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We perform a precise calculation of the decay rate of the electroweak vacuum in the standard
model as well as in models beyond the standard model. We use a recently developed technique to calculate
the decay rate of a false vacuum, which provides a gauge invariant calculation of the decay rate at the one-
loop level. We give a prescription to take into account the zero modes in association with translational,
dilatational, and gauge symmetries. We calculate the decay rate per unit volume, y, by using an analytic

formula. The decay rate of the electroweak vacuum in the standard model is estimated to be
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uncertainties of the Higgs mass, the top quark mass, the strong coupling constant and the choice of the
renormalization scale, respectively. The analytic formula of the decay rate, as well as its fitting formula
given in this paper, is also applicable to models that exhibit a classical scale invariance at a high energy
scale. As an example, we consider extra fermions that couple to the standard model Higgs boson, and

where the first, second, third, and fourth errors are due to the

discuss their effects on the decay rate of the electroweak vacuum.

DOI: 10.1103/PhysRevD.97.116012

I. INTRODUCTION

In the standard model (SM) of particle physics, it has
been known that the Higgs quartic coupling may become
negative at a high scale through quantum corrections, so
that the Higgs potential develops a deeper vacuum. The
detailed shape of the Higgs potential depends on the Higgs
and the top masses; with the recently observed Higgs mass
of ~125 GeV, it has been known that the electroweak (EW)
vacuum is not absolutely stable if the SM is valid up to
~10' GeV or higher.1 In such a case, the EW vacuum can
decay into the deeper vacuum through tunneling in quan-
tum field theory. The lifetime of the EW vacuum has been
one of the important topics in particle physics and
cosmology.

The decay rate of the EW vacuum has been discussed for
a long time. The calculation of the decay rate at the one-
loop level first appeared in [15] and was also discussed in
other literature [16-25]. However, there are subtleties in the
treatment of zero modes related to the gauge symmetry
breaking which make it difficult to perform a precise and
reliable calculation of the decay rate. The lifetime of a

'For the absolute stability of the EW vacuum in the SM,
see [1-14].
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vacuum can be evaluated through a rate of bubble nucle-
ation in unit volume and unit time as formulated in [26,27].
The rate is expressed in the form of
y = Ae™B, (1.1)
where B is the action of a so-called bounce solution, and
prefactor A is quantum corrections having mass dimension
4. The bounce solution is an O(4) symmetric solution of
the Euclidean equations of motion, connecting the two
vacua. Although the dominant suppression of the decay rate
comes from B, the prefactor A is also important. This is
because of large quantum corrections from the top quarks
and the gauge bosons. Thus, it is essential to calculate both
A and B to determine the decay rate precisely. In the SM,
there are infinite bounce solutions owing to (i) the classical
scale invariance at a high energy scale, (ii) the global
symmetries corresponding to SU(2); x U(1)y,/U(1)gy. as
well as (iii) the translational invariance. For the calculation
of the prefactor A, a proper procedure to take account of the
effects of the zero modes related to (i) and (ii) were not well
understood until recently. In addition, the previous calcu-
lations of A were not performed in a gauge-invariant way,
which made the gauge invariance of the result unclear.
Recently, a prescription for the treatments of the gauge
zero modes was developed [28,29], based on which a
complete calculation of the decay rate of the EW vacuum
became possible. The calculation has been performed by
the present authors in a recent publication [25] and also by
[24]. The purpose of this paper is to give a more complete
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and detailed discussion about the calculation of the decay
rate. In [25], we have numerically evaluated the functional
determinants of fluctuation operators, which are necessary
for the calculation of the decay rate. Here, we perform the
calculation analytically; a part of the analytic results was
first given in [24]. The effects of the zero modes and the
modes with the lowest angular momentum are carefully
taken into account, on which previous works had some
confusion. We give fitting formulas of the functional
determinants based on analytic results, which are useful
for the numerical calculation of the decay rate. We also
provide a C + + package to study the electroweak vacuum
stability (ELVAS), which is available at [30].

In this paper, we discuss the calculation of the decay rate
of the EW vacuum in detail. We first present a detailed
formulation of the calculation of the decay rate at the one-
loop level. We derive a complete set of analytic formulas
that can be used for any models that exhibit classical scale
invariance at a high energy scale like the SM. Then, as one
of the important applications, we calculate the decay rate of
the EW vacuum in the SM. We find that the lifetime of the
EW vacuum is much longer than the age of the Universe.
There, we see that one-loop corrections from the top quark
and the gauge bosons are very large although there is an
accidental cancellation. It shows the importance of A for
the evaluation of a decay rate. We also evaluate the decay
rates of the EW vacuum for models with extra fermions that
couple to the Higgs field. In such models, the EW vacuum
tends to be destabilized compared with that of the SM since
the quartic coupling of the Higgs field is strongly driven to
a negative value. (For discussion about the stability of the
EW vacuum in models with extra particles, see [22,31—
541.) We consider three models that contain, in addition to
the SM particles, (i) vectorlike fermions having the same
SM charges as the left-handed quark and the right-handed
down quark, (ii) vectorlike fermions with the same SM
charges as left-handed lepton and right-handed electron,
and (iii) a right-handed neutrino. We give constraints on
their couplings and masses, requiring that the lifetime of the
EW vacuum be long enough.

This paper is organized as follows. In Sec. II, we
summarize the formulation for the decay rate at the one-
loop level, where we provide an analytic formula for each
field that couples to the Higgs boson. The detail of the
calculation is given in Appendixes A-D. In Sec. III, we
evaluate the vacuum decay rate in the SM. Readers who are
interested only in the results can skip over the former
section to this section. In Sec. IV, we analyze decay rates in
models with extra fermions. Finally, we conclude in Sec. V.

II. FORMULATION

We first discuss how we calculate the decay rate of the
EW vacuum. In the SM, the EW vacuum becomes unstable
due to the renormalization group (RG) running of the
quartic coupling constant of the Higgs boson, which makes

the quartic coupling constant negative at a high scale. In the
SM, the instability occurs when the Higgs amplitude
becomes much larger than the EW scale. Since the typical
field value for the bounce configuration is around that scale,
we can neglect the quadratic term in the Higgs potential.

In this section, we use a toy model with U(1) gauge
symmetry to derive relevant formulas. The calculation of
the decay rate of the EW vacuum is almost parallel to that in
the case with U(1) gauge symmetry; the application to the
SM case will be explained in the next section.

A. Setup

Let us first summarize the setup of our analysis. We
study the decay rate of a false vacuum whose instability is
due to an RG running of the quartic coupling constant of a
scalar field, ®. We assume that ® is charged under the U(1)
gauge symmetry (with charge +1); the kinetic term
includes

[’kin =4 [(8;4 - igAy)(D]T(a;l - l'gAM)(I), (21)
where A, is the gauge field and g is the gauge coupling
constant, while we consider the following scalar potential:

V(®) = A(dTD)>. (2.2)
The quartic coupling, A, depends on the renormalization
scale, u, and is assumed to become negative at a high scale
due to the RG effect. As we have mentioned before, we
neglect the quadratic term assuming that A becomes negative
at a much higher scale. In this setup, the scalar potential has
scale invariance at the classical level. In the application to the
case of the SM, @ corresponds to the Higgs doublet and A
corresponds to the Higgs quartic coupling constant.

Hereafter, we perform a detailed study of the effects of
the fields coupled to @ on the decay rate of the false
vacuum. We consider a Lagrangian that contains the
following interaction terms:

Lin D k6?|®)> + (yOy yr + He) + V(®),  (2.3)
where o is a real scalar field, and y; and yj are chiral
fermions [with relevant U(1) charges].” We take y real and
k > 0. We neglect dimensionful parameters that are
assumed to be much smaller than the typical scale of the
bounce. In addition, gauge fixing is necessary to take into
account the effects of gauge boson loops. Following
[29,55], we take the gauge fixing function of the following
form:

F=0,A

WAy (2.4)

2We assume that there exist other chiral fermions that cancel
out the gauge anomaly.
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Then, the gauge fixing term and the Lagrangian of the
ghosts (denoted as ¢ and c) are given by

— 1 2
£GF - 2§F ) (25)
EFP = —Eaﬂaﬂc, (26)

where £ is the gauge fixing parameter.3

The bounce solution is an O(4) symmetric object
[56,57], and transforms under a global U(1) symmetry.
Thus, choosing the center of the bounce at r = 0 (with
r= m), we can write the bounce solution as

1
o | bounce — %

with our choice of the gauge fixing function, without loss of
generality. Here, 6 is a real parameter. The function, ¢,
obeys

e(r), (2.7)

_ 3 _
B +20,4() —iP () =0, (28)
with boundary conditions 9,4 (0) = 0 and ¢(c0) = 0. For a
negative A, we have a series of Fubini-Lipatov instanton
solutions [58,59]:

(r) = e <1 +%$2cr2) ‘1, (2.9)

which is parametrized by ¢ (i.e., the field value at the
center of the bounce). We also define R, which gives the
size of the bounce, as

8
R=|—¢7. (2.10)
V1"
The action of the bounce is given by
87’
=_—. 2.11

Notice that the tree level action is independent of ¢ owing
to the classical scale invariance.

Once the bounce solution is obtained, we may integrate
over the fluctuation around it. We expand @ as

1 -
©=—e%p+h+ip),

Vi (2.12)

*In the non-Abelian case, one of 9, in Eg. (2.6) is replaced by
the covariant derivative. The interaction of the ghosts with the
gauge field does not affect the following discussion.

where h and ¢ are the physical Higgs mode and the
Nambu-Goldstone (NG) mode, respectively. At the one-
loop level, the prefactor can be decomposed as

A

=7 Al AW) A(Au.0) AlcE) =B
Vap

Ae B , (2.13)

where V,p is the volume of spacetime, and A®X) is the
contribution from particle X. Each of the factors has a
form of

(x)\ w
AX) = <M> i (2.14)

B DetM\ *)

where M®) and M™) are the fluctuation operators around
the bounce solution and around the false vacuum, respec-
tively. Here, wX) = 1 for Dirac fermions and Faddeev-
Popov ghosts, and w®¥) = —1/2 for the other bosonic
fields. The fluctuation operator is defined as second
derivatives of the action:

5S(X)

M(X>5(4>(x — y) = <m>, (215)

where the brackets indicate the evaluation around the

bounce solution. In addition, /\//\lm can be obtained from
M) with replacing ¢ by the vacuum expectation value at
the false vacuum, i.e., (?) - 0.

Since the Faddeev-Popov ghosts do not couple to the
Higgs boson with the present choice of the gauge fixing

function, M(¢:0) = M Thus, we have

Aled) =1, (2.16)

B. Functional determinant

For the evaluation of the functional determinants, we first
decompose fluctuations into partial waves, making use of
the O(4) symmetry of the bounce [15]. The basis is
constructed from Y, (&), the hyperspherical function
on $3 with Q being a coordinate on S*. The decomposition
of each fluctuation is given in Appendix A. Here, J =
0,1/2,1,... is a non-negative half integer that labels
the total angular momentum in four dimensions, and m,
and myp are the azimuthal quantum numbers for the A-spin
and the B-spin of so(4) ~su(2), x su(2)y, respectively.
The four-dimensional Laplacian operator acts on the hyper-
spherical function as

LZ
_aZYJ.mA,mB (Q) =5 YJ.mA,mB (Q)v (217)
: r
with
L=\4IT+1). (2.18)
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In addition, Y ,, ., () is normalized as

/dQ|YJ,mA.mB|2 =1

With the above expansion, the functional determinants
can be expressed as

®
DetM® = /DetM|\"
7/\){ — H —A(X) )

Det/\/l< ) 7=0 \DetM J

(2.19)

(2.20)

where M(JX) is the fluctuation operator for each partial
wave labeled by J. In addition, ”S =2J/+1)(2J+2)

for fermions, and n<J ) = (2J 4+ 1)? for the others. The
explicit forms of the fluctuation operators are shown in
Appendix A. Using a theorem [29,60-63], the ratio of the
functional determinants can be calculated as

(X) -
Det Det¥ Det¥ !
DetMy (lim e—) (anO e—) . (21)
Det Mg ) r= Det¥ Det¥
where ¥ = (¥, ¥,,...) and ¥ = (¥,,¥,, ...) are sets of
independent solutions of
MBIy, =, (2.22)
M, = o, (2.23)

and are regular at r = 0. Notice that, when ./\/l<JX) 1S an
n x n object, there are n independent solutions that are
regular at r = 0. Since ¥; and ¥, obey the same linear
differential equation at r — oo, the ratio of the two
determinants converges for each J.

With a Fubini-Lipatov instanton, we can calculate the
ratio analytically, as first pointed out in [24]. For the
convenience of readers, we give the details of the calcu-
lation in Appendix A. The ratios are given by

DeeMY) 2727 -1) (224)
DetM  (27+3)(27+2) '

DeeMY  T(27+ 127 +2) 225)
DetM'”  T(2J+1-z)02] +2+2z,) ‘

DetM)” [ 027 4 2)]? r (226)
DetM) D27 +2-2,)l(2/ +2+2z,)] '

DetM g {
(

T'(2J + NI(2J +2) r
DetM ) RS )

T(2J +1-2z,)[(2J +2+2,
(2.27)

Here,

1 K
=——(1=-,/1=-8—, 2.28
& 2( w) (2.28)
gz
= 1 1-8=1, 2.2
£ 2( |z|) (2.29)
.Y
=i, 2.30
z, 7 (2.30)

where ¢ is the gauge coupling constant, and I'(z) is the
gamma function.

C. Zero modes

In the calculation of the decay rate of the EW vacuum
with the present setup, there show up zero modes in
association with dilatation, translation, and global trans-
formation of the bounce solution. Consequently, Méh) ,

/\/l(lﬁ)2 and ME)A”'IP) have zero eigenvalues. Their determi-

nants vanish as shown in Eqgs. (2.24) and (2.27) [see also
Eq. (A80)]; a naive inclusion of those results gives a
divergent behavior of the decay rate, which requires a
careful treatment of the zero modes. In the present case, we
can consider the effect of each partial wave (labeled by J)
separately. Thus, in this subsection, we consider the case

where the fluctuation operator MEX) for a certain value of J
has a zero eigenvalue and discuss how to take account of its
effect. Because only bosons have zero modes in the

calculation of vacuum decay rates, MSX) is considered
to be a fluctuation operator of a bosonic field.

We first decompose the fluctuation of the bosonic field
(denoted as X) into eigenstates of the angular momentum:

XBZCQ

where c¢; is the expansion coefficient while G; obeys

YJmA mg( ) (231)

MSX)gi = Cl)igi, (232)

with w; being the eigenvalue. We normalize them as

0ij

(G19) = 3 (2:33)
where the inner product is defined by
(GilG)) = /drr3gj(r)gj(r). (2.34)

We leave \;’s unspecified since, as we see below, the final
result is independent of them. We denote the zero mode as
Gp (and hence wy = 0).
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When there is a zero mode, the saddle point approxi-
mation for the path integral breaks down and we need to go
back to the original path integral. The path integral is
defined as the integration over the coefficient c;, and the

functional determinant of M(JX) originates from the follow-
ing integral:

dc;

[ e

where the summations over the indices j and k are implicit.
Applying the saddle point approximation for the modes
other than the zero mode, we get

—QC,Ck g |M ‘gk

/ H e 3eienlGIMGY1G) — dey 1
\/2_77./\[ \/ENO o \/Cl)—l
(2.35)

Notice that M<JX), G; and w; may depend on cj.

