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The bulk viscosity of hot QCD medium has been obtained in the presence of strong magnetic field. The
present investigation involves the estimation of the quark damping rate and subsequently the thermal
relaxation time for quarks in the presence of magnetic field while realizing the hot QCD medium as an
effective Grand-canonical ensemble of effective gluons and quarks antiquarks. The dominant process in the
strong field limit is 1 → 2 (g → qq̄), which contributes to the bulk viscosity in the most significant way.
Further, setting up the linearized transport equation in the framework of an effective kinetic theory with hot
QCD medium effects and employing the relaxation time approximation, the bulk viscosity has been
estimated in lowest Landau level and beyond. The temperature dependence of the ratio of the bulk viscosity
to entropy density indicates its rising behavior near the transition temperature.
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I. INTRODUCTION

Relativistic heavy-ion collision experiments (RHIC) set
the platform for the creation and study of quark-gluon
plasma (QGP) as a near-perfect fluid [1,2]. Recent inves-
tigations on the QGP suggest the presence of extremely
high magnetic field in the early stages of the collisions
(especially in the noncentral asymmetric collisions) [3–6].
In this context, a deeper understanding of various aspects
of the QGP in the strong magnetic field is the prime focus
of the current research on the physics of the RHIC. In
particular, chiral magnetic effect [7–9] and chiral vortical
effects [10–12] gained much attention in the QGP com-
munity. More recently, the discovery of global Λ-hyperon
polarization in noncentral RHIC [13,14] opened up a new
direction in the study of the QGP in the presence of strong
magnetic field.
Recall that the quark-antiquark pair production and

fusion processes are kinematically possible in the presence
of the strong magnetic field [15,16] via 1 → 2 processes
that dominate over 2 → 2 scattering processes while
estimating the transport coefficients. This could be under-
stood in terms of the fact that the rate is proportional to
coupling constant αs in the case of the former, whereas in
that of the binary processes, it is proportional to α2s [17].
The magnetic field effects enter in the quark-antiquark
degrees of freedom through the Landau levels. The strong
magnetic field restricts the calculation to the (1þ 1)-
dimensional ground state, i.e., lowest Landau level
(LLL) [18,19] (the dimensional reduction). On the other
hand, the electrically chargeless gluons are not directly

coupled to the magnetic field through the dispersion
relation. However, the gluonic dynamics in the presence
of magnetic field can be affected through the quark loop
while defining the gluon vertex through the self-energy
where the quark/antiquark loop contributes.
The quantitative study of the transport coefficients in

the hot QCD medium is required for the estimation of
the experimental observables like transverse momentum
spectra and collective flow of the QGP within the dis-
sipative relativistic hydrodynamic framework. In particular,
extremely low viscosity to entropy ratio indicates the larger
elliptic flow observed in RHIC. Besides providing the basis
for understanding the probes of QGP, the transport coef-
ficients give insights to the electromagnetic response of the
medium. Recently, a number of ALICE results have shown
the relevance of transport processes in the RHIC [20–22].
Since the strong magnetic field is generated in the non-
central asymmetric HIC, the dissipative magnetohydrody-
namics describes the transport process of the medium.
This sets the strong motivation for the estimation of
transport coefficients of the QGP in the presence of the
strong magnetic field.
There have been several attempts to estimate the trans-

port coefficients of the hot QCD medium in the strong
magnetic field [23–27]. In a very recent work, Fukushima
and Hidaka [28] estimated the longitudinal conductivity in
the magnetic field beyond LLL approximation by solving
the kinetic equation, considering the scattering amplitude
of synchrotron radiation and the pair annihilation proc-
esses. The authors have numerically shown that the con-
tribution from LLL is the dominant one.
The goal of the present investigations is to estimate the

temperature dependence of the thermal relaxation time and
thereby the effective bulk viscosity while encoding the hot

*manu.kurian@iitgn.ac.in
†vchandra@iitgn.ac.in

PHYSICAL REVIEW D 97, 116008 (2018)

2470-0010=2018=97(11)=116008(10) 116008-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.116008&domain=pdf&date_stamp=2018-06-08
https://doi.org/10.1103/PhysRevD.97.116008
https://doi.org/10.1103/PhysRevD.97.116008
https://doi.org/10.1103/PhysRevD.97.116008
https://doi.org/10.1103/PhysRevD.97.116008


