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We use a recent scaling analysis of the quasielastic electron scattering data from 12C to predict the
quasielastic charge-changing neutrino scattering cross sections within an uncertainty band. We use a
scaling function extracted from a selection of the ðe; e0Þ cross section data, and an effective nucleon mass
inspired by the relativistic mean-field model of nuclear matter. The corresponding superscaling analysis
with relativistic effective mass (SuSAM*) describes a large amount of the electron data lying inside a
phenomenological quasielastic band. The effective mass incorporates the enhancement of the transverse
current produced by the relativistic mean field. The scaling function incorporates nuclear effects beyond the
impulse approximation, in particular meson-exchange currents and short-range correlations producing tails
in the scaling function. Besides its simplicity, this model describes the neutrino data as reasonably well as
other more sophisticated nuclear models.
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I. INTRODUCTION

The analysis of modern accelerator-based neutrino
oscillation experiments requires a precise knowledge of
the intermediate-energy neutrino-nucleus scattering cross
section [1–5]. The inclusive cross section involves con-
tributions from different channels, which can be grouped
into quasielastic (QE) one-nucleon emission, multinu-
cleon (2p-2h, …) emission, pion production and other
inelastic processes. In particular, QE interactions are key
processes for these experiments, but the nuclear models
for these neutrino and antineutrino cross sections have
large uncertainties [6,7]. There are processes which
appear as QE-like in the neutrino detectors, produced
by mechanisms such as final-state interactions or direct
multinucleon emission, which are not under total control
from the theoretical point of view, and require relativistic
modeling of complex hadronic final states in the con-
tinuum. They therefore limit the reach of current and
future oscillation experiments such as T2K [8–10], NOvA
[11] or DUNE [12]. Recent attempts to reduce the model
uncertainties have been made by measuring the proton
multiplicity of the final states in the T2K [10] and
ArgoNEUT [13] experiments and also the measurement
of neutron multiplicity in ANNIE [14] is planned.
Within this state of affairs the acquaintance of the

inclusive ðe; e0Þ cross sections of nuclei becomes a valuable

starting point; its prior description should be a very con-
venient requisite for the neutrino-nucleus interaction models.
In fact, the isovector component of the electromagnetic
nuclear responses can be related to the vector-vector (VV)
component of the weak charged-current responses contrib-
uting to the neutrino cross sections for the same intermediate
energies. The contribution of the axial current might, in
principle, be inferred by starting from any available model
capable of describing electron scattering. While results from
different groups including effects beyond the impulse
approximation go in the direction to explain the recent
neutrino and antineutrino data [15–23], an excellent agree-
ment has not been achieved yet, and systematic differences
still persist between these theoretical predictions. It is
therefore reasonable to suspect that these differences might
be attributed to systematic differences in the description of
the ðe; e0Þ data by the same models.
The goal of this paper is to provide predictions for

neutrino cross sections with their systematic error inherited
directly from the available ðe; e0Þ data in the superscaling
model with relativistic effective mass (SuSAM*) [24,25].
The scaling approaches [26–28] are an alternative to more
sophisticated microscopical models for predicting the
neutrino QE cross section. They use phenomenological
scaling functions extracted from the ðe; e0Þ data, which
encode many effects and assume that the same scaling
functions can be used to compute the neutrino cross section
[29,30] by just replacing the electromagnetic currents with
the vector and axial ones.
The SuSAM* approach used in this paper is an interest-

ing new alternative to the more traditional superscaling
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analysis approach (SuSA) of Refs. [31,32], using different
assumptions and definitions for the scaling functions and
variables.
SuSAM* is based on the relativistic mean field or

Walecka model of nuclear matter [33], containing basic
theoretical and phenomenological ingredients such as
relativity, gauge invariance, and dynamical enhancement
of lower Dirac components of the nucleon in the medium
due to the scalar and vector potentials. These are known to
be good enough to describe the electromagnetic nuclear
responses in the QE peak [34].
Recently, we have applied SuSAM* to extract a

phenomenological scaling function directly from the
cross section ðe; e0Þ data in the QE region within a
uncertainty band [35]. In [35,36] we have shown that
the extracted scaling function f�ðψ�Þ is a universal
function valid for all the nuclei, provided that a relativ-
istic effective massM� and Fermi momentum kF are fitted
to the data for each nucleus. These two parameters, kF
and M�, have been determined in [35] from the ðe; e0Þ
database representing a first direct extraction of the
Fermi-momentum dependence of relativistic effective
mass below saturation from finite nuclei. We find that
a subset of a third of the about 20 000 existing data
approximately scales to a universal superscaling function.
The resulting scaling function and its uncertainty band
have been parametrized and can thus be easily and
directly applied to predict the neutrino QE cross sections
within a corresponding uncertainty.
Before proceeding further a qualifying remark regard-

