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We perform a precise calculation of the decay rate of the electroweak vacuum in the standard
model as well as in models beyond the standard model. We use a recently developed technique to calculate
the decay rate of a false vacuum, which provides a gauge invariant calculation of the decay rate at the one-
loop level. We give a prescription to take into account the zero modes in association with translational,
dilatational, and gauge symmetries. We calculate the decay rate per unit volume, γ, by using an analytic
formula. The decay rate of the electroweak vacuum in the standard model is estimated to be
log10γ × Gyr Gpc3 ¼ −582þ40þ184þ144þ2

−45−329−218−1 , where the first, second, third, and fourth errors are due to the
uncertainties of the Higgs mass, the top quark mass, the strong coupling constant and the choice of the
renormalization scale, respectively. The analytic formula of the decay rate, as well as its fitting formula
given in this paper, is also applicable to models that exhibit a classical scale invariance at a high energy
scale. As an example, we consider extra fermions that couple to the standard model Higgs boson, and
discuss their effects on the decay rate of the electroweak vacuum.
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I. INTRODUCTION

In the standard model (SM) of particle physics, it has
been known that the Higgs quartic coupling may become
negative at a high scale through quantum corrections, so
that the Higgs potential develops a deeper vacuum. The
detailed shape of the Higgs potential depends on the Higgs
and the top masses; with the recently observed Higgs mass
of ∼125 GeV, it has been known that the electroweak (EW)
vacuum is not absolutely stable if the SM is valid up to
∼1010 GeV or higher.1 In such a case, the EW vacuum can
decay into the deeper vacuum through tunneling in quan-
tum field theory. The lifetime of the EW vacuum has been
one of the important topics in particle physics and
cosmology.
The decay rate of the EW vacuum has been discussed for

a long time. The calculation of the decay rate at the one-
loop level first appeared in [15] and was also discussed in
other literature [16–25]. However, there are subtleties in the
treatment of zero modes related to the gauge symmetry
breaking which make it difficult to perform a precise and
reliable calculation of the decay rate. The lifetime of a

vacuum can be evaluated through a rate of bubble nucle-
ation in unit volume and unit time as formulated in [26,27].
The rate is expressed in the form of

γ ¼ Ae−B; ð1:1Þ

where B is the action of a so-called bounce solution, and
prefactor A is quantum corrections having mass dimension
4. The bounce solution is an Oð4Þ symmetric solution of
the Euclidean equations of motion, connecting the two
vacua. Although the dominant suppression of the decay rate
comes from B, the prefactor A is also important. This is
because of large quantum corrections from the top quarks
and the gauge bosons. Thus, it is essential to calculate both
A and B to determine the decay rate precisely. In the SM,
there are infinite bounce solutions owing to (i) the classical
scale invariance at a high energy scale, (ii) the global
symmetries corresponding to SUð2ÞL × Uð1ÞY=Uð1ÞEM, as
well as (iii) the translational invariance. For the calculation
of the prefactorA, a proper procedure to take account of the
effects of the zero modes related to (i) and (ii) were not well
understood until recently. In addition, the previous calcu-
lations of A were not performed in a gauge-invariant way,
which made the gauge invariance of the result unclear.
Recently, a prescription for the treatments of the gauge

zero modes was developed [28,29], based on which a
complete calculation of the decay rate of the EW vacuum
became possible. The calculation has been performed by
the present authors in a recent publication [25] and also by
[24]. The purpose of this paper is to give a more complete
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1For the absolute stability of the EW vacuum in the SM,
see [1–14].
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and detailed discussion about the calculation of the decay
rate. In [25], we have numerically evaluated the functional
determinants of fluctuation operators, which are necessary
for the calculation of the decay rate. Here, we perform the
calculation analytically; a part of the analytic results was
first given in [24]. The effects of the zero modes and the
modes with the lowest angular momentum are carefully
taken into account, on which previous works had some
confusion. We give fitting formulas of the functional
determinants based on analytic results, which are useful
for the numerical calculation of the decay rate. We also
provide a Cþþ package to study the electroweak vacuum
stability (ELVAS), which is available at [30].
In this paper, we discuss the calculation of the decay rate

of the EW vacuum in detail. We first present a detailed
formulation of the calculation of the decay rate at the one-
loop level. We derive a complete set of analytic formulas
that can be used for any models that exhibit classical scale
invariance at a high energy scale like the SM. Then, as one
of the important applications, we calculate the decay rate of
the EW vacuum in the SM. We find that the lifetime of the
EW vacuum is much longer than the age of the Universe.
There, we see that one-loop corrections from the top quark
and the gauge bosons are very large although there is an
accidental cancellation. It shows the importance of A for
the evaluation of a decay rate. We also evaluate the decay
rates of the EW vacuum for models with extra fermions that
couple to the Higgs field. In such models, the EW vacuum
tends to be destabilized compared with that of the SM since
the quartic coupling of the Higgs field is strongly driven to
a negative value. (For discussion about the stability of the
EW vacuum in models with extra particles, see [22,31–
54].) We consider three models that contain, in addition to
the SM particles, (i) vectorlike fermions having the same
SM charges as the left-handed quark and the right-handed
down quark, (ii) vectorlike fermions with the same SM
charges as left-handed lepton and right-handed electron,
and (iii) a right-handed neutrino. We give constraints on
their couplings and masses, requiring that the lifetime of the
EW vacuum be long enough.
This paper is organized as follows. In Sec. II, we

summarize the formulation for the decay rate at the one-
loop level, where we provide an analytic formula for each
field that couples to the Higgs boson. The detail of the
calculation is given in Appendixes A–D. In Sec. III, we
evaluate the vacuum decay rate in the SM. Readers who are
interested only in the results can skip over the former
section to this section. In Sec. IV, we analyze decay rates in
models with extra fermions. Finally, we conclude in Sec. V.

II. FORMULATION

We first discuss how we calculate the decay rate of the
EW vacuum. In the SM, the EW vacuum becomes unstable
due to the renormalization group (RG) running of the
quartic coupling constant of the Higgs boson, which makes

the quartic coupling constant negative at a high scale. In the
SM, the instability occurs when the Higgs amplitude
becomes much larger than the EW scale. Since the typical
field value for the bounce configuration is around that scale,
we can neglect the quadratic term in the Higgs potential.
In this section, we use a toy model with Uð1Þ gauge

symmetry to derive relevant formulas. The calculation of
the decay rate of the EW vacuum is almost parallel to that in
the case with Uð1Þ gauge symmetry; the application to the
SM case will be explained in the next section.

A. Setup

Let us first summarize the setup of our analysis. We
study the decay rate of a false vacuum whose instability is
due to an RG running of the quartic coupling constant of a
scalar field,Φ. We assume thatΦ is charged under theUð1Þ
gauge symmetry (with charge þ1); the kinetic term
includes

Lkin ∋ ½ð∂μ − igAμÞΦ�†ð∂μ − igAμÞΦ; ð2:1Þ

where Aμ is the gauge field and g is the gauge coupling
constant, while we consider the following scalar potential:

VðΦÞ ¼ λðΦ†ΦÞ2: ð2:2Þ

The quartic coupling, λ, depends on the renormalization
scale, μ, and is assumed to become negative at a high scale
due to the RG effect. As we have mentioned before, we
neglect the quadratic term assuming that λ becomes negative
at a much higher scale. In this setup, the scalar potential has
scale invariance at the classical level. In the application to the
case of the SM, Φ corresponds to the Higgs doublet and λ
corresponds to the Higgs quartic coupling constant.
Hereafter, we perform a detailed study of the effects of

the fields coupled to Φ on the decay rate of the false
vacuum. We consider a Lagrangian that contains the
following interaction terms:

Lint ∋ κσ2jΦj2 þ ðyΦψ̄LψR þ H:c:Þ þ VðΦÞ; ð2:3Þ

where σ is a real scalar field, and ψL and ψR are chiral
fermions [with relevant Uð1Þ charges].2 We take y real and
κ > 0. We neglect dimensionful parameters that are
assumed to be much smaller than the typical scale of the
bounce. In addition, gauge fixing is necessary to take into
account the effects of gauge boson loops. Following
[29,55], we take the gauge fixing function of the following
form:

F ¼ ∂μAμ: ð2:4Þ

2We assume that there exist other chiral fermions that cancel
out the gauge anomaly.
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Then, the gauge fixing term and the Lagrangian of the
ghosts (denoted as c̄ and c) are given by

LGF ¼
1

2ξ
F 2; ð2:5Þ

LFP ¼ −c̄∂μ∂μc; ð2:6Þ

where ξ is the gauge fixing parameter.3

The bounce solution is an Oð4Þ symmetric object
[56,57], and transforms under a global Uð1Þ symmetry.
Thus, choosing the center of the bounce at r ¼ 0 (with
r≡ ffiffiffiffiffiffiffiffiffixμxμ

p ), we can write the bounce solution as

Φjbounce ¼
1ffiffiffi
2

p eiθϕ̄ðrÞ; ð2:7Þ

with our choice of the gauge fixing function, without loss of
generality. Here, θ is a real parameter. The function, ϕ̄,
obeys

∂2
rϕ̄ðrÞ þ

3

r
∂rϕ̄ðrÞ − λϕ̄3ðrÞ ¼ 0; ð2:8Þ

with boundary conditions ∂rϕ̄ð0Þ ¼ 0 and ϕ̄ð∞Þ ¼ 0. For a
negative λ, we have a series of Fubini-Lipatov instanton
solutions [58,59]:

ϕ̄ðrÞ ¼ ϕ̄C

�
1þ jλj

8
ϕ̄2
Cr

2

�
−1
; ð2:9Þ

which is parametrized by ϕ̄C (i.e., the field value at the
center of the bounce). We also define R, which gives the
size of the bounce, as

R≡
ffiffiffiffiffi
8

jλj

s
ϕ−1
C : ð2:10Þ

The action of the bounce is given by

B ¼ 8π2

3jλj : ð2:11Þ

Notice that the tree level action is independent of ϕ̄C owing
to the classical scale invariance.
Once the bounce solution is obtained, we may integrate

over the fluctuation around it. We expand Φ as

Φ ¼ 1ffiffiffi
2

p eiθðϕ̄þ hþ iφÞ; ð2:12Þ

where h and φ are the physical Higgs mode and the
Nambu-Goldstone (NG) mode, respectively. At the one-
loop level, the prefactor can be decomposed as

Ae−B ¼ AðhÞ

V4D
AðσÞAðψÞAðAμ;φÞAðc;c̄Þe−B; ð2:13Þ

where V4D is the volume of spacetime, and AðXÞ is the
contribution from particle X. Each of the factors has a
form of

AðXÞ ¼
�
DetMðXÞ

DetcMðXÞ

�wðXÞ

; ð2:14Þ

whereMðXÞ and cMðXÞ are the fluctuation operators around
the bounce solution and around the false vacuum, respec-
tively. Here, wðXÞ ¼ 1 for Dirac fermions and Faddeev-
Popov ghosts, and wðXÞ ¼ −1=2 for the other bosonic
fields. The fluctuation operator is defined as second
derivatives of the action:

MðXÞδð4Þðx − yÞ ¼
�

δ2SðXÞ
δXðxÞδXðyÞ

�
; ð2:15Þ

where the brackets indicate the evaluation around the

bounce solution. In addition, cMðXÞ can be obtained from
MðXÞ with replacing ϕ̄ by the vacuum expectation value at
the false vacuum, i.e., ϕ̄ → 0.
Since the Faddeev-Popov ghosts do not couple to the

Higgs boson with the present choice of the gauge fixing

function, Mðc;c̄Þ ¼ cMðc;c̄Þ. Thus, we have

Aðc;c̄Þ ¼ 1: ð2:16Þ

B. Functional determinant

For the evaluation of the functional determinants, we first
decompose fluctuations into partial waves, making use of
the Oð4Þ symmetry of the bounce [15]. The basis is
constructed from YJ;mA;mB

ðΩÞ, the hyperspherical function
on S3 with Ω being a coordinate on S3. The decomposition
of each fluctuation is given in Appendix A. Here, J ¼
0; 1=2; 1;… is a non-negative half integer that labels
the total angular momentum in four dimensions, and mA
and mB are the azimuthal quantum numbers for the A-spin
and the B-spin of soð4Þ ≃ suð2ÞA × suð2ÞB, respectively.
The four-dimensional Laplacian operator acts on the hyper-
spherical function as

−∂2YJ;mA;mB
ðΩÞ ¼ L2

r2
YJ;mA;mB

ðΩÞ; ð2:17Þ

with

L≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4JðJ þ 1Þ

p
: ð2:18Þ

3In the non-Abelian case, one of ∂μ in Eq. (2.6) is replaced by
the covariant derivative. The interaction of the ghosts with the
gauge field does not affect the following discussion.
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In addition, YJ;mA;mB
ðΩÞ is normalized asZ
dΩjYJ;mA;mB

j2 ¼ 1: ð2:19Þ

With the above expansion, the functional determinants
can be expressed as

DetMðXÞ

DetcMðXÞ ¼
Y∞
J¼0

�
DetMðXÞ

J

DetcMðXÞ
J

�nðXÞJ

; ð2:20Þ

where MðXÞ
J is the fluctuation operator for each partial

wave labeled by J. In addition, nðψÞJ ¼ ð2J þ 1Þð2J þ 2Þ
for fermions, and nðXÞJ ¼ ð2J þ 1Þ2 for the others. The
explicit forms of the fluctuation operators are shown in
Appendix A. Using a theorem [29,60–63], the ratio of the
functional determinants can be calculated as

DetMðXÞ
J

DetcMðXÞ
J

¼
�
lim
r→∞

DetΨ
DetΨ̂

��
limr→0

DetΨ
DetΨ̂

�
−1
; ð2:21Þ

where Ψ ¼ ðΨ1;Ψ2;…Þ and Ψ̂ ¼ ðΨ̂1; Ψ̂2;…Þ are sets of
independent solutions of

MðXÞ
J Ψi ¼ 0; ð2:22Þ

cMðXÞ
J Ψ̂i ¼ 0; ð2:23Þ

and are regular at r ¼ 0. Notice that, when MðXÞ
J is an

n × n object, there are n independent solutions that are
regular at r ¼ 0. Since Ψi and Ψ̂i obey the same linear
differential equation at r → ∞, the ratio of the two
determinants converges for each J.
With a Fubini-Lipatov instanton, we can calculate the

ratio analytically, as first pointed out in [24]. For the
convenience of readers, we give the details of the calcu-
lation in Appendix A. The ratios are given by

DetMðhÞ
J

DetcMðhÞ
J

¼ 2Jð2J − 1Þ
ð2J þ 3Þð2J þ 2Þ ; ð2:24Þ

DetMðσÞ
J

DetcMðσÞ
J

¼ Γð2J þ 1ÞΓð2J þ 2Þ
Γð2J þ 1 − zκÞΓð2J þ 2þ zκÞ

; ð2:25Þ

DetMðψÞ
J

DetcMðψÞ
J

¼
� ½Γð2J þ 2Þ�2
Γð2J þ 2 − zyÞΓð2J þ 2þ zyÞ

�
2

; ð2:26Þ

DetM
ðAμ;φÞ
J

DetcMðAμ;φÞ
J

¼ J
J þ 1

�
Γð2J þ 1ÞΓð2J þ 2Þ

Γð2J þ 1 − zgÞΓð2J þ 2þ zgÞ
�
3

:

ð2:27Þ

Here,

zκ ¼ −
1

2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8

κ

jλj
r �

; ð2:28Þ

zg ¼ −
1

2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8

g2

jλj

s �
; ð2:29Þ

zy ¼ i
yffiffiffi
λ

p ; ð2:30Þ

where g is the gauge coupling constant, and ΓðzÞ is the
gamma function.

