (4) for a more complete analysis and not expanding
the x� about ϵ, one finds that at a much lower value of

ϵc ¼ 60ð471−8 ffiffiffiffiffiffiffi
3298

p Þ
10769

≈ 0.064, the fixed points x�;pert and
x�;nonp had already collided. For all ϵ > ϵc, the nontrivial
zeros of the beta function (4) become complex (shaded
region in Fig. 3).
Such a collision and annihilation of fixed points is an

ubiquitous phenomenon, believed to be relevant in many
different contexts; see e.g. Refs. [10–14]. Interestingly, if
indeed occurring at some ϵc < 1, it would reconcile the
results of Ref. [3] with the expectation based on the
arguments of Ref. [5]. The quadratic nature of the flow
equation (4) at the one-loop level does not allow a fixed-
point collision for the simple reason that there is no other
non-Gaussian fixed point to collide with. In a one-loop
calculation, therefore, the stable non-Gaussian fixed point
is bound to exist all the way to d ¼ 5 (solid lines in Fig. 3).
The possible removal of it by collision and annihilation
with another fixed point could thus only be detected by
going at least to the two-loop level.
Let us now discuss the reliability of our findings. The

detected smallness of ϵc at two loops certainly lends some
credibility to the perturbative result. On the other hand, it is
not clear whether the nonexistence of the stable fixed point
needs to persist all the way to ϵ ¼ 1. As can be seen from
the expressions (3) and (4), next-to-leading-order correc-
tions in the ϵ expansions are sizable and the convergence
properties of the ϵ expansion do not look encouraging.

FIG. 3. ϵ-expansion results for the values of the physical
fixed point x�;pert and universal exponent θ as a function of
spatial dimension. The solid lines provide the one-loop result
whereas the dashed lines represent (naively expanded) two-loop
values. The shaded region indicates the nonexistence of the fixed
point at the two-loop level due to merging and annihilation
(see main text).
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A higher-order computation would certainly be desirable.
Leaving this for future work, since the conclusion at the
two-loop level is quite sensitive to the size of the (large)
coefficients in the last terms in Eqs. (3) and (4), in the next
section we turn to a computation of the corresponding RG
equations still at two loops, but directly in d ¼ 5.

III. FIXED-DIMENSION RG

In d ¼ 5 dimensions, g is a canonically relevant coupling
with mass dimension ½g� ¼ 1

2
. For situations like this, a

renormalization scheme at fixed dimension was developed
by Parisi [7]. In this approach the bare mass of the fields is
kept finite during the computation in order to keep infrared
singularities under control. Renormalization is performed
by means of the Bogoliubov-Hepp-Parasiuk (BHP) formula
[7]

VRðqÞ ¼ VðqÞ −
XD
n¼0

1

n!
∂n
qVðqÞjq¼0 · q

n: ð8Þ

Here, VðRÞðqÞ is the (renormalized) value of some UV-
divergent diagram at external momentum q and D is the
highest degree of divergence involved. If the divergence of
some diagram is due to substructures, the latter themselves
have to be renormalized first [7].
To obtain the flow equations in this scheme, we need to

reevaluate the diagrams in Figs. 1 and 2. While the
combinatoric factors and tensor algebra contributions do
not change, the momentum integrals have to be computed
anew. Doing so numerically and rescaling xR to fit the
results of the ϵ expansion at the one-loop level yields

ηϕ ¼ 8

3
xR þ 12.5103x2R; ð9aÞ

ηz ¼
4

3
xR þ 8.3402x2R; ð9bÞ

and

dxR
d ln b

¼ xR −
20

3
x2R þ 185.405x3R: ð10Þ

Equation (10) has only complex-valued fixed-point solu-
tions, aside from x� ¼ 0. This would be in accord with the
conclusion that the stable, real, nontrivial fixed point has
disappeared on its descent from six dimensions.
As an additional check, let us pretend for a moment that

the coefficients in Eqs. (9) and (10) were independent of
dimension and reinstate the general factor (6 − d) to the
linear term in the RG equation (10) for xR. The calculation
then can again be continued in dimensionality, in this case
towards six dimensions. The corresponding results are
shown in Fig. 4. Very similar to our findings in Sec. II,
we recover a real, stable fixed-point solution in closevicinity
to six spatial dimensions. Quantitatively, this would

correspond to an ϵc ¼ 0.045 in decent agreement with the
value from the ϵ expansion. Again, the extension of fixed-
dimension results should not be taken as a reliable quanti-
tative result. However, it is reassuring to see that its findings
agree with the results from the ϵ expansion.