We are interested in the case where there exists a
symmetry (at least at the classical level) and the
Lagrangian is invariant under a transformation, which
we parametrize by z. The zero mode is in association with
such a symmetry. Then, the transformation of the bounce
solution with z — z + dz can be seen as a shift of X as

X = X +62G0Y s, my + O(52%), (2.36)
where the function QO is proportional to G,. The integration
over ¢, can thus be regarded as the integration over the
collective coordinate z:

dey (GolGo)
N dz, 2.37
V2N, 2 ° (2:37)
and hence
/ =+ dei pteiegiMPig) / g0|go !
i \/2_”'/\/ 1#0
(2.38)

Next, we discuss how we evaluate the integrand of the
right-hand side of Eq. (2.38). To omit the zero eigenvalue
from the functional determinant, we introduce a regulator to
the fluctuation operator:

M<JX) - MSX) +uvp(r), (2.39)
where v is a small positive number, and p(r) is an arbitrary

function that satisfies

(GolplGo) = 2. (2.40)
Then, we have
/ H e—3eiex (G (M +0p) |Gy
V4 27[./\/
G 1
= <g0|g0 H ’ (2.41)
\/l/ + O z#:O \/(1) + O
which gives
go|go
ol
dc;
=lim /v L omdeielGIM )G (2,42
iy 7 | %y, (2:42)

The integration in the above expression is nothing but
Det(M®X) + 1p), and can be evaluated with the use of

Eq.(2.21). If M(JX> isa | x I object, for example, we obtain

(X) ¥
MM’—M im0, (243)
DetMJ e lP(r)
where
MEB(r) = —p(r)¥(r), (2.44)

while the functions ¥ and ¥ obey Eqgs. (2.22) and (2.23),
respectively. Then, we interpret the functional determinant
of the fluctuation operator with the zero eigenvalue as

(X)\ —1/2
(DetMJX>> R / dz [Iim,_,oo

Det/\//\lg

¥(r)
W(r)

r/z. (2.45)

The above argument can be applied to the zero modes of
our interest. In Appendix B, we obtain the following
replacements to take care of the dilatational, translational,

and gauge zero modes:
/ dInR, / (2.46)
-2
Det M) 321\2 Vip
v | T \) w
DetM 1/2

(AL)
De tM /d& (2.48)
Det/\/l0 Det ) \/ |/1

‘ DetM
DetMO

(2.47)
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D. Renormalization

After taking the product over J, we have a UV diver-
gence and thus we need to renormalize the result. In this
paper, we use the MS scheme, which is based on the
dimensional regularization. In this subsection, we explain
how the divergences can be subtracted using counterterms
in the MS scheme.

Since the dimensional regularization cannot be directly
used in this evaluation, we first regularize the result by
using the angular momentum expansion as

=) X
Z (Det/l/l\isz> . (2.49)
+ SX DetM]

[In A%

1 2
nA@], =-= ( + o+ >
A, = =11 "

1
- ESG(ZK) + O(e,), (2.50)
272 5 1yr 420
W) Y (2 2 1Yy T
I A¥Le, =1 (ﬁfaﬁs 0 1)
+ 8, (zy) + O(g,,), (2.51)

where the functions, S, and S, are given in Egs. (C13) and
(C16), respectively. In addition, we define

- 1
=) AW =y, / dlnRFA’“') (2.52)
We call this regularization “angular momentum regulari-
zation.” Here, €y is a positive number, which will be taken (A0) _ 1A,0)
to be zero at the end of the calculation. Since the divergence A = [ dOATAD). (2.53)
is at most a power of J, the regularized sum converges. In
Appendix C, we calculate the sum analytically, and obtain ~ Then, the primed quantities are given by
|
1 |4] |/1| = (27 +1 2J(2J = 1)
InA®], =——|(In— ) +4
I A, = =2 |\""16z) T4 \("322 +2 1+ ep) 21 2T +3)27 +2)
1 2 3 5 4]
=3(5+—-1 ———3yy—6InA nZ - —1 @ 2.54
(z+2 ) S ar-emag +mE im0, (2.54)
1 A = (27+1)72 T r2/+1res+2 3
manor, = [(n) ¢ $° @0 S ra e Y
2 167 1:1/2(1 +eq)”  THI\Q2I+1-2,)0(2) +2+2z,)
3¢ 12 1 g 3 1 2]
=—|=-1)5+— —— | In —21A——1
(1) (G5 - (i) men G525,
3
- ES (zg) =3InT(1 = z,)T'(2 + z,) + O(en) (2.55)
|
where Ag ~ 1.282 is the Glaisher number. where
Next, we relate the above results with those based on the SME) = MX) — M\m’ (2.58)
dimensional regularization in D dimension, which contain X
the regularization parameter, &p, defined as and 5/\/15 ) is defined similarly. Here, [- -] indicates

1

2
=— —|— Indr —yg, (2.56)

&p 4-
with yg being the Euler’s constant. We convert the results
based on two different regularizations by calculating the
following quantity:

[in A, = wOTe[ (M) oM X))
_@Tr[(/\?m)”wm(/\7<X>)‘15M(X>]
X>in§’°{ Det[ M +5M, ]] |
720 DetM| OEM?)
(2.57)

the expansion up to d. The most important point is that

® : ®
{lnm‘—%} has the same divergence as [lnDe‘—/\i’m}
div DetM

DetM

does when M) does not have a derivative operator.
The first line of Eq. (2.57) can be calculated by directly

evaluating the traces in a momentum space with using

the dimensional regularization; the result is denoted as

In AX] 4 ;. On the other hand, the second line of

Eq. (2.57) can be evaluated as

(X)
D .
|:1 et[/\/lj + 5MJ ] Tr[lP_l\P(l)]
DetM}" OEM2)
~ 1 ~ N
+ Tr[¥~ e )] - ETr[‘P_l‘P(‘)lP_I‘P“)}, (2.59)
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where

MPpe) = —s (S, (2.60)

for p =1 and 2, and yO) — g, Then, we calculate

[In AX)

]div.ex

X) ”sX)
Z (14 ex)*

J

|: Det[MJ + 5MJ ]

Det/\/lj O((‘iM;)

(2.61)

We relate the results based on two regularizations by

replacing
[In -A(X)}div,ex = [In A(X)]div,é[,' (2.62)

The expressions of [In AX]; . and [In AM]; - for each
field are given in Appendix D, where we further simplify
the relation so that the left-hand side only includes terms
that are divergent at the limit of ey — 0. We summarize the
results below:

(i) Scalar field:

1+2+
& 3"

K

1 UR
-1 - 1 In— 2.63
ﬂﬂ( + +m+n2> (2.63)
(i1) Higgs field:
1 2 1 UR
—=1 — In—, 2.64
(5h+€h n8h>—>2§D+7E+n2 (2.64)
(ii1)) Fermion:
2 5 1y?+20
S+ —4-——"Ing,
& & 3 |4]
Sl L I P,
- - — n—
312 \22p 7ET S
2/ 1 25 U
—— ==+ — In— 2.65
3<25D+4+7E+n2)’ (265)

(iv) Gauge and NG fields:

347 1 2 1 4
1) (5+= —4+ 21
(w )( *eA) " (3 " W)
1+292+g4 1+1+ LR
—_ —_ PR n_
P e

(2.66)

Subtracting 1/p, we obtain the renormalized prefactor in
the MS scheme.

E. Dilatational zero mode

In the calculation of the decay rate of the EW vacuum,
we have an integral over R in association with the classical
scale invariance, as we saw in Eq. (2.46). So far, we have
performed a one-loop calculation of the decay rate, based
on which the decay rate is found to behave as

82> 8z2p"
3[a(w)] 3|A(w)?

1
ylone-loop) o / d lnRR exp{ InuR|,

(2.67)

where ﬂ/({l) is the one-loop f function of 1. (Here, we only
show the R and p dependencies of the one-loop correc-
tions.) Thus, using the purely one-loop result, the integral
does not converge.

We expect, however, that the integration can converge
once higher order effects are properly included. To see the
detail of the path integral over the dilatational zero mode,
let us denote the decay rate as

y " = / dlnRS"
R

where B fully takes account of all the effects of higher
order loops.

In order to discuss how B should behave, it is
instructive to rescale the coordinate variable as

(2.68)

- A5 X
.x” = §¢Cx/4 = Eﬂ s (269)
as well as the fields as
d =gl @, (2.70)
&=¢clo, (2.71)
A, =dclA,, (2.72)
¢ = éﬁglc, (2.73)
& =gele, (2.74)
(AN
v= ()"0 (2.75)

Using the rescaled fields, all the explicit scales disappear
from the action as a result of scale invariance:
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1 / 1 A S g
— | d*xC —r/d“xﬁ (—,—,—), (2.76)
h h ZARVIIIRVAR
where L is the total Lagrangian,
- |4
h %h, (2.77)

and £ includes canonically normalized rescaled fields
and depends only on the combinations &, —— and

g LI
W.

In addition, the rescaled bounce solution is given by

1
1+ 5

(2.78)

Based on L and 7, we expect:
(i) Only positive powers of & T \/‘7 and \/_ appear in

the decay rate since there is no singularity when any
of these goes to zero. In particular, they cannot be in
a logarithmic function.

(ii) When we renormalize divergences using dimen-
sional regularization, we introduce a renormaliza-
tion scale fi. It is always in a logarithmic func-
tion and is related to the original renormalization
scale as

ji = uR. (2.79)

(iii) In subtracting zero modes associated with
transformations of Eq. (2. 78) the result should be
again a polynomial of % and —~. Notice that,

b 7 2
for each zero mode, we have /1/# since Eq. (2.37)
implies

dcy _ 4 (GolGo)

Zﬂfl./\/() B Z”ﬁ '

(2.80)

(iv) Quantum corrections have A’"! at the ¢th loop

since the loop expansion is equivalent to the 7
expansion.
Based on the above arguments, B is expected to be
expressed as

812t AW |  (JAG)[\ !
— 1 Atz
Bt =3p1 T2 ™8 *Z( 8 )

=1
P( k() y(p)
Nl /Tata) \/u

where P, is the contribution at the £-loop level, and n,, is
the number of zero modes.

h’lﬂR>, (2.81)

If the effects of higher order loops are fully taken into
account, B, should be independent of 4 because the decay
rate is a physical quantity; in such a case, we may choose
any value of the renormalization scale . In the perturbative
calculation, the x4 dependence is expected to cancel out
order by order; as shown in Eq. (2.67), we can explicitly see
the cancellation of the u dependence at the one-loop level
[64]. In our calculation so far, however, we only have the
one-loop result, in which px dependence remains. As
indicated in Eq. (2.81), the ¢ dependence shows up in
the form of InuR with p =1,2,.... If |InuR| > 1, the
logarithmic terms from higher order loops may become
comparable to the tree-level bounce action and the pertur-
bative calculation breaks down. In order to make our one-
loop result reliable, we should take y ~ 051 /R), i.e., we
use R-dependent renormalization scale p.” With such a
choice of u (as well as with the use of coupling constants
evaluated at the renormalization scale y), the integration
over the size of the bounce is dominated only by the region
where |A(1/R)| becomes largest. In the case of the SM, the
integration over the size of the bounce converges with this
prescription as we show in the following section.

F. Final result

Here, we summarize the results obtained in the previous
subsections and Appendixes A-E. The decay rate with a
resummation of important logarithmic terms is given by

/ dlnR F AW A AN AR e Blge b (2.82)

where
5 ||
[]nA’<h>]M—S: 6lnAG+§ln§—§l §+31 ER
(2.83)
[In A ) = 15( )+ + < 1+ +1n”R
MS T TR0 T TR reT )
(2.84)
y* uR
[IHA(W]W 3|/1|2 (1 +J/E+ln7>

-3 (25 E+ln2>+8( D (2.85)

[In AW9)e = In Vg + [In A A (2.86)

“This is equivalent to summing over large logarithmic terms
appearing in higher loop corrections if we work with a fixed p.
Since we have calculated the decay rate at the one-loop level, it is
preferable to use, at least, the two-loop f-function to include the
next-to-leading logarithmic corrections.
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with
1 29 4 HR
In AWt = (- + 4 =) [ 1 In“——
4
¢ (31 L\ 11
~ () =y, —2InA
|z|2<3 ”> 43T
1Al 1 3
Sl Pl ) P
e+ 5z 286(19)
3
- Eln L(1 = z,)T(2 4 z,). (2.87)

Here, V; is the volume of the group space generated by the
broken generators. The definitions of S,(z), S,,(z) can be
found in Appendix C. Here, we note that the analytic results
for the scalar, Higgs, and fermion contributions were first
given in [24] with different expression. We emphasize that
the final result does not depend on the gauge parameter, &,
and hence our result is gauge invariant. The above result is
also applicable to the case where the U(1) symmetry is not
gauged as explained in Appendix E.

We have also derived fitting formulas of the functions
necessary for the calculation of the decay rate; the result is
given in Appendix F. The fitting formulas are particularly
useful for the numerical calculation of the decay rate. In
addition, a C+ 4 package to study the electroweak
vacuum stability (ELVAS) is available at [30], which is
also applicable to various models with (approximate)
classical scale invariance.

III. DECAY RATE OF THE EW VACUUM
IN THE SM

A. Decay rate

Now, we are in a position to discuss the decay rate of the
EW vacuum in the SM. As we have discussed, the decay of
the EW vacuum is induced by the bounce configuration
whose energy scale is much higher than the EW scale.
Thus, we approximate the Higgs potential as’

V(H) = A(H'H)?, (3.1)
where H is the Higgs doublet in the SM and 4 is the Higgs
quartic coupling constant. Notice that 1 depends on the
renormalization scale u; in the SM, A becomes negative
when y is above ~10'° GeV with the best-fit values of the

SM parameters. In addition, the relevant part of the Yukawa
couplings are given by

*We assume that the Higgs potential given in Eq. (3.1) is
applicable at a high scale. In particular, we assume that the effect
of Planck suppressed operators, which may arise from the effect
of quantum gravity, is negligible. For the discussion about the
effect of Planck suppressed operators, see [65-73].

‘CYukawa E] yrHZILtfe =+ H'C" (32)
where ¢, is the left-handed third generation quark doublet,
t; is the right-handed antitop quark, and y, is the top
Yukawa coupling constant.

Assuming that 4 < 0, the bounce solution for the SM is
given by

_ L g0 )
H|b0unce_\/§e (4_5(7’) ’ (33)

where ¢¢ is the Pauli matrices and function ¢ is given by
Eq. (2.9). In particular, remember that ¢ contains a free
parameter, which we choose R, because of the classical
scale invariance.

The results given in the previous section can be easily
applied to the case of the SM. Taking account of the effects
of the (physical) Higgs boson, top quark, and weak bosons
(as well as NG bosons),6 the decay rate of the EW vacuum
in the SM can be written in the following form:

1
y = / dlnRF[A’UI)A(’)A(W'Z"/')e‘B]m. (3.4)

As we have mentioned, the relevant renormalization scale
of the integrand is u ~ O(1/R); in the following numerical
analysis, we take 4 = 1/R unless otherwise stated. If A(u)
is positive, there is no bounce solution; the integrand is
taken to be zero in such a case. In addition, since we neglect
the mass term in the Higgs potential, 1/R should be much
larger than the EW scale. This condition is automatically
satisfied in the present analysis because A becomes negative
at the scale much higher than the electroweak scale.

The Higgs contribution A’"") is given in Eq. (2.83), while
the top-quark contribution is given by

[In A = 3[In AWzl (3.5)
where the factor of 3 is the color factor.

