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Recently advocated expressions for the phase-space dependent spin-1
2
density matrices of particles and

antiparticles are analyzed in detail and reduced to forms linear in the Dirac spin operator. This allows for
a natural determination of the spin-polarization vectors of particles and antiparticles by evaluating the trace
of products of the spin density matrices and the Pauli matrices. We demonstrate that the total spin-
polarization vector obtained in this way agrees with the Pauli-Lubański four-vector, constructed from an
appropriately chosen spin tensor and boosted to the particle rest frame. We further show that several forms
of the spin tensor used in the literature yield the same Pauli-Lubański four-vector.
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I. INTRODUCTION

The idea that the global angular momentum of the hot and
densematter created in heavy-ion collisionsmay be reflected
in the polarization of Λ hyperons and vector mesons has
triggered broad interest in studies of the possible relation
between vorticity and polarization [1–9] (see Ref. [10] for a
recent review). The study of vorticity has gained widespread
interest also because it is an important ingredient in studies of
theories that deal with the production of false QCD vacuum
states and chiral symmetry restoration [11]. In studies of
vorticity, polarization and related topics, the role of the spin-
orbit coupling [1,3,12,13], the polarization of rigidly rotating
fluids in global equilibrium [4,14,15], the kinetics of spin
[16–18], and anomalous hydrodynamics [19,20] have been
explored. We also note the recent work based on the
Lagrangian formulation of hydrodynamics [21,22].
Indeed, in noncentral heavy-ion collisions, a fireball is

created with large global angular momentum, which may

generate spin polarization in a way that resembles the
Einstein-de Haas [23] and Barnett [24] effects. Since such
collisions are well described by relativistic hydrodynamic
models [25–27], it is of interest to include polarization
explicitly in a hydrodynamic framework. So far, polarization
effects have been taken into account only at the end of the
hydrodynamic expansion, i.e., on the freeze-out hypersur-
face where a connection between vorticity and polarization
was assumed [14,15]. In such approaches, the preceding
dynamics of the polarization, from the initial stages of the
collision until the freeze-out, is not accounted for.
Recently, a new hydrodynamic framework was con-

structed [28], which fully incorporates spin degrees of
freedom in a perfect-fluid approach. This approach is
based on the local-equilibrium, spin-dependent phase-space
distribution functions f�ðx; pÞ, put forward in Ref. [15].
In this work, we study formal aspects connected with the
calculation of thermodynamic and hydrodynamic quantities
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using the functions f�ðx; pÞ. We reduce the original
exponential form to an expression linear in the Dirac spin
operator Σμν ¼ i

4
½γμ; γν�. This allows for a straightforward

determination of the spin-polarization vectors of particles
and antiparticles by evaluating the trace of the product of the
phase-space densities with Pauli matrices. We show that the
total spin-polarization vector obtained in this way agrees
with the Pauli-Lubański (PL) four-vector1 [29], constructed
from the spin tensor used in [28] and boosted to the particle
rest frame. Interestingly, other forms of the spin tensors used
in the literature yield the same PL four-vector (with the
exception of the Belinfante construction, which leads to a
vanishing spin tensor). This indicates that the framework put
forward in [28] provides a consistent extension of ideal
hydrodynamics for the treatment of spin-polarized fluids.
The starting point of our approach is a phase-space dis-
tribution function, where positions and momenta are treated
classically, whereas the spins are treated quantum mechan-
ically. This is similar in spirit to a semiclassical transport
theory for particles with spin [30,31].
Conventions and notation: We use the following con-

ventions and notation for the metric tensor, the four-dimen-
sional Levi-Civita’s tensor, and the scalar product in
Minkowski space: gμν ¼ diagðþ1;−1;−1;−1Þ, ϵ0123 ¼
−ϵ0123 ¼ 1, aμbμ ¼ gμνaμbν. Three-vectors are shown in
bold font and a dot is used to denote the scalar product of both
four- and three-vectors, e.g., aμbμ ¼ a · b ¼ a0b0 − a · b.
For the three-dimensional Levi-Civita tensor ϵijk, with
ϵ123 ¼ þ1, we do not distinguish between lower and upper
components, note that ϵ0123 ¼ −ϵ123 ¼ −1. The symbol 1 is
used for a two-by-two or four-by-four unit matrix. On the
other hand, we distinguish the traces in spin and spinor
spaces by using the symbols tr2 and tr4, respectively.
The components of the four-momentum of a particle

