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We present a calculation of the planar two-loop five-gluon amplitudes. The amplitudes are obtained in a
variant of the generalized unitarity approach suitable for numerical computations, which we extend for use
with finite field arithmetics. Employing a new method for the generation of unitarity-compatible
integration-by-parts identities, all helicity amplitudes are reduced to a linear combination of master
integrals for the first time. The approach allows us to compute exact values for the integral coefficients at
rational phase-space points. All required master integrals are known analytically, and we obtain arbitrary-
precision values for the amplitudes.
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I. INTRODUCTION

The expected precision of upcoming cross-section mea-
surements at the Large Hadron Collider at CERN currently
drives the development of new computational methods in
perturbative quantum-field theory and, in particular, in
QCD. At the same time, formal advances in the field of
amplitudes are finding more and more traction and are
helping to devise more efficient approaches to multiloop
computations. Here, we aim to contribute to these develop-
ments by refining and extending methods to compute
phenomenologically relevant two-loop scattering ampli-
tudes. With our results, we advance the state of the art in the
calculation of loop amplitudes with many external particles.
Besides their importance for phenomenology, the new
results highlight the potential of the methods we employ.
In this paper, we present the computation of two-loop

gluonic amplitudes which contribute to three-jet production
at hadron colliders at next-to-next-to-leading order
(NNLO). Predictions for these processes can be used for
constraining the strong coupling, as it can be extracted from
precision measurements of three- to two-jet-production
ratios (see e.g., Ref. [1,2]). While the finite parts of our
results can be integrated over phase space, significant
additional developments will be required to obtain the full
NNLO predictions. Probably the most challenging step will
be the consistent combination of all virtual and real-
radiation contributions to NNLO accuracy. Nevertheless,

we are optimistic that by providing key ingredients towards
this goal, such as the two-loop scattering amplitudes, we
will spur progress in the field to obtain NNLO predictions
for three-jet production in the coming years.
Currently, only a limited set of amplitudes with five or

more external particles are known to two-loop order inQCD.
First benchmark results for two-loop five-gluon amplitudes
were obtained for the all-plus-helicity configuration [3,4],
whose computation relied on compact analytic expressions
for the integrands. These were computed with the unitarity
method [5–8], coupled with efficient integrand-reduction
techniques [9–13]. The final amplitudes were first obtained
by integrating the optimized integrands numerically and
later by explicit reduction to master integrals [14]. The
relevant master integrals have been independently evaluated
in Ref. [15].More recently, the all-plus two-loop amplitudes
were obtained from a recursive approach [16] that was also
extended to six and seven external gluons [17,18]. During
the final stages of this work, benchmark results for planar
five-gluon amplitudes with generic helicity assignments
were presented [19]. The amplitudes were integrated with a
combination of numeric and analytic techniques, after
partial reduction using unitarity cuts.
In this paper, we apply the numerical unitarity approach

[9,20–22], which was recently extended to two-loops
[23–25], to compute the full set of planar five-gluon
two-loop amplitudes. This computation marks the first
time that a full set of two-loop five-scale amplitudes is
reduced to a linear combination of integral coefficients
multiplied by corresponding master integrals. The set of
master integrals is minimal, as all possible integral relations
have been imposed. The potential of this approach has
recently been demonstrated in the context of planar four-
gluon two-loop amplitudes [25], and in order to handle the
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complexity of the five-point amplitudes, we refine it in the
present work in two ways.
First, we use an improved approach to obtain analytic

expressions for integration-by-parts (IBP) identities which
are important in our construction of the amplitude. The
unitarity method [5–8] matches unitarity cuts to an ansatz
of the loop amplitudes written in terms of master integrals.
When considered at the integrand level, one-loop unitarity
approaches [9,21] relate cuts to an ansatz for the ampli-
tude’s integrand written in terms of surface terms (spurious
numerators that integrate to zero) and master integrands
(the integrands corresponding to the master integrals). The
numerical unitarity method at the two-loop level [23–25] is
a natural generalization of the one-loop integrand level
approach: the unitarity cuts are matched to a complete
parametrization of the integrand in terms of specially
tailored IBP relations [26–28] (the surface terms) and
master integrands. As such, the method directly achieves
a reduction to master integrals at the integrand level.
Compared to more canonical approaches, the challenging
inversion of the IBP systems required to obtain reduction
tables for tensor integrals [27] is avoided. While we leave a
more detailed discussion of the way we generate the
required IBP relations to future work [29], we describe
the central formal improvements for their derivation.
Second, we adapt numerical unitarity to exact numerical

computations based on the finite field approach [30] and its
application to unitarity cuts [31]. The finite field arithmetics
allow us to compute exact values for the integral coef-
ficients at rational phase-space points. Combined with the
analytic expressions for two-loop master integrals with five
massless external legs [15], we obtain stable results whose
precision only depends on the number of digits to which the
multiple polylogarithms appearing in the master integrals
are evaluated. The extension to finite fields will be crucial
for a future use of functional reconstruction techniques to
determine analytic forms of the amplitudes from the exact
numerical results.
The article is organized as follows. In Sec. II, we

summarize the numerical unitarity method, as well as
the two refinements already highlighted. In Sec. III, we
give explicit details of our implementation. In Sec. IV, we
present our results for the four independent leading-color
helicity amplitudes required for all five-gluon scattering
processes at a given phase-space point. In Sec. V, we give
our conclusions and outlook. Finally, in Appendix, we
discuss the universal infrared structure of the amplitudes
which we use to validate our results.

II. NUMERICAL UNITARITY APPROACH

The main goal of this paper is the calculation of two-loop
corrections to five-gluon scattering amplitudes in the
leading-color approximation for any helicity configuration
in pure Yang-Mills theory. We write the perturbative
expansion of a bare five-gluon helicity amplitude as

Aðfpi; higi¼1;…;5Þjleading color

¼
X

σ∈S5=Z5

TrðTaσð1ÞTaσð2ÞTaσð3ÞTaσð4ÞTaσð5Þ Þ

× g30

�
Að0Þ þ α0NC

4π
Að1Þ þ

�
α0NC

4π

�
2

Að2Þ þOðα30Þ
�
;

ð2:1Þ

where α0 ¼ g20=ð4πÞ is the bare QCD coupling. The set
S5=Z5 denotes all noncyclic permutations of five indices,
and we make it explicit that the color structures beyond
tree-level give only a factor of NC at each order in the
expansion in the leading-color approximation. The planar
amplitudes AðjÞ are functions of the momenta pσðiÞ,
helicities hσðiÞ and color indices aσðiÞ. In the leading-color
approximation there is a single color structure and it is thus
sufficient to specify a helicity assignment for the ordered
set of legs,

AðiÞð1h1 ; 2h2 ; 3h3 ; 4h4 ; 5h5Þ: ð2:2Þ

In this section, we describe our approach to the calculation
of theAðiÞ. Although in this paper we focus on the leading-
color contributions, the approach we use is completely
generic and applicable beyond this approximation.