As for the gauge contributions, we have SU(2), x
U(1)y/U(1)gy broken symmetries, instead of U(1) in
our previous example. Thus, we have a different volume of
the group space, V. To calculate Vg, we first expand H
around the bounce solution with 84 = 0 as

1 [i(p"—ig?
gL (1
V2\ ¢-ip’
Here, @' and ¢? are NG bosons absorbed by charged

W-bosons while ¢? is that by Z-boson. With the change of
64, the NG modes are transformed as

(3.6)

®We checked that the effect of the bottom quark is numerically
unimportant.
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@' = ¢ + aagcyo,o,o + 0(6?). (3.7)
where
Gs = V271%¢. (3.8)

The integration over the zero modes in association with the
gauge transformation of the bounce solution can be
replaced by the integration over the parameter 6

/d39 = 27[2 = VSU(2)’

with the above definition of 6“. Then, following the
argument given in Appendix B, the gauge contribution
is evaluated as

(3.9)

[111 A(W’Z’(p)]m =In VSU(Q) + 2[1[1 A/(A”’(p)]m

‘.(I—’!/W

+ [In A AN (3.10)
where A’(4-9) is given in Eq. (2.87), and
gw = bR 9z = 5 (3.11)

with ¢, and gy being the gauge coupling constants of
SU(2); and U(1)y, respectively.

B. Numerical results

Now, let us evaluate the decay rate of the EW vacuum in
the SM. The decay rate of the EW vacuum is very sensitive
to the coupling constants in the SM. In our numerical
analysis, we use [74]:

my, = 125.09 + 0.24, (3.12)
m, =173.1 £ 0.6, (3.13)
a,(mz) = 0.1181 £ 0.0011, (3.14)

where m;, and m, are the Higgs mass and the top mass,
respectively, while «, is the strong coupling constant.
Following [75], the gauge couplings, the top Yukawa
coupling, and the Higgs quartic coupling are determined
at 4 = my; the calculations are done in the on-shell scheme
at next-to-next-to leading order precision. In addition, we
use three-loop QCD and one-loop QED f functions
[76-78] together with values in [74] in order to determine
the bottom and the tau Yukawa couplings at y = m,.

First, we show the RG evolution of the SM coupling
constants in Fig. 1. We use mainly three-loop f functions
summarized in [75] and the central values for the SM
parameters. The black dotted line indicates where ¢
reaches the Planck scale Mp ~2.4 x 10'® GeV. We also
show the running above the Planck scale, assuming
there are no significant corrections from gravity. For
109 GeV < £10% GeV, 1 becomes negative; for such
a region, we use a dashed line to indicate A < 0.

o

in

(=]
:

couplings

0.10¢
0.05¢

- 1500

~2000/

~2500 f ‘

~3000"

Infdy/dInR/GeV*]

\
1
1
\
1
\
1
1
\
\

~3500 ‘ ‘ ‘ ‘ ‘ ‘
5 10 15 20 25 30 35 40
logyo[ 1/ GeV ]

FIG. 1. Top: The RG evolution of the SM coupling constants as
functions of y (in units of GeV). The dashed line indicates 4 < 0.
The black dotted line shows the scale where ¢ = Mp,, taking
u = 1/R. The horizontal axis is common with the bottom panel.
Bottom: The integrand of the decay rate with 4 = 1/R, taking the
central values for the SM parameters. In the shaded region, 4 is
positive and the integrand is zero.

In order to understand the ¢ dependence of 4, let us show
one-loop RG equations of A and y, (although, in our
numerical calculation, we use RG equations including
two- and three-loop effects and the contribution from the
bottom and the tau Yukawa couplings):

di 2 2 2
1627 — 122047 - 218 2)
dln H one-loop 4 2
2 2\ 2 2\ 2
gy + 9 9
-6yt 46 FE—22 121=],
steo(f ) +o(3)
(3.15)
dy 9 9 17
16 2 ")t — _2_82__2__2 )
" dlnﬂ one-loop Y <2yt 9 492 129Y>

(3.16)

At alow energy scale, the term proportional to y? drives 1 to
a negative value. As the scale increases, y, decreases while
gy increases, which brings 4 back to a positive value. Notice
that A is bounded from below in the SM.

We show the integrand of y in the bottom panel of Fig. 1,
together with that of

1
ytree:/dlnRFe_B. (3.17)
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FIG. 2. Top: The integrand of the decay rate with the central
values of SM parameters. The solid line corresponds to a result at
the one-loop level and the dashed one corresponds to that at the
tree level. The horizontal axis is common with the bottom figure.
We show ¢ = Mp, with the vertical dotted line. Bottom: The
size of each quantum correction. The dashed line corresponds to

(1)
OB -

They are also shown in a linear scale in the top panel
of Fig. 2.

There are some remarks on the integral over R.

(i) As indicated by the top panel of Fig. 2, the integral is
dominated by the interval 10" GeV<1/R<10'8GeV,
corresponding to 10'® GeV < ¢ < 10'° GeV, which
is close to the Planck scale. We may formally perform
the R integration up to the scale where 4 becomes
positive again; the result of such an analysis is denoted
as Y. Otherwise, we may stop the integration at
¢c ~ Mp,, expecting that the SM breaks down at the
Planck scale due to an effect of quantum gravity; we
also perform such a calculation terminating the
integral at ¢ = Mp,, assuming that the bounce
solution is unaffected by the effect of quantum gravity.
The result is denoted as yp.

As one can see in the bottom panel of Fig. 1, there is
an artificial divergence of the integrand at
1/R ~10'° GeV. This is due to a breakdown of
perturbative expansion owing to a too small |4],
which makes the one-loop effect larger than the tree-
level one. We expect that the effect of such a bounce
configuration is unimportant because the bounce
action for such a small |4| suppresses the decay rate
significantly. Thus, we exclude such a region from
the region of integration In our numerical calcu-

%l | < 0.8 and |24 | < 0.

(i)

lation, we require |

for each X, where 5B}, <t 1S the one-loop contribu-
tion to By, and [ln.A s is a contribution
from particle X; the region that does not satisfy these
conditions is excluded from the integration.”

By numerically integrating over R, we obtain®

log;o[yp x Gyr GPC3] = —582j§)+3]§94 +211%4+12’ (3.18)
log o[y % Gyr Gpc3} = —580J—r22j3128§j211%5—ﬁz’ (3.19)

where the first, second, third, and fourth errors are due to
the Higgs mass, the top mass, the strong coupling constant,
and the renormalization scale, respectively. (In order to
estimate the uncertainty due to the choice of the renorm-
alization scale, we vary the renormalization scale from
1/2R to 2/R.) Currently, the largest error comes from the
uncertainty of the top mass. With a better understanding of
the top quark mass at the future LHC experiment [79-85],
or even with at future e e~ colliders [86], a more accurate
determination of the decay rate will become possible. One
can see that the predicted decay rate per unit volume is
extremely small, in particular, compared with Hg*~
10° GyrGpc® (with H, being the expansion rate of the
present Universe). Such a small decay rate is harmless for
realizing the present Universe observed.’

In Fig. 3, we show the decay rate in m;, vs m, plane. In
the red region, y becomes larger than H{, which we call the
unstable region. In the yellow region, the EW vacuum is
metastable, meaning that 0 < y < Hé. In the green region,
the EW vacuum is absolutely stable because A is always
positive. The dashed, solid, and dotted lines correspond to
a, = 0.1192, 0.1181, and 0.1170, respectively. The black
dot-dashed contours show log;,[y x Gyr Gpc®] = 0, —100,
—300, and —1000 with the central value of a,. We also
show 68, 95, and 99% C.L. constraints on the Higgs mass
vs top mass plane assuming that their errors are independ-
ently Gaussian distributed. In Fig. 3, we terminate the
integral at o~ = Myp,, but it does not change the figure as far
as the cutoff is not so far from the Planck scale.'’ The value

"The numerical result is insensitive to the cut parameter, 0.8, as
far as only the region where the perturbation breaks down is
removed from the integration. In the SM, with the central values
of the couplings, the numerical result is not affected much even if
we change the number from 0.04 to 1.2.

In our prev10us analysis [25], we used a different renormal-
ization scale, i.e., u = ¢c instead of u = R~'. With u = ¢, the
decay rate becomes log;o[y x Gyr Gpc?] = —570 for the best-fit
values of the SM parameters. The difference between this result
and that in [25] is due to the correction of an error in Eq. (29) of
[25] [see Eq. (D38)]. The uncertainty related to the choice of u
should be regarded as theoretical uncertainty.

Cosmologically, the Higgs field may evolve into the unstable
region due to the dynamics during and after inflation [87-107].
We do not consider such cases. ~

"%Even with a lower cutoff such as ¢c < 0.1Mp,, the result
does not change significantly. It reduces log;,y by about 20.
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FIG. 3. The stability of the EW vacuum in the SM with a cutoff

of the integration at ¢po = Mp. The red region is unstable, the
yellow region is metastable, and the green region is absolutely
stable. The dashed, solid, and dotted lines correspond to
a, = 0.1192, 0.1181, and 0.1170, respectively. The black dot-
dashed lines indicate log,[y x Gyr Gpc?®] = 0, —100, —300, and
—1000 with the central value of ;. The blue circles indicate 68,
95, and 99% C.L. constraints on the Higgs mass vs top mass
plane assuming that their errors are independently Gaussian.

of ¢¢ at the maximum of the integrand ranges from 10'8
to 10%° GeV.

It is well known that, currently, our Universe is (almost)
dominated by the dark energy. If it is a cosmological
constant, then our Universe will eventually become de
Sitter space with the expansion rate of about
56.3 km/ sec /Mpc [108]. Then, based on yp,, the phase
transition rate within the Hubble volume of such a universe
is estimated to be 107" Gyr~!, which may be regarded as
a decay rate of the EW vacuum in the SM.

For comparison, we also perform a “tree-level” calculation
of the decay rate using Eq. (3.17). The results
are loglo[yl(flree> x Gyr Gpcl] = =575 and log,o[y'a®) x
GyrGpc®|=-570. Thus, the difference between y and
7 turns out to be rather small. This is a consequence
of an accidental cancellation among the contributions of
several fields. In the bottom panel of Fig. 2, we show
individual quantum corrections separately, as well as the
total one-loop contribution. We can see that the large
quantum correction from the top quark is canceled by those
from the gauge bosons. We have also checked that the
unstable region on the mj; vs m, plane shifts upward by
Am, ~0.2 GeV if we use y(e),

IV. MODELS WITH EXTRA FERMIONS

So far, we assumed that the SM is valid up to the Planck or
some higher scale. However, the decay rate of the EW

vacuum may be affected if there exist extra particles. In
particular, extra fermions coupled to the Higgs boson may
destabilize the EW vacuum because the new Yukawa
couplings tend to drive 4 to a negative value through RG
effects [32-43,46,48-52,54]. Consequently, the decay rate
of the EW vacuum becomes larger than that in the SM.
Potential candidates of such fermions include vectorlike
fermions as well as right-handed neutrinos for the seesaw
mechanism [109-111].
In this section, we consider several models with such
extra fermions. We perform the RG analysis of the runnings
of coupling constants with the effects of the extra fermions.
We include two-loop effects of the extra fermions into the
functions, which can be calculated using the resultin [112—
115]. We also take account of one-loop threshold correc-
tions due to the extra fermions, which are summarized in
Appendix G."" For the integration over R, we follow the
procedure in the SM case, as well as the following
treatments:
(i) We terminate the integration if any of the coupling
constants (in particular, Yukawa coupling constants
of extra particles) exceeds \/4_ .

(i1) In order to maintain the classical scale invariance at a
good accuracy, we require 1/R > 10M,, where M,
is the mass scale of the new particles.

A. Vectorlike fermions

Here, we consider two examples of vectorlike fermions,
one is colored vectorlike fermions and the other is non-
colored ones. We consider the case where the extra
fermions have a Yukawa coupling with the SM Higgs
boson. (We assume that the mixing between the extra
fermions and the SM fermions is negligible.)

We first consider colored vectorlike fermions, having
the same SM gauge quantum numbers as the left-handed
quark doublet and the right-handed down quark, as well
as their vectorlike partners; we add Q (3,2.,3), O
(3,2,—%), D (3.1,-1), and D (3,1,%). [In the paren-
theses, we show the quantum numbers of SU(3)., SU(2),,
and U(1)y.] The Yukawa terms in the Lagrangian are
given by

_ p(SM)
'CYukawa - [’Yukawa

+Yp® QD +Y,®0D, (4.1

(Yukawa)
where Lgy,

mass terms:

is the SM part. We also add the following

Linass = MQQQ + MpDD. (4.2)

"If we use the two-loop f functions instead of three-loop ones
in the SM calculation, the difference of log;o[y x Gyr Gpc?] is
around 40. Thus, the systematic error of neglecting three-loop
effects of the extra fermions is expected to be similar.
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FIG. 4. The decay rate of the EW vacuum for vectorlike quarks with (left) and without (right) the cutoff at the Planck scale. The red

region is unstable,

the yellow region is metastable, and the green region is absolutely stable.

The solid lines show

1_0g10[yGyerc3] = —250,-500, and —1000. The dashed line corresponds to the constraint when we stop the integration at

¢C = O.IMPI.

For simplicity, we assume M, = M. We take the new
Yukawa coupling constants and mass parameters real and
positive. We also take
Yp(u=Mp) =Yp(u=Mp) = yp. (4.3)

As we have mentioned before, the scale dependence of the
new Yukawa coupling constants is evaluated by using two-
loop RG equations and one-loop threshold corrections (see
Appendix G).

The calculation of the decay rate is parallel to the SM
case, and the decay rate is given in the following form:

/dlnR [A/M) A1) AA A(QD)A(Q'D)e_B]m,ﬂ=1/R’
(4.4)

where A©@D) and A(@DP) are effects of the extra fermions
on the prefactor:
In A@D)

Ins = 3[In AW,y (4.5)

[In A 0.0) ] = 3[In AV ]Msly—>YD‘ (4.6)

In Fig. 4, we show the contours of the constant decay
rate on the M vs yp plane. Here, we use the central values
of the SM parameters. The meanings of the shading colors
are the same as in the SM case. The left and the right panels
show the results with and without imposing the condition
¢c < My in integrating over R, respectively. As we can
see, the effect of such a cutoff is significant. This is because

¢c at the maximum of the integrand, ma" can become

much larger than the Planck scale in the case with extra
fermions; we show @@ for the case with vectorlike
colored fermions in the left panel of Fig. 6. (In the
upper-left corner of the figure, the value of ¢ becomes
smaller; this is because, in such a region, the Yukawa
coupling constants become nonperturbative at a lower RG
scale, which gives an upper bound on ¢ in the integration
over R.) To see the cutoff dependence of the decay rate, we
show the constraint with terminating the integration at
¢c = 0.1Mp in the left panel (dashed line). In addition,
when My and yp are small, we have a region of absolute
stability. This is because the addition of colored particles
makes the strong coupling constant larger than the SM
case. It rapidly drives y, to a small value, which makes 4
always positive. Requiring that the lifetime of the EW
vacuum should be longer than the age of the Universe, we
obtain y, < 0.35-0.5 for 10° GeV <M, < 10" GeV.
The second example is noncolored extra fermions,
having the same SM quantum numbers as leptons. We
introduce L (1,2,-%), L (1,2,}), E (1,1,-1), and E
(1,1,1), and the Yukawa and mass terms in the Lagrangian
are given by
— ™

Yukawa

+ Y O'LE + Y ®LE, (4.7)

‘CYukawa

Emass - MLI:L + MEEE, (48)

respectively. For simplicity, we take M; = M and adopt
the following renormalization conditions:

Yp(u=Mg) =Yp(u=Mg) = yg. (4.9)
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FIG. 5. The same as Fig.

The decay rate of the EW vacuum is given by

l - —
y = / dinR [AWADA@0) ALB) ALE) e~Blge

(4.10)

where
[In AEBge = [In AWl (4.11)
n AN ge = In AWl (4.12)

In Fig. 5, we show the contours of constant decay rate.
Since the extra fermions are not colored, we do not have a
region of absolute stability. We observe a larger effect of the
cutoff at the Planck scale. This is because ¢ is typically

1.0-

0.8F

0.6F

YD

04+

Logol Mp / GeV ]

Log ol Mg / GeV ]

4 but for vectorlike leptons.

large in a wider parameter space, as indicated in the right
panel of Fig. 6.