ing interpretation of the present work is in order. From our
point of view the SuSAM* band can be understood as the
uncertainty in the theoretical description of the QE data
due to processes violating the scaling model assumptions.
Namely, those interactions which are beyond the impulse
approximation and break the factorization of the cross
section, but that imply small corrections to the center
value and therefore can be regarded as QE-like inter-
actions. The uncertainties obtained in this work for the
neutrino cross sections can then be considered most likely
as an upper limit to the systematic error expected from
nuclear modeling of the QE processes, because all the
models aiming to describe the ðe; e0Þ data should lie inside
the phenomenological uncertainty bands for the pertinent
kinematics.
The structure of this work is as follows. In Sec. II we

describe the theoretical formalism of the SuSAM* model
and the parameters of the phenomenological superscaling
function f�ðψ�Þ. In Sec. III we give our results for the
neutrino and antineutrino cross sections and theoretical
uncertainties and compare with most of the available data
sets. In Sec. IV we give our summary and conclusions.
In the Appendices we show some technical details on the
calculation of selected differential cross sections.

II. FORMALISM OF QUASIELASTIC
NEUTRINO SCATTERING

A. Cross section and responses

In this paper we are interested in the charged-current
quasielastic (CCQE) reactions in nuclei induced by neu-
trinos. In particular we compute the ðνμ; μ−Þ cross section.
The total energies of the incident neutrino and detected
muon are ϵ ¼ Eν, ϵ0 ¼ mμ þ Tμ, and their momenta are
k, k0. The four-momentum transfer is kμ − k0μ ¼ ðω;qÞ,
with Q2 ¼ q2 − ω2 > 0.
If the lepton scattering angle is θμ, the double-differential

cross section can be written as [29,30]

d2σ
dTμd cos θμ

¼ σ0fVCCRCC þ 2VCLRCL

þVLLRLL þ VTRT � 2VT 0RT 0g; ð1Þ

where we have defined the cross section

σ0 ¼
G2 cos2 θc

4π

k0

ϵ
v0: ð2Þ

Here G ¼ 1.166 × 10−11 MeV−2 ∼ 10−5=m2
p is the Fermi

constant, θc is the Cabibbo angle, cos θc ¼ 0.975, and the
kinematic factor v0 ¼ ðϵþ ϵ0Þ2 − q2. The nuclear structure
is implicitly written as a linear combination of five nuclear
response functions, RKðq;ωÞ, where the fifth response
function RT 0 is added (þ) for neutrinos and subtracted (−)
for antineutrinos. The VK coefficients depend only on the
lepton kinematics and are independent on the details of the
nuclear target. They are defined by

VCC ¼ 1 − δ2
Q2

v0
ð3Þ

VCL ¼ ω

q
þ δ2

ρ0
Q2

v0
ð4Þ

VLL ¼ ω2

q2
þ
�
1þ 2ω

qρ0
þ ρδ2

�
δ2

Q2

v0
ð5Þ

VT ¼ Q2

v0
þ ρ

2
−
δ2

ρ0

�
ω

q
þ 1

2
ρρ0δ2

�
Q2

v0
ð6Þ

VT 0 ¼ 1

ρ0

�
1 −

ωρ0

q
δ2
�
Q2

v0
: ð7Þ

Here we have defined the dimensionless factors δ ¼
mμ=

ffiffiffiffiffiffi
Q2

p
, proportional to the muon mass mμ, ρ ¼

Q2=q2, and ρ0 ¼ q=ðϵþ ϵ0Þ.
We evaluate the five nuclear response functions RK ,

K ¼ CC,CL, LL, T, T 0, (C ¼ Coulomb, L ¼ longitudinal,
T ¼ transverse) using a coordinate system with the z-axis
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pointing along q and the x-axis along the transverse
component of the incident neutrino. The nuclear response
functions in this frame are given by the following compo-
nents of the hadronic tensor:

RCC ¼ W00 ð8Þ

RCL ¼ −
1

2
ðW03 þW30Þ ð9Þ

RLL ¼ W33 ð10Þ
RT ¼ W11 þW22 ð11Þ

RT 0 ¼ −
i
2
ðW12 −W21Þ: ð12Þ

B. Nuclear matter responses in the relativistic
mean field

The starting point in this work is the relativistic mean
field (RMF) theory of nuclear matter [33], and its reason-
able description of the electromagnetic nuclear response in
the quasielastic region [34]. This model [33] describes the
nuclear interaction in terms of vector and scalar potentials
whose effect is encoded into a relativistic effective massm�

N
of the nucleon in the medium.
In this model the hadronic tensor for one particle-one

hole (1p-1h) excitations with momentum q and energy ω
can be written as

Wμνðq;ωÞ ¼ V
ð2πÞ3

Z
d3pδðE0 − E − ωÞ ðm

�
NÞ2

EE0

× 2wμν
s:n:ðp0;pÞθðkF − pÞθðp0 − kFÞ; ð13Þ

where E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm�

N
2

p
is the initial nucleon energy in the

mean field. The final momentum of the nucleon is p0 ¼
pþ q and its energy is E0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p02 þm�

N
2

p
. Note that the

initial and final nucleons have the same effective mass m�
N .