C. Zero modes

In the calculation of the decay rate of the EW vacuum
with the present setup, there show up zero modes in
association with dilatation, translation, and global trans-
formation of the bounce solution. Consequently, MðhÞ

0 ,

MðhÞ
1=2 and M

ðAμ;φÞ
0 have zero eigenvalues. Their determi-

nants vanish as shown in Eqs. (2.24) and (2.27) [see also
Eq. (A80)]; a naive inclusion of those results gives a
divergent behavior of the decay rate, which requires a
careful treatment of the zero modes. In the present case, we
can consider the effect of each partial wave (labeled by J)
separately. Thus, in this subsection, we consider the case

where the fluctuation operatorMðXÞ
J for a certain value of J

has a zero eigenvalue and discuss how to take account of its
effect. Because only bosons have zero modes in the

calculation of vacuum decay rates, MðXÞ
J is considered

to be a fluctuation operator of a bosonic field.
We first decompose the fluctuation of the bosonic field

(denoted as X) into eigenstates of the angular momentum:

X ∋
X
i

ciGiðrÞYJ;mA;mB
ðΩÞ; ð2:31Þ

where ci is the expansion coefficient while Gi obeys

MðXÞ
J Gi ¼ ωiGi; ð2:32Þ

with ωi being the eigenvalue. We normalize them as

hGijGji ¼
δij
N 2

i
; ð2:33Þ

where the inner product is defined by

hGijGji ¼
Z

drr3G†
i ðrÞGjðrÞ: ð2:34Þ

We leaveN i’s unspecified since, as we see below, the final
result is independent of them. We denote the zero mode as
G0 (and hence ω0 ¼ 0).
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When there is a zero mode, the saddle point approxi-
mation for the path integral breaks down and we need to go
back to the original path integral. The path integral is
defined as the integration over the coefficient ci, and the

functional determinant ofMðXÞ
J originates from the follow-

ing integral: Z Y
i

dciffiffiffiffiffiffi
2π

p
N i

e−
1
2
cjckhGjjMðXÞ

J jGki;

where the summations over the indices j and k are implicit.
Applying the saddle point approximation for the modes
other than the zero mode, we getZ Y

i

dciffiffiffiffiffiffi
2π

p
N i

e−
1
2
cjckhGjjMðXÞ

J jGki ¼
Z

dc0ffiffiffiffiffiffi
2π

p
N 0

Y
i≠0

1ffiffiffiffiffi
ωi

p :

ð2:35Þ

Notice that MðXÞ
J , Gi and ωi may depend on c0.

We are interested in the case where there exists a
symmetry (at least at the classical level) and the
Lagrangian is invariant under a transformation, which
we parametrize by z. The zero mode is in association with
such a symmetry. Then, the transformation of the bounce
solution with z → zþ δz can be seen as a shift of X as

X → X þ δzG̃0YJ;mA;mB
þOðδz2Þ; ð2:36Þ

where the function G̃0 is proportional to G0. The integration
over c0 can thus be regarded as the integration over the
collective coordinate z:

dc0ffiffiffiffiffiffi
2π

p
N 0

→

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hG̃0jG̃0i
2π

s
dz; ð2:37Þ

and hence

Z Y
i

dciffiffiffiffiffiffi
2π

p
N i

e−
1
2
cjckhGjjMðXÞ

J jGki →
Z

dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hG̃0jG̃0i
2π

s Y
i≠0

1ffiffiffiffiffi
ωi

p :

ð2:38Þ

Next, we discuss how we evaluate the integrand of the
right-hand side of Eq. (2.38). To omit the zero eigenvalue
from the functional determinant, we introduce a regulator to
the fluctuation operator:

MðXÞ
J → MðXÞ

J þ νρðrÞ; ð2:39Þ

where ν is a small positive number, and ρðrÞ is an arbitrary
function that satisfies

hG̃0jρjG̃0i ¼ 2π: ð2:40Þ

Then, we haveZ Y
i

dciffiffiffiffiffiffi
2π

p
N i

e−
1
2
cjckhGjjðMðXÞ

J þνρÞjGki

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hG̃0jG̃0i
2π

s
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

νþOðν2Þ
p Y

i≠0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωi þOðνÞp ; ð2:41Þ

which givesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hG̃0jG̃0i
2π

s Y
i≠0

1ffiffiffiffiffi
ωi

p

¼ lim
ν→0

ffiffiffi
ν

p Z Y
i

dciffiffiffiffiffiffi
2π

p
N i

e−
1
2
cjckhGjjðMðXÞ

J þνρÞjGki: ð2:42Þ

The integration in the above expression is nothing but
DetðMðXÞ þ νρÞ, and can be evaluated with the use of

Eq. (2.21). IfMðXÞ
J is a 1 × 1 object, for example, we obtain

Det½MðXÞ
J þ νρ�

DetcMðXÞ
J

¼ ν lim
r→∞

Ψ̌ðrÞ
Ψ̂ðrÞ þOðν2Þ; ð2:43Þ

where

MðXÞ
J Ψ̌ðrÞ ¼ −ρðrÞΨðrÞ; ð2:44Þ

while the functions Ψ and Ψ̂ obey Eqs. (2.22) and (2.23),
respectively. Then, we interpret the functional determinant
of the fluctuation operator with the zero eigenvalue as�

DetMðXÞ
J

DetcMðXÞ
J

�−1=2

→
Z

dz

�
limr→∞

Ψ̌ðrÞ
Ψ̂ðrÞ

�−1=2
: ð2:45Þ

The above argument can be applied to the zero modes of
our interest. In Appendix B, we obtain the following
replacements to take care of the dilatational, translational,
and gauge zero modes:

				DetMðhÞ
0

DetcMðhÞ
0

				−1=2 → Z
d lnR

ffiffiffiffiffiffiffiffi
16π

jλj

s
; ð2:46Þ

 
DetMðhÞ

1=2

DetcMðhÞ
1=2

!−2

→

�
32π

jλj
�

2 V4D

R4
; ð2:47Þ

 
DetM

ðAμ;φÞ
0

DetcMðAμ;φÞ
0

!−1=2

→
Z

dθ

ffiffiffiffiffiffiffiffi
16π

jλj

s
: ð2:48Þ
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D. Renormalization

After taking the product over J, we have a UV diver-
gence and thus we need to renormalize the result. In this
paper, we use the MS scheme, which is based on the
dimensional regularization. In this subsection, we explain
how the divergences can be subtracted using counterterms
in the MS scheme.
Since the dimensional regularization cannot be directly

used in this evaluation, we first regularize the result by
using the angular momentum expansion as

½lnAðXÞ�εX ≡ wðXÞX∞
J¼0

nðXÞJ

ð1þ εXÞ2J
ln

�
DetMðXÞ

J

DetcMðXÞ
J

�
: ð2:49Þ

We call this regularization “angular momentum regulari-
zation.” Here, εX is a positive number, which will be taken
to be zero at the end of the calculation. Since the divergence
is at most a power of J, the regularized sum converges. In
Appendix C, we calculate the sum analytically, and obtain

½lnAðσÞ�εσ ¼ −
κ

jλj
�
1

ε2σ
þ 2

εσ
þ κ

3jλj ln εσ
�

−
1

2
SσðzκÞ þOðεσÞ; ð2:50Þ

½lnAðψÞ�εψ ¼ y2

jλj
�
2

ε2ψ
þ 5

εψ
þ 1

3

y2 þ 2jλj
jλj ln εψ

�
þ SψðzyÞ þOðεψÞ; ð2:51Þ

where the functions, Sσ and Sψ , are given in Eqs. (C13) and
(C16), respectively. In addition, we define

AðhÞ ¼ V4D

Z
d lnR

1

R4
A0ðhÞ; ð2:52Þ

AðAμ;φÞ ¼
Z

dθA0ðAμ;φÞ: ð2:53Þ

Then, the primed quantities are given by

½lnA0ðhÞ�εh ¼ −
1

2

��
ln

jλj
16π

�
þ 4

�
ln

jλj
32π

�
þ
X∞
J¼1

ð2J þ 1Þ2
ð1þ εhÞ2J

ln
2Jð2J − 1Þ

ð2J þ 3Þð2J þ 2Þ
�

¼ 3

�
1

ε2h
þ 2

εh
− ln εh

�
−
3

4
− 3γE − 6 lnAG þ 5

2
ln
π

3
−
5

2
ln
jλj
8
þOðεhÞ; ð2:54Þ

½lnA0ðAμ;φÞ�εA ¼ −
1

2

��
ln

jλj
16π

�
þ
X∞
J¼1=2

ð2J þ 1Þ2
ð1þ εAÞ2J

ln
J

J þ 1

�
Γð2J þ 1ÞΓð2J þ 2Þ

Γð2J þ 1 − zgÞΓð2J þ 2þ zgÞ
�

3
�

¼ −
�
3g2

jλj − 1

��
1

ε2A
þ 2

εA

�
−
�
1

3
þ g4

jλj2
�
ln εA þ 3

4
−
1

3
γE − 2 lnAG −

1

2
ln
jλj
8π

−
3

2
SσðzgÞ −

3

2
lnΓð1 − zgÞΓð2þ zgÞ þOðεAÞ; ð2:55Þ

where AG ≃ 1.282 is the Glaisher number.
Next, we relate the above results with those based on the

dimensional regularization in D dimension, which contain
the regularization parameter, ε̄D, defined as

1

ε̄D
¼ 2

4 −D
þ ln 4π − γE; ð2:56Þ

with γE being the Euler’s constant. We convert the results
based on two different regularizations by calculating the
following quantity:

½lnAðXÞ�div ¼wðXÞTr½ðcMðXÞÞ−1δMðXÞ�

−
wðXÞ

2
Tr½ðcMðXÞÞ−1δMðXÞðcMðXÞÞ−1δMðXÞ�

¼wðXÞX∞
J¼0

nðXÞJ

�
ln
Det½cMðXÞ

J þ δMðXÞ
J �

DetcMðXÞ
J

�
OðδM2

JÞ
;

ð2:57Þ

where
δMðXÞ ¼ MðXÞ − cMðXÞ; ð2:58Þ

and δMðXÞ
J is defined similarly. Here, ½� � ��OðδÞ indicates

the expansion up to δ. The most important point is thath
ln DetMðXÞ

Det bMðXÞ

i
div

has the same divergence as
h
ln DetMðXÞ

Det bMðXÞ

i
does when δMðXÞ does not have a derivative operator.
The first line of Eq. (2.57) can be calculated by directly

evaluating the traces in a momentum space with using
the dimensional regularization; the result is denoted as
½lnAðXÞ�div;ε̄D . On the other hand, the second line of
Eq. (2.57) can be evaluated as�
ln
Det½cMðXÞ

J þ δMðXÞ
J �

DetcMðXÞ
J

�
OðδM2

JÞ
¼ Tr½Ψ̂−1Ψð1Þ�

þ Tr½Ψ̂−1Ψð2Þ� − 1

2
Tr½Ψ̂−1Ψð1ÞΨ̂−1Ψð1Þ�; ð2:59Þ
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where

cMðXÞ
J ΨðpÞ ¼ −δMðXÞ

J Ψðp−1Þ; ð2:60Þ

for p ¼ 1 and 2, and Ψð0Þ ¼ Ψ̂. Then, we calculate

½lnAðXÞ�div;εX

≡ wðXÞX
J

nðXÞJ

ð1þ εXÞ2J
�
ln
Det½cMðXÞ

J þ δMðXÞ
J �

DetcMðXÞ
J

�
OðδM2

JÞ
:

ð2:61Þ

We relate the results based on two regularizations by
replacing

½lnAðXÞ�div;εX → ½lnAðXÞ�div;ε̄D : ð2:62Þ

The expressions of ½lnAðXÞ�div;εX and ½lnAðXÞ�div;ε̄D for each
field are given in Appendix D, where we further simplify
the relation so that the left-hand side only includes terms
that are divergent at the limit of εX → 0. We summarize the
results below:

(i) Scalar field:�
1

ε2σ
þ 2

εσ
þ κ

3jλj ln εσ
�

→ −1 −
κ

3jλj
�

1

2ε̄D
þ 1þ γE þ ln

μR
2

�
; ð2:63Þ

(ii) Higgs field:�
1

ε2h
þ 2

εh
− ln εh

�
→

1

2ε̄D
þ γE þ ln

μR
2

; ð2:64Þ

(iii) Fermion:�
2

ε2ψ
þ 5

εψ
þ 1

3

y2 þ 2jλj
jλj ln εψ

�
→ −

y2

3jλj
�

1

2ε̄D
þ 1þ γE þ ln

μR
2

�
−
2

3

�
1

2ε̄D
þ 25

4
þ γE þ ln

μR
2

�
; ð2:65Þ

(iv) Gauge and NG fields:�
3g2

jλj − 1

��
1

ε2A
þ 2

εA

�
þ
�
1

3
þ g4

jλj2
�
ln εA

→ −
�
1

3
þ 2g2

jλj þ
g4

jλj2
��

1

2ε̄D
þ 1þ γE þ ln

μR
2

�
þ 1þ g4

jλj2
�
31

3
− π2

�
: ð2:66Þ

Subtracting 1=ε̄D, we obtain the renormalized prefactor in
the MS scheme.

E. Dilatational zero mode

In the calculation of the decay rate of the EW vacuum,
we have an integral over R in association with the classical
scale invariance, as we saw in Eq. (2.46). So far, we have
performed a one-loop calculation of the decay rate, based
on which the decay rate is found to behave as

γðone-loopÞ ∝
Z

d lnR
1

R4
exp

�
−

8π2

3jλðμÞj −
8π2βð1Þλ

3jλðμÞj2 ln μR
�
;

ð2:67Þ

where βð1Þλ is the one-loop β function of λ. (Here, we only
show the R and μ dependencies of the one-loop correc-
tions.) Thus, using the purely one-loop result, the integral
does not converge.
We expect, however, that the integration can converge

once higher order effects are properly included. To see the
detail of the path integral over the dilatational zero mode,
let us denote the decay rate as

γðfullÞ ¼
Z

d lnR
e−Beff

R4
; ð2:68Þ

where Beff fully takes account of all the effects of higher
order loops.
In order to discuss how Beff should behave, it is

instructive to rescale the coordinate variable as

x̃μ ≡
ffiffiffiffiffi
jλj
8

r
ϕ̄Cxμ ¼

xμ
R
; ð2:69Þ

as well as the fields as

Φ̃≡ ϕ̄−1
C Φ; ð2:70Þ

σ̃ ≡ ϕ̄−1
C σ; ð2:71Þ

Ãμ ≡ ϕ̄−1
C Aμ; ð2:72Þ

c̃≡ ϕ̄−1
C c; ð2:73Þ

˜̄c≡ ϕ̄−1
C c̄; ð2:74Þ

ψ̃ ≡
�jλj
8

�
−1=4

ϕ̄−3=2
C ψ : ð2:75Þ

Using the rescaled fields, all the explicit scales disappear
from the action as a result of scale invariance:
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1

ℏ

Z
d4xL ¼ 1

ℏ̃

Z
d4x̃ L̃

�
κ

jλj ;
yffiffiffiffiffijλjp ;

gffiffiffiffiffijλjp �
; ð2:76Þ

where L is the total Lagrangian,

ℏ̃ ¼ jλj
8
ℏ; ð2:77Þ

and L̃ includes canonically normalized rescaled fields
and depends only on the combinations κ

jλj,
yffiffiffiffi
jλj

p and
gffiffiffiffi
jλj

p . In addition, the rescaled bounce solution is given by

1

1þ x̃2
: ð2:78Þ

Based on L̃ and ℏ̃, we expect:
(i) Only positive powers of κ

jλj,
yffiffiffiffi
jλj

p and gffiffiffiffi
jλj

p appear in

the decay rate since there is no singularity when any
of these goes to zero. In particular, they cannot be in
a logarithmic function.