Requiring that the lifetime of the EW vacuum should be
longer than the age of the Universe, we obtain y; < 0.4-0.7
for 10> GeV < M < 10" GeV. The constraint becomes
significantly weaker for larger M  owing to the cutoff at the
Planck scale.

B. Right-handed neutrino

Next, we consider the case with right-handed neutrinos,
which is responsible for the active neutrino masses via the
seesaw mechanism [109-111]. For simplicity, we concen-
trate on the case where only one mass eigenstate of the
right-handed neutrinos, denoted as N, strongly couples to
the Higgs boson (as well as to the third generation lepton

—

0.8F
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35

0.6

30
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PO S E S S B
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FIG. 6. The value of ¢ at the maximum of the integrand of y, ${%**. The left panel is for vectorlike quarks and the right is for vectorlike
leptons. The numbers in the legends indicate log;o[#"*/GeV]. In the gray region, the EW vacuum is absolutely stable.
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FIG. 7. The same as Fig. 4 but for a right-handed neutrino. We also show lines indicating m, = 0.05 eV and m, = 0.08 eV with
purple solid lines.

doublet). Then, the Yukawa and mass terms in the }/=/dlnRi[A’(h)A(’)A(Aﬂ"”)A(L'N)e_B]mFI/R,

Lagrangian are R*
SM wr N .
Lymana = LS LY @ LN, (4.13) (4.20)
1 _ h
L = 5 MyNN. (4.14) VE
o . [In A" g = [In AW I,y (4.21)
where, in this subsection, L denotes one of the lepton . )
doublets in the SM. We define ¥n Fig. 7, we show the contour plots of the decay rate. Since
it does not have any SM charges, the decay rate goes to the
Yn(u=My) = yy. (4.15)  SM value when yy goes to zero. The effect of the cutoff at

the Planck scale is again large, which is because of a large
#" as shown in Fig. 8. The purple solid lines show the
left-handed neutrino mass. Requiring that the decay rate
should be smaller than the age of the Universe, we obtain
yy < 0.65-0.8 for 10'? GeV < My < 10" GeV.

Assuming that, for simplicity, the neutrino Yukawa
matrix is diagonal in the mass basis of right-handed
neutrinos, the following effective operator shows up by
integrating out N:

C
A£ - Z ((DL)Z’ (4-16) 1'0 LI L L B L R B L B B L B B B L I
with I
2
C(My) = 22N, (4.17) 08 1 e
My
One of the active neutrino masses is related to the value of 0 6: 1 3
C at the EW scale as “l ]
2 Z 30
m,, = C(m,) Z . (418) 04 il
with v ~ 246 GeV being the vacuum expectation value of - 25
the Higgs boson. In our numerical calculation, we use the 02l 1
following one-loop RG equation to estimate the neutrino L 20
mass [116]: [ 1
d 0.0 | .
1672 ding C = (44 +6y? —3g3)C. (4.19) 120 125 130 135 140 145 150
o . Logo[ My / GeV ]
In the SM with right-handed neutrinos, the decay rate of
the EW vacuum is evaluated with FIG. 8. The same as Fig. 6 but for a right-handed neutrino.
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V. CONCLUSION

In this paper, we have calculated the decay rate of the
EW vacuum in the framework of the SM and also in various
models with extra fermions. We included the complete one-
loop corrections as well as large logarithmic terms in higher
loop corrections. We used a recently developed technique
to calculate functional determinants in the gauge sector,
which not only gives a prescription to perform a gauge
invariant calculation of the decay rate but also allows us to
calculate the functional determinants analytically. In addi-
tion, in calculating the decay rate of the EW vacuum, zero
modes show up in association with the dilatational and
gauge symmetries. We have properly taken into account
their effects, which was not possible in previous calcu-
lations. We have given an analytic formula of the decay rate
of the EW vacuum, which is also applicable to models that
exhibit classical scale invariance at a high energy scale.

The decay rate of the EW vacuum is sensitive to the
coupling constants in the SM and their RG behavior. We
have used three-loop RG equations for the study of the RG
behavior of the SM couplings. The result is used for the
precise calculation of the decay rate of the EW vacuum.
The decay rate of the EW vacuum is estimated to be

404184414442
—582745 550 181 -

logjo[rp x Gyr Gpe®] = (5.1)
where the errors come from the Higgs mass, the top mass,
the strong coupling constant, and the renormalization scale,
respectively. Here, only the bounce configurations with
amplitude smaller than the Planck scale are taken into
account; for the decay rate of the EW vacuum, such a cutoff
of the bounce amplitude does not significantly affect the
result as far as it is not so far from the Planck scale. Since
Hy 4~ 10° Gyr Gpc?, the lifetime is long enough compared
with the age of the Universe.

We have also considered models with extra fermions.
Since they typically make the EW vacuum more unstable,
the constraints on their masses and couplings are phenom-
enologically important. We have analyzed the decay rate
for the extensions of the SM with (i) vectorlike quarks,
(ii) vectorlike leptons, and (iii) a right-handed neutrino. We
have obtained a constraint on the parameter space for each
model, requiring that the lifetime be long enough. The
results constrain the Yukawa couplings that are larger than
about 0.3-0.5 if we do not consider the cutoff at the Planck
scale. The effect of the cutoff was found to be rather large
and the constraints on the Yukawa couplings become
weaker, at most, by 0.3 after including the cutoff.
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Note added.—The analytical and numerical results given in
this paper are consistent with those given in the latest
version of [24]; in the earlier version, (i) the calculation of
the J = 0 component of the gauge and NG contributions,
(ii) the subtraction of the divergence, and (iii) the calculation
of the volume of SU(2) group, were not properly performed,
and have been corrected in the recent revision. The
differences between our numerical results and those in
[24] come mainly from the difference of the threshold
corrections to the MS top Yukawa coupling constant, which
isregarded as a theoretical uncertainty. In addition, there is a
difference in the treatment of the integration over the bounce
size, although it has little effect on the numerical results.

APPENDIX A: FUNCTIONAL DETERMINANT

In this Appendix, we present analytic formulas for
various functional determinants. For simplicity, we con-
sider the case with U(1) gauge interaction. The charge of
the scalar field that is responsible for the instability, @, is
set to be +1. Application of our results to the case of
general gauge groups is straightforward. We are interested
in the case where the Lagrangian has (classical) scale
invariance; the potential of ® is given in Eq. (2.2), and the
bounce solution is obtained as Eq. (2.7).

1. Scalar contribution

We first consider a real scalar field, o, which couples to
D as
V = ko’ ®' D, (A1)

where « is a positive coupling constant. The contribution to
the prefactor is given by

1 Det[-0? + x¢?|

InAl®) = — 21 A2
nA 2 Det[-97] (A42)

First, we expand ¢ into partial waves:
o(r.Q) = a0 (VY im,m, (@) (A3)

Here and hereafter, a<X) denotes the radial mode

J.my,mp
function of X. For notational simplicity, the summations
over J, m,, and mp are implicit.

Since the fluctuation operator for partial waves does not
depend on m, and mg, we have (2J + 1) degeneracy for
each J. Summing up all the contributions,

oo 12
ZZJ+ Det[ Ay + k¢
J=0

In Al = ,
nA Det[—4,]

(A4)
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where
3 L?

Ay=0t+-0,—=. AS
J r + r r }"2 ( )

Then, using Eq. (2.21), we have

Det[-A e (o)
e[ J+K¢]:hmf Z(r), (A6)
Det[—AJ] r—oco r J

f(a) =

where ,F(a, b; c;z) is the hypergeometric function and

1 K
=——(1-,/1-8_). A
«==( ) "
Taking the limit of r — oo, we have
Det[-A;+x¢?]  T(2J+1)I'(2J+2) (AL0)
Det[-4;,]  T(2J+1-z)F(2J+2+z,)

2. Higgs contribution

Using the bounce solution given in Eq. (2.9), the Higgs
mode fluctuation is parametrized as

h)

f[fi( ) 4 @y (VY 1y (@) (A1)

Then, the Higgs contribution to the prefactor is given by

In A" =

i2]+ 2 Det=4s = 3] (A12)
J=0

Det[—A}]

The functional determinant of the Higgs mode can be
obtained with the same procedure as the case of the scalar
contribution, taking k — —3|4]:

Det[-A; - 3|2|¢?]  2J(2J-1)
Det[-A] (27 +3)(27+2)°

(A13)

As we can see, the above ratio vanishes for / =0 and
J =1/2, which are due to the scale invariance and the
translational invariance, respectively.

3. Fermion contribution

Let us consider chiral fermions y; and wpy with the
following Yukawa term:

2J Al 52 .2 I+ Al 2 .2
1—|—§¢Cr ,F, 1—|—ZK,2(J—|—1)+ZK;2(J+1);—§¢Cr ,

where the function f(°) satisfies

(=4, +xd?)f) =0, (A7)

and lim,_f“)(r)/r* = 1. The solution of the above
differential equation is given by

(A8)
LYukawa) — vy, yrp + H.c. (A14)
The contribution to the prefactor is given by
Det[@ + 2= ¢
In AW = mM
Det[7]
1 Detl(?+5¢) (=P + 55 9)]
~—In v2 275 (ALS)
2 Det[-77]
Taking the basis given in [117], we expand it as
o (w)
Det
InAY) =327+ 1)(27 + 2) 1n% (A16)
J=0 Det M
where
A, + 2P 2
M) = N vz . (A17)

2 —
\/LEW ~Appt+59°

with ¢’ = dg/dr, and M is obtained from M) by
replacing ¢ — 0 and ¢’ — 0.

Using Eq. (2.21), we have

r—o0

DetMj” (1_ Det[lpquz}) (lim ODet[‘Pl\I’z])—l

Det A//\l<JW) P P
(A18)
where
MWW, (r) = 0. (A19)

Solutions of Eq. (A19) can be expressed by using two
functions %) and ) as
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Wy — }\gﬂj“a r21+3)(( v i 22¢2 erz=10) 72J+3’7( v
[ )
2 0

(A20)

where i = 1 and 2 are for two independent solutions of
Eq. (A19), and y) and ) obey

q_ﬁl
[ N ¢ 21+38 r21+3+ 4)2 )

V24 1
=g e (A21)

7/

{ Ay +€; —75 0, P = ¢2] =0. (A22)

f(w)(r):r21+1<1+%$2cr2> V‘T <2J+2 Y i

and f¥) behaves as

- fW(r) 8 r2J+1res+3)

rooo p-l A|@ET (2 +2 - i%)F(Z] +24 z%) )
(A27)

For the second solution, we take

() = Y (0. (A28)
Then, )(g ") behaves as
() V2(0) T+ 1
lim =—— , (A29)
r—0 23 vz 2J+3
2 V2 [r(27+2)P (A30)
=0 Mty T2 +2-i )20 +24i5)
Using these solutions, we get
Det[¥,¥ 8(J+1
lina eEJJil d_ (2;‘;2 ) (A31)
r— r Y-o¢
. Det]¥,¥,]
lim ST
_8(J+1) [[(2J +2)]? 2 (A32)
y2? [(27+2—-ip) (2] +2+i) '
and hence

For the first solution, we take

2 =10 e =0, (A23)
where the function f¥) satisfies
e
AJ+1/2 + = ¢ 21+3 a r2J+3 + ¢2 f =0, (A24)
and
F(r)
oo 2 L (A25)
The analytic formula of ) is given by
, —;2J+3;—|/1—|§5%r2>, (A26)
VIA || 8
I
DetMy) [C(27 +2)2 r (A33)
DetM¥) (D27 +2-i FTQI+2+i%)]

4. Gauge contribution

We consider the contributions from gauge bosons, NG
bosons, and Faddeev-Popov ghosts. The Lagrangian is
given in the following form:

L= 4F/wF/w + (0, — igA,)®]" (9, — igA,)®
+ V(®) + Lgk + Lep, (A34)
where F,, is the field strength tensor, and
Lgr = —5.7-" (A35)
Lgp = ¢(=0,0,)c, (A36)
with
F=0,A,. (A37)

Since Faddeev-Popov ghosts do not directly couple to
the Higgs field with our choice of the gauge fixing function,
we have

In A% = 0. (A38)
At the one-loop level, In A“4«?) is given by
1. DetMA?)
InAe) — _ Ly DM s (A39)
2 DetM?
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where

_826;41/ + (1 - é) aﬂal/ + 924_52 g(auq_b) - géav

MAw#) = , (A40)
29(0,9) + g0, - +V,,
with V,,, = d*V /dg*.
For the partial wave expansions, we use the following basis:
s X L r Tl
A/l(r’ Q) = a(J,r>f1A,mB (}") 7ﬂ YJ,mA,mB (Q) + a<J n)’lA,mE (}") _aﬂYJ,mA,mB (Q) + a(J mz\ mg( ) /u/paVl(/ )LpaYJ my,mp (Q)
T2
+ a(J.m) ,mpg ( ) uvpaVl(l )LpGYJ my,mpg (Q) (A41)
0(rQ) = a0 ()Y, (). (A42)
where V£'>’s are arbitrary independent vectors and ¢,,,,, is a fully antisymmetric tensor. Then, we have
1. DetM” 1 & Det M) Det M)
In A4 — — 1 4‘”\45( Z(zj+1)2[1 eMSL ;+2In e/\i{n], (A43)
2 DetM 2 2J=1/2 De '[./\/l i Det./\/l]
where
1(_ 232 7 3
M — (A +Eg¢%) 9P — 990, (Ad4)
2g9¢’ + g¢%8,r3 =Dy +V,,
—A; + 3+ 7P -% 99’ = 990, Ay —LOL 0
- - 1
MG = -% YR R S T A (1 - E) Lo —L 0. (Ad3)
294" + 995 0,r° —Lgg -A;+V,, 0 0 0
I
and L 2¢' 1, 524
Asxi :7Wni+ﬁarr ﬁéi—fﬁfp (A48)
M ==, + 7. (A46) " i
s (AJ - zg_zarrz - 92§$2> i = _2_¢ i, (A49)
Three independent solutions of M& YN, =0 (with ¢r r¢
i = 1-3) can be constructed from the functions, y;, 7;,
and &;, as [28,29]" A, =0. (A50)
(t0p) We also note useful relations:
lPi * 8r)(l %ﬁnl 1 L
— (mid) — L 11 2, L 3 (.top) _ mld
Yi=| v ,_)(, + oy 0,rn; 3 0,r'Y; r - &g, (A51)
p(bey 9bxi 0
1o ptmia) _ Ly op)
29" -0,rY; ==Y, , AS52
~ 75 Z:z ’ Y - + 1 ( )
* 0 ’ (A47) 55 11 1
1~ l}l(_bm) _ 19P \y(mid) ————8 20 1t A53
g¢Cl 1 L l g¢Lr l‘r nl+g¢Cl ( )
where y;, ;, and ; obey The first solution is obtained by setting {; =0 and
n =0 as
"The function 7 in the present analysis corresponds to /L in Y, A54
[28,29]; such a rescaling makes the formulas simpler. AL =1 ( )
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resulting in

2Jr%1
¥, = | L! (AS5)
gpr!
For the second solution, we set {, = 0 and
= f, (A56)
where the function £ satisfies
¢ 1 2_ 232
A, —25—28,1” — PP ) fW =0, (A57)
r
and
] f(n)(r)
11_138 o= 1 (A58)
We can find an analytic formula of £ as
Al - b4
f('?) — r2]<1 +§|¢%I’2> g
Al -
x,F, (1 + 2, 2( + 1) + 25 2(J + 1);—%4)@2),
(A59)
with
7
=—=11 1 -8 A60
Then, we get
) 8 27+ 1)r(2J+2
im0 8 TRITIIRIT2) g
r—co 1 |A|@ET (20 +1—2z,)T'(2J +2+2z,)
Using Egs. (A51)—(AS53), we obtain
Lr2.1+l
8(J+1)
lri_r}é‘llz = 4—(];;21) N (A62)
_ 2 J+1,2)
gpc L
res+10res+2
lim¥, = (2 + D2/ +2)
r—co L2 +1-2,)T2J+2+7z,)
4L 2J-1
eromgE ! Inr
8(J+D)__ ,27-1
W r Inr (A63)
_ 2] 2]
gLgc

The last solution can be obtained with

&G=rY. (A64)
The asymptotic form of 75 is given by
. m3(r) L|/1|<7’zc
1 = , A65
0 P2 T 16(7 + 1) (A85)
. n3(r) L
1 = . A66
AT T ) (A86)
Using Eqs. (A51)-(A53), we have
_% p2J+1
lim¥; = o Laatl (A67)
1
9pc 4
J=¢U+D) 2741
4U+T)
. 2)—
,11,12,‘1’3 — J[(J;szi(lf)ﬂ)] F2I+1 (A68)
_g U+2)=EU+1) o
e (+1)?