QCD medium effects in strong magnetic field background
through an effective quasiparticle model. The current
analysis has been done with relativistic semiclassical
transport theory, in which microscopic particle interactions
bridge to macroscopic transport phenomena of the thermo-
dynamic system. The kinetic theory approach is followed
within the linear response analysis of the transport equation
in which magnetic field enters through the propagator
(matrix element in collision integral) and momentum
distribution functions of the quarks and antiquarks. Note
that another equivalent approach to investigate the transport
coefficients of the hot QCD in the magnetic field back-
ground is the hard thermal loop effective theory (HTL)
[29,30]. We are following the former one here.
Hot QCD medium effects encrypted as the equation of

sate (EoS) dependence on the transport coefficients within
effective linear transport theory are well understood [31–37].
In [38], the authors have recently estimated the EoS/medium
dependence on the longitudinal electrical conductivity for
the 1 → 2 processes in the strong magnetic field back-
ground. In the present work, we followed the effective
fugacity quasiparticle model (EQPM), proposed in [39,40]
and extended in the case of the strong magnetic in Ref. [38].
The first step towards the evaluation of the bulk viscosity is
the quark damping rate Γeff in the strong field limit that leads
to the thermal relaxation time τeff , followed by the estimation
of the bulk viscosity ζeff in the presence of magnetic field by
setting up an effective linearized transport equation. This has
been done not only in LLL but also with the higher Landau
level (HLL) corrections.
The paper is organized as follows. Section II deals with

the mathematical formalism for the estimation of the
effective thermal relaxation time and the bulk viscosity
along with the description of hot QCD effective coupling
constant with HLL corrections. Section III constitutes the
predictions on the bulk viscosity and the related discus-
sions. Finally, in Sec. IV, the conclusion and outlook of the
work are presented.

II. EFFECTIVE DESCRIPTION OF THERMAL
RELAXATION AND BULK VISCOSITY IN

STRONG MAGNETIC FIELD

The Green-Kubo formula is employed to estimate the
bulk viscosity of the medium both in the presence and
the absence of the strong magnetic field background in the
studies [24,41–43]. In this work, we are adopting the
kinetic theory approach for the analytical calculation of ζeff
in the strong magnetic field, in which we need to start from
the relativistic transport equation. The strong magnetic field
limit, T2 ≪ eB, has been considered for computing various
quantities under consideration in LLL. The contributions
from higher Landau levels are negligible (proportional to

e−
ffiffiffi
eB

p
T ) in the regime. Now, for the weaker magnetic fields,

going beyond LLL might help in understanding the impact

of the magnitude of the field on the transport coefficients.
A full computation in the weak field domain also requires
computation of the quark/antiquark propagators under the
same approximation and is beyond the scope of the present
work. The formalism for the estimation of effective bulk
viscosity includes the quasiparticle modeling of the system
followed by the estimation of the thermal relaxation time of
the process.

A. EQPM in the strong magnetic field

EQPM describes the hot QCD medium effects with
temperature dependent effective fugacities—quasigluon
and quasiquark/antiquark fugacities, zg and zq, respectively
]44 ]. Various quasiparticle models encode the medium

effects, viz., effective masses with Polyakov loop [45],
Nambu-Jona-Lasinio (NJL) and Polyakov-loop-extended
Nambu-Jona-Lasinio-based quasiparticle models [46], self-
consistent and single parameter quasiparticle models [47],
and recently proposed quasiparticle models based on the
Gribov-Zwanziger quantization, leading to a nontrivial IR-
improved dispersion relation in terms of the Gribov
parameter [48–50]. EQPM encodes the medium effects
as EoS dependence of the distribution functions enters
through the effective fugacities.
Here, we consider the recent (2þ 1) flavor lattice QCD

EoS (LEoS) [51] and three-loop HTL perturbative (HTLpt)
EOS [52,53]. The three-loop HTLpt EOS has recently been
computed by N. Haque et al., which is very close to the
recent lattice results [54,55]. These EoS have been carefully
embedded in zq and zq for both isotropic and to anisotropic
hot QCD medium [56,57]. zq and zq have complicated
temperature dependence as discussed in Ref. [58].
We have extended the EQPM in the presence of

magnetic field (B⃗ ¼ Bẑ) [38] in which the quasiquark/
antiquark distribution function is given as

f̄lq ¼
zq exp

�
−β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þm2 þ 2ljqfeBj

q �

1þ zq exp
�
−β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þm2 þ 2ljqfeBj