(ii) When we renormalize divergences using dimen-
sional regularization, we introduce a renormaliza-
tion scale μ̃. It is always in a logarithmic func-
tion and is related to the original renormalization
scale as

μ̃ ¼ μR: ð2:79Þ

(iii) In subtracting zero modes associated with
transformations of Eq. (2.78), the result should be
again a polynomial of κ

jλj,
yffiffiffiffi
jλj

p and gffiffiffiffi
jλj

p . Notice that,

for each zero mode, we have
ffiffiffiffiffiffiffiffi
1=ℏ̃

p
since Eq. (2.37)

implies

dc0ffiffiffiffiffiffiffiffi
2πℏ̃

p
N 0

¼ dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hG̃0jG̃0i
2πℏ̃

s
: ð2:80Þ

(iv) Quantum corrections have ℏ̃l−1 at the lth loop
since the loop expansion is equivalent to the ℏ̃
expansion.

Based on the above arguments, Beff is expected to be
expressed as

Beff ¼
8π2

3jλðμÞj þ
nzero
2

ln
jλðμÞj
8

þ
X∞
l¼1

�jλðμÞj
8

�
l−1

× Pl

�
κðμÞ
jλðμÞj ;

yðμÞffiffiffiffiffiffiffiffiffiffiffijλðμÞjp ;
gðμÞffiffiffiffiffiffiffiffiffiffiffijλðμÞjp ; ln μR

�
; ð2:81Þ

where Pl is the contribution at the l-loop level, and nzero is
the number of zero modes.

If the effects of higher order loops are fully taken into
account, Beff should be independent of μ because the decay
rate is a physical quantity; in such a case, we may choose
any value of the renormalization scale μ. In the perturbative
calculation, the μ dependence is expected to cancel out
order by order; as shown in Eq. (2.67), we can explicitly see
the cancellation of the μ dependence at the one-loop level
[64]. In our calculation so far, however, we only have the
one-loop result, in which μ dependence remains. As
indicated in Eq. (2.81), the μ dependence shows up in
the form of lnpμR with p ¼ 1; 2;…. If j ln μRj ≫ 1, the
logarithmic terms from higher order loops may become
comparable to the tree-level bounce action and the pertur-
bative calculation breaks down. In order to make our one-
loop result reliable, we should take μ ∼Oð1=RÞ, i.e., we
use R-dependent renormalization scale μ.4 With such a
choice of μ (as well as with the use of coupling constants
evaluated at the renormalization scale μ), the integration
over the size of the bounce is dominated only by the region
where jλð1=RÞj becomes largest. In the case of the SM, the
integration over the size of the bounce converges with this
prescription as we show in the following section.

F. Final result

Here, we summarize the results obtained in the previous
subsections and Appendixes A–E. The decay rate with a
resummation of important logarithmic terms is given by

γ¼
Z

dlnR
1

R4
½A0ðhÞAðσÞAðψÞAðAμ;φÞe−B�MS;μ∼1=R; ð2:82Þ

where

½lnA0ðhÞ�MS ¼ −
3

4
− 6 lnAG þ 5

2
ln
π

3
−
5

2
ln
jλj
8
þ 3 ln

μR
2
;

ð2:83Þ

½lnAðσÞ�MS ¼ −
1

2
SσðzκÞ þ

κ

jλj þ
κ2

3jλj2
�
1þ γE þ ln

μR
2

�
;

ð2:84Þ

½lnAðψÞ�MS ¼−
y4

3jλj2
�
1þ γEþ ln

μR
2

�
−
2y2

3jλj
�
25

4
þ γEþ ln

μR
2

�
þSψðzyÞ; ð2:85Þ

½lnAðAμ;φÞ�MS ¼ lnVG þ ½lnA0ðAμ;φÞ�MS; ð2:86Þ

4This is equivalent to summing over large logarithmic terms
appearing in higher loop corrections if we work with a fixed μ.
Since we have calculated the decay rate at the one-loop level, it is
preferable to use, at least, the two-loop β-function to include the
next-to-leading logarithmic corrections.
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with

½lnA0ðAμ;φÞ�MS ¼
�
1

3
þ 2g2

jλj þ
g4

jλj2
��

1þ γE þ ln
μR
2

�
−

g4

jλj2
�
31

3
− π2

�
−
1

4
−
1

3
γE − 2 lnAG

−
1

2
ln
jλj
8
þ 1

2
ln π −

3

2
SσðzgÞ

−
3

2
lnΓð1 − zgÞΓð2þ zgÞ: ð2:87Þ

Here, VG is the volume of the group space generated by the
broken generators. The definitions of SσðzÞ, Sψ ðzÞ can be
found in Appendix C. Here, we note that the analytic results
for the scalar, Higgs, and fermion contributions were first
given in [24] with different expression. We emphasize that
the final result does not depend on the gauge parameter, ξ,
and hence our result is gauge invariant. The above result is
also applicable to the case where the Uð1Þ symmetry is not
gauged as explained in Appendix E.
We have also derived fitting formulas of the functions

necessary for the calculation of the decay rate; the result is
given in Appendix F. The fitting formulas are particularly
useful for the numerical calculation of the decay rate. In
addition, a Cþþ package to study the electroweak
vacuum stability (ELVAS) is available at [30], which is
also applicable to various models with (approximate)
classical scale invariance.

III. DECAY RATE OF THE EW VACUUM
IN THE SM

A. Decay rate

Now, we are in a position to discuss the decay rate of the
EW vacuum in the SM. As we have discussed, the decay of
the EW vacuum is induced by the bounce configuration
whose energy scale is much higher than the EW scale.
Thus, we approximate the Higgs potential as5

VðHÞ ¼ λðH†HÞ2; ð3:1Þ

where H is the Higgs doublet in the SM and λ is the Higgs
quartic coupling constant. Notice that λ depends on the
renormalization scale μ; in the SM, λ becomes negative
when μ is above ∼1010 GeV with the best-fit values of the
SM parameters. In addition, the relevant part of the Yukawa
couplings are given by

LYukawa ∋ ytHq̄LtcR þ H:c:; ð3:2Þ

where qL is the left-handed third generation quark doublet,
tcR is the right-handed antitop quark, and yt is the top
Yukawa coupling constant.
Assuming that λ < 0, the bounce solution for the SM is

given by

Hjbounce ¼
1ffiffiffi
2

p eiθ
aσa
�

0

ϕ̄ðrÞ

�
; ð3:3Þ

where σa is the Pauli matrices and function ϕ̄ is given by
Eq. (2.9). In particular, remember that ϕ̄ contains a free
parameter, which we choose R, because of the classical
scale invariance.
The results given in the previous section can be easily

applied to the case of the SM. Taking account of the effects
of the (physical) Higgs boson, top quark, and weak bosons
(as well as NG bosons),6 the decay rate of the EW vacuum
in the SM can be written in the following form:

γ ¼
Z

d lnR
1

R4
½A0ðhÞAðtÞAðW;Z;φÞe−B�MS: ð3:4Þ

As we have mentioned, the relevant renormalization scale
of the integrand is μ ∼Oð1=RÞ; in the following numerical
analysis, we take μ ¼ 1=R unless otherwise stated. If λðμÞ
is positive, there is no bounce solution; the integrand is
taken to be zero in such a case. In addition, since we neglect
the mass term in the Higgs potential, 1=R should be much
larger than the EW scale. This condition is automatically
satisfied in the present analysis because λ becomes negative
at the scale much higher than the electroweak scale.
The Higgs contribution A0ðhÞ is given in Eq. (2.83), while

the top-quark contribution is given by

½lnAðtÞ�MS ¼ 3½lnAðψÞ�MSjy→yt
; ð3:5Þ

where the factor of 3 is the color factor.
As for the gauge contributions, we have SUð2ÞL ×

Uð1ÞY=Uð1ÞEM broken symmetries, instead of Uð1Þ in
our previous example. Thus, we have a different volume of
the group space, VG. To calculate VG, we first expand H
around the bounce solution with θa ¼ 0 as

H ¼ 1ffiffiffi
2

p
�
iðφ1 − iφ2Þ
ϕ̄ − iφ3

�
: ð3:6Þ

Here, φ1 and φ2 are NG bosons absorbed by charged
W-bosons while φ3 is that by Z-boson. With the change of
θa, the NG modes are transformed as

5We assume that the Higgs potential given in Eq. (3.1) is
applicable at a high scale. In particular, we assume that the effect
of Planck suppressed operators, which may arise from the effect
of quantum gravity, is negligible. For the discussion about the
effect of Planck suppressed operators, see [65–73].

6We checked that the effect of the bottom quark is numerically
unimportant.
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φa → φa þ θaG̃GY0;0;0 þOðθ2Þ; ð3:7Þ
where

G̃G ¼
ffiffiffiffiffiffiffi
2π2

p
ϕ̄: ð3:8Þ

The integration over the zero modes in association with the
gauge transformation of the bounce solution can be
replaced by the integration over the parameter θa:Z

d3θ ¼ 2π2 ≡ VSUð2Þ; ð3:9Þ
with the above definition of θa. Then, following the
argument given in Appendix B, the gauge contribution
is evaluated as

½lnAðW;Z;φÞ�MS ¼ lnVSUð2Þ þ 2½lnA0ðAμ;φÞ�MS

			
g→gW

þ ½lnA0ðAμ;φÞ�MSjg→gZ
; ð3:10Þ

where A0ðAμ;φÞ is given in Eq. (2.87), and

gW ¼ g2
2
; gZ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2Y þ g22

p
2

; ð3:11Þ

with g2 and gY being the gauge coupling constants of
SUð2ÞL and Uð1ÞY , respectively.

B. Numerical results

Now, let us evaluate the decay rate of the EW vacuum in
the SM. The decay rate of the EW vacuum is very sensitive
to the coupling constants in the SM. In our numerical
analysis, we use [74]:

mh ¼ 125.09� 0.24; ð3:12Þ
mt ¼ 173.1� 0.6; ð3:13Þ

αsðmZÞ ¼ 0.1181� 0.0011; ð3:14Þ
where mh and mt are the Higgs mass and the top mass,
respectively, while αs is the strong coupling constant.
Following [75], the gauge couplings, the top Yukawa
coupling, and the Higgs quartic coupling are determined
at μ ¼ mt; the calculations are done in the on-shell scheme
at next-to-next-to leading order precision. In addition, we
use three-loop QCD and one-loop QED β functions
[76–78] together with values in [74] in order to determine
the bottom and the tau Yukawa couplings at μ ¼ mt.
First, we show the RG evolution of the SM coupling

constants in Fig. 1. We use mainly three-loop β functions
summarized in [75] and the central values for the SM
parameters. The black dotted line indicates where ϕ̄C

reaches the Planck scale MPl ≃ 2.4 × 1018 GeV. We also
show the running above the Planck scale, assuming
there are no significant corrections from gravity. For
1010 GeV≲ μ≲ 1030 GeV, λ becomes negative; for such
a region, we use a dashed line to indicate λ < 0.

In order to understand the μ dependence of λ, let us show
one-loop RG equations of λ and yt (although, in our
numerical calculation, we use RG equations including
two- and three-loop effects and the contribution from the
bottom and the tau Yukawa couplings):

16π2
dλ

d ln μ

				
one-loop

¼ 12λ

�
2λþ y2t −

g2Y þ g22
4

−
g22
2

�
− 6y4t þ 6

�
g2Y þ g22

4

�
2

þ 12

�
g22
4

�
2

;

ð3:15Þ

16π2
dyt
d ln μ

				
one-loop

¼ yt

�
9

2
y2t − 8g23 −

9

4
g22 −

17

12
g2Y

�
:

ð3:16Þ

At a low energy scale, the term proportional to y4t drives λ to
a negative value. As the scale increases, yt decreases while
gY increases, which brings λ back to a positive value. Notice
that λ is bounded from below in the SM.
We show the integrand of γ in the bottom panel of Fig. 1,

together with that of

γtree ¼
Z

d lnR
1

R4
e−B: ð3:17Þ

FIG. 1. Top: The RG evolution of the SM coupling constants as
functions of μ (in units of GeV). The dashed line indicates λ < 0.
The black dotted line shows the scale where ϕ̄C ¼ MPl, taking
μ ¼ 1=R. The horizontal axis is common with the bottom panel.
Bottom: The integrand of the decay rate with μ ¼ 1=R, taking the
central values for the SM parameters. In the shaded region, λ is
positive and the integrand is zero.
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They are also shown in a linear scale in the top panel
of Fig. 2.
There are some remarks on the integral over R.
(i) As indicated by the top panel of Fig. 2, the integral is

dominated by the interval1017GeV≲1=R<1018GeV,
corresponding to 1018 GeV≲ ϕ̄C < 1019 GeV, which
is close to the Planck scale.Wemay formally perform
the R integration up to the scale where λ becomes
positive again; the result of such an analysis is denoted
as γ∞. Otherwise, we may stop the integration at
ϕ̄C ∼MPl, expecting that the SM breaks down at the
Planck scale due to an effect of quantum gravity; we
also perform such a calculation terminating the
integral at ϕ̄C ¼ MPl, assuming that the bounce
solution is unaffected by the effect of quantumgravity.
The result is denoted as γPl.

(ii) As one can see in the bottom panel of Fig. 1, there is
an artificial divergence of the integrand at
1=R ≃ 1010 GeV. This is due to a breakdown of
perturbative expansion owing to a too small jλj,
which makes the one-loop effect larger than the tree-
level one. We expect that the effect of such a bounce
configuration is unimportant because the bounce
action for such a small jλj suppresses the decay rate
significantly. Thus, we exclude such a region from
the region of integration. In our numerical calcu-

lation, we require j δB
ð1Þ
eff
B j < 0.8 and j ½lnAðXÞ�

MS
B j < 0.8

for each X, where δBð1Þ
eff is the one-loop contribu-

tion to Beff , and ½lnAðXÞ�MS is a contribution
from particle X; the region that does not satisfy these
conditions is excluded from the integration.7

By numerically integrating over R, we obtain8

log10½γPl × Gyr Gpc3� ¼ −582þ40þ184þ144þ2
−45−329−218−1 ; ð3:18Þ

log10½γ∞ × Gyr Gpc3� ¼ −580þ40þ183þ145þ2
−44−328−218−1 ; ð3:19Þ

where the first, second, third, and fourth errors are due to
the Higgs mass, the top mass, the strong coupling constant,
and the renormalization scale, respectively. (In order to
estimate the uncertainty due to the choice of the renorm-
alization scale, we vary the renormalization scale from
1=2R to 2=R.) Currently, the largest error comes from the
uncertainty of the top mass. With a better understanding of
the top quark mass at the future LHC experiment [79–85],
or even with at future eþe− colliders [86], a more accurate
determination of the decay rate will become possible. One
can see that the predicted decay rate per unit volume is
extremely small, in particular, compared with H−4

0 ≃
103 Gyr Gpc3 (with H0 being the expansion rate of the
present Universe). Such a small decay rate is harmless for
realizing the present Universe observed.9

In Fig. 3, we show the decay rate in mh vs mt plane. In
the red region, γ becomes larger thanH4

0, which we call the
unstable region. In the yellow region, the EW vacuum is
metastable, meaning that 0 < γ < H4

0. In the green region,
the EW vacuum is absolutely stable because λ is always
positive. The dashed, solid, and dotted lines correspond to
αs ¼ 0.1192, 0.1181, and 0.1170, respectively. The black
dot-dashed contours show log10½γ × Gyr Gpc3� ¼ 0;−100,
−300, and −1000 with the central value of αs. We also
show 68, 95, and 99% C.L. constraints on the Higgs mass
vs top mass plane assuming that their errors are independ-
ently Gaussian distributed. In Fig. 3, we terminate the
integral at ϕ̄C ¼ MPl, but it does not change the figure as far
as the cutoff is not so far from the Planck scale.10 The value

FIG. 2. Top: The integrand of the decay rate with the central
values of SM parameters. The solid line corresponds to a result at
the one-loop level and the dashed one corresponds to that at the
tree level. The horizontal axis is common with the bottom figure.
We show ϕ̄C ¼ MPl with the vertical dotted line. Bottom: The
size of each quantum correction. The dashed line corresponds to

δBð1Þ
eff .