A. Overview

We apply a variant of the unitarity method [5–8] suitable
for automated numerical computations of multiloop
amplitudes [23–25]. Our approach starts from the standard
decomposition of the amplitude in terms of master
integrals,

AðkÞ ¼
X
Γ∈Δ

X
i∈MΓ

cΓ;iIΓ;i; ð2:3Þ

where the index Γ labels the different propagator structures
and i denotes an additional degeneracy for cases where
multiple master integrals with identical propagator struc-
tures appear, as can happen beyond one loop. The set Δ
denotes a hierarchy of propagator structures, where
descendants are obtained from parent diagrams through
pinches. The set Δ is the collection of diagrams which
specify the possible propagator structures of the amplitude,
and only depends on the kinematics of the amplitude (i.e.,
on the momenta and masses of the particles involved). In
Sec. III, we give an explicit example for a set of propagator
structures Δ and the corresponding set of master integrals
together with their multiplicity in the case of two-loop five-
gluon leading-color amplitudes. The aim of the computa-
tion is to determine the coefficient functions cΓ;i which
contain the process specific information.
Next, we promote the decomposition of the amplitude of

Eq. (2.3) to the integrand level. The integrand, which we
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denote AðllÞ with ll representing the loop momenta
l1;…;lL in a L-loop calculation, is decomposed as [23]

AðkÞðllÞ ¼
X
Γ∈Δ

X
i∈MΓ∪SΓ

cΓ;imΓ;iðllÞQ
j∈PΓ

ρj
; ð2:4Þ

where the ρj are the inverse propagators and PΓ the set of
propagators associated with the topology Γ. Compared with
(2.3), we have extended the sum on i to also go over the so-
called surface terms in the set SΓ, which vanish upon
integration but are required to parametrize the integrand.
We work in dimensional regularization with D spacetime
dimensions, and thus allow D-dependent surface terms. All
in all, the decomposition (2.4) is rather universal, depend-
ing only on the set of diagrams Δ and the allowed power
counting of the theory under consideration. As in the
decomposition of Eq. (2.3), the spectrum-specific informa-
tion is carried by the coefficients cΓ;i. Obtaining a complete
parametrization of the integrand of the amplitude is a
nontrivial process, and in the next subsection, we explain
how this was achieved. For now, it is sufficient to assume
that such a decomposition exists.
The ansatz (2.4) holds as a function of the loop momenta

ll. Provided one can evaluate AðkÞðllÞ at specific values of
ll, it can be used to construct a system of equations for the
coefficients cΓ;i. In a generalized unitarity calculation, the
coefficients cΓ;i are determined from a set of cut equations
obtained by setting ll to specific on-shell configurations.
Indeed, the leading terms in the various on-shell limits of
the ansatz (2.4) factorize, yielding the cut equations

X
states

Y
i∈TΓ

Atree
i ðlΓ

l Þ ¼
X
Γ0≥Γ;

i∈MΓ0∪SΓ0

cΓ0;imΓ0;iðlΓ
l ÞQ

j∈ðPΓ0 nPΓÞρjðlΓ
l Þ

: ð2:5Þ

Here, the set TΓ labels all tree amplitudes corresponding to
the vertices in the diagram Γ, and the state sum runs over all
internal states allowed by the theory. The lΓ

l correspond to
a configuration of the loop momenta where the propagators
in the set PΓ associated with the topology Γ are on-shell.
Although this limit probes all topologies Γ0 for which
PΓ ⊆ PΓ0 , through a top-down approach, i.e., starting from
the topologies with the most propagators, we can make sure
that the only unknowns in Eq. (2.5) are the coefficients cΓ;i
belonging to Γ itself. By sampling over enough values of
lΓ
l , we can build a system of equations big enough to

determine all the coefficients. We note that beyond one loop
there are topologies that correspond to subleading terms in
the on-shell limit lΓ

l , in which case no factorization of the
integrand is known. This is a minor obstacle that can be
easily overcome [24].
For the process we are concerned with in this paper,

two-loop gluonic amplitudes in the leading-color approxi-
mation, the state sum in Eq. (2.5) goes over the ðDs − 2Þ
gluon helicity states. Furthermore, as the surface terms are

functions of the spacetime dimension parameter D, the
coefficients cΓ;i obtained by solving the cut equations are
functions of both Ds and D. The value chosen for Ds
defines different regularization schemes. We have imple-
mented both the ’t Hooft-Veltman (HV) scheme [32],
where Ds ¼ D ¼ 4 − 2ϵ, and the four-dimensional helicity
(FDH) scheme [33,34] where Ds ¼ 4.

B. Efficient construction of unitarity-compatible
IBP identities

We now return to the discussion of how the decom-
position in Eq. (2.4) is achieved. Here we present the
generic framework of our method but leave more specific
details for a future dedicated publication [29]. The surface
terms are constructed from a complete set of so-called
“unitarity-compatible” integration-by-parts (IBP) identities
[23,35–37]. These relations are built such that they do not
involve any new propagator structures besides those in Δ,
the full set of propagator structures we started with. As is
the case in more canonical approaches to multiloop
amplitude calculations, our approach requires a complete
set of IBP identities for each of the propagator structures
[25]. In the context of the ansatz in Eq. (2.4), completeness
means that surface terms and master integrands span the
full function space prescribed by the power counting of the
theory. The system of equations in Eq. (2.5) is then
invertible and by solving it we achieve a full reduction
of the amplitude to master integrals.
In principle, the desired decomposition can be achieved

by IBP reducing all allowed insertions of irreducible scalar
products (ISPs)1 on a given propagator structure. The
reduction identities may then be used as the set of surface
terms in Eq. (2.4). In practice, the currently available
reduction programs [38–44] struggle with the high ten-
sor-rank appearing in two-loop five-gluon amplitudes as
the size of the IBP system that needs to be solved becomes
prohibitive. Instead, we follow an alternative path to obtain
unitarity-compatible relations which has recently received
much attention [23,25,35–37,45–48]. By only generating
unitarity-compatible IBP relations from the start, we ensure
that the size of the system remains manageable. In our
approach, the solution of the IBP system is done by solving
the cut equations (2.5), which allows to efficiently organize
the calculation.
We start from the construction of the “transverse IBP

identities” from Refs. [23,25], but further improve the
construction of the remaining identities by solving syzygy
module equations which we now briefly describe, leaving a
more detailed presentation for a separate publication [29].
The way the syzygy module equations arise is closely
related to the defining equation for the so-called IBP-
generating vectors fuνkg [35],