with mass m are pμ ¼ ðEp; pÞ, with Ep being the on-mass-
shell energy, Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
, and the components of the

four-velocity of the fluid element are uμ ¼ ðu0; uÞ. The
quantities defined in the particle rest frame are marked by
an asterisk, those defined in the local fluid rest frame
(LFRF) are labeled with a circle, while unlabeled quantities
refer to the laboratory frame (LAB). Using this convention,
the symbol u� denotes the components of the fluid three-
velocity seen in the particle rest frame, whereas p∘ denotes
the components of a particle three-momentum in the local
fluid rest frame.2 The sign and labeling conventions for

the Dirac bispinors are given in Appendix A. Except for
Appendix B, where we temporarily switch to the chiral
representation, all calculations are done using the Dirac
representation for the gamma matrices. Throughout the text
we use natural units with c ¼ ℏ ¼ kB ¼ 1.

II. SPIN-DEPENDENT DISTRIBUTION
FUNCTIONS

A. Basic definitions

In this work we analyze the phase-space distribution
functions for spin-1

2
particles and antiparticles in local

equilibrium, introduced in Ref. [15]. To include spin
degrees of freedom, the standard scalar functions are
generalized to two-by-two matrices in spin space for each
value of the space-time position x and four-momentum p,

½fþðx; pÞ�rs ≡ fþrsðx; pÞ ¼ ūrðpÞXþusðpÞ; ð1Þ

½f−ðx; pÞ�rs ≡ f−rsðx; pÞ ¼ −v̄sðpÞX−vrðpÞ: ð2Þ

Here urðpÞ and vrðpÞ are Dirac bispinors (with the spin
indices r and s running from 1 to 2), and the normalization3

ūrðpÞusðpÞ ¼ δrs and v̄rðpÞvsðpÞ ¼ −δrs. Note the minus
sign and different ordering of spin indices in Eq. (2)
compared to Eq. (1). The objects f�ðx; pÞ are two-by-
two Hermitian matrices with the matrix elements defined
by Eqs. (1) and (2).
Following Refs. [15,28], we introduce the four-by-four

matrices

X� ¼ exp ½�ξðxÞ − βμðxÞpμ�M�; ð3Þ

where

M� ¼ exp
h
� 1

2
ωμνðxÞΣμν

i
: ð4Þ

In Eqs. (3) and (4), βμ ¼ uμ=T and ξ ¼ μ=T, with the
temperatureT, chemical potentialμ and the fluid fourvelocity
uμ (normalized to unity). The quantity ωμν is the spin-
polarization tensor. For the sake of simplicity, we restrict
ourselves to classical Boltzmann statistics in this work.4

B. Polarization tensor

The antisymmetric polarization tensor ωμν is defined by
the tensor decomposition

1In the particle rest frame, the PL four-vector does not change
sign under reflections and is, therefore, often referred to as
a pseudo-four-vector.

2For a particle with four-momentum p in the laboratory frame,
the particle rest frame is obtained by boosting from LAB by
the three-velocity vp ¼ p=Ep, while the local fluid rest frame is
reached by a boost from LAB by v ¼ u=u0. The boosts
considered in this work are all canonical or pure boosts [32].
Their explicit form is given in Sec. IV B.

3To simplify the notation, the factor 2m appearing explicitly
in the normalization conditions used in Refs. [15,28] (with m
being the particle mass) is here included in the definition of
the bispinors.