The volume V ¼ 3π2N =k3F of the system is related to
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FIG. 1. Comparison of inclusive 16Oðe; e0Þ cross section and predictions of the SuSAM* model. The solid lines have been obtained
with the central parametrization of the scaling function, while the green band represents the theoretical uncertainty. Data are from
[39,40].

TABLE I. Parameters of our fit of the phenomenological
scaling function central value, f�ðψ�Þ, and of the lower and
upper boundaries (min and max, respectively).

a1 a2 a3 b1 b2 b3

central −0.0465 0.469 0.633 0.707 1.073 0.202
min −0.0270 0.442 0.598 0.967 0.705 0.149
max −0.0779 0.561 0.760 0.965 1.279 0.200
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the Fermi momentum kF and proportional to the number
N ¼ NðZÞ of neutrons (protons) participating in the
process for CC neutrino (antineutrino) scattering. Finally
the single-nucleon tensor is written in terms of the CC
current

wμν
s:n:ðp0;pÞ ¼ 1

2

X
ss0

Jμ�ðp0;pÞJνðp0;pÞ; ð14Þ

where Jμ� is the weak current matrix element between
positive energy Dirac spinors with mass m�

N and normal-
ized to ūu ¼ 1. This single nucleon current is the sum of
vector and axial-vector terms Jμ ¼ Vμ − Aμ, where the
vector current is

Vμ
s0s ¼ ūs0 ðp0Þ

�
2FV

1 γ
μ þ 2FV

2 iσ
μν Qν

2mN

�
usðpÞ; ð15Þ

where FV
i ¼ ðFP

i − FN
i Þ=2 are the isovector form factors of

the nucleon. The axial current is

Aμ
s0s ¼ ūs0 ðp0Þ

�
GAγ

μγ5 þGP
Qμ

2mN
γ5

�
usðpÞ: ð16Þ

Note that the free nucleon mass enters in the current
operator, which is not modified in the medium. However
the initial and final spinors usðpÞ, and us0 ðp0Þ, correspond
to nucleons with relativistic effective mass m�

N . This
modifies the values of the above matrix elements in the
nuclear medium with respect to the free values. Thus the
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FIG. 2. Flux-integrated double-differential cross section per target neutron for the CCQE ðνμ; μ−Þ reaction on 12C in the SuSAM*
model. Each panel is labeled by the mean value of cos θμ in each experimental bin. The experimental data are from MiniBooNE [45].
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vector current operator used in this work, Eq. (15) corre-
sponds to the CC2 prescription for the off-shell extrapo-
lation of the electromagnetic current operator [37].
The present RMF theory of nuclear matter treats exactly

relativity, gauge invariance and translational invariance.
It differs with respect to the well known Relativistic Fermi
Gas (RFG) in that the nucleon mass is replaced by the
effective mass both in the spinors and in the energy-
momentum relation. As a consequence, equations similar
to the RFG responses are obtained by replacing mN by m�

N
and rescaling some of the form factors.
The resulting nuclear response function RK is propor-

tional to a single-nucleon response function UK times the
scaling function f�ðψ�Þ

RK ¼ N ξ�F
m�

Nη
�3
F κ�

UKf�ðψ�Þ; ð17Þ

where N is the number of neutrons/protons for neutrino/
antineutrino scattering, η�F ¼ kF=m�

N , and ξ
�
F¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þη�2F

p
−1.

This factorization of the scaling function inspires the
scaling models of [26–28], by using a phenomenological
scaling function instead of the well-known scaling function
of the Fermi gas

f�RFGðψ�Þ ¼ 3

4
ð1 − ψ�2Þθð1 − ψ�2Þ; ð18Þ

where θ is the step function and ψ� is the scaling variable.
In this work we use a phenomenological scaling function
extracted in [25] from the ðe; e0Þ quasielastic data of 12C.

In contrast to traditional approaches where the lepton
interacts with a free nucleon, here we use a modified
scaling variable incorporating the effective mass

ψ�2 ¼ 1

ξ�F
max

(
κ�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

τ�

r
− λ� − 1; ξ�F − 2λ�

)
; ð19Þ

where λ� ¼ ω=ð2m�
NÞ, κ� ¼ q=ð2m�

NÞ, and τ� ¼ κ�2 − λ�2.
The single-nucleon responses UK are obtained analyti-

cally by performing the traces in Eq. (14) and the
integration in Eq. (13).
The K ¼ CC response is the sum of vector and axial

pieces. The vector part implements the conservation of the
vector current (CVC); i.e., it vanishes by contracting with
qμ. The axial part can be written as the sum of conserved
(c.) plus nonconserved (n.c.) parts. Then

UCC ¼ UV
CC þ ðUA

CCÞc: þ ðUA
CCÞn:c:: ð20Þ

For the vector CC response we have

UV
CC ¼ κ�2

τ�

�
ð2G�V

E Þ2 þ ð2G�V
E Þ2 þ τ�ð2G�V

M Þ2
1þ τ�

Δ
�
; ð21Þ

where G�V
E and G�V

M are the new isovector electric and
magnetic nucleon form factors that get modified in the
medium through the effective mass:
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G�V
E ¼ FV