q � ; ð1Þ

where El
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þm2 þ 2ljqfeBj

q
is the Landau energy

eigenvalue and qfe is the fractional charge of quarks. l ¼
0; 1; 2;… is the order of the energy levels. Since the
dispersion relation of the electrically neutral gluon remains
intact in the strong magnetic field background, the quasi-
gluon distribution function remains as

f̄g ¼
zg exp ð−βjp⃗jÞ

1þ zg exp ð−βjp⃗jÞ
: ð2Þ

We are working in units where kB ¼ 1, c ¼ 1, ℏ ¼ 1 and
hence β ¼ 1

T. The parton distribution functions leads to the
dispersion relations
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ωl
q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þm2 þ 2ljqfeBj

q
þ T2∂T lnðzqÞ; ð3Þ

and

ωg ¼ jp⃗j þ T2∂T lnðzgÞ: ð4Þ

The physical significance of the effective fugacity comes in
the second term of dispersion relations Eqs. (3) and (4),
which corresponds to the collective excitation of quasi-
partons. Effects of the magnetic field are entering into the
system through the dispersion relations and the Debye
screening mass [59].

1. Debye mass and effective coupling in the strong
magnetic field with HLL corrections

The EQPM is based on charge renormalization in the hot
QCD medium, whereas the effective mass model is
motivated from the mass renormalization of QCD [60].
Realization of this charge renormalization could be related
to the estimation of Debye mass from semiclassical trans-
port theory. There are several investigations on the screen-
ing masses of the QGP as a function of the magnetic field
[61–63]. Employing EQPM, we can compute the screening
mass as [38,60],

m2
D ¼ −4παs

Z
d3p⃗
ð2πÞ3

d
dp⃗

ð2Ncf̄g þ Nfðf̄lq þ f̄lq̄ÞÞ; ð5Þ

where f̄lq and f̄g are the quasiparton distribution function as
defined in Eqs. (1) and (2), and αsðTÞ is the running
coupling constant at finite temperature taken from two-loop
QCD gauge coupling constants [64]. Including the effects
of HLLs in the presence of the strong magnetic field
B⃗ ¼ Bẑ, mD for quarks and antiquarks becomes

m2
D ¼ 4αs

T

jqfeBj
π

Z
∞

0

X∞
l¼0

dpzð2 − δl0Þf̄lqð1 − f̄lqÞ; ð6Þ

in which the integration phase factor due to dimensional
reduction in the strong field [19,65,66] can be represented as

Z
d3p
ð2πÞ3 →

jqfeBj
2π

X∞
l¼0

Z
dpz

2π
ð2 − δ0lÞ: ð7Þ

After performing the momentum integral Eq. (5) using
Eq. (1) we obtain

ðm2
D=αsÞ ¼

24T2

π
PolyLog½2; zg� þ

12jqfeBj
π

�
zq

1þ zq

�

þ 8

T

jqfeBj
π

Z
∞

0

X∞
l¼1

dpzf̄lqð1 − f̄lqÞ: ð8Þ

We have plotted the ratio of Debye mass to running
coupling constant ratio at jeBj ¼ 0.3 GeV2 as a function
of temperature for different Landau levels in Fig. 1. For
the chosen temperature range we are focusing up to l ¼ 3
Landau level. The contribution from HLLs beyond l ¼ 3
is negligible for the given temperature range. Since the
occupation in HLLs is exponentially suppressed by
exp−ðjeBjT Þ, the effect of HLLs is significant for higher
temperature ranges. For ideal EoS zq;g ¼ 1 (ultrarelativ-
istic noninteracting quarks and gluons), the definition of
Debye mass can be rewritten as

ðm2
DÞIdeal ¼ 4παsðTÞ

�
T2 þ 3jqfeBj

2π2
þ 2

T

jqfeBj
π2

×
Z

∞

0

X∞
l¼1

dpzn̄lqð1 − n̄lqÞ
�
; ð9Þ
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FIG. 1. (Left panel) Temperature behavior of the ratio of Debye mass to coupling constant for different Landau levels at
jeBj ¼ 0.3 GeV2. (Right panel) Behavior of m2