7The numerical result is insensitive to the cut parameter, 0.8, as
far as only the region where the perturbation breaks down is
removed from the integration. In the SM, with the central values
of the couplings, the numerical result is not affected much even if
we change the number from 0.04 to 1.2.

8In our previous analysis [25], we used a different renormal-
ization scale, i.e., μ ¼ ϕ̄C instead of μ ¼ R−1. With μ ¼ ϕ̄C, the
decay rate becomes log10½γ × Gyr Gpc3� ¼ −570 for the best-fit
values of the SM parameters. The difference between this result
and that in [25] is due to the correction of an error in Eq. (29) of
[25] [see Eq. (D38)]. The uncertainty related to the choice of μ
should be regarded as theoretical uncertainty.

9Cosmologically, the Higgs field may evolve into the unstable
region due to the dynamics during and after inflation [87–107].
We do not consider such cases.

10Even with a lower cutoff such as ϕ̄C < 0.1MPl, the result
does not change significantly. It reduces log10 γ by about 20.
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of ϕ̄C at the maximum of the integrand ranges from 1018

to 1020 GeV.
It is well known that, currently, our Universe is (almost)

dominated by the dark energy. If it is a cosmological
constant, then our Universe will eventually become de
Sitter space with the expansion rate of about
56.3 km= sec =Mpc [108]. Then, based on γPl, the phase
transition rate within the Hubble volume of such a universe
is estimated to be 10−580 Gyr−1, which may be regarded as
a decay rate of the EW vacuum in the SM.
For comparison,we also performa “tree-level” calculation

of the decay rate using Eq. (3.17). The results
are log10½γðtreeÞPl × Gyr Gpc3� ¼ −575 and log10½γðtreeÞ∞ ×
GyrGpc3�¼−570. Thus, the difference between γ and
γðtreeÞ turns out to be rather small. This is a consequence
of an accidental cancellation among the contributions of
several fields. In the bottom panel of Fig. 2, we show
individual quantum corrections separately, as well as the
total one-loop contribution. We can see that the large
quantum correction from the top quark is canceled by those
from the gauge bosons. We have also checked that the
unstable region on the mh vs mt plane shifts upward by
Δmt ≃ 0.2 GeV if we use γðtreeÞ.

IV. MODELS WITH EXTRA FERMIONS

So far, we assumed that the SM is valid up to the Planck or
some higher scale. However, the decay rate of the EW

vacuum may be affected if there exist extra particles. In
particular, extra fermions coupled to the Higgs boson may
destabilize the EW vacuum because the new Yukawa
couplings tend to drive λ to a negative value through RG
effects [32–43,46,48–52,54]. Consequently, the decay rate
of the EW vacuum becomes larger than that in the SM.
Potential candidates of such fermions include vectorlike
fermions as well as right-handed neutrinos for the seesaw
mechanism [109–111].
In this section, we consider several models with such

extra fermions. We perform the RG analysis of the runnings
of coupling constants with the effects of the extra fermions.
We include two-loop effects of the extra fermions into the β
functions, which can be calculated using the result in [112–
115]. We also take account of one-loop threshold correc-
tions due to the extra fermions, which are summarized in
Appendix G.11 For the integration over R, we follow the
procedure in the SM case, as well as the following
treatments:

(i) We terminate the integration if any of the coupling
constants (in particular, Yukawa coupling constants
of extra particles) exceeds

ffiffiffiffiffiffi
4π

p
.

(ii) In order to maintain the classical scale invariance at a
good accuracy, we require 1=R > 10Mex, whereMex
is the mass scale of the new particles.

A. Vectorlike fermions

Here, we consider two examples of vectorlike fermions,
one is colored vectorlike fermions and the other is non-
colored ones. We consider the case where the extra
fermions have a Yukawa coupling with the SM Higgs
boson. (We assume that the mixing between the extra
fermions and the SM fermions is negligible.)
We first consider colored vectorlike fermions, having

the same SM gauge quantum numbers as the left-handed
quark doublet and the right-handed down quark, as well
as their vectorlike partners; we add Q ð3; 2; 1

6
Þ, Q̄

ð3̄; 2;− 1
6
Þ, D ð3; 1;− 1

3
Þ, and D̄ ð3̄; 1; 1

3
Þ. [In the paren-

theses, we show the quantum numbers of SUð3ÞC, SUð2ÞL,
and Uð1ÞY .] The Yukawa terms in the Lagrangian are
given by

LYukawa ¼ LðSMÞ
Yukawa þ YD̄Φ�QD̄þ YDΦQ̄D; ð4:1Þ

where LðYukawaÞ
SM is the SM part. We also add the following

mass terms:

Lmass ¼ MQQ̄QþMDD̄D: ð4:2Þ

FIG. 3. The stability of the EW vacuum in the SM with a cutoff
of the integration at ϕ̄C ¼ MPl. The red region is unstable, the
yellow region is metastable, and the green region is absolutely
stable. The dashed, solid, and dotted lines correspond to
αs ¼ 0.1192, 0.1181, and 0.1170, respectively. The black dot-
dashed lines indicate log10½γ × Gyr Gpc3� ¼ 0, −100, −300, and
−1000 with the central value of αs. The blue circles indicate 68,
95, and 99% C.L. constraints on the Higgs mass vs top mass
plane assuming that their errors are independently Gaussian.

11If we use the two-loop β functions instead of three-loop ones
in the SM calculation, the difference of log10½γ × Gyr Gpc3� is
around 40. Thus, the systematic error of neglecting three-loop
effects of the extra fermions is expected to be similar.
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For simplicity, we assume MQ ¼ MD. We take the new
Yukawa coupling constants and mass parameters real and
positive. We also take

YDðμ ¼ MDÞ ¼ YD̄ðμ ¼ MDÞ≡ yD: ð4:3Þ

As we have mentioned before, the scale dependence of the
new Yukawa coupling constants is evaluated by using two-
loop RG equations and one-loop threshold corrections (see
Appendix G).
The calculation of the decay rate is parallel to the SM

case, and the decay rate is given in the following form:

γ¼
Z

d lnR
1

R4
½A0ðhÞAðtÞAðAμ;φÞAðQ;D̄ÞAðQ̄;DÞe−B�MS;μ¼1=R;

ð4:4Þ

where AðQ;D̄Þ and AðQ̄;DÞ are effects of the extra fermions
on the prefactor:

½lnAðQ;D̄Þ�MS ¼ 3½lnAðψÞ�MSjy→YD̄
; ð4:5Þ

½lnAðQ̄;DÞ�MS ¼ 3½lnAðψÞ�MSjy→YD
: ð4:6Þ

In Fig. 4, we show the contours of the constant decay
rate on theMD vs yD plane. Here, we use the central values
of the SM parameters. The meanings of the shading colors
are the same as in the SM case. The left and the right panels
show the results with and without imposing the condition
ϕ̄C < MPl in integrating over R, respectively. As we can
see, the effect of such a cutoff is significant. This is because

ϕ̄C at the maximum of the integrand, ϕ̄max
C , can become

much larger than the Planck scale in the case with extra
fermions; we show ϕ̄max

C for the case with vectorlike
colored fermions in the left panel of Fig. 6. (In the
upper-left corner of the figure, the value of ϕ̄max

C becomes
smaller; this is because, in such a region, the Yukawa
coupling constants become nonperturbative at a lower RG
scale, which gives an upper bound on ϕ̄C in the integration
over R.) To see the cutoff dependence of the decay rate, we
show the constraint with terminating the integration at
ϕ̄C ¼ 0.1MPl in the left panel (dashed line). In addition,
when MD and yD are small, we have a region of absolute
stability. This is because the addition of colored particles
makes the strong coupling constant larger than the SM
case. It rapidly drives yt to a small value, which makes λ
always positive. Requiring that the lifetime of the EW
vacuum should be longer than the age of the Universe, we
obtain yD ≲ 0.35–0.5 for 103 GeV≲MD ≲ 1015 GeV.
The second example is noncolored extra fermions,

having the same SM quantum numbers as leptons. We
introduce L ð1; 2;− 1

2
Þ, L̄ ð1; 2; 1

2
Þ, E ð1; 1;−1Þ, and Ē

(1,1,1), and the Yukawa and mass terms in the Lagrangian
are given by

LYukawa ¼ LðSMÞ
Yukawa þ YĒΦ�LĒþ YEΦL̄E; ð4:7Þ

Lmass ¼ MLL̄LþMEĒE; ð4:8Þ

respectively. For simplicity, we take ML ¼ ME and adopt
the following renormalization conditions:

YEðμ ¼ MEÞ ¼ YĒðμ ¼ MEÞ≡ yE: ð4:9Þ

FIG. 4. The decay rate of the EW vacuum for vectorlike quarks with (left) and without (right) the cutoff at the Planck scale. The red
region is unstable, the yellow region is metastable, and the green region is absolutely stable. The solid lines show
log10½γGyr Gpc3� ¼ −250;−500, and −1000. The dashed line corresponds to the constraint when we stop the integration at
ϕ̄C ¼ 0.1MPl.
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The decay rate of the EW vacuum is given by

γ ¼
Z

d lnR
1

R4
½A0ðhÞAðtÞAðAμ;φÞAðL;ĒÞAðL̄;EÞe−B�MS;μ¼1=R;

ð4:10Þ
where

½lnAðL;ĒÞ�MS ¼ ½lnAðψÞ�MSjy→YĒ
; ð4:11Þ

½lnAðL̄;EÞ�MS ¼ ½lnAðψÞ�MSjy→YE
: ð4:12Þ

In Fig. 5, we show the contours of constant decay rate.
Since the extra fermions are not colored, we do not have a
region of absolute stability. We observe a larger effect of the
cutoff at the Planck scale. This is because ϕ̄max

C is typically

large in a wider parameter space, as indicated in the right
panel of Fig. 6.
Requiring that the lifetime of the EW vacuum should be

longer than the age of the Universe, we obtain yE ≲ 0.4–0.7
for 103 GeV≲ME ≲ 1015 GeV. The constraint becomes
significantly weaker for largerME owing to the cutoff at the
Planck scale.

B. Right-handed neutrino

Next, we consider the case with right-handed neutrinos,
which is responsible for the active neutrino masses via the
seesaw mechanism [109–111]. For simplicity, we concen-
trate on the case where only one mass eigenstate of the
right-handed neutrinos, denoted as N, strongly couples to
the Higgs boson (as well as to the third generation lepton

FIG. 6. The value of ϕ̄C at the maximum of the integrand of γ, ϕ̄max
C . The left panel is for vectorlike quarks and the right is for vectorlike

leptons. The numbers in the legends indicate log10½ϕ̄max
C =GeV�. In the gray region, the EW vacuum is absolutely stable.

FIG. 5. The same as Fig. 4 but for vectorlike leptons.
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doublet). Then, the Yukawa and mass terms in the
Lagrangian are

LYukawa ¼ LðSMÞ
Yukawa þ YNΦ�LN̄; ð4:13Þ

Lmass ¼
1

2
MNN̄N; ð4:14Þ

where, in this subsection, L denotes one of the lepton
doublets in the SM. We define

YNðμ ¼ MNÞ≡ yN: ð4:15Þ
Assuming that, for simplicity, the neutrino Yukawa

matrix is diagonal in the mass basis of right-handed
neutrinos, the following effective operator shows up by
integrating out N:

ΔL ¼ C
4
ðΦLÞ2; ð4:16Þ

with

CðMNÞ ¼ −2
y2N
MN

: ð4:17Þ

One of the active neutrino masses is related to the value of
C at the EW scale as

mν ¼ CðmtÞ
v2

4
; ð4:18Þ

with v ≃ 246 GeV being the vacuum expectation value of
the Higgs boson. In our numerical calculation, we use the
following one-loop RG equation to estimate the neutrino
mass [116]:

16π2
d

d ln μ
C ¼ ð4λþ 6y2t − 3g22ÞC: ð4:19Þ

In the SM with right-handed neutrinos, the decay rate of
the EW vacuum is evaluated with

γ¼
Z

d lnR
1

R4
½A0ðhÞAðtÞAðAμ;φÞAðL;NÞe−B�MS;μ¼1=R;

ð4:20Þ
where

½lnAðL;NÞ�MS ¼ ½lnAðψÞ�MSjy→YN
: ð4:21Þ

In Fig. 7, we show the contour plots of the decay rate. Since
it does not have any SM charges, the decay rate goes to the
SM value when yN goes to zero. The effect of the cutoff at
the Planck scale is again large, which is because of a large
ϕ̄max
C as shown in Fig. 8. The purple solid lines show the

left-handed neutrino mass. Requiring that the decay rate
should be smaller than the age of the Universe, we obtain
yN ≲ 0.65–0.8 for 1012 GeV≲MN ≲ 1015 GeV.

FIG. 7. The same as Fig. 4 but for a right-handed neutrino. We also show lines indicating mν ¼ 0.05 eV and mν ¼ 0.08 eV with
purple solid lines.

FIG. 8. The same as Fig. 6 but for a right-handed neutrino.
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V. CONCLUSION

In this paper, we have calculated the decay rate of the
EW vacuum in the framework of the SM and also in various
models with extra fermions. We included the complete one-
loop corrections as well as large logarithmic terms in higher
loop corrections. We used a recently developed technique
to calculate functional determinants in the gauge sector,
which not only gives a prescription to perform a gauge
invariant calculation of the decay rate but also allows us to
calculate the functional determinants analytically. In addi-
tion, in calculating the decay rate of the EW vacuum, zero
modes show up in association with the dilatational and
gauge symmetries. We have properly taken into account
their effects, which was not possible in previous calcu-
lations. We have given an analytic formula of the decay rate
of the EW vacuum, which is also applicable to models that
exhibit classical scale invariance at a high energy scale.
The decay rate of the EW vacuum is sensitive to the

coupling constants in the SM and their RG behavior. We
have used three-loop RG equations for the study of the RG
behavior of the SM couplings. The result is used for the
precise calculation of the decay rate of the EW vacuum.
The decay rate of the EW vacuum is estimated to be

log10½γPl × Gyr Gpc3� ¼ −582þ40þ184þ144þ2
−45−329−218−1 ; ð5:1Þ

where the errors come from the Higgs mass, the top mass,
the strong coupling constant, and the renormalization scale,
respectively. Here, only the bounce configurations with
amplitude smaller than the Planck scale are taken into
account; for the decay rate of the EW vacuum, such a cutoff
of the bounce amplitude does not significantly affect the
result as far as it is not so far from the Planck scale. Since
H−4

0 ≃ 103 Gyr Gpc3, the lifetime is long enough compared
with the age of the Universe.
We have also considered models with extra fermions.