IV. FUNCTIONAL RG

Aside from the question of convergence in terms of ϵ,
there is also a reason to be concerned about the perturbative
expansion itself, affecting the results of both Secs. II
and III. In both cases, the coefficients of the cubic terms
in the flow equation for xR are more than an order of
magnitude larger than those of the quadratic terms. It is
therefore not safe to assume that higher-order contributions
would yield only small corrections. On the contrary, it can
be expected that rather high-order calculations and elabo-
rate resummation schemes may be necessary to achieve a
satisfactory level of reliability (see, e.g., Ref. [15]).
In this work, we do not attempt to pursue this direction.

Instead, we employ an inherently nonperturbative method:
the fRG. Recently, the scalar extension [1] of the OðNÞ
model has been investigated successfully [16,17] by means
of this approach. It is thus only natural to apply the method
to the tensorial theory as well. The central component of the
fRG is the exact Wetterich equation [18] for the effective
average action Γk,

∂kΓk ¼
1

2
Tr

� ∂kRk

Γð2Þ
k þ Rk

�
: ð11Þ

Here, k is the scale parameter that is used instead of ln b for
conciseness. Γk itself interpolates between the microscopic
action S for k → ΛwhereΛ is the overall UV cutoff and the
full effective action Γ in the deep infrared, k → 0. This is

FIG. 4. Fixed-dimension RG results for the fixed-point values
and universal exponent θ at the one-loop (solid lines) and two-
loop levels (dashed lines). The values for d > 5 are generated by
an artificial extension of the formalism; see main text. Good
agreement with results from the ϵ expansion is observed, cf.
Fig. 3.
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achieved by means of the regulator function Rk, which
has to fulfill certain properties [18], such as vanishing
for k → 0.
The right-hand side of Eq. (11) is essentially the trace of

the (regulated) propagator matrix ðΓð2Þ
k Þ−1, so the funda-

mental structure of the equation is strictly one loop. Since

Γð2Þ
k is the full inverse propagator, higher-loop contributions

are implicitly accounted for and the equation remains in
principle exact. For practical purposes, however, approx-
imations have to be made to be able to solve Eq. (11). One
such approximation would be to replace Γk on the right-
hand side of the equation by the microscopic action S. In
this case, the Wetterich equation can be integrated explic-
itly [19], yielding

Γ1−loop ¼ Sþ 1

2
Tr ln Sð2Þ: ð12Þ

This is the equation for the perturbative one-loop effective
action. It can thus be inferred that the Wetterich equation
reproduces the perturbative one-loop renormalization group
as a limiting case.
Moving beyond the one-loop level, comparison to

perturbation theory becomes far less obvious [20]. It is
clear that simply setting Γk equal to the microscopic action
supplemented with running couplings cannot account for
this anymore as it yields precisely the one-loop limit.
Therefore, a more elaborate truncation has to be used as an
ansatz for Γk in Eq. (11).
The full quantum effective action Γwill generally consist

of all, even canonically irrelevant, operators compatiblewith
the symmetries of the system. Furthermore, the frequency
and momentum dependence of those n-point functions
have to be taken into account as well. Therefore, we have
two ways of systematically expanding our truncation in
order to encompass the two-loop calculations from the
sections above.

A. Quartic operators

Let us first consider diagram D in Fig. 2. With only
the Yukawa coupling term available, this diagram
cannot be composed by combining one-loop subdiagrams.
Consequently, the only possible way to achieve a vertex
renormalization at all in our one-loop fRGschememust be to
include higher-order operators in our ansatz for Γk. It could
be argued that such operators are canonically irrelevant and
should therefore be negligible in the deep infrared.However,
this does not preclude them from crucially affecting the RG
flow of xR at intermediate scales. This is particularly true for
the functional RG equations which are constructed differ-
ently than perturbative ones due to the one-loop structure of
the Wetterich equation (11).
The next highest-order operator to be generated from the

Yukawa term is λϕ;kðϕiϕiÞ2. This is hardly surprising, since
gϕiσ

a
ijϕjza was supposed to result from a Hubbard-

Stratonovich decoupling of this term in the first place.