4We note that by performing an analytic continuation of
the polarization tensor, ωμν → −iωμν, the matrix Mþ becomes
a representation of the Lorentz transformation SðΛÞ with
Λμ
ν ¼ gμν þ ωμ

ν .
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ωμν ≡ kμuν − kνuμ þ ϵμναβuαωβ; ð5Þ

where k · u ¼ ω · u ¼ 0 and

kμ ¼ ωμνuν; ωμ ¼
1

2
ϵμναβω

ναuβ: ð6Þ

We note that kμ and ωμ are spacelike four-vectors with only
three independent components. In early works on fluids
with spin [33], the so-called Frenkel condition, kμ ¼ 0, was
introduced. We shall return to this condition below.
The dual polarization tensor is defined by the expression

ω̃μν ≡ 1

2
ϵμναβω

αβ ¼ ωμuν − ωνuμ þ ϵμναβkαuβ: ð7Þ

Using Eqs. (5) and (7) one easily finds

1

2
ωμνω

μν ¼ k · k − ω · ω;
1

2
ω̃μνω

μν ¼ 2k · ω;

1

2
ω̃μνω̃

μν ¼ ω · ω − k · k: ð8Þ

It is instructive to introduce another parametrization
of the polarization tensor, which uses electric- and
magnetic-like three-vectors5 in LAB, e ¼ ðe1; e2; e3Þ and
b ¼ ðb1; b2; b3Þ. In this case we write (following the sign
conventions of Ref. [34])

ωμν ¼

2
6664

0 e1 e2 e3

−e1 0 −b3 b2

−e2 b3 0 −b1

−e3 −b2 b1 0

3
7775: ð9Þ

Using Eq. (9) in Eq. (6) one finds

kμ ¼ ðk0; kÞ ¼ ðe · u; u0eþ u × bÞ;
ωμ ¼ ðω0;ωÞ ¼ ðb · u; u0b − u × eÞ: ð10Þ

In the LFRF, where u0 ¼ 1 and u ¼ 0, we have k ¼ e and
ω ¼ b (i.e., k∘ ¼ e∘ and ω∘ ¼ b∘). In order to switch from
ωμν to the dual tensor ω̃μν, one replaces e by b and b by −e.
Using Eq. (10), one finds

1

2
ωμνω

μν ¼ b · b − e · e;
1

2
ω̃μνω

μν ¼ −2e · b;

1

2
ω̃μνω̃

μν ¼ e · e − b · b: ð11Þ

C. Spin matrices M�

In Appendix B, we show that the exponential depend-
ence of the distribution function on Σμν given in Eq. (4),
which is defined in terms of a power series, can be
resummed. This results in an expression for M�, linear
in Σμν,

M� ¼ 1

�
ℜðcosh zÞ �ℜ

�
sinh z
2z

�
ωμνΣμν

�

þ iγ5

�
ℑðcosh zÞ � ℑ

�
sinh z
2z

�
ωμνΣμν

�
; ð12Þ

where 1 is a unit matrix and

z ¼ 1

2
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωμνω

μν þ iωμνω̃
μν

p

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k · k − ω · ωþ 2ik · ω

p
: ð13Þ

It was demonstrated in Ref. [28] that a consistent
thermodynamic description of particles with spin is
obtained for real z. In this case, z can be interpreted as
the spin chemical potential Ω divided by T. Here we follow
this approach and restrict our considerations to the case
where

k · ω ¼ e · b ¼ 0;

k · k − ω · ω ¼ b · b − e · e ≥ 0: ð14Þ

Consequently, in what follows, we replace z by a real
number ζ in Eq. (12) and use

M� ¼ coshðζÞ � sinhðζÞ
2ζ

ωμνΣμν; ð15Þ

where6

ζ ¼ Ω
T
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k · k − ω · ω

p
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b · b − e · e

p
: ð16Þ

At this point it is convenient to introduce the rescaled
quantities:

ω̄μν ¼
ωμν

2ζ
; ¯̃ωμν ¼

ω̃μν

2ζ
; k̄μ ¼

kμ
2ζ

; ω̄μ ¼
ωμ

2ζ
; ð17Þ

5Unlike real magnetic fields, which act on the magnetic
moments, b act on the spins and consequently induces the same
spin polarization for particles and antiparticles [see Eq. (28) in
Sec. III].