1Precisely, ISPs are scalar products involving loop momenta
that cannot be expressed solely in terms of inverse propagators.
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uνk
∂
∂lν

k
ρj ¼ fjρj; ∀ j ∈ PΓ; ð2:6Þ

where 1 ≤ k ≤ L is the loop momentum label, ν is the
Lorentz index and there is no summation over j. We require
fj to be polynomial in the dot products built from loop
momenta and external momenta. The vectors fuνkg are
required to be polynomial vectors in the loop momenta.
The above equation ensures that the IBP relation

Z Y
l¼1;L

dDll

X
k

∂
∂lν

k

�
uνkQ
j∈PΓ

ρj

�
¼ 0 ð2:7Þ

contains no integrals with raised propagator powers and is
therefore a suitable unitarity-compatible IBP relation. In the
context of Eq. (2.4), the left-hand side of (2.7) gives a valid
surface term.
Our method uses inverse propagator variables to trivi-

alize the separation of terms that vanish on-shell from ISPs
that survive on the cut, as in [23,25]. However, we further
reduce the polynomial degree of the syzygy equations by
simply rewriting the defining equation for IBP-generating
vectors (2.6) in terms of the components of the loop and the
external momenta as we shall see below. If starting from a
formulation in terms of so-called Baikov polynomials [37],
this method of solving Eq. (2.6) may be viewed as a variant
of the intersection method [47]. We write down the
following ansatz for the IBP-generating vector

uνk
∂
∂lν

k
¼ ðuloopka lν

a þ uextkc p
ν
cÞ

∂
∂lν

k
; ð2:8Þ

where we have an implicit sum over the label a for
independent loop momenta and label c for independent
external momenta. Consistent with the fact that the original
vectors fuνkg are polynomial we require the vector compo-

nents uloopka and uextkc to be a polynomial in the dot products
built from loop momenta and external momenta. Since the
latter can be expressed in terms of ISPs and inverse
propagators, the variables uloopka , uextkc and fj are polynomials
in ISPs and inverse propagators. Equation (2.6) then
becomes

ðuloopka lν
a þ uextkc p

ν
cÞ

∂
∂lν

k

0
BBBBB@

ρjð1Þ
ρjð2Þ

..

.

ρjðjΓjÞ

1
CCCCCA

−

0
BBBBB@

fjð1Þρjð1Þ
fjð2Þρjð2Þ

..

.

fjðjΓjÞρjðjΓjÞ

1
CCCCCA

¼ 0;

ð2:9Þ

where there is implicit summation over a, c, k, and ν, and
the inverse propagator labels jðiÞ run over all propagators
in the set PΓ,

fjð1Þ; jð2Þ;…; jðjΓjÞg≡ PΓ: ð2:10Þ

Note that both

lν
a

∂
∂lν

k
ρj and pν

c
∂
∂lν

k
ρj ð2:11Þ

evaluate to contractions of the propagator momenta with
loop and external momenta, and can be expressed as
matrices of linear polynomials in ISPs and inverse propa-
gators. Put differently, these are polynomials of degree one
in the dot products of internal and external momenta. This
contrasts with what one would get in an approach based on
the Baikov polynomial which has degree four in a two-loop
calculation. Similarly, the second term in Eq. (2.9) can be
expressed in matrix form with propagator variables on the
diagonal. Consequently Eq. (2.9) has the form of a syzygy
equation over a module for the unknown polynomials uloopka ,
uextkc and fj. The equations are defined over the freely
generated polynomial ring given by ISPs and inverse
propagators. Syzygy equations can be solved using algo-
rithms in computational algebraic geometry implemented
in e.g., the SINGULAR computer algebra system [49]. We
will give more details of how we solved the syzygy
equations using SINGULAR in the next section.
Once a generating set of vector components uloopka and

uextkc has been obtained, a sufficient set of IBP relations is
obtained by multiplying the generators with irreducible
numerators. At this stage, we explicitly impose off-shell
power-counting conditions (i.e., we consider both on-shell
and propagator variables), sometimes after forming linear
combinations of IBP relations. In a second step the
independence of IBP identities has to be established.
Given the manifest dependence on propagator variables
and the vectors compatibility with unitarity cuts, it is
natural to switch between on-shell and off-shell as well
as numerical and analytic perspectives to simplify compu-
tational steps [23,37]. In particular, the validation of the
linear independence of the off-shell relations [23,25] is
most easily performed by setting propagator variables to
their on-shell values, as redundancy of the relations is then
manifest. Finally, we note it is often convenient to count the
number of master integrals on-shell [23,25,37,45].

C. Numerical unitarity over
an arbitrary number field

Numerical computations have better scaling properties
than analytic ones for processes with a large number of
scales. However, the stability and efficiency of analytic
results for amplitudes often offer major advantages over
numerical evaluations, specially when used in conjunction
with Monte Carlo programs. The boundary between the
two approaches is becoming blurred in the field of
scattering amplitude calculations with the recent introduc-
tion of functional reconstruction techniques [25,30,31].
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In this approach, numerical evaluations are used to com-
pletely reconstruct analytic expressions from numerical
samples. While already successful in the reconstruction of
two-loop amplitudes with two scales [25], it is clear
that multiscale problems such as the five-gluon amplitudes
are significantly more complicated. Not only must
more efficient techniques be used for the functional
reconstruction [31], but the loss of precision associated
with floating-point arithmetics in multiscale computations
poses a considerable difficulty for the reconstruction
procedure. To address this issue, in this section, we
reformulate numerical unitarity for gluonic amplitudes so
that it only employs operations defined on a field (addition,
subtraction, multiplication and division). In this way, we
open the door to the use of exact arithmetics, such as those
of rational numbers or finite fields. This eliminates any
question of numerical stability, whilst still leveraging the
speed of modern computer hardware.
The extension of numerical unitarity to employ only field

operations is nontrivial. Indeed, operations such as taking
square roots or more generally solving generic polynomial
equations are not allowed, and these appear prominently in
many formulations of generalized unitarity. Here, we build
on the ideas proposed in Ref. [31] and use them in the
context of multiloop numerical unitarity. More concretely,
there are two components of a typical numerical unitarity
formulation that must be re-examined: (1) the generation of
a set of four-momenta satisfying momentum conservation
and on-shell conditions for the external kinematics, and
(2) the parametrization of the internal loop momenta, in
particular for the solution of the quadratic on-shell equa-
tions and the construction of specific sets of surface terms.
In this section, we will describe how these obstacles can
indeed be overcome. Furthermore, this will be achieved
without needing to introduce any notion of complex
numbers. In the following we work over an arbitrary field
which we denote by F, and which for all practical purposes
can be considered to be the rational numbers Q.