1 − τ�
m�

N

mN
FV
2 ð22Þ

G�V
M ¼ FV

1 þm�
N

mN
FV
2 : ð23Þ

For the free Dirac and Pauli form factors, FV
1 and FV

2 , we
use the Galster parametrization.
The definition of the quantity Δ in Eq. (21) is

Δ ¼ τ�

κ�2
ξ�Fð1 − ψ�2Þ

"
κ�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

τ�

r
þ ξ�F

3
ð1 − ψ�2Þ

#
: ð24Þ

The axial-vector CC responses are

ðUA
CCÞc: ¼

κ�2

τ�
G2

AΔ ð25Þ

ðUA
CCÞn:c: ¼

λ�2

τ�
ðGA − τ�G�

PÞ2; ð26Þ

where GA is the nucleon axial-vector form factor and G�
P is

the new pseudoscalar axial form factor, also modified in the
medium. We use the dipole parametrization of the axial
form factor with the axial mass MA ¼ 1.032 GeV. From

partial conservation of the axial current (PCAC), the new
and rescaled pseudoscalar form factors are now

G�
P ¼ 4mNm�

N

m2
π þQ2

GA: ð27Þ

Note that the axial form factor GA is not modified in the
medium because in its definition in the axial current,
Eq. (16), the nucleon mass does not appear explicitly.
Using current conservation we have for K ¼ CL, LL

UCL ¼ −
λ�

κ�
½UV

CC þ ðUA
CCÞc:� þ ðUA

CLÞn:c: ð28Þ

ULL ¼ λ�2

κ�2
½UV

CC þ ðUA
CCÞc:� þ ðUA

LLÞn:c:: ð29Þ

The n.c. parts are

ðUA
CLÞn:c: ¼ −

λ�κ�

τ�
ðGA − τ�G�

PÞ2 ð30Þ

ðUA
LLÞn:c: ¼

κ�2

τ�
ðGA − τ�G�

PÞ2: ð31Þ
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Finally, the transverse responses are given by

UT ¼ UV
T þUA

T ð32Þ

UV
T ¼ 2τ�ð2G�V

M Þ2 þ ð2G�V
E Þ2 þ τ�ð2G�V

M Þ2
1þ τ�

Δ ð33Þ

UA
T ¼ G2

A½2ð1þ τ�Þ þ Δ� ð34Þ

UT 0 ¼ 2GAð2G�V
M Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ�ð1þ τ�Þ

p
½1þ Δ̃�; ð35Þ

with

Δ̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
τ�

1þ τ�

r
ξ�Fð1 − ψ�2Þ

2κ�
: ð36Þ

C. SuSAM* scaling function

One of the inputs of our model is the phenomenological
scaling function f�ðψ�Þ. This has been determined from a
scaling analysis of the quasielastic electron scattering data
[24,25] based on the RMF formulae of the previous section,
with an effective mass for the nucleon, in contrast to all

previous investigations made with M� ≡m�
N=mN ¼ 1

[27–29]. This analysis allows to select a subset of “qua-
sielastic” data which merge into a thick band that can be
separated from the rest of data. This subset turns out to be a
large fraction (about a third) of the total 20000 data and
approximately scales to a universal superscaling function
with uncertainties. The central value of the phenomeno-
logical quasielastic band has been parametrized as a sum of
two Gaussian functions

f�ðψ�Þ ¼ a3e−ðψ
�−a1Þ2=ð2a22Þ þ b3e−ðψ

�−b1Þ2=ð2b22Þ: ð37Þ

The coefficients encoding the band and their ranges are
provided in Table I. The lower and upper limits of the
phenomenological band have been parametrized as sum of
two Gaussians as well, with coefficients amin =max

i , bmin =max
i ,

given in Table I too. Note that the new scaling function
f�ðψ�Þ is different to the phenomenological scaling function
used in the SuSA formalism [38].
The present SuSAM* model provides a landmark

representation of the intermediate energy quasielastic data,
in the sense that any model aiming to describe these
quasielastic data should lie inside the uncertainty band.
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It gives a fair and simple descriptionof the selected data band.
Besides the scaling function f�ðψ�Þ, it only includes two
parameters: the effective mass and the Fermi momentum.
In the present work we will apply this model to neutrino

and antineutrino quasielastic scattering from 12C and 16O,
assuming the same uncertainty band in the scaling
function as determined in ðe; e0Þ. In Ref. [25] we showed
the results of our model for the doubly differential
12Cðe; e0Þ cross section, with a fair global description of
data. In Fig. 1 we compare our model with the 16O data.
We remark that only six kinematics are available for
this nucleus. We use the values M� ¼ 0.8 and kF ¼
230 MeV=c, taken from the recent A-dependent super-
scaling analysis of [35], while the scaling function band is
the same as that of 12C determined in [25] and given in
Table I.
As it can be observed, most of the data around the

quasielastic region are well described. Note that our model
does not include the pion emission or inelastic channels and
therefore the higher energy data lie, as expected, outside our
uncertainty band. The quality of our description is similar to
the one of the SuSA v2 [31,32]. Other models that analyzed
the 16Oðe; e0Þ cross section in the context of building nuclear

models for neutrinos can be found in Refs. [41–44]. In
addition, we provide an estimation of the theoretical error in
the cross section, that will be translated to neutrino cross
section error bands in the results of the next section.