6We note that since M� is an even function of ζ, we can,
without loss of generality, choose the positive root in Eq. (16).
The direction of the polarization is determined by the elements of
the polarization tensor ωμν, in particular by b [cf. Eq. (31)].
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which satisfy the following normalization conditions:

1

2
ω̄μνω̄

μν ¼ 1;
1

2
¯̃ωμν

¯̃ωμν ¼−1; k̄ · k̄− ω̄ · ω̄¼ 1: ð18Þ

D. Observables

The matrix distribution functions, given in Eqs. (1)
and (2), can be used to obtain the energy-momentum
tensor [35]

Tμν ¼ κ

Z
d3p
2Ep

pμpνtr4ðXþ þ X−Þ ð19Þ

and the spin tensor [14]

Sλ;μν ¼ κ

Z
d3p
2Ep

pλ tr4½ðXþ − X−ÞΣμν�: ð20Þ

Here κ ¼ g=ð2πÞ3 with g accounting for internal degrees of
freedom different from spin (for example, color or isospin).
For the discussion of the PL four-vector in Sec. IV it is

convenient to introduce the total particle current

N μ ¼ κ

Z
d3p
2Ep

pμ½tr4ðXþÞ þ tr4ðX−Þ�; ð21Þ

which sums the contributions from particles and antipar-
ticles, and the net conserved charge current

Nμ ¼ κ

Z
d3p
2Ep

pμ½tr4ðXþÞ − tr4ðX−Þ�; ð22Þ

which is the difference between the particle and antiparticle
currents.

E. Stationary vortex

In Fig. 1 we show the vectors e, b, k, and ω for the
stationary vortex studied inRef. [4]. In this case e ¼ ð0; 0; 0Þ
and b ¼ −Ω̃=T0ð0; 0; 1Þ, while k ¼ −Ω̃2ðγ=T0Þðx; y; 0Þ and
ω ¼ γb ¼ −Ω̃ðγ=T0Þð0; 0; 1Þ. Here Ω̃ and T0 are constant
parameters corresponding to the angular momentum and
central temperature of the vortex. The hydrodynamic flow is
given by the four-vector uμ [28],

u0 ¼ γ; u1 ¼ −γΩ̃y; u2 ¼ γΩ̃x; u3 ¼ 0; ð23Þ

where γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Ω̃2r2

p
, and r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the distance

from the center of the vortex in the transverse plane. Since
the flow velocity cannot exceed the speed of light, the flow
profile Eq. (23) may be realized only within a cylinder of
radius R < 1=Ω̃ (illustrated by the green circle in Fig. 1).

III. SPIN POLARIZATION THREE-VECTOR

We expect that the spin observables are represented by
Pauli matrices σ and that the expectation values of σ
provide information on the polarization of spin-1

2
particles

in their rest frame. Since we consider Dirac bispinors
obtained by the so-called canonical Lorentz boosts applied
to states with zero momentum, we refer to the resulting spin
distributions and particle rest frames as the canonical ones
(differing from other definitions by a rotation).
In the following, we start with Eqs. (1) and (2),

and derive a decomposition of the distribution functions
f�ðx; pÞ in terms of Pauli matrices. The decomposition
introduces a polarization vector Pðx; pÞ, which can be
interpreted as a spatial part of the polarization four-vector
Pμðx; pÞ ¼ ð0;PÞ, with a vanishing zeroth component. The
average polarization vector Pðx; pÞ is normalized by the
trace of the distribution functions. In Sec. IV we demon-
strate that Pðx; pÞ agrees with the spatial part of the PL
four-vector ðπ0ðx; pÞ; πðx; pÞÞ, obtained from the spin
tensor employed in [28], boosted to the canonical rest
frame of particles with the LAB four-momentum pμ.
Using Eqs. (3) and (15), the spin-dependent distribution

functions given in Eqs. (1) and (2), can be rewritten in
a form linear in the Dirac spin tensor,

fþrsðx; pÞ

¼ eξ−p·β
�
coshðζÞδrs þ

sinhðζÞ
2ζ

ūrðpÞωαβΣαβusðpÞ
�
;

ð24Þ
f−rsðx; pÞ

¼ e−ξ−p·β
�
coshðζÞδrs þ

sinhðζÞ
2ζ

v̄sðpÞωαβΣαβvrðpÞ
�
:

ð25Þ

FIG. 1. Hydrodynamic flow and polarization variables for the
global thermodynamic equilibrium state studied in [4].
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To proceed further we use the two identities:

ūrðpÞΣ0iusðpÞ ¼ v̄sðpÞΣ0ivrðpÞ ¼ −
1

2m
ϵijkpjσkrs;

ð26Þ

ūrðpÞΣijusðpÞ ¼ v̄sðpÞΣijvrðpÞ

¼ Ep

2m
ϵijk

�
σkrs − pk p · σrs

EpðEp þmÞ
�
: ð27Þ

Using Eqs. (26) and (27), a straightforward calculation
yields

ūrðpÞωαβΣαβusðpÞ ¼ v̄sðpÞωαβΣαβvrðpÞ
¼ P0δrs − P · σrs; ð28Þ

where P0 ¼ 0 and the three-vector P is given by

P ¼ 1

m

�
u0
�
Epω − p × k −

p · ω
Ep þm

p

�

− ω0

�
Epu −

p · u
Ep þm

p

�
þ k0ðp × uÞ þ ðp · ωÞu

− ðp · uÞω −
�
Epðk × uÞ − p · ðk × uÞ

Ep þm
p

��
ð29Þ

or

P ¼ 1

m

�
Epb − p × e −

p · b
Ep þm

p

�
; ð30Þ

depending whether we use the parametrization given in
Eq. (5) or (9), respectively. We note that the expression on
the right-hand side of Eq. (30) is just the field b in the
particle rest frame [34]. We summarize this finding by
writing

P ¼ b�: ð31Þ

Thus, the polarization is determined by the field b in the
canonical rest frame of the particle.
Using Eq. (28) in Eqs. (24) and (25) we then find

f�ðx; pÞ ¼ e�ξ−p·β
�
coshðζÞ − sinhðζÞ

2ζ
P · σ

�
: ð32Þ

In the next step, we define the average polarization vector
P by the formula

P ¼ 1

2

tr2½ðfþ þ f−Þσ�
tr2½fþ þ f−� ¼ −

1

4ζ
tanhðζÞP: ð33Þ

Using Eq. (16), we obtain an alternative expressions

P ¼ −
1

2
tanh

�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b� · b� − e� · e�

p �
b�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b� · b� − e� · e�
p ;

ð34Þ
where we have used the property that the quantity
b · b − e · e is independent of the choice of the Lorentz
frame.

IV. PAULI-LUBAŃSKI FOUR-VECTOR

A. Phase-space density

Starting from the definition of the Pauli-Lubański
four-vector Πμ ¼ − 1

2
ϵμναβJναpβ (where Jνα is angular

momentum), and following Ref. [15], we introduce the
phase-space density of Πμ defined by the following
expression:

Ep
dΔΠμðx;pÞ

d3p
¼−

1

2
ϵμναβΔΣλðxÞEp

dJλ;ναðx;pÞ
d3p

pβ

m
: ð35Þ

Here ΔΣλ denotes a space-time element of the fluid and
EpdJλ;να=d3p denotes the invariant angular momentum
phase-space density of particles with four-momentum p.
Using definitions introduced in Ref. [28], analogous to
Eqs. (19) and (20), we find

Ep
dJλ;ναðx; pÞ

d3p
¼ κ

2
pλðxνpα − xαpνÞtr4ðXþ þ X−Þ

þ κ

2
pλtr4½ðXþ − X−ÞΣνα�: ð36Þ

Clearly, the orbital part in Eq. (36) does not contribute to
the density of Πμ. Hence we find

Ep
dΔΠμðx;pÞ

d3p
¼−

1

2
ϵμναβΔΣλðxÞEp

dSλ;ναðx;pÞ
d3p

pβ

m
; ð37Þ

where

Ep
dSλ;ναðx; pÞ

d3p
¼ κ

2
pλtr4½ðXþ − X−ÞΣνα�: ð38Þ

Performing the traces in Eq. (38), one obtains

Ep
dSλ;ναðx; pÞ

d3p
¼ κe−p·β coshðξÞ sinhðζÞ

ζ
pλωνα: ð39Þ

Now, substituting Eq. (39) into Eq. (37) we find

Ep
dΔΠμðx; pÞ

d3p
¼ −

1

2
ϵμναβΔΣλðxÞ

wðx; pÞ
4ζ

pλωνα p
β

m

¼ −ΔΣ · p
wðx; pÞ
4mζ

ω̃μβpβ; ð40Þ

SPIN-DEPENDENT DISTRIBUTION FUNCTIONS FOR … PHYS. REV. D 97, 116017 (2018)