1. External kinematics

The problem of generating a set of F -valued external
momenta which satisfy on-shell conditions as well as
momentum conservation can be solved in a number of
ways. In this work, we choose to parametrize the external
kinematics based upon so-called “momentum twistors” [50]
as proposed in Refs. [12,31], where the reader can find
further details. In short, momentum twistors are particularly
useful because they trivialize the on-shell and the momen-
tum conservation conditions. By starting with an F -valued
parametrization in twistor space, one obtains F -valued
spinors associated to each momentum. If working with
the usual Minkowski metric diagfþ1;−1;−1;−1g,
the associated four-momenta and polarization vectors
would involve explicit factors of i and thus require an
extension of F . This can be avoided by using the metric

diagfþ1;−1;þ1;−1g, in which case the momenta and
polarization vectors constructed from the F -valued spinors
are themselves F -valued.2 Avoiding the introduction of
complex values offers a considerable speed boost in a
numerical implementation. We also note that a wisely
chosen parametrization such as that of [31] means that
the invariants andGram-determinants are compact functions
of the parameters. This simplifies the functional dependence
of the amplitude on these parameters, making them par-
ticularly suitable for a future reconstruction of the analytic
expressions.

2. On-shell momenta

As discussed around Eq. (2.5), in order to compute
integral coefficients in a unitarity approach we need to
generate loop momenta which satisfy a set of conditions
which set some propagators on-shell. For a two-loop
calculation, this set of topology specific, kinematically-
dependent quadratic conditions define an algebraic variety
in the six-dimensional space in which we embed the loop
momenta. A direct approach for finding a rational para-
metrization of this variety, i.e., a parametrization in terms of
a set of F -valued parameters that only uses the operations
that are defined on a field, is nontrivial. Instead we take
inspiration from the fact that the integrand is a rational
function of irreducible scalar products (ISPs), and the μij
variables which we shall define shortly. Wewill see that in a
set of adapted coordinates it is trivial to generate loop
momenta such that the ISPs and μij are F -valued. Therefore,
the integrand evaluated on such a loop-momentum configu-
ration will also be F -valued. We then represent the loop
momenta in a phase-space dependent way, circumventing
the rational parametrization required when using the stan-
dard six-dimensional representation. We now give more
details about this procedure.
We begin by parametrizing the loop momenta ll (l ¼ 1,

2, 3 see Fig. 1) as [23,25]

ll¼
X
j∈Bp

l

vjl r
ljþ

X
j∈Bt

l

vjlα
ljþ

X
i∈Bct

ni

ðniÞ2α
liþ

X
i∈Bϵ

niμil; ð2:13Þ

rlj ¼ −
1

2
ðρlj − ðqljÞ2 − ρlðj−1Þ þ ðqlðj−1ÞÞ2Þ; ð2:14Þ

μll ¼ ρl0 −
X3
ν¼0

lν
lllν; ð2:15Þ

2In the standard formulas for gluonic polarization vectors,
there is an explicit factor of

ffiffiffi
2

p
:

ϵμþðp; ηÞ ¼
hηjσμjp�ffiffiffi
2

p hηpi ; ϵμ−ðp; ηÞ ¼
hpjσμjη�ffiffiffi
2

p ½pη� : ð2:12Þ

This is not an issue as it can be restored as a global factor after
computation.
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which are related by momentum conservation, l1 þ l2 þ
l3 þ pb ¼ 0. We use a total of 11 variables consisting of
the ISP variables αliðl ¼ 1; 2Þ and all propagator variables
ρljðl ¼ 1; 2; 3Þ as independent variables. The remaining
dependent ISP variables αliðl ¼ 3Þ are obtained from
momentum conservation and the μij variables are obtained
from the linear relations in Eq. (2.15). The redundant
variables μil do not explicitly appear in our computations as
described in Sec. III, and we do not require them. The
vectors qlj are linear combinations of the external momenta
pi. The loop momenta are parametrized in terms of so-
called adapted coordinates: the inverse propagator variables
ρli and the auxiliary variables αli and μil. The variables μ

i
l

are dependent and fixed by (2.15). The vectors ni form an
orthogonal basis transverse to the scattering plane, i.e.
ni · pj ¼ 0. Labels in Bϵ refer to directions beyond four
dimensions and labels in Bct denote directions within four
dimensions transverse to the scattering plane defined by the
momenta pi. For each strand l of the diagram we use a
distinct basis of the scattering plane, spanned by the
vectors vil,

vil ¼ ðGlÞijpj; with i; j ∈ Bp
l ∪ Bt

l; ð2:16Þ

where ðGlÞij is the inverse of the Gram matrix,

ðGlÞij ¼ pi · pj with i; j ∈ Bp
l ∪ Bt

l: ð2:17Þ

The index set Bp
l labels the external momenta which leave

the strand l. These momenta are completed with other
independent external momenta pi, with i ∈ Bt

l, so as to
span the whole scattering plane. This parametrization
follows the conventions of Ref. [25], with the caveat that
the vectors spanning Bct are no longer normalized.
The inverse coordinate transformation is often useful and

is given by

αli ¼ pi · ll; i ∈ Bt
l; ð2:18Þ

αli ¼ ni · ll; i ∈ Bct; ð2:19Þ

ρli ¼ ðll − qliÞ2 ð2:20Þ

The on-shell variety is then defined by setting the propa-
gator variables ρli to zero. In D dimensions, the variables
αli form an independent complete set of coordinates on the
variety, corresponding to polynomials in momentum var-
iables. They are the irreducible scalar products we already
mentioned previously.
By considering the αli as a set of independent