We also need three independent solutions around the
false vacuum. We take

221 (J+2 lL)Zé—J F2+1 0
(P, ¥,%;) = | L2 (Jz}‘)(ﬁj—g;%) Q2+ (A69)
0 0 r2!

Then, using Eq. (2.21) with combining the above
expressions, we obtain the ratio of the functional determi-
nants for S, L, and NG modes as

DetM )y T'(2J + D27 +2)
DetMPL?)  J+1T(Q2J +1=2)T(2] +2+z,)

(A70)

The functional determinant for 7 modes can be obtained by
using the result for the scalar contribution. With the
replacement k — ¢ in Eq. (A10):

DeeM)  T(2J+ 1)I(2J +2)
DetM\)  T(2J+1=2)0(2) +2+2z,)

(A71)

For J = 0, the solutions of M(()S’{p)‘l’ = 0 can be decom-
posed as [28,29]

\I,(tOP) 8, i _i'/?z:l
%= (g ) = i)+ (507)
P! 991 L
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with i = 1 and 2 for two independent solutions, where the
functions y; and {; satisfy

¢/
AO)(i = 2 3 Z:l ');:Z.:z’ (A73)
Ay = 0. (A74)
Notice that there are useful relations:
—6 PP = g, (A75)
3
0, —lp (o) _ gtior) 15 g, (A76)
"9 ’ g
The first solution is given by
0
Y, = < @ ) (A7)
be
The second solution can be obtained with
&H=1, (A78)
giving rise to
—Er
w, - ( : ) (A79)
—Egp
Then, using Eq. (2.21), we obtain
Det M5
= (As0)
DetMO s

The vanishing of the above ratio is due to the existence of
zero mode. The treatment of the zero mode is discussed in
Appendix B

APPENDIX B: ZERO MODES

In this Appendix, we discuss the zero modes associated
with the dilatation, translation, and global transformation.

1. Dilatational zero mode
In J = 0 mode of the Higgs fluctuation, there exists a
dilatational zero mode. The dilatational transformation is
parametrized by ¢¢; with ¢ — ¢ + S¢pc, such a change
can be absorbed by

h— h+6pcGpYooo+ . (B1)

where we neglect higher order terms in ¢, and

Go(r) = V22 2P

dgc

The second term in the right-hand side of Eq. (Bl) is
nothing but the change of the amplitude of the dilatational

(B2)

zero mode; one can easily check M(()h)QD =0.
In order to translate the path integral over the dilatational
zero mode to the integration over ¢c, we calculate

Det[—Aq — 3|A|¢? + vpp(r)]
Det[—Ao] ' (B3)
with'?
( >7£ AP2prp(r)? (B4)
po(r) = 1  PIEded(r)

Notice that the condition (2.40) is satisfied with the above
choice of pp, i.e.,

/drr3g%)(r)pD(r) =21 (B5)
The ratio of the determinant can be obtained from Eq. (A10)

by replacing k——3|A|+{2|1?¢%v. Expanding the result
with respect to v, we get

Det[-A — 3]4|¢ + vpp(7)] 4l 2o
=—v— O@?).
Det[—A] g 1671'¢C +00)
(B6)
Thus, we obtain
Det[-A 3|z|¢21 172
Det
167 1 167z
d dInR B7
/qsc,/u = [amry [ @)

Here, we take an absolute value since there is a negative
mode [26,27].

2. Translational zero mode

In J = 1/2 mode of the Higgs fluctuation, translational
zero modes exist. The translation is parametrized by the
center of the bounce. The shift of the center of the bounce to
a, can be absorbed by the transformation of the Higgs
mode as

h—>h+aﬂgTY1/2’M+"', (BS)

BA prescription used in [25] is consistent with our argument,
where pp is a constant.
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where
- dad
Gy() =~ (B9)
and
2
Y]/Qy”(j\é') :\/7>5C”, (BlO)

with %, = x,/|x|. Notice that Y/, , is given by a linear
combination of Y5, ,,, With the same normalization as
Y1/2.m, m,- Thus, as noted in [27], the path integral over the
translational zero modes can be converted to the integration
over the spacetime volume.

In order to take care of the translational zero mode, we
calculate

Det[-A ), — 3|4|¢* + pr(r)V]

, Bl11
Det[—Al/z] ( )
with
3|1
prtr) =21 (B12)
One can see that
/drr3g%(r)pT(r) =2, (B13)
which is consistent with Eq. (2.40).
Following the argument in Sec. I C, we have
- v )
Det[~A, /> —3|2/¢?]\ 2 "
ZA12 =310 —>/d4alim fip) (B14)
Det{—Al/z] r—00 r
where
[~ A1/2—3M|¢2] 1/2 _PTfl/z, (B15)
with
() 4 d¢
. Bl16
fl/l Mld)} dr ( )
The function JV‘Y;)Z behaves as
i 1
lim f 5 - (B17)
r—c 1 4714)
Thus, we obtain
<Det[—A1/2 - 3M|§$2])_2
DCt[—AI/z]
32 14| <, 327\2 Vup
Vip = =) ==, (BI8
- (5 (§%) = (37) 2 @

where V,p is the spacetime volume.

3. Gauge zero mode

In J = 0 mode of the gauge field, we have a gauge zero
mode. For the case of the U(1) gauge symmetry, the
bounce solution is parametrized as Eq. (2.7) with the
parameter 6. The path integral over the gauge zero mode
can be understood as the integration over the variable 6, as
we see below.

The effect of the shift # — @ + 660 can be absorbed by the
transformation of the NG mode as

@ =@ +380GYo00+ (B19)
where
Go = V271%¢. (B20)

Using the equation of motion of the bounce solution, the
following relation holds:

0
M(()SJ/J) <GG) =0.

In order to deal with gauge zero mode, we calculate

(B21)

Detl M) + 1pg(r)]

: (B22)
DetMOS )
with
) =L (B23)
PGiT) = 16z €
Notice that the following relation holds:
/drr3gé(r)pg(r) =2r. (B24)

For the evaluation of the ratio (B22) at the leading order
in v, we introduce the function ¥, satisfying

MGV (1) = —pe(r)¥y (), (B25)

with which

(S.p)\ —1/2 \ -1/2
D Det|¥, (r)¥
<7et/\i?s )> N / d9<limr—)oo—et[ () Z(r)]>
DetMo v r

o <limr_,0Det[lP1(r)T2(r)])1/2.

r

(B26)

We can decompose ¥, as

. 0,7 — 55
R T
9bi i{}gl

, (B27)
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where 7, and ¥, satisfies APPENDIX C: INFINITE SUM OVER

ANGULAR MOMENTUM
/
Aoy = —0,r° 24)3 ¢ - &, (B28) In this Appendix, we perform various infinite sums
, appearing in the calculation of functional determinants.
¢ We first evaluate the following sum:
AoCl = ng¢ . (B29) s
c
‘ i (27 +1 rJs+1)reJs+2)
We can solve {; as 2 (1+e,) (21+1—Z)F(2J—|—2+z)’
v g -
G = -5, (B30) (1)
167z

which can be used for the calculation of the scalar
contribution to the prefactor. Notice that J/ = 0,1/2,1, ...
<9 is half integer. In addition, here, z is a complex number

based on which ‘i’l should behave as

rli_glo‘i’l = 4'[|f|cr (B31)  satisfying
167 —2 < 9R(z) < 1. (C2)

Thus, we obtain
For &, >0, the sum converges thanks to the fac-

Det M5 S(/) —1/2 tor }/(1 +e¢,)21.. . o
do | /1 (B32) First, we rewrite the log-gamma functions with integrals

Det./\/l of digamma functions as
|

(27 +1)?
(1+¢,)

M

/MUmWw—ww—@+w@+w—wu+ru» (©3)
J:0

where y(z) is the digamma function. Then, we use the following relation:

1 uy—l _ Mx—l

w@—w®:A————%% (C4)

1 —u
which is valid for i(x) > 0 and R(y) > 0, and we obtain

© 2741 x—z— —u _uz+1
Z (27 +1 ZJ/J+ / (1 1_)u(l )‘ ()

JO

Notice that this is verified only in region (C2). Then, we interchange the two integrals,14 and integrate over x first.
Consequently, it becomes

NgE

1(2) = (27 +1)? /1duu21(l—uz)(l—ul+z)' (C6)

< (1+¢,)% Jo uw(l—u)lnu

~
Il

Notice that the integration over u is convergent.
Since we have regularized the sum, the result should be finite. Thus, we can take the sum first:

I,(z) = (1 +¢,)* A \du (lu_z(bf)_(i)_(lu J: 2(1_2;3‘; :") : (C7)

"“This is justified when
ux—z—l(l _ uz)(l _ uz+1)
1—u

< 00.

2J+1 1
/ dx/ du
[+ 0
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We can see that new poles appear at u = 1 + ¢,, but the integral is still convergent for positive ¢,. Then, using

1 —u® 1
= — dt Zt, C8
Inu Z/O " (C8)

we obtain

I,(z) = —z(1 +¢,) /du/ dr 1‘“1+Z)<1+”+8"> . (C9)

1_u)(1+86_u)3

Interchanging the integrals and integrating over u, we get

I,(z) = z/l dt{(l te&)(z— 14126, ~ &) 1 (1+6,)22+ &) wr(l +1z—z) —yr(l + 12)]
0

& &
24 (3+2z-2t2)e, + (1 +z—1t7)%e2 1
+ ( ) (3 ) i\ L1 +iz—z2 4tz - 25—
(14+1tz-2)e; 1+e,
1 2 -2t 7%’ 1
_(+e)2te TH‘Z%LE1J+mg+m : (C10)
(1+IZ)6'O- ]+€(7

where ,F(a, b; c; z) is the hypergeometric function. Since we do not need higher order terms in ¢,, we expand I, as

1 1 1
1,(2) :/ dt{—£—2z(z+1)—2—z(z+1)(4+z—2tz)+ (1 + 2)(1 + 2z — 617 + 6£%7)
0 °

80'
53 1 z ) 5
-z+2z TR (1 - t)H (tz—z)+6tH(tz) 12[ =7+ 14t +6(1 — 1)*H(tz — z) + 6°H(1z)]
4
+ % 1431 =0t+3(1 —1)°H(tz—z) + 3°H(1z)] + O(s,,)}, (C11)
where H(z) is the harmonic number.
After the final integral, we obtain
1 2 1, )
I,(z) = —8—21(z +1) —g—z(z +1) +gz (z+1)*Ing, +S,(z) + Ofe,), (C12)

where

S(,(z)—éz(l+z)(1+2z)[lnl*(1—l—z)—lnF(l—z)]—(z+z2+é>[u/( )(1+z)+z//1- (I —=2)]

_ _ - - 1 35 z
+ (122l (1 2) =y (=) =2 (4 2) (=) 4 grede + 1) =2 =32 = g
1 4€)
We can repeat a similar calculation for
= (2 2J+2 r(2J +2)]? 2
E: J+ J+ ) [T(2J +2)] (C14)

o F2J+2+2)F2J+2-2)]°

which can be used for the calculation of the fermionic contribution to the prefactor. Here, —2 < 9 (z) < 2. The result is

2 5 1
I1,(z) = ——212 - =22 +-72(#-2) Ine, +S,(z) + O(e,). (C15)
&y €, 3
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where

1
3

S,(z) = %Z(ZZ —D[Inl(1+z)—In['(1-2)] - 2<22 —) [I//l(:2>(1 +2) +1//(r_2>(1 —2)] +4z[w

_ _ 1
4+ ) V(1 =)+ 2 A2 =2k

3
Next, we consider
=\ (27 +1)? 2J(2J - 1)
I, = 1 , C17
h ;(lJreh)” ORI ED)) (C17)

which is for the calculation of the Higgs contribution. Using
a similar technique as in the previous cases, we obtain

=~ (2J+1) 1 1
C18
Z (I+¢,) 2’/ {x+2J+x—|—2J—l} (C18)

Then, performing the sum first, I, is obtained as

6 12 3
]h:——z——+6ln8h+ +6]/E+]21nAG
8h Ep

+91In2+5In3 + O(ey). (C19)

Finally, for the gauge and NG contributions, let us
consider

(27412 2

1, = .
4 (te)? 2712

(C20)
J=1/2

Similar to 1, it is expressed as

= (27 +1)?

1
Iy = - —/ dx——. (C21)
A JZ1/2(1+8A)2J 0 x+2J

which results in

I 2_ 4.2 2 2
=——-——+4=lng, — = n
AT T T, 3 AT TR

APPENDIX D: RENORMALIZATION
WITH MS SCHEME

In this Appendix, we relate the regularization based on
the angular momentum expansion, which we call angular
momentum regularization, and the dimensional regulariza-
tion. In particular, we derive the relation between ey, which
shows up in the angular momentum regularization, and &p,
which is for dimensional regularization.

1. Scalar field

Let us start with the scalar contribution. For this purpose,
let us consider [In.A?)],,, defined in (2.57).

—%(z2+31)+4hm(;+—2
T

42—V -2)]

c0). (C16)

First, we calculate [In A®)];., with angular momentum
regularization with using ¢, as a regularization parameter.
The expansion of Eq. (2.59) is exactly the same as that with
respect to k. Thus, we get

|:1 DCt[—AJ+KQ_52]:|
Det[-A;]  Joue)

SN S M (2J+1)
T2\ 2errn e Y ’

(D1)

where (") (z) is the polygamma function. Summing over J,

we get
K 1+2+ K |
—— | 5+—+=—=Ing
A \&2 e, 34 7

T (1 18|ﬂ|> + Olea).

As is expected, it has the
In A@], does.

Next, we directly calculate [In.A*)],, by using the
dimensional regularization. Using the ordinary Feynman
rules, we obtain

[111 A(G)]div,e,, =

(D2)

same divergence as

[lnA(g)]div,éD
Pk 1
3 [ S0

K de de/l , / _2 .
_?/W(QH)D Flg?)(k— k)k/z [¢°] (K k)],

(D3)
where F|- - -] is the Fourier transform of the argument. With
performing the integration, we obtain

In A@)]

div,ep —

K2 1 5 UR
). (D4
3|z|2<2— +6+”+“2> (D4)

Comparing Egs. (D2) and (D4), we obtain the relation
between the two regularizations as

12
S+
80‘ 80

| P .
—lIne, | > — 2t
3 3 28 TET

(D5)
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2. Higgs

For the Higgs case, the relation between ¢;, and &, can be
obtained from Eq. (D5) with the replacement of k — —3|4|:

1 2

Notice that the zero modes have nothing to do with the UV
divergence.