D=αs at T ¼ 0.25 GeV2 with different magnetic field.
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with n̄lq ¼ 1
exp ðβEl

pÞþ1
. From Eqs. (8) and (9), including

HLLs we can define the effective running coupling
constant αleffðT; zq; zg; jeBjÞ so that

m2
D ¼ αleff

αs
m2

DIdeal: ð10Þ

Therefore,

m2
D ¼ 4παleffðT; zq; zgÞ

�
T2 þ 3jqfeBj

2π2

þ 2

T

jqfeBj
π2

Z
∞

0

X∞
l¼1

dpzn̄lqð1 − n̄lqÞ
�
: ð11Þ

Now, αleff can be expressed as

αleff
αs

¼
6T2

π2
PolyLog½2; zg� þ 3jqfeBj

π2
zq

ð1þzqÞ

ðT2 þ 3jqfeBj
2π2

þ hðT; jeBjÞÞ

þ
2
T
jqfeBj
π2

R
∞
0

P∞
l¼1 dpzf̄lqð1 − f̄lqÞ

ðT2 þ 3jqfeBj
2π2

þ hðT; jeBjÞÞ
; ð12Þ

where hðT; jeBjÞ ¼ 2
T
jqfeBj
π2

R
∞
0

P∞
l¼1 dpzn̄lqð1 − n̄lqÞ.

For LLL quarks Eq. (12) reduced to

α0eff
αs

¼
�
6T2

π2
PolyLog½2; zg� þ 3jqfeBj

π2
zq

ð1þzqÞ
�

ðT2 þ 3jqfeBj
2π2

Þ
: ð13Þ

The temperature behavior of
αleff
αs

with HLL corrections is
depicted in Fig. 2. As expected, asymptotically the ratio
approaches unity. Dominant contribution of αleff comes from
the LLL, where the HLLs give the higher order corrections.

More interestingly, including HLLs αleff
αs

are almost identical

for jeBj ¼ 0.3 GeV2 and jeBj ¼ 0.6 GeV2, which implies
the weaker dependence of the strength of magnetic field on
αleff
αs
. The ratio is showing a small but quantitative change with

the HLL corrections. Hence, these corrections are significant
in the estimation of the bulk viscosity in the strong field.

B. Thermal relaxation in strong magnetic field

The microscopic interactions, which are the dynamical
inputs of the bulk viscosity, are incorporated through the
thermal relaxation time (τeff ). The focus of this work is on
the dominant 1 → 2 processes (gluon to quark-antiquark
pair). The relaxation time, τeff , can be defined from the
relativistic transport equation of quasiparton distribution
functions for the process k → pþ p0 in strong magnetic
field B⃗ ¼ Bẑ as

dflq
dt

¼ CðflqÞ ¼ −
δflq
τeff

: ð14Þ

The quantity δflq is the nonequilibrium part of the
distribution function of quasiquark/antiquark,

flqðpzÞ ¼ f̄lq þ δflq; ð15Þ

and given by

δflq ¼ βf̄lqðpzÞð1 − f̄lqðpzÞÞχqðpzÞ; ð16Þ

where χðpzÞ is the response function (primed notation for
antiquark). Here, CðflqÞ is the collision integral that
quantifies the rate of change of the distribution function.
In strong magnetic field background, the collision integral
for 1 → 2 processes has the following form [38],

CðflqÞ ¼ αleffC2m2

Z
∞

−∞

dp0
z

ωl
pω

l
p0
βf̄lqðEl

p0 Þf̄lqðEl
pÞ

× ð1þ f̄gðEl
p þ El

p0 Þðχqðp0
zÞ − χqðpzÞÞ; ð17Þ

where C2 is the Casimir factor and αleff is the effective
coupling constant that encoded the EoS dependence. ωl

p is
the single quark energy as defined in Eq. (3). The response
χ for quark and antiquark in the strong magnetic field has
opposite sign (since their charges are opposite). This
implies that χqðp0

zÞ is an odd function as described in
[23] within LLL approximation. Since the Landau levels
enter as El ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þm2 þ 2ljeBj

p
in the dispersion rela-

tions and distribution functions, the odd nature of χðp0
zÞ is

completely independent on the order of LL. Hence we have
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FIG. 2. The effective coupling constant in the strong magnetic
field with HLL corrections.
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CðflqÞ ¼ −χqðpzÞαleffC2m2β

×
Z

∞

−∞

dp0
z

ωl
pω

l
p0
f̄lqðEl

p0 Þf̄lqðEl
pÞð1þ f̄gðEl

p þ El
p0 Þ:

ð18Þ

Thermal relaxation time τeff , which is the inverse of the
quark damping rate Γeff , can be obtained from Eqs. (14),
(16), and (18) as