116017-5



where wðx; pÞ ¼ 4κe−p·β coshðξÞ sinhðζÞ. Since we are
interested in the polarization effect per particle, it is
convenient to introduce the particle density in the volume
ΔΣ defined with the help of Eq. (21). This leads to the
expression

Ep
dΔN
d3p

¼ κ

2
ΔΣ · p tr4ðXþ þ X−Þ

¼ 4κΔΣ · pe−p·β coshðξÞ coshðζÞ: ð41Þ
The PL vector per particle is then obtained by dividing
Eq. (40) by Eq. (41),

πμðx; pÞ≡ ΔΠμðx; pÞ
ΔN ðx; pÞ ¼ −

tanhðζÞ
4mζ

ω̃μβpβ

¼ −
tanhðζÞ
4mζ

ðωμp · u − uμp · ωþ ϵμρσβkρuσpβÞ;

ð42Þ
where in the second line we have used the definition of the
dual polarization tensor given in Eq. (7). Using the rescaled
quantities, defined in Eq. (17), we finally arrive at

πμðx; pÞ ¼ −
tanhðζÞ
2m

¯̃ωμβpβ

¼ −
tanhðζÞ
2m

ðω̄μp · u − uμp · ω̄þ ϵμρσβk̄ρuσpβÞ:
ð43Þ

B. Boost to particle rest frame

In order to transform the four-vector πμ to the local rest
frame of a particle with momentum p, we use the canonical
boost [32]

Λμ
νð−vpÞ¼

2
6666664

Ep

m −p1

m −p2

m −p3

m

−p1

m 1þαpp1p1 αpp1p2 αpp1p3

−p2

m αpp2p1 1þαpp2p2 αpp2p3

−p3

m αpp3p1 αpp3p2 1þαpp3p3

3
7777775
;

ð44Þ
where vp ¼ p=Ep and αp ¼ 1=ðmðEp þmÞÞ. Using
Eq. (43), we can express the time and space components
of πμ ¼ ðπ0; πÞ in the LAB frame in the three-vector
notation

π0 ¼ −
tanh ζ
4ζm

ðu0p · ω − ω0p · uþ k · ðp × uÞÞ; ð45Þ

π¼−
tanhζ
4ζm

ðωp ·u−up ·ωþk0p×u−u0p×k−Epk×uÞ:

ð46Þ

By applying the Lorentz transformation Eqs. (44)–(46) we
finally arrive at

π0� ¼ 0 ð47Þ

and

π� ¼ P ¼ −
1

4ζ
tanhðζÞP: ð48Þ

Due to the Lorentz four-vector character of πμ, we have
πμπ

μ ¼ π�μπ
μ
� ¼ −P2.

V. OTHER SPIN-TENSOR FORMS

A. Independence of the PL four-vector

Another form for the spin tensor, which can be used to
construct the PL four-vector, is given by

Sλ;μνcan ¼ κ

Z
d3p
2Ep

ðpλtr4½ðXþ − X−ÞΣμν�

− pμtr4½ðXþ − X−ÞΣλν� þ pνtr4½ðXþ − X−ÞΣλμ�Þ:
ð49Þ

Equation (49) was derived in Ref. [15] and corresponds to
the canonical spin tensor, obtained directly by applying
Noether’s theorem to the Dirac Lagrangian. This form of
the spin tensor differs from Eq. (20) by two additional terms
containing pμ and pν in the integrand. When inserted in
Eq. (37), such terms yield bilinears in the momentum,
symmetric in two of the indices that are contracted with the
Levi-Civita tensor. Consequently, their contribution to the
PL four-vector vanishes.
Yet another version of the spin tensor, introduced in the

textbook by de Groot, van Leeuven, and van Weert [35],
reads

Sλ;μνGLW ¼ κ

Z
d3p
Ep

pλðtr2½fþðx; pÞΣμν
þ � þ tr2½f−ðx; pÞΣμν

− �Þ;