coordinates and taking them as F -valued, the constraint
equations (2.15) imply that the μij are also F -valued. We
must now construct an explicit representation of the loop
momenta. This is required, for instance, for the calcu-
lation of the tree amplitudes in Eq. (2.5). In the four-
dimensional slice, this is trivial to achieve with a standard
cartesian basis. However, if we were to also do this for
the (D − 4)-dimensional space we would generically be
required to take square roots.
We now present our solution to this problem in the

context of a two-loop calculation, but it trivially generalizes
to any loop order. The main idea is to employ a different
basis of the (D − 4)-dimensional space for each on-shell
phase-space point. This is achieved by picking basis
vectors which are linear combinations of the (D − 4)-
dimensional components of the loop momenta. Given
the two loop momenta,

l1 ¼ ðl1;½4d�; μ⃗1Þ; l2 ¼ ðl2;½4d�; μ⃗2Þ; ð2:21Þ

and their (D − 4)-dimensional parts μ⃗1 and μ⃗2, we construct
the orthogonal basis vectors3

ñ1 ¼ ð0½4d�; μ⃗1Þ; ñ2 ¼
�
0½4d�; μ⃗2 −

μ12
μ11

μ⃗1

�
; ð2:22Þ

with μij ¼ −μ⃗i · μ⃗j, here using the Euclidean scalar prod-
uct. We stress that the basis vectors ñ1 and ñ2 used to
represent the (D − 4)-dimensional space are no longer
of unit norm. For each on-shell point, which corresponds
to a different value of the μij, this affects how we
calculate the scalar product between two vectors wa and
wb. Explicitly,

wa · wb ¼ wa;½4d� · wb;½4d� þ w5
aw5

bðμ11Þ

þ w6
aw6

b

�
μ22 −

μ212
μ11

�
: ð2:23Þ

FIG. 1. Displayed are the conventions for assigning propaga-
tors in a two-loop diagram.

3Also at higher loops, one can construct orthogonal combi-
nations through a modified Gram-Schmidt procedure.
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Such a scalar product then allows F -valued representations
of loop momenta which satisfy the on-shell conditions for
an arbitrary topology.
This momentum representation is almost all that is

required to use a Berends-Giele recursion [51] to calculate
products of tree amplitudes. The remaining difficulty is in
performing the sum over helicities at each cut line, as this
requires explicit representations of the Ds-dimensional
polarization vectors. To remedy this, we choose to avoid
constructing the polarization states by trading the helicity
sum for the insertion of a light-cone projection operator in
the Ds-dimensional space of the polarization vectors (see
e.g., [52]),

Pμν
l ¼ −gμν þ lμ

l η
ν þ ημlν

l

η · ll
; ð2:24Þ

where η is an arbitrary F -valued light-like reference vector
satisfying η · ll ≠ 0 and η · ñ ¼ 0. Note that in all but one
cut line per loop, the Ward identity allows us to drop the
second term of Eq. (2.24). For the remaining cut line of
each loop, we reexpress the projector as a sum of a direct
product of vectors over F.
We note that as the irreducible scalar products of

Eq. (2.19) are expressed in terms of a set of non-normalized
vectors, this affects the representation of so-called “trace-
less completion” surface terms [25], i.e., surface terms
associated with variables in Bct ∪ Bϵ. This normalization
now explicitly appears in the parametrization of the loop
momenta, see Eq. (2.13). For example, consider a traceless
completion surface term associated to the transverse vector
ni, i ∈ Bct,

α2i
n2i

−
μ11

D − 4
: ð2:25Þ

Only by including the factor of n2i is the numerator insertion
(2.25) a surface term.
We finish this section by noting that this procedure

applies both for planar and nonplanar cases, and is easily
generalized to higher (and lower) loops. In summary, using
the steps described in Secs. II C 1 and II C 2, all contribu-
tions are manifestly F -valued, and as an added benefit we
never needed to introduce complex numbers.

III. IMPLEMENTATION FOR PLANAR
FIVE-GLUON AMPLITUDES

We have implemented the techniques described in Sec. II
in a C++ code. In this section, we first discuss the
implementation of the cut equations. Then we describe
how these are solved in practice to compute the master
integral coefficients and, finally, how we obtain the ampli-
tude at a given kinematic point.

A. Construction of cut equations

We first construct the full set of propagator structures that
appear in the problem (see Fig. 2). This is achieved by
generating all cut diagrams for the full color process using
QGRAF [53] and then color decomposing themaccording to
[54] in MATHEMATICA. By taking the leading-color limit of
this decomposition and extracting the coefficient of a given
trace, we build the set of propagator structures relevant for
the color ordered amplitude, which we then organize
hierarchically. This is then passed on to a C++ code.
The next step in constructing the cut equations is the

parametrization of the integrand of the amplitude in terms
of master integrands and surface terms. In order to solve the
syzygy equations described in Sec. II B for each topology
in Fig. 2, we use the package SINGULAR. For these
computations we find that the “slimgb” algorithm is much
faster than the classical Buchberger algorithm. Details on
the algorithm can be found in Ref. [55]. In a nutshell,
“slimgb” uses weighted lengths of polynomials to make
choices in key steps of the computation, in order to keep the
size of intermediate results small. For complicated topol-
ogies we further speed up the computation by imposing a
degree bound in SINGULAR, which restricts the maximum
allowed polynomial degree in internal computations.
Another significant speed-up is achieved by promoting
parameters of the polynomial ring, which are external
kinematic invariants, to variables of the polynomial ring,
so that the solutions are restricted to have polynomial
(instead of rational) dependence on these kinematic invar-
iants. In practice, and despite the fact that the degree bound
becomes a more stringent restriction, this does not prevent
us from finding the solutions that lead to a complete set of
IBP relations. For one of the most complicated topologies
involved in our calculation, namely the pentabox shown on
the top left of Fig. 2, our method succeeds in finding fully
off-shell IBP-generating vectors, with analytic dependence
on all external kinematic invariants, in under a second. The
computation used only one CPU core on a modern laptop
computer. Once the IBP-generating vectors have been
obtained, the IBP system is constructed in a second step
by multiplying the generating vectors with monomials in
the ISP variables and computing the IBP relations. The
linear dependence and completeness of the IBP system is
determined on-shell and on a numerical kinematic point.
All surface terms have been validated with Fire [39,40]
on a fixed numerical kinematic point.
We note that a fast evaluation of the surface terms is

required for an efficient implementation. To this end we
express the surface terms as IBP-generating vector com-
ponents multiplied by derivatives of the irreducible scalar
products, as well as the total divergences of the vectors
multiplied by irreducible scalar products. Furthermore, to
improve both evaluation time and compilation time of the
IBP vector components, we found it useful to employ the
facilities provided by FORM [56] for the simplification of
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multivariate polynomials [57,58]. More precisely, FORM’s
#optimize command implements a multivariate gener-
alization of the so-called Horner’s method to bring poly-
nomials into a form that is computationally more efficient.