III. NUMERICAL PREDICTIONS

In this section we present our results for the quasielastic
neutrino and antineutrino cross sections on 12C and 16O
within the SuSAM* model. The parameters of the model
are the effective mass M� ¼ 0.8 and the Fermi momentum
kF ¼ 225, 230 MeV=c, for carbon and oxygen, respec-
tively. The other input of the model is the phenomeno-
logical scaling function f�ðψ�Þ, extracted from ðe; e0Þ data
as described in the previous section.

A. MiniBooNE

We start with the discussion of the MiniBooNE results
[45,46]. In Fig. 2 we show our results for the flux-averaged
double-differential cross section
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Experimental data are from T2K [53].
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where d2σ
dTμd cos θμ

ðEνÞ is the computed cross section for fixed

neutrino energy Eν. The neutrino fluxΦðEνÞ corresponds to
the MiniBooNE experiment on 12C nucleus [45].
In the figure the band predictions and the central cross

section values are compared to the experimental data of
Ref [45], which are given in bins of cos θμ and Tμ. In each
panel of Fig. 2 we fix the cos θμ to the corresponding
experimental bin and the cross section is plotted as a
function of Tμ. In each panel we perform an integration
over the corresponding angular window in cos θμ and
divide by the bin width Δ cos θμ ¼ 0.1.
We observe that the strength and peak position are

reasonably well described by our model, and that the band
thickness is similar to the experimental errors. The data are
slightly above our central curves, except for very forward
angles (cos θμ ∼ 0.95 panel). Thus, we find that, in general,
the data are consistent with the band within the experimental
errors. Note that, by construction, the band contains by
definition the purely QE nuclear effects coming from the
ðe; e0Þ data. This is a very rewarding result which essentially
confirms in a quantitative way the underlying hypothesis of
the scaling analysis, namely, the fact that around the QE the

main difference between electron and neutrino scattering is
mainly due to the different currents and not so much to the
intricacies of nuclear effects. Of course, such a description
has limitations and is subjected to improvements. Actually,
the experimental neutrino data above the QE band indicate
the existence of QE-like effects without pions, as 2p-2h
meson-exchange currents (MEC) and short-range correla-
tions or π-emission and reabsorption. Besides, the neutrino
data falling slightly below the band for low muon energy in
the top left panel point to low-q mechanisms which are, in
general, overestimated by the scaling model.
For low momentum transfer (q < 2kF) the Pauli block-

ing effect begins to play a role in the RFG cross section.
The scaling model and the factorization of cross section
derived from it start to be unrealistic. For example the
ðe; e0Þ cross section of 12C for low electron energy is
overestimated by the SuSAM* model as can be seen in
Fig. 6 of Ref. [25]. A proper description of the cross section
for very low-q kinematics would require to include at least
the final state interaction of low energy final states in the
continuum instead of plane waves.
All these effects are known to violate scaling and are

expected to produce additional contributions to the band
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results. Our goal here is limited to study the implications
of the ðe; e0Þ band when directly translated to neutrino
scattering. The inclusion of these effects, while extremely
interesting, is beyond the scope of this work and is left for
future research.
The antineutrino double-differential cross sections for

the kinematics of the MiniBooNE experiment [46] are
shown in Fig. 3. Again a good description of data is
observed. In general the data are above our central curves,
leaving room for additional nuclear effects not included in
the SuSAM* model.
Our results on Figs. 2 and 3 are quantitatively slightly

larger than those of the RMF model of Udias et al. [47,48],
but it is apparent that the RMF is closely inside our
uncertainty band. This was to be expected because both
models are based on the same theoretical Walecka model
[33]. The main difference between both approaches is that
the model of Udias et al. describes finite nuclei with local

vector and scalar potentials, while here our potentials are
constant and generate a fixed effective mass inside the
volume containing the RFG. In our case the scaling
function takes into account the finite size of the nucleus
and, besides, it is phenomenological, what accounts for the
differences between both models.
Despite the fact that our model is not including 2p-2h

explicitly, it is remarkable that the agreement of our central
curve with the MiniBooNE data is similar to that obtained
with more sophisticated models as those by authors Nieves
et al. [49,50], Martini et al. [51,52], and Mosel et al. [17].
This is so because the RMF includes some dynamical
relativistic effects like enhancement of transverse response
due to lower components of nucleon spinors and other
nuclear effects hidden into the phenomenological scaling
function f�ðψ�Þ.
The uncertainty imposed by the QE ðe; e0Þ data over

neutrino scattering can be globally appreciated in the
single-differential cross sections of Fig. 4, obtained by
integration of the double differential ones. In general the
data are within the SuSAM* band. Our central curves are
systematically slightly below the data, in agreement with
the results of the previous Figs. 2 and 3. The thickness of
the band seems larger than in the ðe; e0Þ cross sections. This
appears to be due to the integration over the neutrino flux,
which mixes the bands for different kinematics.
A closer insight into our results is considered in Fig. 5.