However, two more quartic operators are generated as well:
λm;kϕ

2zaza and λz;kðzazaÞ2 (see Fig. 5).
As can be inferred from Fig. 6, the feedback of the flow

of λϕ does indeed account for the diagram structure D in
Fig. 2 in the flow of xR. In terms of diagram structures, the
two-loop perturbative expansion is thus recovered by the
inclusion of λϕ. For consistency, however, λm and λz as well
as contributions ∼λ2 in the flow of the quartic couplings
themselvesmust be accounted for as well in this scheme (see
below). Therefore, the present fRG approach clearly goes
beyond second-order perturbation theory in this respect.

B. Momentum-dependent vertices

Second, the frequency and momentum dependence of
vertices or, more generally, n-point functions must be taken
into account to fully encompass two-loop perturbation
theory. This becomes obvious when comparing, for exam-
ple, the middle and right diagrams in Fig. 6. The box-like
subdiagram, which is provided by the λϕ;k vertex in the
fRG, possesses a nontrivial momentum structure even if all
external momenta vanish. A constant quartic coupling λϕ;k
cannot fully account for this. It would thus have to be made
a function of frequency and momentum to fully encompass
all effects which are included by construction in the
perturbative expansion.
In this work, we refrain from pursuing this direction any

further. While it is in principle possible to construct fRG

FIG. 5. Schematics for generating the quartic terms during the
fRG flow by box-type diagrams.

FIG. 6. Diagrammatic scheme: feedback of the running λϕ
coupling into the flow of xR accounts for the two-loop correction
of the Yukawa vertex.
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truncations that do include such dependencies [20–24],
their application and evaluation is often a formidable task
and can generally only be performed numerically. Here, we
want to focus on aspects that can be investigated at least
semianalytically.
Summarizing, our ansatz for the effective average action

is given by

Γk ¼
Z

ddx

�
1

2
ϕi½m2

ϕ;k − Zϕ∂2
μ�ϕi þ

1

2
za½m2

z;k − Zz∂2
μ�za

þ gkzaϕiσ
a
ijϕj þ λϕ;kðϕiϕiÞ2

þ λm;kzazaϕiϕi þ λz;kðzazaÞ2
�
: ð13Þ

Note that we do include the running masses m2
ϕ;k and m2

z;k
in our truncation. It is generally impossible to consistently
tune dimensionless fixed-point mass parameters to zero
away from the Gaussian fixed point.
By employing spatiotemporally constant coupling

parameters, we do not encompass second-order perturba-
tion theory completely. On the other hand, diagrammatic
structures are accounted for even beyond the perturbative
two-loop level already in this setup.
For our concrete evaluations, we choose the optimized

Litim cutoff function [25,26]

Rk;ϕ=zðqÞ≡ k2rk;ϕ=zðqÞ ¼ Zϕ=zðk2 − q2ÞΘ½k2 − q2�; ð14Þ

where Θ½·� is the Heaviside step function. Given Eq. (13),
the flow equations for xR and the dimensionless couplings

m2
ϕ ¼ m2

ϕ;k

Zϕk2
; m2

z ¼
m2

z;k

Zzk2
ð15aÞ

λϕ¼
λϕ;kkd−4

Z2
ϕ

; λm¼ λm;kkd−4

ZϕZz
; λz¼

λz;kkd−4

Z2
z

; ð15bÞ

may then readily be computed (see the Appendix for
details). After proper rescaling, we find

ηϕ ¼ 8

3

xR
ð1þm2

ϕÞ2ð1þm2
zÞ2

; ð16aÞ

ηz ¼
4

3

xR
ð1þm2

ϕÞ4
; ð16bÞ

dm2
ϕ

d lnk
¼ð2−ηϕÞm2

ϕþ4xRcd1;1−32λϕcd1;0−8λmcd0;1; ð17aÞ
dm2

z

d lnk
¼ð2−ηzÞm2

z þ2xRcd2;0−8λmcd1;0−32λzcd0;1; ð17bÞ

dxR
d lnk

¼ ½ð6−dÞ−2ηϕ−ηz�xRþ32xRλϕcd2;0þ32xRλmcd1;1;