τ−1eff ≡Γeff ¼
αleffC2m2

ωpð1− f̄lqÞ
Z

dp0
z

ωl
p0
f̄lqðEl

p0 Þð1þ f̄gðEl
pþEl

p0 ÞÞ:

ð19Þ

Being motivated by the recent work of Refs. [17,23], we
constrained our calculation in the regime in which the
dominant contribution comes from the quarks of the
momentum of order T. Hence, the energy of quarks
Eq ∼ T and this makes the gluon energy Eq þ Eq̄ ∼ T,
where Eq̄ is the quark energy. Hence, we have p0

z ≪ T or
p0
z
T ∼ 0 [17,23]. Solving the integral in Eq. (19) within these
assumptions gives the logarithmic factor. Finally, we
obtain the momentum dependent thermal relaxation time
τeffðpz; zq=g; jeBjÞ from the extended EQPM as

τ−1eff ¼
2αleffC2m2

ωl
pð1 − f̄lqÞ

zq
ðzq þ 1Þ ð1þ f̄gðEl

pÞÞ ln ðT=mÞ: ð20Þ

The impact of the hot QCD medium effects on the
relaxation time can be explored by comparing it with the
case where the hot QCD/QGP is described as the free
ultrarelativistic gas of quarks and gluons, as done in [23].
This could be described by choosing zg=q ¼ 1, and in that
case, the relaxation time reduces to

τ−1ideal ¼
αsC2m2

El
pð1 − n̄lqÞ

ð1þ n̄gðEl
pÞÞ ln ðT=mÞ; ð21Þ

with n̄lq ¼ 1

ðeβElpþ1Þ
and n̄g ¼ 1

ðeβElp−1Þ
for ideal fermions and

bosons, respectively.
Since the dominant charge carriers have momenta in the

order of T, we are employing hpzi ¼ T for the comparison
of τeff with τideal to investigate the EoS dependence. Note
that the momentum dependence of the relaxation time is
significant in the estimation of bulk viscosity. Therefore,
while computing the bulk viscosity, the momentum de-
pendent thermal relaxation time as defined in Eq. (20) is

employed. Here, we plotted the temperature variation of τ−1eff
τ−1ideal

with hpzi ¼ T for the ground state quarks (l ¼ 0) at jeBj ¼
0.3 GeV2 and jeBj ¼ 0.9 GeV2 in Fig. 3. Hot medium
effects are identical for the system under consideration
irrespective of the magnitude of the magnetic field. EoS

effects in relaxation time are embedded in Eq. (19) through
the quasiparton distribution function and the effective
coupling defined in Eq. (12). Since αleff is lower than αs
at the lower temperature, the τ−1eff to τ−1ideal ratio gives lower
value in that temperature range.
HLL corrections are entering through Landau dispersion

relation in the quark distribution function. The effect of
higher levels in the effective coupling is understood from
Eq. (12). The effective thermal relaxation time controls the
behavior of bulk viscosity critically.

C. Bulk viscosity from the relaxation-time
approximation

We investigated the bulk viscosity of perturbative QCD
in the strong magnetic field B⃗ ¼ Bẑ by adopting the EQPM
for the dominant 1 → 2 processes. Dynamics of the system
is described by the Boltzmann equation for the quasiquark
distribution function,

ð∂t þ vz∂zÞflqðpz; t; zÞ ¼ CðflqÞ ¼ −
δflq
τeff

; ð22Þ

where CðflqÞ is the collision integral Eq. (17) and the

longitudinal velocity vz ≡ ∂ωl
p

∂pz
¼ pz

Ep
. The equilibrium dis-

tribution function is defined as

f̄lq ¼
1

ðz−1q exp ð−βðEl
p − pzvzÞÞ þ 1Þ ; ð23Þ

in the presence of the flow uz. For uz ¼ 0, f̄lq reduces to
Eq. (1). We consider the linear response regime of the
Boltzmann equation in which uz and δflq are assumed to be
small, with the appropriate collision integral to solve δflq.
The system in equilibrium is disturbed by an expansion in
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FIG. 3. Dependence of EoS on the thermal relaxation time in
the strong magnetic field for the LLL quarks with hpzi ¼ T.
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the direction of magnetic field, which gives the change in
pressure (δPL). Bulk viscosity is defined as [24]