Here we show the separate contributions of the L, T, and T 0
responses to the cross section for several kinematics. The
contribution of L response is considerably smaller than the
transverse channels. The T response gives the largest
contribution. This indicates that the axial contribution to
the transverse cross section is larger than the VV one. For
large scattering angle the T and T 0 responses tend to be
almost equal. This produces a large cancellation in the
antineutrino cross section, which is therefore very small for
large angles. Due to this cancellation one would expect the
antineutrino cross section to be more sensitive to the details
of the longitudinal responses. The results of Fig. 5 are
useful to further be compared with those of the RMF model
of Udias et al. (see Figs. 2 and 3 of Ref. [47]), being in fair
agreement with our findings. This comparison again
ensures the similitudes between the SuSAM* and the
RMF in finite nuclei for intermediate energies.

B. T2K

In Figs. 6 and 7 we compare the SuSAM* predictions
with the measurement of double-differential muon neutrino
CC cross section without pions (CCQE-like) of the T2K
experiment from 12C [53] and 16O [54]. The experimental
data nicely fall inside the QE uncertainty band except for
very forward angles, where the data are overestimated
around the maximum of the cross section. This is related to
the limitations of the SuSAM* model to describe the low
momentum transfer region.
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In contrast to the MiniBooNE experiment, the T2K data
bins are not equally spaced in cos θμ, and the forward angle
dependence is probed in some more detail than in the
MiniBooNE analysis. Note that in all the calculations we
average the cross section over the corresponding angular bin.
The neutrino energy distribution of the T2K experiment is
also different from that of the MiniBooNE experiment,
the former being narrower around the maximum value
∼0.6 GeV. Both neutrino fluxes are compared in Fig. 8.
The flux folding of the cross section, Eq. (38), implies an

integration over the incident neutrino energy, which pro-
duces a smearing of the cross section for different energies.
This results in a mild model dependence of the QE neutrino
cross sections. Being the flux narrower than the
MiniBooNE one, one would expect the T2K experiment
to be more suited for discriminating over different theo-
retical models of the reaction. Note also that the T2K
angular bins are smaller for small angles (cos θμ > 0.8), but
for large angles (cos θμ < 0.6) the bins are embracing a
large angular sector, thus acquiring a larger additional
smearing of angular cross sections. For all these reasons,
the T2K and MiniBooNE cross sections are not directly
comparable because they explore different energy and
angular regions of the QE peak by selected integrations.

In Fig. 8 we analyze in more detail the smearing effect
produced by the folding with the neutrino flux. We show
the QE cross section for fixed neutrino energies Eν ¼
0.5;…; 2.5 GeV, as a function of the muon momentum for
the kinematics 0.98 < cos θμ < 1 (corresponding to the last
panels in Figs. 6 and 7). For fixed neutrino energy, the cross
section is a narrow peak contributing to the flux-folded
cross section only in a narrow region in pμ. As Eν increases
the allowed muon energy increases and the peak position
moves to the right, and its width increases, as a function of
pμ. From this figure we can infer that the error of the
reconstruction of the neutrino energy from the flux-folded
cross section is related to the width of these peaks for fixed
neutrino energy—or more precisely for fixed Tμ, which is
of the same order.
It is interesting to see that the strength of the cross section

increases with Eν. This is in contrast to the electron
scattering QE cross section, which decreases with the
incident electron energy. The reason is because in the
electromagnetic interaction there is a photon propagator
squared 1=Q4, which decreases withQ2, while in the weak
CC case there is aW� propagator squared ≃1=M4

W , which
is almost constant for the low Q2-values considered here.
Therefore the neutrino cross section increases with Eμ.
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This increase is partially balanced with a decrease of the
neutrino flux inside the folding. Accidentally, this balance
turns out to be almost perfect in the case of the T2K
experiment for the kinematics of Fig. 8, and that is the
reason why for large pμ the flux-folded cross section does
not fall to zero and is almost constant in the last panels of
Figs. 6 and 7.
To complete the comparison with T2K data, in Figs. 9 and