ð50Þ

where

½Σμν
þ �rs ¼ ūrðpÞΣμνusðpÞ;

½Σμν
− �rs ¼ v̄sðpÞΣμνvrðpÞ: ð51Þ

By changing the trace over spin indices to a trace in spinor
space and using the commutation relation

½Σμν; pαγ
α� ¼ ipνγμ − ipμγν ð52Þ

we find
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Sλ;μνGLW ¼ κ

Z
d3p
2Ep

pλ

�
tr4½ðXþ − X−ÞΣμν�

þ i
2m2

tr4½ðXþ − X−Þpαγ
αðγμpν − γνpμÞ�

�
: ð53Þ

We again notice that only the first term of the integrand in
Eq. (53) contributes to the PL four-vector. Thus, the
resulting PL four-vector is identical for all three forms
of the spin tensor.

B. Large m=T limit of the de Groot-van Leeuwen-
van Weert spin tensor

In this section we consider the large m=T limit of the
spin tensor7 introduced in Ref. [35]. This exercise is
instructive, since the result is simple and sheds some light
on the relevance of the Frenkel condition. We introduce the
symbol Sλ;μνΔ for the second term in Eq. (53):

Sλ;μνGLW ¼ Sλ;μν þ Sλ;μνΔ : ð54Þ

Then, using the identity

tr4½ðaþ bωρσΣρσÞpαγ
αðγμpν − γνpμÞ�

¼ 4ibpαðpνωμα − pμωναÞ; ð55Þ

where a and b are arbitrary scalars, we find

Sλ;μνΔ ¼ κ sinhðζÞcoshðξÞ
m2ζ

Z
d3p
Ep

e−β·ppλpαðpμωνα−pνωμαÞ:

ð56Þ

The integral over momentum in Eq. (56) can be decom-
posed into tensors constructed from the four-velocity uμ

and the metric tensor gμν. After contraction with the
polarization tensor ωμν, we find

Sλ;μνΔ ¼ g sinhðζÞ coshðξÞ
m2ζ

T½εð0ÞðTÞ þ Pð0ÞðTÞ�sλ;μνΔ

þ g sinhðζÞ coshðξÞ
Tζ

Pð0ÞðTÞðkνuλuμ − kμuλuνÞ:

ð57Þ

Here εð0ÞðTÞ and Pð0ÞðTÞ are the energy density
and pressure8 of classical spinless particles with mass m

computed at the temperature T [28], while the tensor sλ;μνΔ is
defined by

sλ;μνΔ ¼ 2uλðωμν þ 3ðkνuμ − kμuνÞÞ þ ωμλuν − ωνλuμ

þ kμgλν − kνgλμ: ð58Þ

In the limitm ≪ T, εð0ÞðTÞ ≈mnð0ÞðTÞ, while Pð0ÞðTÞ ¼
Tnð0ÞðTÞ for Boltzmann statistics. Thus, the first term on
the right-hand side of Eq. (57) is of order T=m compared to
the second one, and thus negligible in the large m=T limit.
Moreover, the term in the second line of Eq. (57) exactly
cancels the part of Sλ;μν depending on the four-vector k [see
Eqs. (5) and (27) in [28]]. Consequently, the large m=T
limit of Eq. (50) yields

Sλ;μνGLW ¼ g
sinhðζÞ

ζ
coshðξÞnð0ÞðTÞuλϵμναβuαωβ ð59Þ

which is independent of k. Interestingly, this result is
identical to that obtained by imposing the Frenkel condition
kμ ¼ 0 on Eq. (27) in [28].