3. Fermion

Next, we derive the relation for the fermionic contribu-

—+——Ing, - é +yp+ 1n'LLR_ (D6) tion. As discussed in [24], it is convenient to expand with
€ En 2ep 2 respect to y. The expansion in Eq. (2.57) is equivalent to
|
o (w) (w) (w)
2 D2J +2 Det Det M’ ;. Det M7 ;..
[In AW)]div% — ( JT It J; ) In © /}/l\(’w)] nf{;’d)g] - n%} , (D7)
J=0 ( + 81//) DetMJ 0(?) DetMJ,diag 00" DetM].diag 06?)
where
A+ LP 0
M(ini)iag = ! ’ ¢ > - s (DS)
: ¥ 50
0 A t5¢
and MY is obtained from M) by taking ¢ — 0. From Eq. (A10), we have
DetMY)., [(2J + DI(2J +2)0(2J +2)[(2J + 3) D9)
Det//\/\l%)iag FR2J+1-2,)T(2J+2+7,)I(2] +2-2,)T(2J +3+Z,)"
where
1 y?
Zy=—=|1—4/1—-4— D10
Then, together with Eq. (A33), we have
272 5 1y*+25) 31y 1 y*
AW, =2 (2424 2T — =4+ —==+0(¢g,). D11
[ n ]dlv.s,,, |/1| 85, gu/ 3 |/1| ngll/ + 9 |/1| + 18 "”2 + (8ll/) ( )
We can also calculate [In A¥)];, with dimensional regularization:
4 1 5 uR 2y (1 13 uR
AW, == (2 me) -2 (2 mes). D12
I A ez, = =372 (2:9]) Terretng > 3] (2513 A TRRCR ) (b12)
Thus, we obtain
2 5 1y?+20 v /1 uR 2/ 1 25 UR
4+ —+-—I ——(—+1 In—|—=|=—+— In— |. D13
<.95,+8v,+3 ) T T \ae eI ) T3 gg, ty ety (D13)
4. Gauge and NG fields Foc = 0, = S99, (D14)

Finally, we consider the gauge and NG contributions.
Although we may use Eq. (2.57) to subtract the divergence,
it is more convenient to use the expression of the prefactor
with a different choice of the gauge fixing function from
that in Eq. (A37).

Here, we use the result with the following choice of the
gauge fixing function:

which we call the background gauge. We may perform a
calculation of the prefactor .4 with this choice of the gauge
fixing function. We have checked that, irrespective of the
choice of &, the J > 0 contribution from the gauge and NG
sectors agrees with the one that we have obtained using the
gauge fixing function in (A37). We also comment here that,
in the background gauge, the treatment of the gauge zero
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mode is highly nontrivial. However, such an issue is  where the fluctuation operator in the background gauge is
unimportant for the following discussion because the zero  given by

mode does not affect the behavior of the divergence, which

we will discuss below.

For simplicity, we take £ =1 in the following. Then, 4o) —0%5,, + ¢*¢? 29(,9)
using the same basis as Eq. (A42), we define MB(Q'[/] = < S 5 2_2). (D16)
29(0,¢) -0+ V,,t+gd
(A0)
p Det 4
In Ay = zln%, (D15)
DetMgg With the angular momentum decomposition, we have

1 DetM® 1 & Det M| $:EL2) DetM ")
In AL?) = __m% - N @741 {m g T2 Agff’] : (D17)
2 DetMO’];% 2 j=1/2 DetMJ e DetM‘]’BG
where
—A+ 2+ gP? -4 29¢'
Mie” = ~% Ak 0 , (D13)
29¢' 0 -A;+V,, + ¢4
for the partial waves with J > 0, and
./\/l(s'(ﬂ) _ —A]/2 + QZQZZ 29& D19
0BG — < 270 (D19)
29¢ =Dy +Vyp +9°¢
for J = 0. In addition,
ME,]I;)G =—A; + 49" (D20)

for the 7 mode. Remember that the 7 modes exist only for J > 0.
In the background gauge, Faddeev-Popov ghosts also couple to the bounce; the fluctuation operator of the ghosts is

given by

My = -0 + 292, (D21)
and, after the angular momentum decomposition, we have

M5l = =0, + ¢ (D22)
Then, we define

% _|_1 2 nDetM;i;:g'

In AR =327 ——8 (D23)
2 ety
where the hatted fluctuation operators are defined through the replacements of ¢y — 0 and ¢’ — 0.
S.L.g)
One feature of the above gauge fixing is that, by a rotation using an orthogonal transformation, M| JBG ~becomes
=D+ g 0 2 ﬁgéﬁ’
(S.L, _
MJ BG(/’ = 0 =Dyt g ¢* -2 2JJ++119¢/ , (D24)
2\ /57199 2\/&hed D+ mi+ g
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with

J _ I+l 0
2741 271

B = J+1 J 0
2711 2711

0 0 1

(D25)

Notice that, in the new basis, the fluctuation operator

around the false vacuum, M%%’(p), becomes diagonal. This

makes the calculation of the functional determinant easier.
Following [28], we can show that

DetM (S.L.e) DetM(JT)
In ) +2In =
Det/\/l i Det M
_ DetM JSBLG(” DetM}TB)G Det/\/l}féé(%
=In 5L )+2ln = SOk
Det/\/l v DetM; gg DetMj g4
(D26)

Thus, a divergent part can be subtracted from In A’'(4«%) ag
|

_ 242 Y
Det( A;+C% Ch )

[In A@] — fin Ay, — (10 Ay, = (fmite).
(D27)
where [--+]g, is defined accordingly to Eq. (2.57).

The relation between the angular momentum regulariza-
tion and dimensional regularization for the gauge and
NG contributions can be understood by evaluating

A q c,c
I gl + In A5G
Let us evaluate the divergent part with &4 regularization.
Before proceeding, we define the following quantities:

42

K(l) C) = |:1 Det[—AJ + C¢ ]:| 7 D28

J ( ) n Det[—AJ] O(Cz) ( )
()

K2 = |1 ¢ —Arap (D29)

(30 )
Det
0 -Asjp

Notice that K(Jz)(C) can be also expressed as

o(c?)

K(2>(C)— In Cp' _AJ+1/2+C2(;52 Det[—A,+C2$2]} _{ Det[—AJH/z‘FCzép]]
J Det(_AJ 0 ) Det[—A,] o(c?) Det[-A,41/2] o(c?)
0 -A
J+1/2 o)
(D30)
In addition, K M) and K'P(C) can be analytically calculated as
T J
(1) 2C 1 2C\2 1 1 ()
K, (C)=——7— — - 2J+ 1)1, D31
7€) |/1|2J+1+<|/1| 22012 1 Y (27 +1) (D31)
and
2
) 0 2 1
Ky’ (C)=—14 2J +2)— -——. D32
Pier = [t er e - -] (D32)
Then,
s 1] DetM} Det M)
10 Agg i, + 10 AL i, = =5 [ln ——f BG} [ln —A?;BS}
DetMOBG O(sMZ) DetMO’igG 0(5./\/12)
o0 (S,L.g
! (27 +1)? {m DetMJ BGﬂ } (D33)
27 ’
2]:1/2(1 +€A) De tMJSL(P OsM2)
where
De t/\/l | )
> } = KUM) + K - 1) + K o). (D34)
DetMO BG

O(6M?)
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DetMj 6" O (D LkD ()4 KD (g @) J+1 @ J
thetMJSL ?) =K, () + K2 0(07) + Ky (g7 = A+ K7 | -2 1Y +K, 2, (2 T 19>,
O(BM?)
(D35)
Det./\/l((f]'f(); (1)
[In 7] =K, (&). (D36)
DetMO BG 5/\/12)
Notice that V ,, = — |A|¢?, and that the Faddeev-Popov and T-mode contributions cancel out for J > 0. Summing over J, we
obtain

A K/ ¢,c 392 1 2 1 g4 17 2 4
[In A *) ]dw.g,, + [lnfqac;)]div,g,4 - _<W_ 1) <—2+a - §+W &4+ +W+W(59 67°) + O(ey).

€A

With the dimensional regularization, it becomes

2

(A4,0) o 1 2g
In Agé” Jaive, + [In A](SG >]div.E-D = <§ + I

Thus, we obtain

3g 1 2 1 g 1 24
1 = 1 i
(w ><+>+< W) ( Tt

APPENDIX E: VACUUM DECAY WITH
GLOBAL SYMMETRY

For completeness, we discuss the case where the
field that is responsible for the decay transforms under a
global symmetry, although it is not the case of the SM
Higgs field. In such a case, we need to take into account
quantum corrections from the associated NG bosons.
Similarly to the gauge contributions, the NG fluctuation
operator has zero modes in association with the breaking of
the global symmetry.

Let us consider a U(1) symmetry, for simplicity. The
contribution from the NG boson, ¢, is given by

_ 1 Det[-9* = |A|¢’]

(¢) il SN i ol |
A = = D]

(2J +1)%In

(E1)

H
I\J|'—
[]s

Il
o

7 J+1
As we can see, there is a zero mode for J = 0. Since it is
obtained in the limit of g — 0 in Eq. (2.27), [In A®)]g is
given by Egs. (2.86) and (2.87) with taking g =z, = 0.

L 1+ Ry 3T 9
FE Y TR T

(D37)

J (D38)

4 1 HR g* (31
|/1|2>< +1+J/E+ln7)+l+W<——ﬂ2> (D39)

APPENDIX F: NUMERICAL RECIPE

In this Appendix, we give fitting formulas of the
prefactors at the one-loop level. Contrary to the analytic
formulas including various special functions with complex
arguments, which may be inconvenient for numerical
calculations, the fitting formulas give a simple procedure
to perform a numerical calculation of the decay rate with
saving computational time. Compared to the analytic
expressions, the errors of the fitting formulas are 0.05%
or smaller. A C 4 + package based on our fitting formulas
for the study of the electroweak vacuum stability (ELVAS)
can be found at [30].

(1) Higgs

—[In A ]M— = —0.99192944327027
+2.5In|A| = 31InuR. (F1)

(i) Scalar
Let x = «/|4|. For x < 0.7,
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—[In A®)] s = —0.239133939224974x% 4 0.222222222222222x% — 0.134704602106396x*
+0.102278606592866x5 — 0.0839329261179402x® + 0.0715956882048009x
— 0.0625481711576628x + 0.0555697470602515x° — 0.0500042455037409x!°
—0.333333333333333x2 In uR. (F2)

For x > 0.7,

—[In A(”)]m = —0.0261559272783723 + 0.0000886704923163256/x* + 0.0000962000962000962/ x>
+0.000198412698412698 /x> + 0.00105820105820106/x + 0.111111111111111x
—0.181204187497805x> + (—0.0055555555555556 + 0.166666666666667x%) In x
—0.333333333333333x? In uR. (F3)

(ii1)) Fermion
Let x = y*/|A|. For x < 1.3,
—[In A<‘”>]M—S =0.64493454511661x +0.005114971505109x —0.0366953662258276x° +0.00476307962690785x*
—0.000845451274112082x3 4 0.000168244913551417x% —0.0000353785958610453x”
+7.67709260595572 x 10~5x% + (0.66666666666667x +0.333333333333333x2) InuR. (F4)

For x > 1.3,

—[In A(V’)]m = —0.227732960077634 + 0.00260942760942761/x> + 0.00271164021164021 /x>
+0.00820105820105820/x + 0.53790187962670x + 0.296728717591129x>
+ (=0.06111111111111111 —0.3333333333333333x — 0.1666666666666666x2) In x
+ (0.66666666666667x + 0.333333333333333x%) In uR. (F5)

(iv) Gauge
Let x = ¢*/|A|. For x < 1.4,
—[In A’<Aw¢)]M—s = —0.96686103284373 — 1.76813696868318x + 0.61593151565841x% + 0.145084271024101x°
—0.0241469799983579x* + 0.00555917805602827x> — 0.00145020891759152x°
+ 0.000402580447036276x7 — 0.000115821925959136x® 4+ 0.5 In ]
+ (—0.333333333333333 — 2x — x%) InuR. (Fo6)

For x > 1.4,

- [lnA’(A/‘"/’)]M—S =—27.0091748854198 +-0.000266011476948977 / x* +0.000288600288600289 / x*
+0.000595238095238095/x% +0.00317460317460317 /x4 1.56519636465016x
—0.07988363024944x> + (—3.54033527491510 x 1076 /x> —0.0000404609745704583 / x*
—0.00051790047450187 /x> —0.0082864075920299 /x> —0.265165042944955 / x

s

V/s2+79164837199872x°
+1.51n[3.14159265358979(—98796.7402597403 + 136316.57142857 1.x — 136594.285714286x2

+92160x% 4-7372800x* +6553600x°)] +0.51n | 4| + (—0.333333333333333 —2x—x?)InuR, (F7)

+4.24264068711929)+/xarcsin

+ (—6.01666666666667 +0.5x%)Inx

where

s =7+ 80x + 1024x? + 16384x> + 524288x* — 8388608x°. (F8)

116012-30



DECAY RATE OF ELECTROWEAK VACUUM IN THE ...

PHYS. REV. D 97, 116012 (2018)

APPENDIX G: THRESHOLD CORRECTIONS

In this Appendix, we summarize the one-loop threshold
corrections for the coupling constants in the models with
extra fermions discussed in Sec. IV. We parametrize the
threshold corrections as

1
=c+—5A,

(below)
¢ 1677

(G1)

where c¢(below) is a coupling constant below the matching
scale, while ¢ is that above the scale. For the notational
simplicity, we only show the quantity A, for each coupling
constant. Notice that A, depends on the extra fermion mass
My (X = D, E, N). In our analysis, we take the matching
scale to be equal to My.

(i) Model with vectorlike quarks Q, Q, D, and D

Ay = —%91 log M22 : (G2)

A, = —g3log Mzz : (G3)

A, = —g3log M22 , (G4)

A, = —6y,yp B log ]Z—; - %] . (G3)
Ay, = —6y,yp B logﬂ’;—; - ﬂ . (G6)
= —6y.yp B logﬁ—; - ﬂ . (G7)

1 w21 1. 2 4
(G8)

(i) Model with vectorlike leptons L, L, E, and E

(G9)

1 2
A, = _592 logM2 , (G10)
A, =0, (G11)
1 w1
Ay = =2y,yg [E logM—% - 5} (G12)
1 w1
A, = —2y,y> [—1og———], (G13)
s F27em: 3
A 2,32 [1 log © ]] (G14)
.= 2y g |5log 5 — 2|,
Y El27 "M 3

1w 1 1. W 4
A, =—-81y% |=log——=| +4y% |=log— —=
A yE|:20gM% 3:|+ yE|:2 gM% 3
(G15)
(iii) Model with right-handed neutrino N'°
A, =0 (i=1,2,3), (G16)
T
A, = —YtYN{ logM2 +4} (G17)
1 1
Ay, = —yyy 10g M + al- (G18)
w3
Ay, = yryN |:4 log + 8:| (G19)

A ——an2 | b +1+2411 wo |
A yN OgM2 4 YN 2OgM12V 2 .

(G20)

“For simplicity, we assume that N couples only to third
generation leptons.

[1] N. Cabibbo, L. Maiani, G. Parisi, and R. Petronzio,
Bounds on the fermions and Higgs boson masses in grand
unified theories, Nucl. Phys. B158, 295 (1979).

[2] P. Q. Hung, Vacuum Instability and New Constraints on
Fermion Masses, Phys. Rev. Lett. 42, 873 (1979).

[3] M. Lindner, M. Sher, and H. W. Zaglauer, Probing vacuum
stability bounds at the Fermilab Collider, Phys. Lett. B
228, 139 (1989).

[4] C. Ford, D.R.T. Jones, P.W. Stephenson, and M. B.
Einhorn, The effective potential and the renormalization
group, Nucl. Phys. B395, 17 (1993).

[5] J. A. Casas, J.R. Espinosa, and M. Quiros, Improved
Higgs mass stability bound in the standard model and
implications for supersymmetry, Phys. Lett. B 342, 171
(1995).