10 we compare our model with the data of total inclusive
cross sections for νμ [55] and νe CC scattering from 12C [56].
Up to now we have compared with inclusive data without
pions in the final state (CCQE-0π), corresponding to QE-like

events, but they are not restricted to one-nucleon emission
because these semi-inclusive cross sections contain multi-
nucleon emission, mainly from 2p-2h final states. Our
model accounts for this multinucleon emission, at least
partially, because the effective mass and scaling function
is extracted directly from cross section data. The width of
the band should account for those processes that violate
scaling, but remain close to the QE peak. In particular, the
tail in the scaling function is produced by nucleons with
large momentum (compared to kF) inside the ground
state, which are mainly produced by short-range corre-
lations. Other mechanisms such as meson-exchange
currents also should contribute partially to the uncertainty
band.
In addition to this, the inclusive neutrino data in Figs. 9

and 10 contain also explicit pion emission and other
inelasticities, which do not scale and have been disregarded
in our selection of QE ðe; e0Þ data. That is why our results
underestimate the inclusive cross sections, as it is more
apparent in the case of νe, shown in Fig. 10.
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C. MINERvA

In Fig. 11 we show the flux-folded CCQE single-
differential cross section dσ=dQ2

QE for ðνμ; μ−Þ and
ðν̄μ; μþÞ scattering from 12C and CH, respectively, compared
to the MINERvA experiment [57]. This cross section is
presented as a function of the reconstructed variable Q2

QE,
which is not the true Q2, but it is computed from the
reconstructed neutrino energy assuming quasielastic scatter-
ing from a nucleon at rest. In Appendix Awe show details on
how this cross section is computed. The cross section data
for antineutrino scattering contain the H contribution from
the target. In Appendix B we show how we evaluate this
cross section within our formalism. As we can see in Fig. 11,
all the MINERvA data fall with our uncertainty band, and,
moreover, they are very close to the central value of the
SuSAM* model predictions.
To finish our discussion, in Fig. 12 we show the double

differential antineutrino cross section for QE scattering on
CH (hydrocarbon) corresponding to the recent measure-
ments in the MINERvA detector [6].
The double-differential measurements of antineutrino QE

scattering in the MINERvA detector provide a complete

description of observed muon kinematics with respect to
the muon longitudinal and transverse momentum with
respect to the incident neutrino. These are related to the
variables pμ, cos θμ by

pk ¼ pμ cos θμ ð39Þ
p⊥ ¼ pμ sin θμ: ð40Þ

It is then straightforward to compute the Jacobian of the
transformation to the usual cross section variables Eμ, cos θμ

dpkdp⊥ ¼ Eμ

sin θμ
dEμd cos θμ: ð41Þ

Therefore we compute the MINERvA double-differential
cross section as

d2σ
dpkdp⊥

¼ sin θμ
Eμ

d2σ
dEμd cos θμ

: ð42Þ

Our calculation in Fig. 12 is compared with the “true”
CCQE data from Tables XXII, XXIII, and XXIV of
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Ref. [6]. In each panel we integrate over pk in the indicated
interval. Taking into account that the experimental data [6]
were obtained using the cut θμ < 20°, we apply that cut in
our integration.
Most of the data are within the uncertainty band and

slightly above the central SuSAM* results. This may
indicate the presence of some non-QE events in the data.
The hydrogen contribution is also included in the calcu-
lation from hydrocarbon. It is found to provide a small
correction which slightly increases the cross section, but it
could be safely ignored without sensibly modifying the
uncertainty band of Fig. 12. Note that in each panel of the
figure the parallel component of the muon momentum is
averaged over the corresponding experimental bin as
indicated. By plotting the cross section as a function of
the perpendicular muon momentum, not only the total
muon momentum increases, but also the angle, opposite to
the usual Eμ-plots where the cos θμ bins are kept constant.

IV. CONCLUSIONS

Summarizing, in this work we have provided predictions
for the CCQE neutrino and antineutrino cross sections
and their theoretical uncertainties. These uncertainties are
extracted directly from the ðe; e0Þ data and can be consid-
ered upper limits to the expected systematic errors coming
from the nuclear modeling of the reaction. We have
compared our model with the available QE neutrino and
antineutrino double-differential and differential cross sec-
tion data from MiniBooNE, T2K, and MINERvA experi-
ments, with a reasonable agreement. The theoretical
uncertainty bands are around 20%–30% and, in general,
of the same order as the experimental errors.
The agreement of our central results with data is similar to

that obtained with much more sophisticated theoretical
models. We emphasize that the results were obtained without
any tuning of model parameters except the relativistic
effective mass and the Fermi momentum, extracted from
a large body of ðe; e0Þ data around the QE. The accord with
data over different experiments, different nuclei, and span-
ning a wide range of neutrino and antineutrino energies,
shows that the SuSAM* uncertainty bands faithfully encode
intricate nuclear effects and qualify as a suitable tool for the
validation of models of QE-like interactions. We plan to
explore ways to reduce the systematic errors, for instance
by combining the SuSAM* model with explicit additional
contributions frommeson-exchange currents, which only are
partially included in the phenomenological scaling function,
or by extending the model to account for the inelastic
channels.
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APPENDIX A: RECONSTRUCTED Q2
QE

DIFFERENTIAL CROSS SECTION

A quantity of interest in the experiments is the recon-
structed neutrino energy assuming quasielastic scattering
on a nucleon at rest. By energy-momentum conservation, it
is given by [6,45,58]