δPL ¼ −3ζeffΘ; ð24Þ

with ΘðzÞ≡ ∂zuz, which defines the magnitude of expan-
sion. We investigated the QCD thermodynamic quantities
such as pressure, energy density, entropy density, and the
speed of sound in the strong magnetic field using the
extended EQPM [38]. With LLL approximation, longi-
tudinal pressure (in the direction of B⃗) is obtained from the
fundamental thermodynamic definition,

PL ¼
X
f

jeqfBj
2π

1

2π
2Nc

×
Z

∞

−∞
dpz ln

�
1þ zq exp

�
−β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þm2

q ��
: ð25Þ

Longitudinal pressure ends up as

PL ¼
X
f

jeqfBj
π2

Nc

Z
∞

0

dpz
p2
z

E0
p
f̄0q; ð26Þ

where f̄0q is the momentum distribution of lowest Landau
quarks (l ¼ 0). Similarly, the energy density of the quarks
is defined as

εL ¼
X
f

jeqfBj
π2

Nc

Z
∞

0

dpz
ðω0

pÞ2
ω0
p

f̄0q; ð27Þ

in which ω0
p is the single particle energy for LLL quarks.

The integral can be expressed in terms of PolyLog
functions. Change in longitudinal pressure leads to the
bulk viscosity in the direction of magnetic field as given in
Eq. (24) and hence

ζeff ¼
X
f

−
1

3Θ
jeqfBj
π2

Nc

Z
∞

0

dpz
p2
z

E0
p
δf0q: ð28Þ

However, even when δflq ¼ 0 there is a change in pressure
since the temperature ðβ≡ βðtÞÞ decreases in time due to
the expansion. This can be directly related to the Landau-
Lifshitz condition for the stress-energy tensor in the
calculation of the bulk viscosity without magnetic field
[67]. We subtract this effect as in Refs. [24,68], and we
have

δP → δP̄L ≡ δðPL −ΩεLÞ; ð29Þ

with Ω≡ ∂PL∂εL ¼ ∂PL=∂T∂εL=∂T . To solve this, we have used the
EQPM definition of pressure and energy density in strong
magnetic field as in Eqs. (26) and (27),

Ω ¼
	
−jeBj 2T

π2
ν̄qPolyLog½2;−zq� þ jeBjT

2

π2
ν̄q lnð1þ zqÞð∂T ln zqÞ


.
	
−
4jeBjT
π2

ν̄qPolyLog½2;−zq� þ 5jeBjðT2∂T ln zqÞ
1

π2
ν̄q lnð1þ zqÞ

þ jeBjT2ð∂T ln zqÞ2
T
π2

ν̄q
zq

1þ zq
þ jeBjT2ð∂2

T ln zqÞ
T
π2

ν̄q lnð1þ zqÞ


; ð30Þ

where ν̄q ¼
P

f2Ncjqfj in the presence of magnetic field.
Also, we need to evaluate the change in equilibrium
distribution function δflq for the calculation of δP̄L.
Considering the linear response regime of the Boltzmann
equation Eq. (22) with the distribution function as Eq. (23),
we have

ð∂t þ vz∂zÞf0qðpz; t; zÞ ¼ −½ðE0
p þ T2∂T ln zqÞ∂tβ

− βvzpzΘðzÞ�f̄0qðf̄0q − 1Þ: ð31Þ

Here, zqð TTc
Þ and βðTÞ are functions of time since temperature

changes with expansion. Detailed calculations are shown in
Appendix A. In the relaxation-time approximation, we can
directly connect the relaxation time τeff with the collision
integral CðflqÞ as shown in Eq. (22). Therefore, Eq. (31)
becomes

δf0q ¼ −τeffβf̄0qðf̄0q − 1ÞΘðzÞðω0
pΩ − vzpzÞ; ð32Þ

where ∂tβ≡ βΩΘ as given in [24,68] and τeff is the thermal
relaxation time (at l ¼ 0 in the LLL approximation) for
1 → 2 processes defined in Eq. (20). Now we can estimate
ζeff by direct substitution of Eqs. (20) and (32) and (30) to
(29) and end up with

ζeff ¼
1

3

jqfeBj
π2

β

m2

ðzq þ 1Þ
zq

1

α0effC2 lnðT=mÞ

×
Z

∞

0

dpzðp2
z −Ωω0

pE0
pÞ2f̄0qð1 − f̄0qÞ2

ðf̄g þ 1ÞE0
p

: ð33Þ

Here, f̄0q is the quark distribution function with l ¼ 0 level.
Bulk viscosity ζeff depends on the behavior of the term
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ðp2
z −Ωω0

pE0
pÞ2 along with the momentum distribution

function and the effective coupling constant.