116012-31


https://doi.org/10.1016/0550-3213(79)90167-6
https://doi.org/10.1103/PhysRevLett.42.873
https://doi.org/10.1016/0370-2693(89)90540-6
https://doi.org/10.1016/0370-2693(89)90540-6
https://doi.org/10.1016/0550-3213(93)90206-5
https://doi.org/10.1016/0370-2693(94)01404-Z
https://doi.org/10.1016/0370-2693(94)01404-Z

SO CHIGUSA, TAKEO MOROI, and YUTARO SHOIJI

PHYS. REV. D 97, 116012 (2018)

[6] J. A. Casas, J. R. Espinosa, and M. Quiros, Standard model
stability bounds for new physics within LHC reach, Phys.
Lett. B 382, 374 (1996).

[7] M. B. Einhorn and D. R. T. Jones, The effective potential,
the renormalization group and vacuum stability, J. High
Energy Phys. 04 (2007) 051.

[8] J. Ellis, J. R. Espinosa, G. F. Giudice, A. Hoecker, and A.
Riotto, The probable fate of the Standard Model, Phys.
Lett. B 679, 369 (2009).

[9] G. Degrassi, S. Di Vita, J. Elias-Miro, J. R. Espinosa, G. F.
Giudice, G. Isidori, and A. Strumia, Higgs mass and
vacuum stability in the Standard Model at NNLO, J. High
Energy Phys. 08 (2012) 098.

[10] S. Alekhin, A. Djouadi, and S. Moch, The top quark and
Higgs boson masses and the stability of the electroweak
vacuum, Phys. Lett. B 716, 214 (2012).

[11] F. Bezrukov, M. Yu. Kalmykov, B. A. Kniehl, and M.
Shaposhnikov, Higgs boson mass and new physics, J. High
Energy Phys. 10 (2012) 140.

[12] A. Andreassen, W. Frost, and M. D. Schwartz, Consistent
Use of the Standard Model Effective Potential, Phys. Rev.
Lett. 113, 241801 (2014).

[13] L. Di Luzio and L. Mihaila, On the gauge dependence of
the Standard Model vacuum instability scale, J. High
Energy Phys. 06 (2014) 079.

[14] A.V. Bednyakov, B. A. Kniehl, A.F. Pikelner, and O. L.
Veretin, Stability of the Electroweak Vacuum: Gauge
Independence and Advanced Precision, Phys. Rev. Lett.
115, 201802 (2015).

[15] G.Isidori, G. Ridolfi, and A. Strumia, On the metastability of
the standard model vacuum, Nucl. Phys. B609, 387 (2001).

[16] P.B. Arnold and S. Vokos, Instability of hot electroweak
theory: Bounds on m(H) and M(t), Phys. Rev. D 44, 3620
(1991).

[17] L. Di Luzio, G. Isidori, and G. Ridolfi, Stability of the
electroweak ground state in the Standard Model and its
extensions, Phys. Lett. B 753, 150 (2016).

[18] J.R. Espinosa and M. Quiros, Improved metastability
bounds on the standard model Higgs mass, Phys. Lett.
B 353, 257 (1995).

[19] N. Arkani-Hamed, S. Dubovsky, L. Senatore, and G.
Villadoro, (No) eternal inflation and precision Higgs
physics, J. High Energy Phys. 03 (2008) 075.

[20] J. Elias-Miro, J. R. Espinosa, G. F. Giudice, G. Isidori, A.
Riotto, and A. Strumia, Higgs mass implications on the
stability of the electroweak vacuum, Phys. Lett. B 709, 222
(2012).

[21] A.D. Plascencia and C. Tamarit, Convexity, gauge depend-
ence and tunneling rates, J. High Energy Phys. 10 (2016)
099.

[22] J.R. Espinosa, M. Garny, T. Konstandin, and A. Riotto,
Gauge-independent scales related to the Standard Model
vacuum instability, Phys. Rev. D 95, 056004 (2017).

[23] Z. Lalak, M. Lewicki, and P. Olszewski, Gauge fixing and
renormalization scale independence of tunneling rate in
Abelian Higgs model and in the standard model, Phys.
Rev. D 94, 085028 (2016).

[24] A. Andreassen, W. Frost, and M.D. Schwartz, Scale
invariant instantons and the complete lifetime of the
Standard Model, Phys. Rev. D 97, 056006 (2018).

[25] S. Chigusa, T. Moroi, and Y. Shoji, State-of-the-Art
Calculation of the Decay Rate of Electroweak Vacuum in
the Standard Model, Phys. Rev. Lett. 119, 211801 (2017).

[26] S.R. Coleman, The fate of the false vacuum. 1. Semi-
classical theory, Phys. Rev. D 15, 2929 (1977).

[27] C. G. Callan, Jr. and S. R. Coleman, The fate of the false
vacuum. 2. First quantum corrections, Phys. Rev. D 16,
1762 (1977).

[28] M. Endo, T. Moroi, M. M. Nojiri, and Y. Shoji, On the
gauge invariance of the decay rate of false vacuum, Phys.
Lett. B 771, 281 (2017).

[29] M. Endo, T. Moroi, M. M. Nojiri, and Y. Shoji, False vacuum
decay in gauge theory, J. High Energy Phys. 11 (2017) 074.

[30] S. Chigusa, T. Moroi, and Y. Shoji, ELVAS: ¢ + + package
for electroweak vacuum stability, https://github.com/
Y Shoji-HEP/ELVAS/.

[31] J. A. Casas, V. Di Clemente, A. Ibarra, and M. Quiros,
Massive neutrinos and the Higgs mass window, Phys. Rev.
D 62, 053005 (2000).

[32] I. Gogoladze, N. Okada, and Q. Shafi, Higgs boson mass
bounds in the Standard Model with type III and type I
seesaw, Phys. Lett. B 668, 121 (2008).

[33] B. He, N. Okada, and Q. Shafi, 125 GeV Higgs, type III
seesaw and gauge-Higgs unification, Phys. Lett. B 716,
197 (2012).

[34] W. Rodejohann and H. Zhang, Impact of massive neutrinos
on the Higgs self-coupling and electroweak vacuum
stability, J. High Energy Phys. 06 (2012) 022.

[35] J. Chakrabortty, M. Das, and S. Mohanty, Constraints on
TeV scale Majorana neutrino phenomenology from the
vacuum stability of the Higgs, Mod. Phys. Lett. A 28,
1350032 (2013).

[36] W. Chao, M. Gonderinger, and M.J. Ramsey-Musolf,
Higgs vacuum stability, neutrino mass, and dark matter,
Phys. Rev. D 86, 113017 (2012).

[37] 1. Masina, Higgs boson and top quark masses as tests of
electroweak vacuum stability, Phys. Rev. D 87, 053001
(2013).

[38] S. Khan, S. Goswami, and S. Roy, Vacuum stability
constraints on the minimal singlet TeV seesaw model,
Phys. Rev. D 89, 073021 (2014).

[39] P.S. B. Dev, D. K. Ghosh, N. Okada, and I. Saha, 125 GeV
Higgs boson and the type-II seesaw model, J. High Energy
Phys. 03 (2013) 150.

[40] A. Kobakhidze and A. Spencer-Smith, Neutrino masses
and Higgs vacuum stability, J. High Energy Phys. 08 (2013)
036.

[41] A. Datta, A. Elsayed, S. Khalil, and A. Moursy, Higgs
vacuum stability in the B — L extended standard model,
Phys. Rev. D 88, 053011 (2013).

[42] J. Chakrabortty, P. Konar, and T. Mondal, Constraining a
class of B — L extended models from vacuum stability and
perturbativity, Phys. Rev. D 89, 056014 (2014).

[43] M.-L. Xiao and J.-H. Yu, Stabilizing electroweak vacuum
in a vectorlike fermion model, Phys. Rev. D 90, 014007
(2014).

[44] Y. Hamada, H. Kawai, and K.-y. Oda, Predictions on
mass of Higgs portal scalar dark matter from Higgs
inflation and flat potential, J. High Energy Phys. 07
(2014) 026.

116012-32


https://doi.org/10.1016/0370-2693(96)00682-X
https://doi.org/10.1016/0370-2693(96)00682-X
https://doi.org/10.1088/1126-6708/2007/04/051
https://doi.org/10.1088/1126-6708/2007/04/051
https://doi.org/10.1016/j.physletb.2009.07.054
https://doi.org/10.1016/j.physletb.2009.07.054
https://doi.org/10.1007/JHEP08(2012)098
https://doi.org/10.1007/JHEP08(2012)098
https://doi.org/10.1016/j.physletb.2012.08.024
https://doi.org/10.1007/JHEP10(2012)140
https://doi.org/10.1007/JHEP10(2012)140
https://doi.org/10.1103/PhysRevLett.113.241801
https://doi.org/10.1103/PhysRevLett.113.241801
https://doi.org/10.1007/JHEP06(2014)079
https://doi.org/10.1007/JHEP06(2014)079
https://doi.org/10.1103/PhysRevLett.115.201802
https://doi.org/10.1103/PhysRevLett.115.201802
https://doi.org/10.1016/S0550-3213(01)00302-9
https://doi.org/10.1103/PhysRevD.44.3620
https://doi.org/10.1103/PhysRevD.44.3620
https://doi.org/10.1016/j.physletb.2015.12.009
https://doi.org/10.1016/0370-2693(95)00572-3
https://doi.org/10.1016/0370-2693(95)00572-3
https://doi.org/10.1088/1126-6708/2008/03/075
https://doi.org/10.1016/j.physletb.2012.02.013
https://doi.org/10.1016/j.physletb.2012.02.013
https://doi.org/10.1007/JHEP10(2016)099
https://doi.org/10.1007/JHEP10(2016)099
https://doi.org/10.1103/PhysRevD.95.056004
https://doi.org/10.1103/PhysRevD.94.085028
https://doi.org/10.1103/PhysRevD.94.085028
https://doi.org/10.1103/PhysRevD.97.056006
https://doi.org/10.1103/PhysRevLett.119.211801
https://doi.org/10.1103/PhysRevD.15.2929
https://doi.org/10.1103/PhysRevD.16.1762
https://doi.org/10.1103/PhysRevD.16.1762
https://doi.org/10.1016/j.physletb.2017.05.057
https://doi.org/10.1016/j.physletb.2017.05.057
https://doi.org/10.1007/JHEP11(2017)074
https://github.com/YShoji-HEP/ELVAS/
https://github.com/YShoji-HEP/ELVAS/
https://github.com/YShoji-HEP/ELVAS/
https://doi.org/10.1103/PhysRevD.62.053005
https://doi.org/10.1103/PhysRevD.62.053005
https://doi.org/10.1016/j.physletb.2008.08.023
https://doi.org/10.1016/j.physletb.2012.08.012
https://doi.org/10.1016/j.physletb.2012.08.012
https://doi.org/10.1007/JHEP06(2012)022
https://doi.org/10.1142/S0217732313500326
https://doi.org/10.1142/S0217732313500326
https://doi.org/10.1103/PhysRevD.86.113017
https://doi.org/10.1103/PhysRevD.87.053001
https://doi.org/10.1103/PhysRevD.87.053001
https://doi.org/10.1103/PhysRevD.89.073021
https://doi.org/10.1007/JHEP03(2013)150
https://doi.org/10.1007/JHEP03(2013)150
https://doi.org/10.1007/JHEP08(2013)036
https://doi.org/10.1007/JHEP08(2013)036
https://doi.org/10.1103/PhysRevD.88.053011
https://doi.org/10.1103/PhysRevD.89.056014
https://doi.org/10.1103/PhysRevD.90.014007
https://doi.org/10.1103/PhysRevD.90.014007
https://doi.org/10.1007/JHEP07(2014)026
https://doi.org/10.1007/JHEP07(2014)026

DECAY RATE OF ELECTROWEAK VACUUM IN THE ...

PHYS. REV. D 97, 116012 (2018)

[45] N. Khan and S. Rakshit, Study of electroweak vacuum
metastability with a singlet scalar dark matter, Phys. Rev. D
90, 113008 (2014).

[46] G. Bambhaniya, S. Khan, P. Konar, and T. Mondal,
Constraints on a seesaw model leading to quasidegenerate
neutrinos and signatures at the LHC, Phys. Rev. D 91,
095007 (2015).

[47] N. Khan and S. Rakshit, Constraints on inert dark matter
from the metastability of the electroweak vacuum, Phys.
Rev. D 92, 055006 (2015).

[48] A. Salvio, A simple motivated completion of the Standard
Model below the Planck scale: Axions and right-handed
neutrinos, Phys. Lett. B 743, 428 (2015).

[49] M. Lindner, H. H. Patel, and B. Radovcic, Electroweak
absolute, meta-, and thermal stability in neutrino mass
models, Phys. Rev. D 93, 073005 (2016).

[50] L. Delle Rose, C. Marzo, and A. Urbano, On the stability
of the electroweak vacuum in the presence of low-scale
seesaw models, J. High Energy Phys. 12 (2015) 050.

[51] N. Haba, H. Ishida, N. Okada, and Y. Yamaguchi, Vacuum
stability and naturalness in type-II seesaw, Eur. Phys. J. C
76, 333 (2016).

[52] G. Bambhaniya, P. S. B. Dev, S. Goswami, S. Khan, and
W. Rodejohann, Naturalness, vacuum stability and lepto-
genesis in the minimal seesaw model, Phys. Rev. D 95,
095016 (2017).

[53] N. Khan, Exploring hyperchargeless Higgs triplet model
up to the Planck scale, Eur. Phys. J. C 78, 341 (2018).

[54] I. Garg, S. Goswami, K.N. Vishnudath, and N. Khan,
Electroweak vacuum stability in presence of singlet scalar
dark matter in TeV scale seesaw models, Phys. Rev. D 96,
055020 (2017).

[55] A. Kusenko, K.-M. Lee, and E.J. Weinberg, Vacuum
decay and internal symmetries, Phys. Rev. D 55, 4903
(1997).

[56] S.R. Coleman, V. Glaser, and A. Martin, Action minima
among solutions to a class of Euclidean scalar field
equations, Commun. Math. Phys. 58, 211 (1978).

[57] K. Blum, M. Honda, R. Sato, M. Takimoto, and K.
Tobioka, O(N) invariance of the multifield bounce, J.
High Energy Phys. 05 (2017) 109.

[58] S. Fubini, A new approach to conformal invariant field
theories, Nuovo Cimento A 34, 521 (1976).

[59] L. N. Lipatov, Divergence of the perturbation theory series
and the quasiclassical theory, Sov. Phys. JETP 45, 216
(1977).

[60] I. M. Gelfand and A. M. Yaglom, Integration in functional
spaces and it applications in quantum physics, J. Math.
Phys. (N.Y.) 1, 48 (1960).

[61] R. F. Dashen, B. Hasslacher, and A. Neveu, Nonperturba-
tive methods and extended hadron models in field theory.
1. Semiclassical functional methods, Phys. Rev. D 10,
4114 (1974).

[62] K. Kirsten and A.J. McKane, Functional determinants by
contour integration methods, Ann. Phys. (N.Y.) 308, 502
(2003).

[63] K. Kirsten and A.J. McKane, Functional determinants for
general Sturm-Liouville problems, J. Phys. A 37, 4649
(2004).

[64] M. Endo, T. Moroi, M.M. Nojiri, and Y. Shoji,
Renormalization-scale uncertainty in the decay rate of
false vacuum, J. High Energy Phys. 01 (2016) 031.

[65] C.P. Burgess, V. Di Clemente, and J. R. Espinosa, Effec-
tive operators and vacuum instability as heralds of new
physics, J. High Energy Phys. 01 (2002) 041.

[66] V. Branchina and E. Messina, Stability, Higgs Boson Mass
and New Physics, Phys. Rev. Lett. 111, 241801 (2013).

