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We study the modular symmetry in magnetized D-brane models on T2. Non-Abelian flavor symmetry
D4 in the model with magnetic flux M ¼ 2 (in a certain unit) is a subgroup of the modular symmetry. We
also study the modular symmetry in heterotic orbifold models. The T2=Z4 orbifold model has the same
modular symmetry as the magnetized brane model with M ¼ 2, and its flavor symmetry D4 is a subgroup
of the modular symmetry.
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I. INTRODUCTION

Non-Abelian discrete flavor symmetries play an impor-
tant role in particle physics. In particular, many models
with various finite groups have been studied in order to
explain quark and lepton masses and their mixing angles.
(See for review [1–3].) Those symmetries may be useful for
dark matter physics and multi-Higgs models.
Superstring theory is a promising candidate for unified

theory including gravity. It has been shown that some non-
Abelian discrete flavor symmetries appear in superstring
theorywith certain compactifications.Heterotic string theory
on toroidal ZN orbifolds can realize non-Abelian flavor
symmetries, e.g., D4, and Δð54Þ [4]. (See also [5,6].)1

Furthermore, magnetized D-brane models within the frame-
work of type II superstring theory can lead to similar flavor
symmetries [8–12]. Intersecting D-brane models are T-dual
to magnetized D-brane models. Then, one can realize the
same aspects in intersecting D-brane models as in the
magnetized ones.2

On the other hand, superstring theories on tori and
orbifolds have modular symmetry. Recently, the behavior
of zero modes under modular transformation was studied in
magnetized D-brane models in Ref. [14]. (See also [15].)
Also, the behavior of twisted sectors under modular
transformation was already studied in Refs. [16–18].
These modular transformations also act nontrivially on
flavors and transform mutually flavors from each other.

The remarkable difference is that modular transformation
also acts on Yukawa couplings as well as higher order
couplings, while those couplings are trivial singlets under
the usual non-Abelian symmetries.
The purpose of this paper is to study more how modular

transformation is represented by zero modes in magnetized
D-brane models, and to discuss relations between modular
transformation and non-Abelian flavor symmetries in
magnetized D-brane models. Intersecting D-brane models
have the same aspects as magnetized D-brane models,
because they are T-dual to each other. Furthermore,
intersecting D-brane models in type II superstring theory
and heterotic string theory have similarities, e.g., in two-
dimensional conformal field theory. Thus, here we study
modular symmetry and non-Abelian discrete flavor sym-
metries in heterotic orbifold models, too.
This paper is organized as follows. In Sec. II, we study

the modular symmetries in magnetized D-brane models
and the relation to the D4 flavor symmetry. In Sec. III, we
study the modular symmetries in heterotic orbifold models.
Section IV is the conclusion and discussions. We give brief
reviews on non-Abelian discrete flavor symmetries in
magnetized D-brane models and heterotic orbifold models
in Appendixes A and B, respectively.

II. MODULAR TRANSFORMATION IN
MAGNETIZED D-BRANE

MODELS

In this section, we study the modular transformation of
zero-mode wave functions in magnetized D-brane models.

A. Zero-mode wave function

Here, we give a brief review on zero-modewave functions
on torus with magnetic flux [15]. For simplicity, we con-
centrate on T2 with Uð1Þ magnetic flux. The complex
coordinate on T2 is denoted by z ¼ x1 þ τx2, where τ is
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1In Ref. [7], a relation between gauge symmetries and non-
Abelian flavor symmetries is discussed at the enhancement point.

2See also [13].
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the complex modular parameter, and x1 and x2 are real
coordinates. The metric on T2 is given by

gαβ ¼
�
gzz gzz̄
gz̄z gz̄ z̄

�
¼ ð2πRÞ2

 
0 1

2

1
2

0

!
: ð1Þ

We identify z ∼ zþ 1 and z ∼ zþ τ on T2.
On T2, we introduce the Uð1Þ magnetic flux F,

F ¼ i
πM
Imτ

ðdz ∧ dz̄Þ; ð2Þ

which corresponds to the vector potential,

AðzÞ ¼ πM
Imτ

Imðz̄dzÞ: ð3Þ

Here we concentrate on vanishing Wilson lines.
In the above background, we consider the zero-mode

equation for the spinor field with the Uð1Þ charge q ¼ 1,

iDΨ ¼ 0: ð4Þ

The spinor field on T2 has two components,

Ψðz; z̄Þ ¼
�
ψþ
ψ−

�
: ð5Þ

The magnetic flux should be quantized such that M is an
integer. Either ψþ or ψ− has zero modes exclusively for
M ≠ 0. For example, we set M to be positive. Then, ψþ
hasM zero modes, while ψ− has no zero mode. Hence, we
can realize a chiral theory. Their zero-mode profiles are
given by