D. Bulk viscosity beyond LLL approximation

The effect of HLLs on the effective coupling αleff and
thermal relaxation τeff is defined in Eqs. (12) and (19),
respectively. Higher order Landau level corrections to the
QCD thermodynamics (pressure, entropy density, etc.) are
described in our previous work [38] and utilized in the
present work wherever required. The longitudinal pressure
and energy density with HLL corrections have the form

PL ¼
X
f

jeqfBj
π2

Nc

Z
∞

0

dpzð2 − δ0lÞ
p2
z

El
p
f̄lq; ð34Þ

and

εL ¼
X
f

jeqfBj
π2

Nc

Z
∞

0

dpzð2 − δ0lÞ
ðωl

pÞ2
ωl
p

f̄lq; ð35Þ

in which El
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þm2 þ 2ljqfeBj

q
is the Landau level

of order l. The integration phase factor and quasiquark
distribution function are defined in Eqs. (7) and (1),
respectively. Incorporating these, we can calculate Ω̄≡
∂P
∂ε with higher order corrections. Finally, the bulk viscosity
with higher Landau corrections has the following form:

ζeff ¼
jqfeBj
3π2

X∞
l¼0

ð2 − δ0lÞ
β

m2

1

αleffC2 lnðT=mÞ

×
ðzq þ 1Þ

zq

Z
∞

0

dpzðp2
z − Ω̄ωl

pEl
pÞ2f̄lqð1 − f̄lqÞ2

ðf̄g þ 1ÞEl
p

:

ð36Þ
In transport theory, the viscosity to entropy ratio ζeff=s

has significant importance. The temperature behavior and
the effects of HLLs on ζeff=s are discussed in the next
section.

III. RESULTS AND DISCUSSIONS

We initiate our discussions with the hot QCD medium
dependence on the thermal relaxation time τeff and the
effective coupling αleff . The medium dependence on αleff
and τeff is explicitly shown in Figs. 2 and 3, respectively.
Thermal relaxation time defined in Eq. (20) encoded the
microscopic interactions of the system, which are the
dynamical inputs for the estimation of bulk viscosity.
The hot QCD medium effects embedded through EoS
dependence on the bulk viscosity of 1 → 2 processes can be
inferred from Eq. (33). The EoS dependence is entering
through the quasiparton momentum distribution functions
along with the effective coupling. We plotted the variation
of ζeff=ζideal with T=Tc for jeBj ¼ 0.3 GeV2 and jeBj ¼
0.9 GeV2 in Fig. 4. We can see that medium effects are

weakly depending on the magnitude of magnetic field.
ζideal, bulk viscosity without the medium effects, is shown
in Ref. [24]. Asymptotically, the ratio approaches unity.
Hence, the estimation of bulk viscosity with quasiparticle
modeling agrees with the order of magnitude of the results
in Ref. [24] at high temperature.
Next, we present the temperature behavior of bulk

viscosity to entropy ratio for the 1 → 2 process in strong
magnetic field. Explicit dependence of temperature on
ζeff=s is shown in Eqs. (33) and (36). Equation (20) shows
that the coupling constant α entering through the relaxation
time (and hence bulk viscosity) of 1 → 2 processes as 1=α
whereas for 2 → 2 processes as 1=α2. In Fig. 5, we have
depicted ζeff=s in the presence of the magnetic field as a
function of T=Tc for both the EoS in LLL approximation.
The behavior of bulk viscosity depends on the Ω. The
temperature behavior of ðϵ − P

ΩÞ=T4 is shown in Fig. 5. This
term is significantly important in Eq. (33) of ζeff=s. The
higher value of ζeff=s near the transition temperature Tc is
due to the term ðϵ − P

ΩÞ=T4. At very high temperature ζeff=s
approaches 0.
We compared the bulk viscosity to entropy ratio of

1 → 2 processes with the results from sum rule analysis
[69] and lattice data results [70] as in Fig. 6. In [69], the
universal properties of bulk viscosity in the absence of
magnetic field are studied from the sum rule analysis. We
observe that the magnetic field enhances the ζ=s. HLL
corrections are significant for the higher temperature
ranges. We plotted the HLL corrections to the bulk
viscosity in the strong magnetic field background in the
chosen temperature range in Fig. 7. Corrections up to l ¼ 3
Landau level are shown in the figure. Higher order
corrections beyond third Landau level seem to be negligible
in the chosen temperature range. Since the HLL thermal
occupation depends on exp ð− ffiffiffiffiffiffi

eB
p

=TÞ, higher order cor-
rections are significant at very high temperature. The
dominant contributions of the higher order corrections
are entering through the effective coupling and the
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FIG. 4. Dependence of EoS on the bulk viscosity in the strong
magnetic field with LLL approximation.
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momentum distribution function. Evaluation of the higher
order corrections to the matrix element of the processes is
beyond the scope of this work.