ð18Þ

and

dλϕ
d ln k

¼ ½ð4 − dÞ − 2ηϕ�λϕ þ x2Rc
d
2;2 þ 16xRλϕcd2;1

− 4xRλmcd1;2 þ 80λ2ϕc
d
2;0 þ 4λ2mcd0;2; ð19aÞ

dλm
d ln k

¼ ½ð4 − dÞ − ηϕ − ηz�λm þ 2x2Rc
d
3;1 − 16xRλϕcd3;0

− 12xRλmcd2;1 − 16xRλzcd1;2 þ 32λϕλmcd2;0

þ 16λ2mcd1;1 þ 32λmλzcd0;2; ð19bÞ

dλz
d ln k

¼ ½ð4 − dÞ − 2ηz�λz þ
1

2
x2Rc

d
4;0 − 4xRλmcd3;0

þ 4λ2mcd2;0 þ 80λ2zcd0;2; ð19cÞ

where cdi;j is given in Eq. (A4) (see the Appendix for
details). xR was rescaled in such a way that the perturbative
one-loop equations are recovered when setting λϕ=m=z and
m2

ϕ=z to zero and ignoring the ηϕ=z dependence inside of

the cdi;j.
The solution to these RG equations generally yields a

multitude of fixed points. There is, however, at most one
completely stable solution (except for the flow of the mass
parameters which is always relevant). This fixed point
exists in the vicinity of d ¼ 6 dimensions and is annihilated
at d ¼ 5.71 (corresponding to ϵc ¼ 0.29) after merging
with another, unstable solution; see Fig. 7. While this value
for the limiting ϵ is thus somewhat larger than in the
perturbative analyses, the general finding prevails.
Incidentally, the numerical value of ϵc found in the fRG
is very close to the value where the stability exponent in
Eq. (6b) changes sign.

FIG. 7. Functional RG results for the fixed-point values and
universal exponent θ at the one-loop level (solid lines) and
including quartic terms (dashed lines). The nonexistence of an
entirely stable fixed point due to annihilation is indicated by
shading.
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The fRG analysis we performed is by no means exact
and fails to encompass perturbation theory in some
respects, but it also goes beyond perturbative RG in others.
The stability of the result with respect to such alterations
may give some confidence that the nonexistence of an
IR-stable fixed point for the tensorial Oð2Þ model holds
also beyond second-order perturbation theory.

V. CONCLUSIONS

In this work, we revisited theOð2Þ theory in the tensorial
representation near six dimensions. A previous analysis at
the one-loop level found a real, infrared-stable, non-
Gaussian fixed point. Although, as discussed in the
Introduction, not directly violating them, this finding seems
to go against the intuition based on proofs [4,5] that state
that at least for N ¼ 1 and N ¼ 2 the standard ϕ4 theory
must be trivial for any d > 4. Motivated by this observa-
tion, we extended our perturbative analysis of the Oð2Þ
model to the two-loop level. The annihilation of the stable
fixed-point solution at d ¼ 5.94 was found to occur in the ϵ
expansion at this order. While clearly this conclusion may
change, if it survives higher-order or more elaborate
computations it would point to triviality in d ¼ 5. The
convergence properties of the ϵ expansion, however, seem
problematic. In order to check the robustness of this result
with respect to the employed RG scheme, we performed the
same analysis within Parisi’s fixed-dimension RG directly
in d ¼ 5, where again no real, nontrivial fixed point could
be found, further strengthening this conclusion.
Finally, we investigated the same model by means of the

functional renormalization group. We were able to show
that within our truncation, effects of higher-loop orders are
partially included as well. At the same time, the treatment
of internal momentum structures of multiloop diagrams is
not equivalent to the perturbative situation anymore.
Nevertheless, we again found that a stable fixed point only
exists in the immediate vicinity of six dimensions.
It is of course possible that a more elaborate analysis

might reveal yet another stable fixed point, or reinstate the
one which appears to be annihilated in our treatment. While
it goes beyond the scope of our present work, it would
therefore be worthwhile to compute third and higher-loop
corrections and employ resummation techniques as well.
Furthermore, in Ref. [16] on the scalar extension of the
OðNÞ model, higher-order truncations and even an analytic
investigation of the fixed-point effective potential were
employed. While these did not yield qualitatively different
results from a low-order analysis such as ours, it would still
be interesting to pursue a similar program for the tensorial
extension.
Last but not least, it is important to extend the higher-

order analysis also beyond the N ¼ 2 case. Even if the
results of the present work prove to persist to higher loops,
it is conceivable that stable fixed points could survive in
d ¼ 5 for N > 2.
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APPENDIX: DERIVATION OF THE
FRG FLOW EQUATIONS

Here, we provide some details on how to derive the flow
equations (16)–(19) from the ansatz (13). First, the exact
RG equation (11) itself can be expanded as

∂tΓk ¼
1

2
Tr

�
∂̃t lnðPkÞ − ∂̃t

X∞
n¼1

ð−1Þn
n

ðP−1
k F kÞn

�
; ðA1Þ

where ∂̃t denotes the scale derivative ∂ ln k acting exclu-
sively on the regulator dependence of any term it is applied

to. Furthermore, the full propagator Γð2Þ
k is split into field-

dependent (F k) and inverse field-independent (P−1
k ) parts.