VI. SUMMARY AND CONCLUSIONS

In this work we have studied the properties of the spin
density matrices used in recent formulations of relativistic
hydrodynamics of particles with spin 1

2
. We showed that the

total polarization vector, obtained by calculating the trace
of the product of spin density matrices and the Pauli
matrices, agrees with the Pauli Lubański four-vector
obtained from the spin tensor used in Ref. [28].
Consequently, this scheme results in a natural determina-
tion of the spin-polarization vectors of both particles and
antiparticles. We also found that two other common forms
of the spin tensor yield the same polarization vector, thus
demonstrating that the form used in [28] represents a
consistent approximation for the spin tensor in the case
where positions and momenta are treated classically, while
the spin is described in terms of a spin density matrix.
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SPIN-DEPENDENT DISTRIBUTION FUNCTIONS FOR … PHYS. REV. D 97, 116017 (2018)

116017-7



APPENDIX A: DIRAC SPINORS

The conventions for labels and signs of bispinors used in
this work are as follows:

usðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep þm

2m

r �
1 φs
σ·p

Epþm φs

�
;

vsðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep þm

2m

r � σ·p
Epþm χs

1 χs

�
; ðA1Þ

with

φ1 ¼
�
1

0

�
; φ2 ¼

�
0

1

�
;

χ1 ¼
�
0

1

�
; χ2 ¼ −

�
1

0

�
: ðA2Þ

The spin operator Σμν is defined by the expression

Σμν ¼ 1

2
σμν ¼ i

4
½γμ; γν�; ðA3Þ

which in the Dirac representation gives

Σ0i ¼ i
2

�
0 σi

σi 0

�
; Σij ¼ 1

2
ϵijk

�
σk 0

0 σk

�
; ðA4Þ

with σi being the ith Pauli matrix.

APPENDIX B: SPIN MATRICES M�

In this section we present details of the calculation of the
matrixM�, which is defined by the exponential function of
the Dirac spin operator, see Eq. (4). To do this calculation
most easily we first switch to the chiral representation of the
Dirac matrices, where Σμν is block diagonal, and then move
to the local rest frame of the fluid element, where
uμ∘ ¼ Λμ

νuν ¼ ð1; 0; 0; 0Þ. Calculation of the exponential
function in Eq. (4) in the chiral representation with
uμ∘ ¼ ð1; 0; 0; 0Þ is reduced to the well-known calculation
of the exponential function of a linear combination of the
Pauli matrices. Once it is done, we come back to the LAB
frame (from the local rest frame of the fluid element) and
perform a unitary transformation back to the Dirac
representation.
With S denoting the transformation matrix that corre-

sponds to the Lorentz transformation Λ, we have

SγμS−1 ¼ Λμ
νγ

ν; ðB1Þ

SΣμνS−1 ¼ Λμ
αΛν

βΣαβ; ðB2Þ

and

M�∘ ¼SM�S−1¼Sexp
�
�1

2
ωμνΣμν

�
S−1

¼ exp

�
�1

2
ωμνSΣμνS−1

�
¼ exp

�
�1

2
ω∘
μνΣμν

�
: ðB3Þ

Working in the chiral representation, we use

Σ0i ¼ i
2

�
σi 0

0 −σi

�
; Σij ¼ 1

2
ϵijk

�
σk 0

0 σk

�
: ðB4Þ

In the fluid rest frame ω∘
0i ¼ ki∘ and ω∘

ij ¼ −ϵijkωk∘ , thus we
have

� 1

2
ω∘
μνΣμν ¼

��z · σ 0

0 �ðz · σÞ†
�
; ðB5Þ

where z ¼ ð−ω∘ þ ik∘Þ=2. Consequently, using the method
for exponentiating the Pauli matrices we obtain

M�∘ ¼ exp

���z ·σ 0

0 �ðz ·σÞ†
��

¼
�coshz� sinhz

z z ·σ 0

0 coshz⋆� sinhz⋆
z⋆ ðz ·σÞ†

�
; ðB6Þ

with z2 ¼ z · z. Introducing the γ5 matrix in the chiral
representation and using Eq. (B5) one can further simplify
Eq. (B6) to

M�∘ ¼ 1

�
ℜðcosh zÞ �ℜ

�
sinh z
z

�
1

2
ω∘
μνΣμν

�

þ iγ5

�
ℑðcosh zÞ � ℑ

�
sinh z
z

�
1

2
ω∘
μνΣμν

�
: ðB7Þ

As this equation is manifestly Lorentz covariant, we may
drop the symbol ∘ denoting that it has been derived in the
local fluid rest frame. Moreover, as it has a form expressed
in terms of the Dirac matrices, it is valid in any repre-
sentation, including the Dirac one.
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