Since they typically make the EW vacuum more unstable,
the constraints on their masses and couplings are phenom-
enologically important. We have analyzed the decay rate
for the extensions of the SM with (i) vectorlike quarks,
(ii) vectorlike leptons, and (iii) a right-handed neutrino. We
have obtained a constraint on the parameter space for each
model, requiring that the lifetime be long enough. The
results constrain the Yukawa couplings that are larger than
about 0.3–0.5 if we do not consider the cutoff at the Planck
scale. The effect of the cutoff was found to be rather large
and the constraints on the Yukawa couplings become
weaker, at most, by 0.3 after including the cutoff.
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Note added.—The analytical and numerical results given in
this paper are consistent with those given in the latest
version of [24]; in the earlier version, (i) the calculation of
the J ¼ 0 component of the gauge and NG contributions,
(ii) the subtraction of the divergence, and (iii) the calculation
of the volume of SUð2Þ group, were not properly performed,
and have been corrected in the recent revision. The
differences between our numerical results and those in
[24] come mainly from the difference of the threshold
corrections to the MS top Yukawa coupling constant, which
is regarded as a theoretical uncertainty. In addition, there is a
difference in the treatment of the integration over the bounce
size, although it has little effect on the numerical results.

APPENDIX A: FUNCTIONAL DETERMINANT

In this Appendix, we present analytic formulas for
various functional determinants. For simplicity, we con-
sider the case with Uð1Þ gauge interaction. The charge of
the scalar field that is responsible for the instability, Φ, is
set to be þ1. Application of our results to the case of
general gauge groups is straightforward. We are interested
in the case where the Lagrangian has (classical) scale
invariance; the potential of Φ is given in Eq. (2.2), and the
bounce solution is obtained as Eq. (2.7).

1. Scalar contribution

We first consider a real scalar field, σ, which couples to
Φ as

V ¼ κσ2Φ†Φ; ðA1Þ

where κ is a positive coupling constant. The contribution to
the prefactor is given by

lnAðσÞ ¼ −
1

2
ln
Det½−∂2 þ κϕ̄2�

Det½−∂2� : ðA2Þ

First, we expand σ into partial waves:

σðr;ΩÞ ¼ αðσÞJ;mA;mB
ðrÞYJ;mA;mB

ðΩÞ: ðA3Þ

Here and hereafter, αðXÞJ;mA;mB
denotes the radial mode

function of X. For notational simplicity, the summations
over J, mA, and mB are implicit.
Since the fluctuation operator for partial waves does not

depend on mA and mB, we have ð2J þ 1Þ2 degeneracy for
each J. Summing up all the contributions,

lnAðσÞ ¼ −
1

2

X∞
J¼0

ð2J þ 1Þ2 ln Det½−ΔJ þ κϕ̄2�
Det½−ΔJ�

; ðA4Þ
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where

ΔJ ¼ ∂2
r þ

3

r
∂r −

L2

r2
: ðA5Þ

Then, using Eq. (2.21), we have

Det½−ΔJ þ κϕ̄2�
Det½−ΔJ�

¼ lim
r→∞

fðσÞðrÞ
r2J

; ðA6Þ

where the function fðσÞ satisfies

ð−ΔJ þ κϕ̄2ÞfðσÞ ¼ 0; ðA7Þ

and limr→0fðσÞðrÞ=r2J ¼ 1. The solution of the above
differential equation is given by

fðσÞ ¼ r2J
�
1þ jλj

8
ϕ̄2
Cr

2

�
1þzκ

2F1

�
1þ zκ; 2ðJ þ 1Þ þ zκ; 2ðJ þ 1Þ;− jλj

8
ϕ̄2
Cr

2

�
; ðA8Þ

where 2F1ða; b; c; zÞ is the hypergeometric function and

zκ ≡ −
1

2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8

κ

jλj
r �

: ðA9Þ

Taking the limit of r → ∞, we have

Det½−ΔJþ κϕ̄2�
Det½−ΔJ�

¼ Γð2Jþ1ÞΓð2Jþ2Þ
Γð2Jþ1− zκÞΓð2Jþ2þ zκÞ

: ðA10Þ

2. Higgs contribution

Using the bounce solution given in Eq. (2.9), the Higgs
mode fluctuation is parametrized as

Φ ¼ 1ffiffiffi
2

p ½ϕ̄ðrÞ þ αðhÞJ;mA;mB
ðrÞYJ;mA;mB

ðΩÞ�: ðA11Þ

Then, the Higgs contribution to the prefactor is given by

lnAðhÞ ¼ −
1

2

X∞
J¼0

ð2J þ 1Þ2 lnDet½−ΔJ − 3jλjϕ̄2�
Det½−ΔJ�

: ðA12Þ

The functional determinant of the Higgs mode can be
obtained with the same procedure as the case of the scalar
contribution, taking κ → −3jλj:

Det½−ΔJ − 3jλjϕ̄2�
Det½−ΔJ�

¼ 2Jð2J − 1Þ
ð2J þ 3Þð2J þ 2Þ : ðA13Þ

As we can see, the above ratio vanishes for J ¼ 0 and
J ¼ 1=2, which are due to the scale invariance and the
translational invariance, respectively.

3. Fermion contribution

Let us consider chiral fermions ψL and ψR with the
following Yukawa term:

LðYukawaÞ ¼ yΦψ̄LψR þ H:c: ðA14Þ

The contribution to the prefactor is given by

lnAðψÞ ¼ ln
Det½=∂ þ yffiffi

2
p ϕ̄�

Det½=∂�

¼ 1

2
ln
Det½ð=∂ þ yffiffi

2
p ϕ̄Þð−=∂ þ yffiffi

2
p ϕ̄Þ�

Det½−=∂=∂� : ðA15Þ

Taking the basis given in [117], we expand it as

lnAðψÞ ¼
X∞
J¼0

ð2J þ 1Þð2J þ 2Þ lnDetM
ðψÞ
J

DetcMðψÞ
J

; ðA16Þ

where

MðψÞ
J ¼

0@−ΔJ þ y2

2
ϕ̄2 yffiffi

2
p ϕ̄0

yffiffi
2

p ϕ̄0 −ΔJþ1=2 þ y2

2
ϕ̄2

1A; ðA17Þ

with ϕ̄0 ¼ dϕ̄=dr, and cMðψÞ
J is obtained from MðψÞ

J by
replacing ϕ̄ → 0 and ϕ̄0 → 0.
Using Eq. (2.21), we have

DetMðψÞ
J

DetcMðψÞ
J

¼
�
lim
r→∞

Det½Ψ1Ψ2�
r4Jþ1

��
limr→0

Det½Ψ1Ψ2�
r4Jþ1

�
−1
;

ðA18Þ

where

MðψÞ
J ΨiðrÞ ¼ 0: ðA19Þ

Solutions of Eq. (A19) can be expressed by using two
functions χðψÞ and ηðψÞ as
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Ψi ¼
0@ ffiffi

2
p
yϕ̄

1
r2Jþ3∂rr2Jþ3χðψÞi

χðψÞi

1Aþ
0@− 2

y2ϕ̄2
1

r2Jþ3∂rr2Jþ3ηðψÞi

0

1A;

ðA20Þ

where i ¼ 1 and 2 are for two independent solutions of
Eq. (A19), and χðψÞ and ηðψÞ obey�

−ΔJþ1=2 þ
ϕ̄0

ϕ̄

1

r2Jþ3
∂rr2Jþ3 þ y2

2
ϕ̄2

�
χðψÞi

¼
ffiffiffi
2

p
ϕ̄0

yϕ̄2

1

r2Jþ3
∂rr2Jþ3ηðψÞi ; ðA21Þ�

−ΔJþ1=2 þ
ϕ̄0

ϕ̄

1

r2Jþ3
∂rr2Jþ3 þ y2

2
ϕ̄2

�
ηðψÞi ¼ 0: ðA22Þ

For the first solution, we take

χðψÞ1 ðrÞ ¼ fðψÞðrÞ; ηðψÞ1 ðrÞ ¼ 0; ðA23Þ

where the function fðψÞ satisfies

�
−ΔJþ1=2 þ

ϕ̄0

ϕ̄

1

r2Jþ3
∂rr2Jþ3 þ y2

2
ϕ̄2

�
fðψÞ ¼ 0; ðA24Þ

and

lim
r→0

fðψÞðrÞ
r2Jþ1

¼ 1: ðA25Þ

The analytic formula of fðψÞ is given by

fðψÞðrÞ ¼ r2Jþ1

�
1þ jλj

8
ϕ̄2
Cr

2

�
−i yffiffiffi

jλj
p

2F1

�
2J þ 2 − i

yffiffiffiffiffijλjp ; 1 − i
yffiffiffiffiffijλjp ; 2J þ 3;−

jλj
8
ϕ̄2
Cr

2

�
; ðA26Þ

and fðψÞ behaves as

lim
r→∞

fðψÞðrÞ
r2J−1

¼ 8

jλjϕ̄2
C

Γð2J þ 1ÞΓð2J þ 3Þ
Γð2J þ 2 − i yffiffi

λ
p ÞΓð2J þ 2þ i yffiffi

λ
p Þ :

ðA27Þ

For the second solution, we take

ηðψÞ2 ðrÞ ¼ fðψÞðrÞ: ðA28Þ

Then, χðψÞ2 behaves as

lim
r→0

χðψÞ2 ðrÞ
r2Jþ3

¼ −
ffiffiffi
2

p
ϕ̄00ð0Þ
yϕ̄2

C

J þ 1

2J þ 3
; ðA29Þ

lim
r→∞

χðψÞ2 ðrÞ
r2Jþ1

¼
ffiffiffi
2

p

yϕ̄C

½Γð2Jþ2Þ�2
Γð2Jþ2− i yffiffi

λ
p ÞΓð2Jþ2þ i yffiffi

λ
p Þ : ðA30Þ

Using these solutions, we get

lim
r→0

Det½Ψ1Ψ2�
r4Jþ1

¼ 8ðJ þ 1Þ
y2ϕ̄2

C

; ðA31Þ

lim
r→∞

Det½Ψ1Ψ2�
r4Jþ1

¼ 8ðJþ1Þ
y2ϕ̄2

� ½Γð2Jþ2Þ�2
Γð2Jþ2− i yffiffi

λ
p ÞΓð2Jþ2þ i yffiffi

λ
p Þ
�
2

; ðA32Þ

and hence

DetMðψÞ
J

DetcMðψÞ
J

¼
� ½Γð2J þ 2Þ�2
Γð2J þ 2 − i yffiffi

λ
p ÞΓð2J þ 2þ i yffiffi

λ
p Þ
�
2

: ðA33Þ

4. Gauge contribution

We consider the contributions from gauge bosons, NG
bosons, and Faddeev-Popov ghosts. The Lagrangian is
given in the following form:

L ¼ 1

4
FμνFμν þ ½ð∂μ − igAμÞΦ�†ð∂μ − igAμÞΦ

þ VðΦÞ þ LGF þ LFP; ðA34Þ
where Fμν is the field strength tensor, and

LGF ¼
1

2ξ
F 2; ðA35Þ

LFP ¼ c̄ð−∂μ∂μÞc; ðA36Þ
with

F ¼ ∂μAμ: ðA37Þ
Since Faddeev-Popov ghosts do not directly couple to

the Higgs field with our choice of the gauge fixing function,
we have

lnAðc;c̄Þ ¼ 0: ðA38Þ
At the one-loop level, lnAðAμ;φÞ is given by

lnAðAμ;φÞ ¼ −
1

2
ln
DetMðAμ;φÞ

DetcMðAμ;φÞ ; ðA39Þ
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where

MðAμ;φÞ ¼

0B@−∂2δμν þ
�
1 −

1

ξ

�
∂μ∂ν þ g2ϕ̄2 gð∂νϕ̄Þ − gϕ̄∂ν

2gð∂μϕ̄Þ þ gϕ̄∂μ −∂2 þ Vφφ

1CA; ðA40Þ

with Vφφ ¼ d2V=dφ2.
For the partial wave expansions, we use the following basis:

Aμðr;ΩÞ ¼ αðSÞJ;mA;mB
ðrÞ xμ

r
YJ;mA;mB

ðΩÞ þ αðLÞJ;mA;mB
ðrÞ r

L
∂μYJ;mA;mB

ðΩÞ þ αðT1ÞJ;mA;mB
ðrÞiεμνρσVð1Þ

ν LρσYJ;mA;mB
ðΩÞ

þ αðT2ÞJ;mA;mB
ðrÞiεμνρσVð2Þ

ν LρσYJ;mA;mB
ðΩÞ; ðA41Þ

φðr;ΩÞ ¼ αðφÞJ;mA;mB
ðrÞYJ;mA;mB

ðΩÞ; ðA42Þ
where VðiÞ

ν ’s are arbitrary independent vectors and εμνρσ is a fully antisymmetric tensor. Then, we have

lnAðAμ;φÞ ¼ −
1

2
ln
DetMðS;φÞ

0

DetcMðS;φÞ
0

−
1

2

X∞
J¼1=2

ð2J þ 1Þ2
�
ln
DetMðS;L;φÞ

J

DetcMðS;L;φÞ
J

þ 2 ln
DetMðTÞ

J

DetcMðTÞ
J

�
; ðA43Þ

where

MðS;φÞ
0 ¼

 
1
ξ ð−Δ1=2 þ ξg2ϕ̄2Þ gϕ̄0 − gϕ̄∂r

2gϕ̄0 þ gϕ̄ 1
r3 ∂rr3 −Δ0 þ Vφφ

!
; ðA44Þ

MðS;L;φÞ
J ¼

0BB@
−ΔJ þ 3

r2 þ g2ϕ̄2 − 2L
r2 gϕ̄0 − gϕ̄∂r

− 2L
r2 −ΔJ − 1

r2 þ g2ϕ̄2 − L
r gϕ̄

2gϕ̄0 þ gϕ̄ 1
r3 ∂rr3 − L

r gϕ̄ −ΔJ þ Vφφ

1CCAþ
�
1 −

1

ξ

�0BB@
Δ1=2 −L∂r

1
r 0

L
r4 ∂rr3 − L2

r2 0

0 0 0

1CCA; ðA45Þ

and

MðTÞ
J ¼ −ΔJ þ g2ϕ̄2: ðA46Þ

Three independent solutions of MðS;φÞ
J Ψi ¼ 0 (with

i ¼ 1–3) can be constructed from the functions, χi, ηi,
and ζi, as [28,29]

12

Ψi ≡

0BB@
ΨðtopÞ

i

ΨðmidÞ
i

ΨðbotÞ
i

1CCA ¼

0BB@
∂rχi
L
r χi

gϕ̄χi

1CCAþ

0BB@
L
r

1
g2ϕ̄2 ηi

1
g2ϕ̄2

1
r2 ∂rr2ηi

0

1CCA

þ

0BB@
− 2ϕ̄0

g2ϕ̄3 ζi

0

1
gϕ̄
ζi

1CCA; ðA47Þ

where χi, ηi, and ζi obey

ΔJχi ¼
L
r
2ϕ̄0

g2ϕ̄3
ηi þ

1

r3
∂rr3

2ϕ̄0

g2ϕ̄3
ζi − ξζi; ðA48Þ

�
ΔJ − 2

ϕ̄0

ϕ̄

1

r2
∂rr2 − g2ϕ̄2

�
ηi ¼ −2

L
r
ϕ̄0

ϕ̄
ζi; ðA49Þ

ΔJζi ¼ 0: ðA50Þ

We also note useful relations:

1

r3
∂rr3Ψ

ðtopÞ
i ¼ L

r
ΨðmidÞ

i − ξζi; ðA51Þ

1

r
∂rrΨ

ðmidÞ
i ¼ L

r
ΨðtopÞ

i þ ηi; ðA52Þ

ΨðbotÞ
i ¼ rgϕ̄

L
ΨðmidÞ

i −
1

gϕ̄L
1

r
∂rr2ηi þ

1

gϕ̄
ζi: ðA53Þ

The first solution is obtained by setting ζ1 ¼ 0 and
η1 ¼ 0 as

χ1 ¼ r2J; ðA54Þ
12The function η in the present analysis corresponds to η=L in

[28,29]; such a rescaling makes the formulas simpler.
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resulting in

Ψ1 ¼

0B@ 2Jr2J−1

Lr2J−1

gϕ̄r2J

1CA: ðA55Þ

For the second solution, we set ζ2 ¼ 0 and

η2 ¼ fðηÞ; ðA56Þ
where the function fðηÞ satisfies�

ΔJ − 2
ϕ̄0

ϕ̄

1

r2
∂rr2 − g2ϕ̄2

�
fðηÞ ¼ 0; ðA57Þ

and

lim
r→0

fðηÞðrÞ
r2J

¼ 1: ðA58Þ

We can find an analytic formula of fðηÞ as

fðηÞ ¼ r2J
�
1þ jλj

8
ϕ̄2
Cr

2

�
zg

× 2F1

�
1þ zg; 2ðJ þ 1Þ þ zg; 2ðJþ 1Þ;− jλj

8
ϕ̄2
Cr

2

�
;

ðA59Þ

with

zg ¼ −
1

2

0B@1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8

g2

jλj

s 1CA: ðA60Þ

Then, we get

lim
r→∞

fðηÞðrÞ
r2J−2

¼ 8

jλjϕ̄2
C

Γð2Jþ1ÞΓð2Jþ2Þ
Γð2Jþ1− zgÞΓð2Jþ2þ zgÞ

: ðA61Þ

Using Eqs. (A51)–(A53), we obtain

lim
r→0

Ψ2 ¼

0BBB@
Lr2Jþ1

8ðJþ1Þ
Jþ2

4ðJþ1Þ r
2Jþ1

− 2
gϕ̄C

Jþ1
L r2J

1CCCA; ðA62Þ

lim
r→∞

Ψ2 ¼
Γð2J þ 1ÞΓð2J þ 2Þ

Γð2J þ 1 − zgÞΓð2J þ 2þ zgÞ

×

0BBB@
4L

ð2Jþ1Þjλjϕ̄2 r2J−1 ln r

8ðJþ1Þ
ð2Jþ1Þjλjϕ̄2

C
r2J−1 ln r

− 2J
gLϕ̄C

r2J

1CCCA: ðA63Þ

The last solution can be obtained with

ζ3 ¼ r2J: ðA64Þ
The asymptotic form of η3 is given by

lim
r→0

η3ðrÞ
r2Jþ2

¼ Ljλjϕ̄2
C

16ðJ þ 1Þ ; ðA65Þ

lim
r→∞

η3ðrÞ
r2J

¼ L
2ðJ þ 1Þ : ðA66Þ

Using Eqs. (A51)–(A53), we have

lim
r→0

Ψ3 ¼

0BBB@
− ξ

4
r2Jþ1

− Jξ
2L r

2Jþ1

1
gϕ̄C

r2J

1CCCA; ðA67Þ

lim
r→∞

Ψ3 ¼

0BBB@
J−ξðJþ1Þ
4ðJþ1Þ r2Jþ1

J½ðJþ2Þ−ξðJþ1Þ�
2LðJþ1Þ r2Jþ1

g
jλjϕ̄C

ðJþ2Þ−ξðJþ1Þ
ðJþ1Þ2 r2J

1CCCA: ðA68Þ

We also need three independent solutions around the
false vacuum. We take

ðΨ̂1Ψ̂2Ψ̂3Þ¼

0BBB@
2Jr2J−1 ðJþ1Þξ−J

2L2 r2Jþ1 0

Lr2J−1 ðJþ1Þξ−ðJþ2Þ
4LðJþ1Þ r2Jþ1 0

0 0 r2J

1CCCA: ðA69Þ

Then, using Eq. (2.21) with combining the above
expressions, we obtain the ratio of the functional determi-
nants for S, L, and NG modes as

DetMðS;L;φÞ
J

DetcMðS;L;φÞ
J

¼ J
J þ 1

Γð2J þ 1ÞΓð2J þ 2Þ
Γð2J þ 1 − zgÞΓð2J þ 2þ zgÞ

:

ðA70Þ
The functional determinant for T modes can be obtained by
using the result for the scalar contribution. With the
replacement κ → g2 in Eq. (A10):

DetMðTÞ
J

DetcMðTÞ
J

¼ Γð2J þ 1ÞΓð2J þ 2Þ
Γð2J þ 1 − zgÞΓð2J þ 2þ zgÞ

: ðA71Þ

For J ¼ 0, the solutions of MðS;φÞ
0 Ψ ¼ 0 can be decom-

posed as [28,29]

Ψi ≡
 
ΨðtopÞ

i

ΨðbotÞ
i

!
¼
� ∂rχi

gϕ̄χi

�
þ
 
− 2ϕ̄0

g2ϕ̄3 ζi
1
gϕ̄
ζi

!
; ðA72Þ
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with i ¼ 1 and 2 for two independent solutions, where the
functions χi and ζi satisfy

Δ0χi ¼
1

r3
∂rr3

2ϕ̄0

g2ϕ̄3
ζi − ξζi; ðA73Þ

Δ0ζi ¼ 0: ðA74Þ

Notice that there are useful relations:

1

r3
∂rr3Ψ

ðtopÞ
i ¼ −ξζi; ðA75Þ

∂r
1

gϕ̄
ΨðbotÞ

i ¼ ΨðtopÞ
i þ 1

g2ϕ̄2
∂rζi: ðA76Þ

The first solution is given by

Ψ1 ¼
�

0
ϕ̄
ϕ̄C

�
: ðA77Þ

The second solution can be obtained with

ζ2 ¼ 1; ðA78Þ

giving rise to

Ψ2 ¼
� −ξ r

4

−ξgϕ̄ r2
8

�
: ðA79Þ

Then, using Eq. (2.21), we obtain

DetMðS;φÞ
0

DetcMðS;φÞ
0

¼ 0: ðA80Þ

The vanishing of the above ratio is due to the existence of
zero mode. The treatment of the zero mode is discussed in
Appendix B.

APPENDIX B: ZERO MODES

In this Appendix, we discuss the zero modes associated
with the dilatation, translation, and global transformation.

1. Dilatational zero mode

In J ¼ 0 mode of the Higgs fluctuation, there exists a
dilatational zero mode. The dilatational transformation is
parametrized by ϕ̄C; with ϕ̄C → ϕ̄C þ δϕ̄C, such a change
can be absorbed by

h → hþ δϕ̄CG̃DY0;0;0 þ � � � ; ðB1Þ

where we neglect higher order terms in δϕ̄C, and

G̃DðrÞ ¼
ffiffiffiffiffiffiffi
2π2

p dϕ̄

dϕ̄C
: ðB2Þ

The second term in the right-hand side of Eq. (B1) is
nothing but the change of the amplitude of the dilatational

zero mode; one can easily check MðhÞ
0 G̃D ¼ 0.

In order to translate the path integral over the dilatational
zero mode to the integration over ϕ̄C, we calculate

Det½−Δ0 − 3jλjϕ̄2 þ νρDðrÞ�
Det½−Δ0�

; ðB3Þ

with13

ρDðrÞ ¼
15

16π
jλj2ϕ̄2

Cϕ̄ðrÞ2: ðB4Þ

Notice that the condition (2.40) is satisfied with the above
choice of ρD, i.e.,Z

drr3G̃2
DðrÞρDðrÞ ¼ 2π: ðB5Þ

The ratio of the determinant can be obtained from Eq. (A10)
by replacing κ→−3jλjþ 15

16πjλj2ϕ̄2
Cν. Expanding the result

with respect to ν, we get

Det½−Δ0 − 3jλjϕ̄2 þ νρDðrÞ�
Det½−Δ0�

¼ −ν
jλj
16π

ϕ̄2
C þOðν2Þ:

ðB6Þ

Thus, we obtain				Det½−Δ0 − 3jλjϕ̄2�
Det½−Δ0�

				−1=2
→
Z

dϕ̄C

ffiffiffiffiffiffiffiffi
16π

jλj

s
1

ϕ̄C
¼
Z

d lnR

ffiffiffiffiffiffiffiffi
16π

jλj

s
: ðB7Þ

Here, we take an absolute value since there is a negative
mode [26,27].

2. Translational zero mode

In J ¼ 1=2 mode of the Higgs fluctuation, translational
zero modes exist. The translation is parametrized by the
center of the bounce. The shift of the center of the bounce to
aμ can be absorbed by the transformation of the Higgs
mode as

h → hþ aμG̃TY1=2;μ þ � � � ; ðB8Þ

13A prescription used in [25] is consistent with our argument,
where ρD is a constant.
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where

G̃TðrÞ ¼ −
πffiffiffi
2

p dϕ̄
dr

; ðB9Þ

and

Y1=2;μðx̂Þ ¼
ffiffiffi
2

p

π
x̂μ; ðB10Þ

with x̂μ ¼ xμ=jxj. Notice that Y1=2;μ is given by a linear
combination of Y1=2;mA;mB

with the same normalization as
Y1=2;mA;mB

. Thus, as noted in [27], the path integral over the
translational zero modes can be converted to the integration
over the spacetime volume.
In order to take care of the translational zero mode, we

calculate

Det½−Δ1=2 − 3jλjϕ̄2 þ ρTðrÞν�
Det½−Δ1=2�

; ðB11Þ

with

ρTðrÞ ¼
3jλj
4π

: ðB12Þ

One can see thatZ
drr3G̃2

TðrÞρTðrÞ ¼ 2π; ðB13Þ

which is consistent with Eq. (2.40).
Following the argument in Sec. II C, we have

�
Det½−Δ1=2−3jλjϕ̄2�

Det½−Δ1=2�
�−2

→
Z

d4a lim
r→∞

 
f̌ðhÞ1=2

r

1A−2

; ðB14Þ

where

½−Δ1=2 − 3jλjϕ̄2�f̌ðhÞ1=2 ¼ −ρTf
ðhÞ
1=2; ðB15Þ

with

fðhÞ1=2 ¼ −
4

jλjϕ̄3
C

dϕ̄
dr

: ðB16Þ

The function f̌ðhÞ1=2 behaves as

lim
r→∞

f̌ðhÞ1=2

r
¼ 1

4πϕ̄2
C

: ðB17Þ

Thus, we obtain�
Det½−Δ1=2 − 3jλjϕ̄2�

Det½−Δ1=2�
�−2

→

�
32π

jλj
�

2
�jλj
8
ϕ̄2
C

�
2

V4D ¼
�
32π

jλj
�

2 V4D

R4
; ðB18Þ

where V4D is the spacetime volume.

3. Gauge zero mode

In J ¼ 0 mode of the gauge field, we have a gauge zero
mode. For the case of the Uð1Þ gauge symmetry, the
bounce solution is parametrized as Eq. (2.7) with the
parameter θ. The path integral over the gauge zero mode
can be understood as the integration over the variable θ, as
we see below.
The effect of the shift θ → θ þ δθ can be absorbed by the

transformation of the NG mode as

φ → φþ δθG̃GY0;0;0 þ � � � ; ðB19Þ
where

G̃G ¼
ffiffiffiffiffiffiffi
2π2

p
ϕ̄: ðB20Þ

Using the equation of motion of the bounce solution, the
following relation holds:

MðS;φÞ
0

�
0

G̃G

�
¼ 0: ðB21Þ

In order to deal with gauge zero mode, we calculate

Det½MðS;φÞ
0 þ νρGðrÞ�

DetcMðS;φÞ
0

; ðB22Þ

with

ρGðrÞ ¼
jλj2
16π

ϕ̄Cϕ̄: ðB23Þ
Notice that the following relation holds:Z

drr3G̃2
GðrÞρGðrÞ ¼ 2π: ðB24Þ

For the evaluation of the ratio (B22) at the leading order
in ν, we introduce the function Ψ̌1 satisfying

MðS;φÞ
0 Ψ̌1ðrÞ ¼ −ρGðrÞΨ1ðrÞ; ðB25Þ

with which�
DetMðS;φÞ

0

DetcMðS;φÞ
0

�−1=2

→
Z

dθ

�
limr→∞

Det½Ψ̌1ðrÞΨ2ðrÞ�
r

�−1=2

×

�
limr→0

Det½Ψ1ðrÞΨ2ðrÞ�
r

�
1=2

:

ðB26Þ

We can decompose Ψ̌1 as

Ψ̌1 ¼
� ∂rχ̌1

gϕ̄χ̌1

�
þ
0@− 2ϕ̄0

g2ϕ̄3 ζ̌1

1
gϕ̄
ζ̌1

1A; ðB27Þ
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where χ̌1 and ζ̌1 satisfies

Δ0χ̌1 ¼
1

r3
∂rr3

2ϕ̄0

g2ϕ̄3
ζ̌1 − ξζ̌1; ðB28Þ

Δ0ζ̌1 ¼ gρG
ϕ̄2

ϕ̄C
: ðB29Þ

We can solve ζ̌1 as

ζ̌1ðrÞ ¼ −
jλjg
16π

ϕ̄ðrÞ; ðB30Þ

based on which Ψ̌1 should behave as

lim
r→∞

Ψ̌1 ¼
0@ ξg

4πϕ̄Cr

jλj
16π

1A: ðB31Þ

Thus, we obtain�
DetMðS;φÞ

0

DetcMðS;φÞ
0

�−1=2

→
Z

dθ

ffiffiffiffiffiffiffiffi
16π

jλj

s
: ðB32Þ

APPENDIX C: INFINITE SUM OVER
ANGULAR MOMENTUM

In this Appendix, we perform various infinite sums
appearing in the calculation of functional determinants.
We first evaluate the following sum:

IσðzÞ ¼
X∞
J¼0

ð2J þ 1Þ2
ð1þ εσÞ2J

ln
Γð2J þ 1ÞΓð2J þ 2Þ

Γð2J þ 1 − zÞΓð2J þ 2þ zÞ ;

ðC1Þ

which can be used for the calculation of the scalar
contribution to the prefactor. Notice that J ¼ 0; 1=2; 1;…
is half integer. In addition, here, z is a complex number
satisfying

−2 < ℜðzÞ < 1: ðC2Þ
For εσ > 0, the sum converges thanks to the fac-
tor 1=ð1þ εσÞ2J.
First, we rewrite the log-gamma functions with integrals

of digamma functions as

IσðzÞ ¼
X∞
J¼0

ð2J þ 1Þ2
ð1þ εσÞ2J

Z
2Jþ1

∞
dx½ψΓðxÞ − ψΓðx − zÞ þ ψΓðxþ 1Þ − ψΓðxþ 1þ zÞ�; ðC3Þ

where ψΓðzÞ is the digamma function. Then, we use the following relation:

ψΓðxÞ − ψΓðyÞ ¼
Z

1

0

uy−1 − ux−1

1 − u
du; ðC4Þ

which is valid for ℜðxÞ > 0 and ℜðyÞ > 0, and we obtain

IσðzÞ ¼
X∞
J¼0

ð2J þ 1Þ2
ð1þ εσÞ2J

Z
2Jþ1

∞
dx
Z

1

0

du
ux−z−1ð1 − uzÞð1 − uzþ1Þ

1 − u
: ðC5Þ

Notice that this is verified only in region (C2). Then, we interchange the two integrals,14 and integrate over x first.
Consequently, it becomes