Given the parametrization of the integrand with surface
terms, any linearly independent tensor insertion can be used
as a master integral. As such, it is trivial for us to change
basis of master integrals, by filling the master space of each

FIG. 2. Hierarchyof propagator structures for two-loop five-point gluon scattering as defined inSec. II A.Only topologically inequivalent
structures are shown. All lines are massless, with massive external legs being denoted by two massless external lines entering a vertex.
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topology with any set of integrals independent under the
IBP relations. This freedom was especially useful during
testing, where we could for instance make use of finite
integrals to control the ϵ structure when these could be
easily constructed (e.g., some five-point master integrals
can be made finite by simply shifting them to six
dimensions).
In order to numerically calculate the appropriate prod-

ucts of tree amplitudes necessary to reconstruct the inte-
grand in our algorithm, we implement a Berends-Giele
recursion [51] tailored to directly compute multiloop cuts
using D-dimensional momenta and states living in Ds
dimensions. This is both a high-performance and flexible
choice, as changing the field content requires only imple-
menting new Feynman rules. The setup is particularly
useful for our numerical computations in dimensional
regularization, as it is straightforward to evaluate the
products of tree amplitudes at different values of Ds in
order to reconstruct the functional dependence on the
parameter, in a way that automatically recognizes if a
given two-loop cut has a linear or quadratic dependence on
Ds. Caching for multiple Ds values is built-in. External
momenta are taken to live in four dimensions, as do the

associated gluonic polarization states. The D-dimensional
loop momenta are represented in six dimensions, as
described in detail in Sec. II C.

B. Amplitude evaluation

Having constructed the cut equations (2.5) as described
in the previous section, we now solve them for the integral
coefficients at fixed values of the kinematics. Both Eq. (2.5)
and its hierarchically subtracted analogue describe linear
systems in the ansatz coefficients. For fixed values ofD and
Ds, we evaluate the equations numerically over enough
randomly chosen on-shell momenta configurations to form
a linear system that constrains the coefficients. We then
solve this system for the coefficients using standard PLU
factorization and back substitution.
In order to reconstruct the D and Ds dependence of the

coefficients, we first sample Ds over three distinct values
[25] in a generalization of [21]. Indeed, a two-loop
amplitude is a quadratic polynomial in Ds which can be
fully determined from its evaluation at three different
values of Ds, thus allowing us to easily implement both
the FDH and HV flavors of dimensional regularization. As
Ds is restricted to be greater than or equal to the embedding

FIG. 3. Propagator structures with master integrals.
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space of the loop momenta (6 for a two-loop calculation)
we pickDs ¼ 6; 7; 8. The values ofD are chosen randomly.
The D-dependence is obtained by repeating the computa-
tion for sufficient (a priori unknown) values of D from
which the rational dependence is reconstructed [30,31]
using Thiele’s formula [31,59]. After evaluation at
a single phase-space point, the exact denominator as well
as rank of the numerator function can be stored, allowing
the use of simple polynomial inversion techniques and less
sampling.
In practice, implementing our approach over the rational

numbers Q will result in a slow calculation. However, the
final master integral coefficients are strongly constrained
by physical properties and it is expected that their resulting
form will be compact. We thus follow the approach
outlined in [30,31], using finite fields Fp. We implement
the algorithm over the finite fields provided by Givaro [60].
We use various cardinalities of order 230, implementing
Barrett reduction [61,62] in order to improve the speed of
finite field multiplication. For a given kinematic point inQ,
we perform the computation in a sufficient number of finite
fields to apply a rational reconstruction algorithm, also
provided by Givaro.
In order to obtain an ϵ expansion for the amplitudes, we

combine the coefficients with ϵ expansions of the appro-
priate master integrals. We list the topologies with master
integrals in Fig. 3. For the five-point master integrals we
choose the basis of [15] in order to make use of the publicly
available implementation distributed with the paper. For
lower point integrals, we implemented the analytic expres-
sions provided in [63]. In the case of factorizable topologies
we choose the scalar integral as a master and calculate
them independently. In order to evaluate the necessary
multiple polylogarithms we use the implementation
found in GiNaC [64], which can be tuned to the desired
precision. All integrals have been independently numeri-
cally validated with Fiesta 4 [65]. We note that the
choice [63] of an integral with a squared central propagator
for the second slashed-box master is important in order to
avoid spurious weight-five contributions in intermediate
stages.

IV. RESULTS FOR HELICITY AMPLITUDES

As an illustration of the implementation of our approach,
we present numerical results for the four independent

helicity configurations. We evaluate them at the Euclidean
phase-space point4

p1 ¼
�
1

2
;
1

16
;
i
16

;
1

2

�
; p2 ¼

�
−
1

2
;0;0;

1

2

�
;

p3 ¼
�
9

2
;−

9

2
;
7i
2
;
7

2

�
; p4 ¼

�
−
23

4
;
61

16
;−

131i
16

;−
37

4

�
;

p5 ¼
�
5

4
;
5

8
;
37i
8

;
19

4

�
; ð4:1Þ

which corresponds to the set of invariants (we write
sij ¼ ðpi þ pjÞ2)

s12 ¼ −1; s23 ¼ −8; s34 ¼ −10;

s45 ¼ −7; s51 ¼ −3; ð4:2Þ

and set the dimensional regularization scale μ to 1. The
normalization of the results we present is fixed by the
expansion in Eq. (2.1), and they are all given in the HV
scheme, Ds ¼ D ¼ 4 − 2ϵ. Since our coefficients are exact
rational numbers and we have analytic expressions for the
master integrals [15,63], the precision of the results we
present is only limited by the number of digits we ask from
GiNaC [64] when evaluating the master integrals, which can
be arbitrarily increased.
The results for the all-plus and single-minus helicity

amplitudes, Að2Þð1þ; 2þ; 3þ; 4þ; 5þÞ and Að2Þð1−; 2þ; 3þ;
4þ; 5þÞ, are given in Table I. Both helicity configurations
vanish at tree-level, which implies they are finite at
one-loop and start at order ϵ−2 at two-loops. We present
our two-loop results normalized to Að1Þðϵ ¼ 0Þ, the finite
one-loop amplitude truncated to leading order in ϵ. The
results for the two independent MHV amplitudes, the split
Að2Þð1−; 2−; 3þ; 4þ; 5þÞ and the alternating Að2Þð1−; 2þ;
3−; 4þ; 5þÞ helicity configurations, are given in Table II. In
this case, we normalize the results to Að0Þ, the correspond-
ing tree-level amplitude. As expected, the first two leading
poles are helicity independent.