[67] Z. Lalak, M. Lewicki, and P. Olszewski, Higher-order
scalar interactions and SM vacuum stability, J. High
Energy Phys. 05 (2014) 119.

[68] V. Branchina, E. Messina, and M. Sher, Lifetime of the
electroweak vacuum and sensitivity to Planck scale phys-
ics, Phys. Rev. D 91, 013003 (2015).

[69] V. Branchina, E. Messina, and A. Platania, Top mass
determination, Higgs inflation, and vacuum stability, J.
High Energy Phys. 09 (2014) 182.

[70] V. Branchina and E. Messina, Stability and UV completion
of the Standard Model, Europhys. Lett. 117, 61002 (2017).

[71] V. Branchina, E. Messina, and D. Zappala, Impact of
gravity on vacuum stability, Europhys. Lett. 116, 21001
(2016).

[72] A. Salvio, A. Strumia, N. Tetradis, and A. Urbano, On
gravitational and thermal corrections to vacuum decay, J.
High Energy Phys. 09 (2016) 054.

[73] E. Bentivegna, V. Branchina, F. Contino, and D. Zappala,
Impact of new physics on the EW vacuum stability in a
curved spacetime background, J. High Energy Phys. 12
(2017) 100.

[74] C. Patrignani et al. (Particle Data Group Collaboration),
Review of particle physics, Chin. Phys. C 40, 100001 (2016).

[75] D. Buttazzo, G. Degrassi, P. P. Giardino, G. F. Giudice, F.
Sala, A. Salvio, and A. Strumia, Investigating the near-
criticality of the Higgs boson, J. High Energy Phys. 12
(2013) 089.

[76] S.G. Gorishnii, A.L. Kataev, S.A. Larin, and L.R.
Surguladze, Corrected three loop QCD correction to the
correlator of the quark scalar currents and I',,,(H® —
hadrons), Mod. Phys. Lett. A 05, 2703 (1990).

[77] O. V. Tarasov, A. A. Vladimirov, and A. Yu. Zharkov, The
Gell-Mann-Low function of QCD in the three loop
approximation, Phys. Lett. B 93, 429 (1980).

[78] S. G. Gorishnii, A. L. Kataev, and S. A. Larin, Next next-
to-leading perturbative QCD corrections and light quark
masses, Phys. Lett. B 135, 457 (1984).

[79] A. Kharchilava, Top mass determination in leptonic final
states with J/y, Phys. Lett. B 476, 73 (2000).

[80] C.S. Hill, J.R. Incandela, and J. M. Lamb, A method for
measurement of the top quark mass using the mean decay
length of b hadrons in 77 events, Phys. Rev. D 71, 054029
(2005).

[81] S. Biswas, K. Melnikov, and M. Schulze, Next-to-leading
order QCD effects and the top quark mass measurements at
the LHC, J. High Energy Phys. 08 (2010) 048.

[82] K. Agashe, R. Franceschini, and D. Kim, Simple “invari-
ance” of two-body decay kinematics, Phys. Rev. D 88,
057701 (2013).

[83] S. Alioli, P. Fernandez, J. Fuster, A. Irles, S.-O. Moch,
P. Uwer, and M. Vos, A new observable to measure the

116012-33


https://doi.org/10.1103/PhysRevD.90.113008
https://doi.org/10.1103/PhysRevD.90.113008
https://doi.org/10.1103/PhysRevD.91.095007
https://doi.org/10.1103/PhysRevD.91.095007
https://doi.org/10.1103/PhysRevD.92.055006
https://doi.org/10.1103/PhysRevD.92.055006
https://doi.org/10.1016/j.physletb.2015.03.015
https://doi.org/10.1103/PhysRevD.93.073005
https://doi.org/10.1007/JHEP12(2015)050
https://doi.org/10.1140/epjc/s10052-016-4180-z
https://doi.org/10.1140/epjc/s10052-016-4180-z
https://doi.org/10.1103/PhysRevD.95.095016
https://doi.org/10.1103/PhysRevD.95.095016
https://doi.org/10.1140/epjc/s10052-018-5766-4
https://doi.org/10.1103/PhysRevD.96.055020
https://doi.org/10.1103/PhysRevD.96.055020
https://doi.org/10.1103/PhysRevD.55.4903
https://doi.org/10.1103/PhysRevD.55.4903
https://doi.org/10.1007/BF01609421
https://doi.org/10.1007/JHEP05(2017)109
https://doi.org/10.1007/JHEP05(2017)109
https://doi.org/10.1007/BF02785664
https://doi.org/10.1063/1.1703636
https://doi.org/10.1063/1.1703636
https://doi.org/10.1103/PhysRevD.10.4114
https://doi.org/10.1103/PhysRevD.10.4114
https://doi.org/10.1016/S0003-4916(03)00149-0
https://doi.org/10.1016/S0003-4916(03)00149-0
https://doi.org/10.1088/0305-4470/37/16/014
https://doi.org/10.1088/0305-4470/37/16/014
https://doi.org/10.1007/JHEP01(2016)031
https://doi.org/10.1088/1126-6708/2002/01/041
https://doi.org/10.1103/PhysRevLett.111.241801
https://doi.org/10.1007/JHEP05(2014)119
https://doi.org/10.1007/JHEP05(2014)119
https://doi.org/10.1103/PhysRevD.91.013003
https://doi.org/10.1007/JHEP09(2014)182
https://doi.org/10.1007/JHEP09(2014)182
https://doi.org/10.1209/0295-5075/117/61002
https://doi.org/10.1209/0295-5075/116/21001
https://doi.org/10.1209/0295-5075/116/21001
https://doi.org/10.1007/JHEP09(2016)054
https://doi.org/10.1007/JHEP09(2016)054
https://doi.org/10.1007/JHEP12(2017)100
https://doi.org/10.1007/JHEP12(2017)100
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1007/JHEP12(2013)089
https://doi.org/10.1007/JHEP12(2013)089
https://doi.org/10.1142/S0217732390003152
https://doi.org/10.1016/0370-2693(80)90358-5
https://doi.org/10.1016/0370-2693(84)90315-0
https://doi.org/10.1016/S0370-2693(00)00120-9
https://doi.org/10.1103/PhysRevD.71.054029
https://doi.org/10.1103/PhysRevD.71.054029
https://doi.org/10.1007/JHEP08(2010)048
https://doi.org/10.1103/PhysRevD.88.057701
https://doi.org/10.1103/PhysRevD.88.057701

SO CHIGUSA, TAKEO MOROI, and YUTARO SHOIJI

PHYS. REV. D 97, 116012 (2018)

top-quark mass at hadron colliders, Eur. Phys. J. C 73,
2438 (2013).

[84] S. Kawabata, Y. Shimizu, Y. Sumino, and H. Yokoya,
Weight function method for precise determination of top
quark mass at Large Hadron Collider, Phys. Lett. B 741,
232 (2015).

[85] S.F.Ravasio, T. Jezo, P. Nason, and C. Oleari, A theoretical
study of top-mass measurements at the LHC using NLO +
PS generators of increasing accuracy, arXiv:1801.03944.

[86] T. Horiguchi, A. Ishikawa, T. Suehara, K. Fujii, Y. Sumino,
Y. Kiyo et al., Study of top quark pair production near
threshold at the ILC, arXiv:1310.0563.

[87] J.R. Espinosa, G. F. Giudice, and A. Riotto, Cosmological
implications of the Higgs mass measurement, J. Cosmol.
Astropart. Phys. 05 (2008) 002.

[88] O. Lebedev and A. Westphal, Metastable electroweak
vacuum: Implications for inflation, Phys. Lett. B 719,
415 (2013).

[89] A. Kobakhidze and A. Spencer-Smith, Electroweak vac-
uum (in)stability in an inflationary Universe, Phys. Lett. B
722, 130 (2013).

[90] K. Enqvist, T. Meriniemi, and S. Nurmi, Higgs dynamics
during inflation, J. Cosmol. Astropart. Phys. 07 (2014) 025.

[91] M. Herranen, T. Markkanen, S. Nurmi, and A. Rajantie,
Spacetime Curvature and the Higgs Stability During
Inflation, Phys. Rev. Lett. 113, 211102 (2014).

[92] A. Kobakhidze and A. Spencer-Smith, The Higgs vacuum
is unstable, arXiv:1404.4709.

[93] K. Kamada, Inflationary cosmology and the standard
model Higgs with a small Hubble induced mass, Phys.
Lett. B 742, 126 (2015).

[94] M. Herranen, T. Markkanen, S. Nurmi, and A. Rajantie,
Spacetime Curvature and Higgs Stability After Inflation,
Phys. Rev. Lett. 115, 241301 (2015).

[95] A. Hook, J. Kearney, B. Shakya, and K.M. Zurek,
Probable or improbable Universe? Correlating electroweak
vacuum instability with the scale of inflation, J. High
Energy Phys. 01 (2015) 061.

[96] J.R. Espinosa, G. F. Giudice, E. Morgante, A. Riotto, L.
Senatore, A. Strumia, and N. Tetradis, The cosmological
Higgstory of the vacuum instability, J. High Energy Phys.
09 (2015) 174.

[97] Y. Ema, K. Mukaida, and K. Nakayama, Fate of electro-
weak vacuum during preheating, J. Cosmol. Astropart.
Phys. 10 (2016) 043.

[98] K. Enqvist, M. Karciauskas, O. Lebedev, S. Rusak, and M.
Zatta, Postinflationary vacuum instability and Higgs-
inflaton couplings, J. Cosmol. Astropart. Phys. 11 (2016)
025.

[99] J. Kearney, H. Yoo, and K. M. Zurek, Is a Higgs vacuum
instability fatal for high-scale inflation?, Phys. Rev. D 91,
123537 (2015).

[100] K. Kohri and H. Matsui, Higgs vacuum metastability in
primordial inflation, preheating, and reheating, Phys. Rev.
D 94, 103509 (2016).

[101] W.E. East, J. Kearney, B. Shakya, H. Yoo, and K. M.
Zurek, Spacetime dynamics of a Higgs vacuum instability
during inflation, Phys. Rev. D 95, 023526 (2017).

[102] Y. Ema, M. Karciauskas, O. Lebedev, and M. Zatta, Early
Universe Higgs dynamics in the presence of the Higgs
inflaton and nonminimal Higgs-gravity couplings, J. Cos-
mol. Astropart. Phys. 06 (2017) 054.

[103] M. Postma and J. van de Vis, Electroweak stability and
nonminimal coupling, J. Cosmol. Astropart. Phys. 05
(2017) 004.

[104] A. Joti, A. Katsis, D. Loupas, A. Salvio, A. Strumia, N.
Tetradis, and A. Urbano, (Higgs) vacuum decay during
inflation, J. High Energy Phys. 07 (2017) 058.

[105] M. Fairbairn and R. Hogan, Electroweak Vacuum Stability
in Light of BICEP2, Phys. Rev. Lett. 112, 201801 (2014).

[106] A. Shkerin and S. Sibiryakov, On stability of electroweak
vacuum during inflation, Phys. Lett. B 746, 257 (2015).

[107] Y. Ema, K. Mukaida, and K. Nakayama, Electroweak
vacuum metastability and low-scale inflation, J. Cosmol.
Astropart. Phys. 12 (2017) 030.

[108] P. A.R. Ade et al. (Planck Collaboration), Planck 2015
results. XIII. Cosmological parameters, Astron. Astrophys.
594, A13 (2016).

[109] P. Minkowski, 4 — ey at a rate of one out of 10° muon
decays?, Phys. Lett. B 67, 421 (1977).

[110] T. Yanagida, Horizontal symmetry and masses of neutri-
nos, Conf. Proc. C 7902131, 95 (1979).

[111] M. Gell-Mann, P. Ramond, and R. Slansky, Complex
spinors and unified theories, Conf. Proc. C 790927, 315
(1979).

[112] M. E. Machacek and M. T. Vaughn, Two loop renormal-
ization group equations in a general quantum field theory.
1. Wave function renormalization, Nucl. Phys. B222, 83
(1983).

[113] M. E. Machacek and M. T. Vaughn, Two loop renormal-
ization group equations in a general quantum field theory.
2. Yukawa couplings, Nucl. Phys. B236, 221 (1984).

[114] M. E. Machacek and M. T. Vaughn, Two loop renormal-
ization group equations in a general quantum field theory.
3. Scalar quartic couplings, Nucl. Phys. B249, 70 (1985).

[115] M.-x. Luo, H.-w. Wang, and Y. Xiao, Two loop renorm-
alization group equations in general gauge field theories,
Phys. Rev. D 67, 065019 (2003).

[116] P.H. Chankowski and Z. Pluciennik, Renormalization
group equations for seesaw neutrino masses, Phys. Lett.
B 316, 312 (1993).

[117] J. Avan and H. J. De Vega, Inverse scattering transform and
instantons of four-dimensional Yukawa and ¢* theories,
Nucl. Phys. B269, 621 (1986).

116012-34


https://doi.org/10.1140/epjc/s10052-013-2438-2
https://doi.org/10.1140/epjc/s10052-013-2438-2
https://doi.org/10.1016/j.physletb.2014.12.044
https://doi.org/10.1016/j.physletb.2014.12.044
http://arXiv.org/abs/1801.03944
http://arXiv.org/abs/1310.0563
https://doi.org/10.1088/1475-7516/2008/05/002
https://doi.org/10.1088/1475-7516/2008/05/002
https://doi.org/10.1016/j.physletb.2012.12.069
https://doi.org/10.1016/j.physletb.2012.12.069
https://doi.org/10.1016/j.physletb.2013.04.013
https://doi.org/10.1016/j.physletb.2013.04.013
https://doi.org/10.1088/1475-7516/2014/07/025
https://doi.org/10.1103/PhysRevLett.113.211102
http://arXiv.org/abs/1404.4709
https://doi.org/10.1016/j.physletb.2015.01.024
https://doi.org/10.1016/j.physletb.2015.01.024
https://doi.org/10.1103/PhysRevLett.115.241301
https://doi.org/10.1007/JHEP01(2015)061
https://doi.org/10.1007/JHEP01(2015)061
https://doi.org/10.1007/JHEP09(2015)174
https://doi.org/10.1007/JHEP09(2015)174
https://doi.org/10.1088/1475-7516/2016/10/043
https://doi.org/10.1088/1475-7516/2016/10/043
https://doi.org/10.1088/1475-7516/2016/11/025
https://doi.org/10.1088/1475-7516/2016/11/025
https://doi.org/10.1103/PhysRevD.91.123537
https://doi.org/10.1103/PhysRevD.91.123537
https://doi.org/10.1103/PhysRevD.94.103509
https://doi.org/10.1103/PhysRevD.94.103509
https://doi.org/10.1103/PhysRevD.95.023526
https://doi.org/10.1088/1475-7516/2017/06/054
https://doi.org/10.1088/1475-7516/2017/06/054
https://doi.org/10.1088/1475-7516/2017/05/004
https://doi.org/10.1088/1475-7516/2017/05/004
https://doi.org/10.1007/JHEP07(2017)058
https://doi.org/10.1103/PhysRevLett.112.201801
https://doi.org/10.1016/j.physletb.2015.05.012
https://doi.org/10.1088/1475-7516/2017/12/030
https://doi.org/10.1088/1475-7516/2017/12/030
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1016/0370-2693(77)90435-X
https://doi.org/10.1016/0550-3213(83)90610-7
https://doi.org/10.1016/0550-3213(83)90610-7
https://doi.org/10.1016/0550-3213(84)90533-9
https://doi.org/10.1016/0550-3213(85)90040-9
https://doi.org/10.1103/PhysRevD.67.065019
https://doi.org/10.1016/0370-2693(93)90330-K
https://doi.org/10.1016/0370-2693(93)90330-K
https://doi.org/10.1016/0550-3213(86)90515-8