IσðzÞ ¼
X∞
J¼0

ð2J þ 1Þ2
ð1þ εσÞ2J

Z
1

0

du
u2Jð1 − uzÞð1 − u1þzÞ

uzð1 − uÞ ln u : ðC6Þ

Notice that the integration over u is convergent.
Since we have regularized the sum, the result should be finite. Thus, we can take the sum first:

IσðzÞ ¼ ð1þ εσÞ2
Z

1

0

du
ð1 − uzÞð1 − u1þzÞð1þ uþ εσÞ
uzð1 − uÞð1þ εσ − uÞ3 ln u : ðC7Þ

14This is justified when Z
2Jþ1

∞
dx
Z

1

0

du

				 ux−z−1ð1 − uzÞð1 − uzþ1Þ
1 − u

				 < ∞:
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We can see that new poles appear at u ¼ 1þ εσ, but the integral is still convergent for positive εσ . Then, using

1 − uz

ln u
¼ −z

Z
1

0

dtuzt; ðC8Þ

we obtain

IσðzÞ ¼ −zð1þ εσÞ2
Z

1

0

du
Z

1

0

dt
ð1 − u1þzÞð1þ uþ εσÞ

uzð1−tÞð1 − uÞð1þ εσ − uÞ3 : ðC9Þ

Interchanging the integrals and integrating over u, we get

IσðzÞ ¼ z
Z

1

0

dt

�ð1þ εσÞðz − 1þ tzεσ − εσÞ
ε2σ

þ ð1þ εσÞ2ð2þ εσÞ½ψΓð1þ tz − zÞ − ψΓð1þ tzÞ�
ε3σ

þ 2þ ð3þ 2z − 2tzÞεσ þ ð1þ z − tzÞ2ε2σ
ð1þ tz − zÞε3σ 2F1

�
1; 1þ tz − z; 2þ tz − z;

1

1þ εσ

�
−
ð1þ εσÞð2þ εσ − 2tzεσ þ t2z2ε2σÞ

ð1þ tzÞε3σ 2F1

�
1; 1þ tz; 2þ tz;

1

1þ εσ

��
; ðC10Þ

where 2F1ða; b; c; zÞ is the hypergeometric function. Since we do not need higher order terms in εσ , we expand Iσ as

IσðzÞ ¼
Z

1

0

dt



−

1

ε2σ
zðzþ 1Þ − 1

2εσ
zðzþ 1Þð4þ z − 2tzÞ þ ln εσ

6
z2ð1þ zÞð1þ 2z − 6tzþ 6t2zÞ

− zþ z2
�
−
53

36
þ tþ 1

6
ð1 − tÞHðtz − zÞ þ 1

6
tHðtzÞ

�
þ z3

12
½−7þ 14tþ 6ð1 − tÞ2Hðtz − zÞ þ 6t2HðtzÞ�

þ z4

9
½−1þ 3ð1 − tÞtþ 3ð1 − tÞ3Hðtz − zÞ þ 3t3HðtzÞ� þOðεσÞ

�
; ðC11Þ

where HðzÞ is the harmonic number.
After the final integral, we obtain

IσðzÞ ¼ −
1

ε2σ
zðzþ 1Þ − 2

εσ
zðzþ 1Þ þ 1

6
z2ðzþ 1Þ2 ln εσ þ SσðzÞ þOðϵσÞ; ðC12Þ

where

SσðzÞ ¼
1

6
zð1þ zÞð1þ 2zÞ½lnΓð1þ zÞ − lnΓð1 − zÞ� −

�
zþ z2 þ 1

6

�
½ψ ð−2Þ

Γ ð1þ zÞ þ ψ ð−2Þ
Γ ð1 − zÞ�

þ ð1þ 2zÞ½ψ ð−3Þ
Γ ð1þ zÞ − ψ ð−3Þ

Γ ð1 − zÞ� − 2½ψ ð−4Þ
Γ ð1þ zÞ þ ψ ð−4Þ

Γ ð1 − zÞ� þ 1

6
γEz2ðzþ 1Þ2 − z −

35

36
z2 −

z4

18

þ 1

2
ln 2π þ 2 lnAG þ ζð3Þ

2π2
: ðC13Þ

We can repeat a similar calculation for

Iψ ðzÞ ¼
X∞
J¼0

ð2J þ 1Þð2J þ 2Þ
ð1þ εψÞ2J

ln

� ½Γð2J þ 2Þ�2
Γð2J þ 2þ zÞΓð2J þ 2 − zÞ

�
2

; ðC14Þ

which can be used for the calculation of the fermionic contribution to the prefactor. Here, −2 < ℜðzÞ < 2. The result is

Iψ ðzÞ ¼ −
2

ε2ψ
z2 −

5

εψ
z2 þ 1

3
z2ðz2 − 2Þ ln εψ þ Sψ ðzÞ þOðϵψÞ; ðC15Þ
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where

Sψ ðzÞ ¼
2

3
zðz2 − 1Þ½lnΓð1þ zÞ− lnΓð1− zÞ�− 2

�
z2 −

1

3

�
½ψ ð−2Þ

Γ ð1þ zÞ þψ ð−2Þ
Γ ð1− zÞ� þ 4z½ψ ð−3Þ

Γ ð1þ zÞ− ψ ð−3Þ
Γ ð1− zÞ�

− 4½ψ ð−4Þ
Γ ð1þ zÞ þ ψ ð−4Þ

Γ ð1− zÞ� þ 1

3
z2ðz2 − 2ÞγE −

z2

9
ðz2 þ 31Þ þ 4 lnAG þ ζð3Þ

π2
: ðC16Þ

Next, we consider

Ih ¼
X∞
J¼1

ð2J þ 1Þ2
ð1þ εhÞ2J

ln
2Jð2J − 1Þ

ð2J þ 3Þð2J þ 2Þ ; ðC17Þ

which is for the calculation of the Higgs contribution. Using
a similar technique as in the previous cases, we obtain

Ih ¼−
X∞
J¼1

ð2Jþ1Þ2
ð1þ εhÞ2J

Z
3

0

dx

�
1

xþ2J
þ 1

xþ2J−1

�
: ðC18Þ

Then, performing the sum first, Ih is obtained as

Ih ¼ −
6

ε2h
−
12

εh
þ 6 ln εh þ

3

2
þ 6γE þ 12 lnAG

þ 9 ln 2þ 5 ln 3þOðεhÞ: ðC19Þ
Finally, for the gauge and NG contributions, let us

consider

IA ¼
X∞
J¼1=2

ð2J þ 1Þ2
ð1þ εAÞ2J

ln
2J

2J þ 2
: ðC20Þ

Similar to Ih, it is expressed as

IA ¼ −
X∞
J¼1=2

ð2J þ 1Þ2
ð1þ εAÞ2J

Z
2

0

dx
1

xþ 2J
; ðC21Þ

which results in

IA ¼ −
2

ε2A
−

4

εA
þ 2

3
ln εA −

3

2
þ 2

3
γE þ ln 2

þ 4 lnAG þOðϵAÞ: ðC22Þ

APPENDIX D: RENORMALIZATION
WITH MS SCHEME

In this Appendix, we relate the regularization based on
the angular momentum expansion, which we call angular
momentum regularization, and the dimensional regulariza-
tion. In particular, we derive the relation between εX, which
shows up in the angular momentum regularization, and ε̄D,
which is for dimensional regularization.

1. Scalar field

Let us start with the scalar contribution. For this purpose,
let us consider ½lnAðσÞ�div, defined in (2.57).

First, we calculate ½lnAðσÞ�div with angular momentum
regularization with using εσ as a regularization parameter.
The expansion of Eq. (2.59) is exactly the same as that with
respect to κ. Thus, we get�
ln
Det½−ΔJþκϕ̄2�

Det½−ΔJ�
�
Oðκ2Þ

¼2κ

jλj
1

2Jþ1
þ
�
2κ

jλj
�

2
�

1

2ð2Jþ1Þ2þ
1

2Jþ1
−ψ ð1Þð2Jþ1Þ

�
;

ðD1Þ

where ψ ðnÞðzÞ is the polygamma function. Summing over J,
we get

½lnAðσÞ�div;εσ ¼ −
κ

jλj
�
1

ε2σ
þ 2

εσ
þ κ

3jλj ln εσ
�

−
κ

jλj
�
1þ κ

18jλj
�
þOðεσÞ: ðD2Þ

As is expected, it has the same divergence as
½lnAðσÞ�εσ does.
Next, we directly calculate ½lnAðσÞ�div by using the

dimensional regularization. Using the ordinary Feynman
rules, we obtain

½lnAðσÞ�div;ε̄D
¼−

1

2

�
κ

Z
dDk
ð2πÞD

1

k2
F½ϕ̄2�ð0Þ

−
κ2

2

Z
dDk
ð2πÞD

dDk0

ð2πÞD
1

k2
F½ϕ̄2�ðk−k0Þ 1

k02
F½ϕ̄2�ðk0−kÞ

�
;

ðD3Þ

where F½� � �� is the Fourier transform of the argument. With
performing the integration, we obtain

½lnAðσÞ�div;ε̄D ¼ κ2

3jλj2
�

1

2ε̄D
þ 5

6
þ γE þ ln

μR
2

�
: ðD4Þ

Comparing Eqs. (D2) and (D4), we obtain the relation
between the two regularizations as�
1

ε2σ
þ 2

εσ
þ κ

3jλj lnεσ
�
→−1−

κ

3jλj
�

1

2ε̄D
þ1þ γEþ ln

μR
2

�
:

ðD5Þ
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2. Higgs

For the Higgs case, the relation between εh and ε̄D can be
obtained from Eq. (D5) with the replacement of κ → −3jλj:

1

ε2h
þ 2

εh
− ln εh →

1

2ε̄D
þ γE þ ln

μR
2
: ðD6Þ

Notice that the zero modes have nothing to do with the UV
divergence.

3. Fermion

Next, we derive the relation for the fermionic contribu-
tion. As discussed in [24], it is convenient to expand with
respect to y. The expansion in Eq. (2.57) is equivalent to

½lnAðψÞ�div;εψ ¼
X∞
J¼0

ð2J þ 1Þð2J þ 2Þ
ð1þ εψÞ2J

8<:
"
ln
DetMðψÞ

J

DetcMðψÞ
J

#
Oðy2Þ

þ
"
ln
DetMðψÞ

J;diag

DetcMðψÞ
J;diag

#
Oðy4Þ

−

"
ln
DetMðψÞ

J;diag

DetcMðψÞ
J;diag

#
Oðy2Þ

9=;; ðD7Þ

where

MðψÞ
J;diag ¼

0B@−ΔJ þ y2

2
ϕ̄2 0

0 −ΔJþ1=2 þ y2

2
ϕ̄2

1CA; ðD8Þ

and cMðψÞ
J is obtained from MðψÞ

J by taking ϕ̄ → 0. From Eq. (A10), we have

DetMðψÞ
J;diag

DetcMðψÞ
J;diag

¼ Γð2J þ 1ÞΓð2J þ 2ÞΓð2J þ 2ÞΓð2J þ 3Þ
Γð2J þ 1 − z̃yÞΓð2J þ 2þ z̃yÞΓð2J þ 2 − z̃yÞΓð2J þ 3þ z̃yÞ

; ðD9Þ

where

z̃y ¼ −
1

2

0B@1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4

y2

jλj

s 1CA: ðD10Þ

Then, together with Eq. (A33), we have

½lnAðψÞ�div;εψ ¼ y2

jλj
�
2

ε2ψ
þ 5

εψ
þ 1

3

y2 þ 2jλj
jλj ln εψ

�
þ 31

9

y2

jλj þ
1

18

y4

jλj2 þOðεψ Þ: ðD11Þ

We can also calculate ½lnAðψÞ�div with dimensional regularization:

½lnAðψÞ�div;ε̄D ¼ −
y4

3jλj2
�

1

2ε̄D
þ 5

6
þ γE þ ln

μR
2

�
−
2y2

3jλj
�

1

2ε̄D
þ 13

12
þ γE þ ln

μR
2

�
: ðD12Þ

Thus, we obtain

�
2

ε2ψ
þ 5

εψ
þ 1

3

y2 þ 2jλj
jλj ln εψ

�
→ −

y2

3jλj
�

1

2ε̄D
þ 1þ γE þ ln

μR
2

�
−
2

3

�
1

2ε̄D
þ 25

4
þ γE þ ln

μR
2

�
: ðD13Þ

4. Gauge and NG fields

Finally, we consider the gauge and NG contributions.
Although we may use Eq. (2.57) to subtract the divergence,
it is more convenient to use the expression of the prefactor
with a different choice of the gauge fixing function from
that in Eq. (A37).
Here, we use the result with the following choice of the

gauge fixing function:

FBG ¼ ∂μAμ − ξgϕ̄φ; ðD14Þ

which we call the background gauge. We may perform a
calculation of the prefactor A with this choice of the gauge
fixing function. We have checked that, irrespective of the
choice of ξ, the J > 0 contribution from the gauge and NG
sectors agrees with the one that we have obtained using the
gauge fixing function in (A37). We also comment here that,
in the background gauge, the treatment of the gauge zero
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mode is highly nontrivial. However, such an issue is
unimportant for the following discussion because the zero
mode does not affect the behavior of the divergence, which
we will discuss below.
For simplicity, we take ξ ¼ 1 in the following. Then,

using the same basis as Eq. (A42), we define

lnA
ðAμ;φÞ
BG ¼ −

1

2
ln
DetM

ðAμ;φÞ
BG

DetcMðAμ;φÞ
BG

; ðD15Þ

where the fluctuation operator in the background gauge is
given by

M
ðAμ;φÞ
BG ¼

�−∂2δμνþg2ϕ̄2 2gð∂νϕ̄Þ
2gð∂μϕ̄Þ −∂2þVφφþg2ϕ̄2

�
: ðD16Þ

With the angular momentum decomposition, we have

lnA
ðAμ;φÞ
BG ¼ −

1

2
ln
DetMðS;φÞ

0;BG

DetcMðS;φÞ
0;BG

−
1

2

X∞
J¼1=2

ð2J þ 1Þ2
�
ln
DetMðS;L;φÞ

J;BG

DetcMðS;L;φÞ
J;BG

þ 2 ln
DetMðTÞ

J;BG

DetcMðTÞ
J;BG

�
; ðD17Þ

where

MðS;L;φÞ
J;BG ¼

0BBB@
−ΔJ þ 3

r2 þ g2ϕ̄2 − 2L
r2 2gϕ̄0

− 2L
r2 −ΔJ − 1

r2 þ g2ϕ̄2 0

2gϕ̄0 0 −ΔJ þ Vφφ þ g2ϕ̄2

1CCCA; ðD18Þ

for the partial waves with J > 0, and

MðS;φÞ
0;BG ¼

0@−Δ1=2 þ g2ϕ̄2 2gϕ̄0

2gϕ̄0 −Δ0 þ Vφφ þ g2ϕ̄2

1A; ðD19Þ

for J ¼ 0. In addition,

MðTÞ
J;BG ¼ −ΔJ þ g2ϕ̄2; ðD20Þ

for the T mode. Remember that the T modes exist only for J > 0.
In the background gauge, Faddeev-Popov ghosts also couple to the bounce; the fluctuation operator of the ghosts is

given by

Mðc;c̄Þ
BG ¼ −∂2 þ g2ϕ̄2; ðD21Þ

and, after the angular momentum decomposition, we have

Mðc;c̄Þ
J;BG ¼ −ΔJ þ g2ϕ̄2: ðD22Þ

Then, we define

lnAðc;c̄Þ
BG ¼

X∞
J¼0

ð2J þ 1Þ2 lnDetM
ðc;c̄Þ
J;BG

DetcMðc;c̄Þ
J;BG

; ðD23Þ

where the hatted fluctuation operators are defined through the replacements of ϕ̄ → 0 and ϕ̄0 → 0.
One feature of the above gauge fixing is that, by a rotation using an orthogonal transformation, MðS;L;φÞ