TABLE I. Numeric results truncated to 10 significant figures for the two-loop all-plus and single-minus helicity
amplitudes, normalized to the finite one-loop amplitudes truncated to leading order in ϵ, at the kinematic point of
Eq. (4.1). The normalization is fixed by Eq. (2.1).

Að2Þ=ðAð1Þðϵ ¼ 0ÞÞ ϵ−2 ϵ−1 ϵ0

ð1þ; 2þ; 3þ; 4þ; 5þÞ −5.000000000 −3.8931790255 5.9810885816
ð1−; 2þ; 3þ; 4þ; 5þÞ −5.000000000 −16.322002103 −10.383813287

4The reason for the explicit factor of i in the third component
of the four-vectors is that we write them here for the standard
diagðþ;−;−;−Þmetric. In our implementation we use the metric
diagðþ;−;þ;−Þ, see Sec. II C 1, in which case all the compo-
nents are real.
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To validate our results, we first reproduce the universal
ultraviolet/infrared pole structure of the amplitudes [66],
which we summarize in Appendix in the context of two-
loop five-gluon amplitudes in the leading-color approxi-
mation. Computing the prediction for the pole structure
requires the five-point one-loop amplitudes up to order ϵ for
all four independent helicity configurations. For this, we
used our own implementation of numerical unitarity at one
loop, which we checked up to order ϵ0 against results from
BLACKHAT [22]. The one-loop coefficients are computed in
high precision and we use analytic expressions for all one-
loop master integrals to obtain the 10 significant digits
given in Tables III and IVof Appendix. Using our code, we
confirm the published results for the all-plus helicity
amplitudes [3,14,16]. We also validate the results of [19]
which appeared during the final stages of the preparation of
this article.
The computation of the master coefficients for each of

the helicity amplitudes presented in Tables I and II involves
the sampling of a large amount of trees over on-shell phase
spaces. This is performed over ten values of D and three
values of Ds to fully reconstruct the dependence on the
dimensional regulator. For the most complex amplitude
considered and with our current implementation, the
determination of the full set of master coefficients in a
single finite field takes around two and a half minutes in a
single-threaded calculation employing an i7 Intel proces-
sor. Then, reconstructing the exact rational coefficients
used in obtaining the final results presented required the
evaluation over seven finite fields.

Finally, we note that although we only present results for
the four independent helicity configurations, we have also
verified the pole structure for the other helicity configura-
tions obtained by parity conjugation or permutation of
external legs. Since our calculation is based on a numerical
setup, these amount to independent calculations that give us
an internal consistency check of our implementation.

V. CONCLUSION

Themain result of this paper is a numerical implementation
of two-loop five-gluon amplitudes in the leading-color
approximation, for any helicity configuration. The calcula-
tion is done in the multiloop numerical unitarity approach,
whichwe extended for usewith finite-field arithmetics.Using
a new approach to the generation of IBP relations, we obtain a
complete decomposition of the amplitude in terms of master
integrals. Because of the extension to finite-field arithmetics,
the corresponding coefficients computed from unitarity cuts
are exact. To illustrate our calculation, we presented the
results at a given kinematic point, for which we used the
available master integrals [15,63]. Our implementation was
validated by checking the universal pole structure [66], and
confirms all results available in the literature [3,14,16,19].
The high polynomial degree and the many scales

associated with multiloop computations with several exter-
nal particles make it challenging to set up accurate
numerical approaches. While analytic results are stable,
the complexity of intermediate computational steps often
makes them difficult to obtain for challenging amplitudes
of that kind. Here, we chose an alternative approach which
removes the strict separation of numerical and analytic
perspectives and keeps the best features of each. We
employed exact arithmetics as previously explored in the
context of generalized unitarity in Ref. [31]. Our approach
is universal and is obtained after refinements of the method
introduced in [24,25]. The exact approach is valuable for a
number of reasons: the validation of results is simplified
because the results are exact, which allows us to evaluate
the amplitudes in singular limits, and, in addition, it paves
the way for the functional reconstruction of their analytic

TABLE III. Numeric results for the one-loop all-plus and
single-minus amplitudes normalized to their ϵ0 coefficient at
the kinematic point of Eq. (4.1) used in checks of the universal
pole structure.

Að1Þ=ðAð1Þðϵ ¼ 0ÞÞ ϵ

ð1þ; 2þ; 3þ; 4þ; 5þÞ 0.310137038
ð1−; 2þ; 3þ; 4þ; 5þÞ 2.795901653

TABLE IV. Numeric results for the one-loop MHV amplitudes normalized to the tree amplitude at the kinematic
point of Eq. (4.1) used in checks of the universal pole structure.

Að1Þ=Að0Þ ϵ−2 ϵ−1 ϵ0 ϵ

ð1−; 2−; 3þ; 4þ; 5þÞ −5.000000000 −6.009160505 230.9376195 702.8219477
ð1−; 2þ; 3−; 4þ; 5þÞ −5.000000000 −6.009160505 1.593323992 13.72616843

TABLE II. Numeric results truncated to 10 significant figures for the two-loop split and alternating MHV amplitudes, normalized to
the tree level, at the kinematic point of Eq. (4.1). The normalization is fixed by Eq. (2.1).