EQE
ν ¼ m2

p −m0
n
2 −m2

μ þ 2m0
nEμ

2ðm0
n − Eμ þ pμ cos θμÞ

; ðA1Þ

where m0
n ¼ mn − Eb, and Eb ¼ 34 MeV is an effective

binding energy for an initial neutron at rest in 12C. For the
inverse reaction case of antineutrinos one should exchange
the neutron and proton masses in the formula and a change
in Eb ¼ 30 MeV. With this, the reconstructed Q2

QE is
given by

Q2
QE ¼ 2EQE

ν ðEμ − pμ cos θμÞ −m2
μ: ðA2Þ

Note that the reconstructed variable Q2
QE is not the true Q2

because the true neutrino energy is unknown. It is a
function of ðcos θμ; EμÞ. It is a convenient variable to
present results in a representation similar to the neutrino-
nucleon cross section. The definition of the cross section
dσ=dQ2

QE is the following:

dσ
dQ2

QE
¼

Z
dEμ

dσ
d cos θμdEμ��� ∂Q2

QE

∂ cos θμ
��� ; ðA3Þ

where the cross section in the numerator is the flux-folded
double-differential cross section. The denominator is
the Jacobian in the change of variables ðcos θμ; EμÞ →
ðQ2

QE; EμÞ. Therefore inside the integral the cos θμ variable
is computed from Eqs. (A1)–(A2) by solving for cos θμ in
terms of the independent variables ðQ2

QE; EμÞ:

cos θμ ¼ ½Eμðm2
p −m0

n
2 −m2

μ þ 2m0
nEμÞ

− ðm0
n − EμÞðQ2

QE þm2
μÞ�

× ½pμðQ2
QE þm2

p −m0
n
2 þ 2m0

nEμÞ�−1: ðA4Þ

The Jacobian in the denominator is then given by

∂Q2
QE

∂ cos θμ ¼ 2
∂EQE

ν

∂ cos θμ ðEμ − pμ cos θμÞ − 2pμE
QE
ν ðA5Þ
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∂EQE
ν

∂ cos θμ ¼ −
m2

p −m0
n
2 −m2

μ þ 2m0
nEμ

2ðm0
n − Eμ þ pμ cos θμÞ2

pμ: ðA6Þ

The resulting differential cross section has been computed
using (A3) when we compare with the MINERvA data.

APPENDIX B: THE ELASTIC pðν̄μ;μ+ Þn
CROSS SECTION

Some experiments provide cross sections including the
contributions from the hydrogen target atoms. Therefore,
when comparing with such experiments, such as the
MINERvA data, the individual proton cross sections have
to be added incoherently to the 12C one in proportion to the
relative number of protons in each species of the target.
Here we compute this contribution as a particular case of

the RFG formalism for kF ¼ 0, Z ¼ 1, andM� ¼ 1. For the
flux averaged antineutrino cross section we have

d2σ
dTμd cos θμ

¼
Z

dEνϕðEνÞ
mn

E0 δðE0 þ Eμ −mp − EνÞ

× σ0ðEνÞ
X
K

VKUKðE0; 0Þ; ðB1Þ

where the elastic single nucleon responses UKðE0; 0Þ are
evaluated for a nucleon at rest using Eqs. (20), (28), (29),
(32), (35), for kF ¼ 0, or, equivalently, by simply setting
Δ ¼ Δ̃ ¼ 0 in those equations. Being a nucleon at rest, the
values of q and ω are calculated from the kinematics inside
the integral. To integrate over the neutrino energy using the
Dirac delta, we take into account that the final nucleon
energy, E0, depends on the antineutrino energy through

E02 ¼ m2
n þ E2

ν þ p2
μ − 2Eνpμ cos θμ: ðB2Þ

Differentiating we can write

dEν

E0 ¼ dðE0 − EνÞ
Eν − pμ cos θμ − E0 : ðB3Þ

Now it is straightforward to integrate the Dirac delta,
obtaining

d2σ
dTμd cos θμ

¼ ϕðEνÞ
mn

jEμ −mp − pμ cos θμj
× σ0ðEνÞ

X
K

VKUKðE0; 0Þ; ðB4Þ

where we have taken the absolute value of the Jacobian and
replaced in the denominator Eν − E0 ¼ Eμ −mp. The value
of the antineutrino energy is

Eν ¼
m2

n −m2
p −m2

μ þ 2mpEμ

2ðmp − Eμ þ pμ cos θμÞ
; ðB5Þ

and E0 ¼ Eν − Eμ þmp. This solves the double-differential
cross section problem. Finally, to compute the single-
differential cross section dσ=dQ2

QE for the proton we apply
again the method explained in Appendix A. Note that since
in Fig. 11 the experimental data are given as a function of
reconstructed Q2

QE the single proton cross section is also
plotted in terms of Q2

QE, with Eb ¼ 30 MeV.
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