J;BG becomes

BtMðS;L;φÞ
J;BG B ¼

0BBBBB@
−ΔJ−1=2 þ g2ϕ̄2 0 2

ffiffiffiffiffiffiffiffi
J

2Jþ1

q
gϕ̄0

0 −ΔJþ1=2 þ g2ϕ̄2 −2
ffiffiffiffiffiffiffiffi
Jþ1
2Jþ1

q
gϕ̄0

2
ffiffiffiffiffiffiffiffi
J

2Jþ1

q
gϕ̄0 −2

ffiffiffiffiffiffiffiffi
Jþ1
2Jþ1

q
gϕ̄0 −ΔJ þm2

a þ g2ϕ̄2

1CCCCCA; ðD24Þ
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with

B ¼

0BBBBB@
ffiffiffiffiffiffiffiffi
J

2Jþ1

q
−

ffiffiffiffiffiffiffiffi
Jþ1
2Jþ1

q
0ffiffiffiffiffiffiffiffi

Jþ1
2Jþ1

q ffiffiffiffiffiffiffiffi
J

2Jþ1

q
0

0 0 1

1CCCCCA: ðD25Þ

Notice that, in the new basis, the fluctuation operator

around the false vacuum, cMðS;L;φÞ
J;BG , becomes diagonal. This

makes the calculation of the functional determinant easier.
Following [28], we can show that

ln
DetMðS;L;φÞ

J

DetcMðS;L;φÞ
J

þ2 ln
DetMðTÞ

J

DetcMðTÞ
J

¼ ln
DetMðS;L;φÞ

J;BG

DetcMðS;L;φÞ
J;BG

þ2 ln
DetMðTÞ

J;BG

DetcMðTÞ
J;BG

−2 ln
DetMðc;c̄Þ

J;BG

DetcMðc;c̄Þ
J;BG

:

ðD26Þ

Thus, a divergent part can be subtracted from lnA0ðAμ;φÞ as

½ lnA0ðAμ;φÞ� − ½lnAðAμ;φÞ
BG �div − ½lnAðc;c̄Þ

BG �div ¼ ðfiniteÞ;
ðD27Þ

where ½� � ��div is defined accordingly to Eq. (2.57).
The relation between the angular momentum regulariza-
tion and dimensional regularization for the gauge and
NG contributions can be understood by evaluating

½lnAðAμ;φÞ
BG �div þ ½lnAðc;c̄Þ

BG �div.
Let us evaluate the divergent part with εA regularization.

Before proceeding, we define the following quantities:

Kð1Þ
J ðCÞ ¼

�
ln
Det½−ΔJ þ Cϕ̄2�

Det½−ΔJ�
�
OðC2Þ

; ðD28Þ

Kð2Þ
J ðCÞ ¼

266664ln
Det

�−ΔJ Cϕ̄0

Cϕ̄0 −ΔJþ1=2

�
Det
�−ΔJ 0

0 −ΔJþ1=2

�
377775
OðC2Þ

: ðD29Þ

Notice that Kð2Þ
J ðCÞ can be also expressed as

Kð2Þ
J ðCÞ¼

2666664ln
Det

�−ΔJþC2ϕ̄2 Cϕ̄0

Cϕ̄0 −ΔJþ1=2þC2ϕ̄2

�
Det

�−ΔJ 0

0 −ΔJþ1=2

�
3777775
OðC2Þ

−
�
ln
Det½−ΔJþC2ϕ̄2�

Det½−ΔJ�
�
OðC2Þ

−
�
ln
Det½−ΔJþ1=2þC2ϕ̄2�

Det½−ΔJþ1=2�
�
OðC2Þ

:

ðD30Þ

In addition, Kð1Þ
J ðCÞ and Kð2Þ

J ðCÞ can be analytically calculated as

Kð1Þ
J ðCÞ ¼ 2C

jλj
1

2J þ 1
þ
�
2C
jλj
�

2
�

1

2ð2J þ 1Þ2 þ
1

2J þ 1
− ψ ð1Þð2J þ 1Þ

�
; ðD31Þ

and

Kð2Þ
J ðCÞ ¼ C2

jλj
�
4ψ ð1Þ

Γ ð2J þ 2Þ − 2

2J þ 1
−

1

J þ 1

�
: ðD32Þ

Then,

½lnAðAμ;φÞ
BG �div;εA þ ½lnAðc;c̄Þ

BG �div;εA ¼ −
1

2

�
ln
DetMðS;φÞ

0;BG

DetcMðS;φÞ
0;BG

�
OðδM2Þ

þ
�
ln
DetMðc;c̄Þ

0;BG

DetcMðc;c̄Þ
0;BG

�
OðδM2Þ

−
1

2

X∞
J¼1=2

ð2J þ 1Þ2
ð1þ εAÞ2J

�
ln
DetMðS;L;φÞ

J;BG

DetcMðS;L;φÞ
J;BG

�
OðδM2Þ

; ðD33Þ

where �
ln
DetMðS;φÞ

0;BG

DetcMðS;φÞ
0;BG

�
OðδM2Þ

¼ Kð1Þ
1=2ðg2Þ þ Kð1Þ

0 ðg2 − jλjÞ þ Kð2Þ
0 ð2gÞ; ðD34Þ
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264lnDetMðS;L;φÞ
J;BG

DetcMðS;L;φÞ
J;BG

375
OðδM2Þ

¼Kð1Þ
Jþ1=2ðg2ÞþKð1Þ

J−1=2ðg2ÞþKð1Þ
J ðg2− jλjÞþKð2Þ

J

0B@−2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Jþ1

2Jþ1

r
g

1CAþKð2Þ
J−1=2

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
J

2Jþ1

r
g

�
;

ðD35Þ

�
ln
DetMðc;c̄Þ

0;BG

DetcMðc;c̄Þ
0;BG

�
OðδM2Þ

¼ Kð1Þ
0 ðg2Þ: ðD36Þ

Notice that Vφφ ¼ −jλjϕ̄2, and that the Faddeev-Popov and T-mode contributions cancel out for J > 0. Summing over J, we
obtain

½lnAðAμ;φÞ
BG �div;εA þ ½lnAðc;c̄Þ

BG �div;εA ¼ −
�
3g2

jλj − 1

��
1

ε2A
þ 2

εA

�
−
�
1

3
þ g4

jλj2
�
ln εA þ 17

18
þ g2

3jλj þ
g4

6jλj2 ð59 − 6π2Þ þOðεAÞ:

ðD37Þ

With the dimensional regularization, it becomes

½lnAðAμ;φÞ
BG �div;ε̄D þ ½lnAðc;c̄Þ

BG �div;ε̄D ¼
�
1

3
þ 2g2

jλj þ
g4

jλj2
��

1

2ε̄D
þ γE þ ln

μR
2

�
þ 5

18
þ 7g2

3jλj þ
g4

2jλj2 : ðD38Þ

Thus, we obtain

�
3g2

jλj −1

��
1

ε2A
þ 2

εA

�
þ
�
1

3
þ g4

jλj2
�
lnεA →−

�
1

3
þ2g2

jλj þ
g4

jλj2
��

1

2ε̄D
þ1þ γEþ ln

μR
2

�
þ1þ g4

jλj2
�
31

3
−π2

�
: ðD39Þ

APPENDIX E: VACUUM DECAY WITH
GLOBAL SYMMETRY

For completeness, we discuss the case where the
field that is responsible for the decay transforms under a
global symmetry, although it is not the case of the SM
Higgs field. In such a case, we need to take into account
quantum corrections from the associated NG bosons.
Similarly to the gauge contributions, the NG fluctuation
operator has zeromodes in associationwith the breaking of
the global symmetry.
Let us consider a Uð1Þ symmetry, for simplicity. The

contribution from the NG boson, φ, is given by

lnAðφÞ ¼ −
1

2

Det½−∂2 − jλjϕ̄2�
Det½−∂2�

¼ −
1

2

X∞
J¼0

ð2J þ 1Þ2 ln J
J þ 1

: ðE1Þ

As we can see, there is a zero mode for J ¼ 0. Since it is
obtained in the limit of g → 0 in Eq. (2.27), ½lnAðφÞ�MS is
given by Eqs. (2.86) and (2.87) with taking g ¼ zg ¼ 0.

APPENDIX F: NUMERICAL RECIPE

In this Appendix, we give fitting formulas of the
prefactors at the one-loop level. Contrary to the analytic
formulas including various special functions with complex
arguments, which may be inconvenient for numerical
calculations, the fitting formulas give a simple procedure
to perform a numerical calculation of the decay rate with
saving computational time. Compared to the analytic
expressions, the errors of the fitting formulas are 0.05%
or smaller. A Cþþ package based on our fitting formulas
for the study of the electroweak vacuum stability (ELVAS)
can be found at [30].

(i) Higgs

−½lnA0ðhÞ�MS ¼ −0.99192944327027

þ 2.5 ln jλj − 3 ln μR: ðF1Þ

(ii) Scalar
Let x ¼ κ=jλj. For x < 0.7,
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−½lnAðσÞ�MS ¼ −0.239133939224974x2 þ 0.222222222222222x3 − 0.134704602106396x4

þ 0.102278606592866x5 − 0.0839329261179402x6 þ 0.0715956882048009x7

− 0.0625481711576628x8 þ 0.0555697470602515x9 − 0.0500042455037409x10

− 0.333333333333333x2 ln μR: ðF2Þ
For x > 0.7,

−½lnAðσÞ�MS ¼ −0.0261559272783723þ 0.0000886704923163256=x4 þ 0.0000962000962000962=x3

þ 0.000198412698412698=x2 þ 0.00105820105820106=xþ 0.111111111111111x

− 0.181204187497805x2 þ ð−0.0055555555555556þ 0.166666666666667x2Þ ln x
− 0.333333333333333x2 ln μR: ðF3Þ

(iii) Fermion
Let x ¼ y2=jλj. For x < 1.3,

−½lnAðψÞ�MS¼0.64493454511661xþ0.005114971505109x2−0.0366953662258276x3þ0.00476307962690785x4

−0.000845451274112082x5þ0.000168244913551417x6−0.0000353785958610453x7

þ7.67709260595572×10−6x8þð0.66666666666667xþ0.333333333333333x2Þ lnμR: ðF4Þ

For x > 1.3,

−½lnAðψÞ�MS ¼ −0.227732960077634þ 0.00260942760942761=x3 þ 0.00271164021164021=x2

þ 0.00820105820105820=xþ 0.53790187962670xþ 0.296728717591129x2

þ ð−0.06111111111111111 − 0.3333333333333333x − 0.1666666666666666x2Þ ln x
þ ð0.66666666666667xþ 0.333333333333333x2Þ ln μR: ðF5Þ

(iv) Gauge
Let x ¼ g2=jλj. For x < 1.4,

−½lnA0ðAμ;φÞ�MS ¼ −0.96686103284373 − 1.76813696868318xþ 0.61593151565841x2 þ 0.145084271024101x3

− 0.0241469799983579x4 þ 0.00555917805602827x5 − 0.00145020891759152x6

þ 0.000402580447036276x7 − 0.000115821925959136x8 þ 0.5 ln jλj
þ ð−0.333333333333333 − 2x − x2Þ ln μR: ðF6Þ

For x > 1.4,

−½lnA0ðAμ;φÞ�MS¼−27.0091748854198þ0.000266011476948977=x4þ0.000288600288600289=x3

þ0.000595238095238095=x2þ0.00317460317460317=xþ1.56519636465016x

−0.07988363024944x2þð−3.54033527491510×10−6=x5−0.0000404609745704583=x4

−0.00051790047450187=x3−0.0082864075920299=x2−0.265165042944955=x

þ4.24264068711929Þ ffiffiffi
x

p
arcsin

�
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2þ79164837199872x9
p

�
þð−6.01666666666667þ0.5x2Þlnx

þ1.5ln½3.14159265358979ð−98796.7402597403þ136316.571428571x−136594.285714286x2

þ92160x3þ7372800x4þ6553600x5Þ�þ0.5lnjλjþð−0.333333333333333−2x−x2ÞlnμR; ðF7Þ
where

s ¼ 7þ 80xþ 1024x2 þ 16384x3 þ 524288x4 − 8388608x5: ðF8Þ
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APPENDIX G: THRESHOLD CORRECTIONS

In this Appendix, we summarize the one-loop threshold
corrections for the coupling constants in the models with
extra fermions discussed in Sec. IV. We parametrize the
threshold corrections as

cðbelowÞ ¼ cþ 1

16π2
Δc; ðG1Þ

where cðbelowÞ is a coupling constant below the matching
scale, while c is that above the scale. For the notational
simplicity, we only show the quantity Δc for each coupling
constant. Notice that Δc depends on the extra fermion mass
MX (X ¼ D, E, N). In our analysis, we take the matching
scale to be equal to MX.

(i) Model with vectorlike quarks Q, Q̄, D, and D̄

Δg1 ¼ −
1

5
g21 log

μ2

M2
D
; ðG2Þ

Δg2 ¼ −g22 log
μ2

M2
D
; ðG3Þ

Δg3 ¼ −g23 log
μ2

M2
D
; ðG4Þ

Δyt ¼ −6yty2D

�
1

2
log

μ2

M2
D
−
1

3

�
; ðG5Þ

Δyb ¼ −6yby2D

�
1

2
log

μ2

M2
D
−
1

3

�
; ðG6Þ

Δyτ ¼ −6yτy2D

�
1

2
log

μ2

M2
D
−
1

3

�
; ðG7Þ

Δλ ¼−24λy2D

�
1

2
log

μ2

M2
D
−
1

3

�
þ12y4D

�
1

2
log

μ2

M2
D
−
4

3

�
:

ðG8Þ

(ii) Model with vectorlike leptons L, L̄, E, and Ē

Δg1 ¼ −
3

5
g21 log

μ2

M2
E
; ðG9Þ

Δg2 ¼ −
1

3
g22 log

μ2

M2
E
; ðG10Þ

Δg3 ¼ 0; ðG11Þ

Δyt ¼ −2yty2E

�
1

2
log

μ2

M2
E
−
1

3

�
; ðG12Þ

Δyb ¼ −2yby2E

�
1

2
log

μ2

M2
E
−
1

3

�
; ðG13Þ

Δyτ ¼ −2yτy2E

�
1

2
log

μ2

M2
E
−
1

3

�
; ðG14Þ

Δλ ¼−8λy2E

�
1

2
log

μ2

M2
E
−
1

3

�
þ4y4E

�
1

2
log

μ2

M2
E
−
4

3

�
:

ðG15Þ

(iii) Model with right-handed neutrino N15

Δgi ¼ 0 ði ¼ 1; 2; 3Þ; ðG16Þ

Δyt ¼ −yty2N

�
1

2
log

μ2

M2
N
þ 1

4

�
; ðG17Þ

Δyb ¼ −yby2N

�
1

2
log

μ2

M2
N
þ 1

4

�
; ðG18Þ

Δyτ ¼ yτy2N

�
1

4
log

μ2

M2
N
þ 3

8

�
; ðG19Þ

Δλ ¼−4λy2N

�
1

2
log

μ2

M2
N
þ1

4

�
þ2y4N

�
1

2
log

μ2

M2
N
−
1

2

�
:

ðG20Þ
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