Projection rules onto the flow of the respective running
couplings can now be constructed accordingly:

ηϕϕiϕiΩ¼−
∂ lnkZϕ

Zϕ
ϕiϕiΩ

¼ 1

4Zϕ
∂2
q∂̃tTr½P−1

k ðpÞF kP−1
k ðp−qÞF k�ϕ2;q¼0;

ðA2aÞ

ηzzazaΩ ¼ −
∂ ln kZz

Zz
zazaΩ

¼ 1

4Zz
∂2
q∂̃tTr½P−1

k ðpÞF kP−1
k ðp − qÞF k�z2;q¼0;

ðA2bÞ

∂ lnkgkzaϕiσ
a
ijϕjΩ¼−

1

2
∂̃tTr

�
1

2
ðP−1

k F kÞ2−
1

3
ðP−1

k F kÞ3
�
zϕ2

;

ðA2cÞ

∂ lnkλϕ;kðϕiϕiÞ2Ω

¼−
1

2
∂̃tTr

�
1

2
ðP−1

k F kÞ2−
1

3
ðP−1

k F kÞ3þ
1

4
ðP−1

k F kÞ4
�
ϕ4

;

ðA2dÞ

CRITICAL Oð2Þ FIELD THEORY NEAR SIX … PHYS. REV. D 97, 116019 (2018)

116019-7



∂ lnkλm;kzazaϕiϕiΩ

¼−
1

2
∂̃tTr

�
1

2
ðP−1

k F kÞ2−
1

3
ðP−1

k F kÞ3þ
1

4
ðP−1

k F kÞ4
�
ϕ2z2

;

ðA2eÞ
∂ lnkλz;kTr½ðzaσaÞ4�Ω

¼−
1

2
∂̃tTr

�
1

2
ðP−1

k F kÞ2−
1

3
ðP−1

k F kÞ3þ
1

4
ðP−1

k F kÞ4
�
z4
;

ðA2fÞ

where all fields have been set to ϕiðpÞ ¼ ϕiδðpÞ or
zaðpÞ ¼ zaδðpÞ, respectively and Ω is the spacetime
volume.
Computing the traces and comparing coefficients is now

straightforward algebra which can be performed without
even choosing a specific shape of the regulator function. In
order to compute the momentum integrals, however, Rk
needs to be specified. Two standard integrals occur, whose
values we provide for the optimized cutoff [25,26] used in
this work:

I1ðnϕ; nz; dÞ ¼ ∂̃t

Z
p

1

Z
nϕ
ϕ ½p2 þ m̃2

ϕ;k þ k2rk�nϕ
1

Znz
z ½p2 þ m̃2

z;k þ k2rk�nz
¼ 2cdnϕ;nzSdk

d−2nϕ−2nz

ð2πÞdZnϕ
ϕ Znz

z ½1þm2
ϕ�nϕ ½1þm2

z �nz
ðA3Þ

with

cdi;j ¼
iηϕ

dðdþ 2Þ½1þm2
ϕ�
þ jηz
dðdþ 2Þ½1þm2

z �
−

i
d½1þm2

ϕ�
−

j
d½1þm2

z �
ðA4Þ

and

I2ðnϕ; nz; dÞ ¼ ∂2
q∂̃t

Z
p

1

Z
nϕ
ϕ Znz

z ½p2 þm2
k;ϕ=z þ k2rkðpÞ�½ðp − qÞ2 þm2

k;ϕ=z þ k2rkðp − qÞ�

����
q¼0

¼ 8kd−6

3Z
nϕ
ϕ Znz

z

Sd
ð2πÞd

1

½1þm2
ϕ�2nϕ ½1þm2

z �2nz
: ðA5Þ

For the last equation, it is implicitly assumed that nϕ þ nz ¼ 2 and the mass parameters in the propagators have to be chosen
accordingly.
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