IV. CONCLUSION AND OUTLOOK

In conclusion, the bulk viscosity of the hot magnetized
QCD medium gets significant contributions from both the
magnetic field and the EoS. The most significant contri-
butions in the strong magnetic field limit to the bulk
viscosity come from the 1 → 2 processes in the medium
(as these are not possible in the absence of the field). The
bulk viscosity has been computed from the semiclassical
transport theory approach within the relaxation-time
approximation. The thermal relaxation time for the quarks
is obtained from their respective damping rates in the
medium considering the same process. The effects of
magnetic fields are encoded in the effective quark/antiquark
momentum distribution functions in the form of the Landau
levels and also in their energy dispersion relations. On the
other hand, the gluon dynamics is affected through the
effective coupling that has been obtained in our analysis,
again following the transport theory approach.
The hot QCD medium effects in the thermal relaxation

time of the quarks are found to be negligible at very high
temperature. Furthermore, the leading order term in the
bulk viscosity of hot perturbative QCD in strong field limit
has been estimated from the EQPM using the relaxation-
time approximation and compared against the estimations
with and without the magnetic field in other approaches.
The results in the present work turned out to be consistent
with other recent works. All the analysis is done in LLL
approximation first, and then the effects from the HLLs
have been included. The HLL corrections of the bulk
viscosity are found to be quite significant at the higher
temperatures.
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0.04

0.06

0.08

0.10

1 2 3 4
T/ T_c

EQPM (eB = 0.3 GeV2)

Exact sum rule analysis

Lattice data

FIG. 6. Comparison of the temperature behavior of ζ=s for the
1 → 2 processes at jeBj ¼ 0.3 GeV2 with Lattice data [70,71]
and sum rule analysis [69] in the absence of magnetic field.
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FIG. 7. Effects of HLLs on the bulk viscosity in the strong
magnetic field jeBj ¼ 0.3 GeV2 in the given temperature range.
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FIG. 5. Temperature behavior of the ratio of bulk viscosity to entropy (left panel) and ðε−P=ΩÞ
T4 (right panel) at jeBj ¼ 0.3 GeV2 with

LLL approximation.
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We intend to calculate other transport coefficients such
as shear viscosity and charge diffusion coefficient in the
strong magnetic field background with the EQPM in
the near future. Looking at the nonlinear aspects of the
electromagnetic response of the QGP would be another
direction for work.
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APPENDIX: BOLTZMANN EQUATION IN
THE LINEAR RESPONSE REGIME

We need to solve the Boltzmann equation with appro-
priate collision integral for 1 → 2 processes. We have

ð∂t þ vz∂zÞflqðpz; t; zÞ ¼ −
δflq
τeff

; ðA1Þ

where τeff is the thermal relaxation time for 1 → 2 process.
We consider uz and δflq to be small since the prime focus is

on the linear response regime. Using extended EQPM
quasiquark momentum distribution defined in Eq. (1),
Eq. (A1) becomes

δf0q ¼ −τeff f̄0qðf̄0q − 1Þ
× ½E0

p∂tβ þ zq∂tz−1q − βvzpzΘðzÞ�; ðA2Þ

with ΘðzÞ≡ ð∂zuzÞ. Since temperature is time dependent,
Eq. (A2) becomes

δf0q ¼ −τeff f̄0qðf̄0q − 1Þ
× ½ðE0

p − ∂β ln zqÞð∂tβÞ − βvzpzΘðzÞ�: ðA3Þ

Finally, we have used ∂tβ ¼ βΩΘðzÞ as defined in Ref. [24].
Thus we end up with

δf0q ¼ −τeffβf̄0qðf̄0q − 1ÞΘðzÞ
× ½ðE0

p þ T2∂T ln zqÞΩ − vzpz�; ðA4Þ

where ðE0
p þ T2∂T ln zqÞ≡ ω0

p is the single particle energy
in EQPM.
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