Að2Þ=Að0Þ ϵ−4 ϵ−3 ϵ−2 ϵ−1 ϵ0

ð1−; 2−; 3þ; 4þ; 5þÞ 12.5000000 25.46246919 −1152.843107 −4072.938337 −3637.249566
ð1−; 2þ; 3−; 4þ; 5þÞ 12.5000000 25.46246919 −6.121629624 −90.22184214 −115.7836685
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form which his is left for future work. Even in the absence
of analytic results, the timings of our numerical calculation
and the availability of master integrals computed in the
physical region make it feasible to consider integrating the
amplitudes over the physical phase-space and thus start
exploring the phenomenology of five-point two-loop gluon
processes. This will play a central role in the physics
program at the LHC in the near future in particular.
The potential to generalize to other processes is signifi-

cant, based on our experience with the present computation.
The approach is general and requires little spectrum-
dependent work. In particular, the parametrization of the
integrand of the amplitude in terms of master integrals and
surface terms, which allows to achieve a full reduction to
master integrals, only depends on the kinematics of the
process and the power-counting of the theory. The current
setup handles five kinematic scales and the generalization
to other massless particles is straightforward. Based on the
present computation, we also believe that general five-scale
processes are attainable and that adding further mass scales
will be achievable in the near future. Finally, extensions to
nonplanar amplitudes appear well within reach. Given the
importance of analytic results for inspiring new methods
and for identifying hidden symmetry principles, it will be
exciting to learn about the analytic form of the integral
coefficients. With the presented methods, we are well set up
to explore these directions.
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APPENDIX: DIVERGENCE STRUCTURE
OF TWO-LOOP GLUON AMPLITUDES

We present results for two-loop gluonic amplitudes with
generic helicity configurations. These amplitudes have both

infrared and ultraviolet poles. The latter are removed
through renormalization of the amplitude. After renormal-
ization, the infrared poles are predicted from lower-order
results through a general formula [66]. Here, we briefly
summarize the procedure of renormalization and the
calculation of the infrared poles for the amplitudes we
compute in this paper. Reproducing the expected pole
structure described in this section is an important check of
our results.

1. Renormalization of leading-color two-loop
gluonic amplitudes

Renormalization of the amplitude is performed in the MS
scheme. It is implemented by replacing the bare coupling
by the renormalized one, denoted αS, in Eq. (2.1). The bare
and renormalized couplings are related through

α0μ
2ϵ
0 Sϵ¼ αsμ

2ϵ

�
1−

β0
ϵ

αs
4π

þ
�
β20
ϵ2

−
β1
ϵ

��
αs
4π

�
2

þOðα3sÞ
�
;

ðA1Þ

with Sϵ ¼ ð4πÞϵe−ϵγE , where γE ¼ −Γ0ð1Þ is the Euler-
Mascheroni constant. μ20 is the scale introduced in dimen-
sional regularization to keep the coupling dimensionless in
the QCD Lagrangian, and μ2 is the renormalization scale.
In the following we set μ2 ¼ μ20 ¼ 1. For purely gluonic
amplitudes, the coefficients of the QCD β function are

β0 ¼
11NC

3
; β1 ¼

17N2
C

3
: ðA2Þ

The renormalized amplitude is written as

ARjleading color ¼ S
−3
2

ϵ g3s

�
Að0Þ

R þ αsNC

4π
Að1Þ

R

þ
�
αsNC

4π

�
2

Að2Þ
R þOðα3sÞ

�
; ðA3Þ

with the renormalized AðiÞ
R related to the bare AðiÞ as

follows:

Að0Þ
R ¼ Að0Þ; Að1Þ

R ¼ S−1ϵ Að1Þ −
3

2

β0
NCϵ

Að0Þ;

Að2Þ
R ¼ S−2ϵ Að2Þ −

5

2

β0
NCϵ

S−1ϵ Að1Þ

þ
�
15

8

�
β0
NCϵ

�
2

−
3

2

β1
N2

Cϵ

�
Að0Þ: ðA4Þ

2. Infrared behavior

Renormalization removes all poles of ultraviolet origin.
The remaining poles in the renormalized amplitude are of
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infrared origin and can be predicted from the previous
orders in the perturbative expansion [66–69]:

Að1Þ
R ¼ Ið1ÞðϵÞAð0Þ

R þOðϵ0Þ;
Að2Þ

R ¼ Ið2ÞðϵÞAð0Þ
R þ Ið1ÞðϵÞAð1Þ

R þOðϵ0Þ: ðA5Þ

In the leading-color approximation, the color structure of
loop corrections is the same as that of the leading-order
contribution up to a factor of NC that was included in the
perturbative expansion parameter, see Eq. (A3). For a n-
gluon amplitude, the operator Ið1Þ is then

Ið1ÞðϵÞ ¼ −
eγEϵ

Γð1 − ϵÞ
�
1

ϵ2
þ β0
2NCϵ

�Xn
i¼1

ð−si;iþ1Þ−ϵ; ðA6Þ

where si;iþ1 ¼ ðpi þ piþ1Þ2 with the indices defined cycli-
cally. The operator Ið2Þ is

Ið2ÞðϵÞ ¼ −
1

2
Ið1ÞðϵÞIð1ÞðϵÞ − β0

NCϵ
Ið1ÞðϵÞ

þ e−γEϵΓð1 − 2ϵÞ
Γð1 − ϵÞ

�
β0
NCϵ

þ 67

9
−
π2

3

�
Ið1Þð2ϵÞ

þ n
eγEϵ

ϵΓð1 − ϵÞ
�
ζ3
2
þ 5

12
þ 11π2

144

�
: ðA7Þ

The poles of the bare amplitudes can be recovered from
those of the renormalized amplitude by using Eq. (A4). For
amplitudes that are finite at one-loop (such as the all-plus
and single-minus helicity configurations) the pole structure
of the unrenormalized amplitude is particularly simple
because the 1=ϵ renormalization term in Eq. (A4) matches
the 1=ϵ term in the Ið1Þ operator [14]. For example, in the
all-plus five-gluon case we have

Að2Þð1þ; 2þ; 3þ; 4þ;5þÞ

¼ −
1

ϵ2
X5
i¼1

ð−si;iþ1Þ−ϵAð1Þ
R ð1þ; 2þ; 3þ; 4þ; 5þÞ þOðϵ0Þ:

ðA8Þ

In Tables III and IV we present the (normalized) one-loop
results needed to perform the checks of the universal pole
structure of the two-loop results given in IV. In order to
remove unphysical ambiguities related to the normalization
of the amplitudes, these are normalized either to the tree
amplitude or to the ϵ0 coefficient of the one-loop result if the
tree amplitude vanishes. The results in the Tables are
obtained with our own implementation of one-loop numeri-
cal unitarity. The coefficients are computed in high precision
and multiplied by analytic expressions for all one-loop
master integrals to obtain the 10 significant digits we present.
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