ψ j;MðzÞ ¼ N eiπMzImz
Imτ · ϑ

� j
M

0

�
ðMz;MτÞ; ð6Þ

with j ¼ 0; 1;…; ðM − 1Þ, where ϑ denotes the Jacobi
theta function,

ϑ

�
a

b

�
ðν; τÞ ¼

X
l∈Z

eπiðaþlÞ2τe2πiðaþlÞðνþbÞ: ð7Þ

Here, N denotes the normalization factor given by

N ¼
�
2ImτM
A2

�
1=4

; ð8Þ

with A ¼ 4π2R2Imτ.
The ground states of scalar fields also have the same

profiles as ψ j;M. Thus, the Yukawa coupling including one
scalar and two spinor fields can be computed by using these

zero-mode wave functions. Zero mode wave functions
satisfy the following relation:

ψ i;Mψ j;M ¼ A−1=2ð2ImτÞ1=4
�

MN
M þ N

�
1=4

×
X
m

ψ iþjþMm;MþN

· ϑ

"
Ni−MjþMNm
MNðMþNÞ

0

#
ð0;MNðM þ NÞτÞ: ð9Þ

By use of this relation, their Yukawa couplings are given by
the wave function overlap integral,

Yijk ¼ y
Z

d2zψ i;Mψ j;Nðψk;M0 Þ�

¼ y

�
2Imτ

A2

�
1=4 X

m∈ZM0

δk;iþjþMm

· ϑ

� Ni−MjþMNm
MNM0

0

�
ð0;MNM0τÞ; ð10Þ

where y is constant. This Yukawa coupling vanishes for
M0 ≠ M þ N. Similarly, we can compute higher order
couplings using the relation (9) [19]. In the above equation,
the Kronecker delta δk;iþjþMm implies the coupling selec-
tion rule. For g ¼ gcdðM;N;M0Þ, nonvanishing Yukawa
couplings appear only if

iþ j ¼ k ðmod gÞ: ð11Þ

Hence, we can define Zg charges in these couplings [8].

B. Modular transformation

Here, we study modular transformation. First, we give a
brief review on results of modular transformation [14].
(See also [15].) Then, we will study in more detail.
The T2 is constructed by R2=Λ, and the lattice Λ is

spanned by the vectors ðα1;α2Þ, where α1 ¼ 2πR and
α2 ¼ 2πRτ. However, the same lattice can be described
by another basis,

�
α02
α01

�
¼
�
a b

c d

��
α2

α1

�
; ð12Þ

where a, b, c, d are integers satisfying ad − bc ¼ 1. That is
the SLð2; ZÞ transformation.
The modular parameter τ ¼ α2=α1 transforms as

τ →
aτ þ b
cτ þ d

; ð13Þ

under (12). This transformation includes two important
generators, S and T,
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S∶ τ → −
1

τ
; ð14Þ

T∶ τ → τ þ 1: ð15Þ

They satisfy

S2 ¼ I; ðSTÞ3 ¼ I: ð16Þ

On top of that, if we impose the algebraic relation,

TN ¼ I; ð17Þ

that corresponds to the congruence subgroup of modular
group, ΓðNÞ. For example, it is found that Γð2Þ ≃ S3,
Γð3Þ ≃ A4, Γð4Þ ≃ S4, and Γð5Þ ≃ A5. Since group A4

has the symmetry of the tetrahedron, it is often called
the tetrahedral group T ¼ A4. Also, it may be useful to
mention about Δð3N2Þ ≃ ðZN × ZNÞ⋊Z3 and Δð6N2Þ≃
ðZN × ZNÞ⋊S3. We find that S3 ≃ Δð6Þ, A4 ≃ Δð12Þ,
and S4 ≃ Δð24Þ.
Following [14], we restrict ourselves to even magnetic

fluxes M (M > 0). Under S, the zero-mode wave functions
transform as [14,15]

ψ j;M →
1ffiffiffiffiffi
M

p
X
k

e2πijk=Mψk;M: ð18Þ

On the other hand, the zero-mode wave functions transform
as [14]

ψ j;M → eπij
2=Mψ j;M; ð19Þ

under T. Generically, the T transformation satisfies

T2M ¼ I; ð20Þ

on the zero modes, ψ j;M. Furthermore, in Ref. [14] it is
shown that

ðSTÞ3 ¼ eπi=4; ð21Þ

on the zero modes, ψ j;M.
In what follows, we study more concretely.

1. Magnetic flux M =2

Let us study the case with the magnetic flux M ¼ 2

concretely. There are two zero modes, ψ0;2 and ψ1;2. The S
transformation acts on these zero modes as

 
ψ0;2

ψ1;2

!
→ Sð2Þ

 
ψ0;2

ψ1;2

!
; Sð2Þ ¼

1ffiffiffi
2

p
�
1 1

1 −1

�
:

ð22Þ

The T transformation acts as

�
ψ0;2

ψ1;2

�
→ Tð2Þ

�
ψ0;2

ψ1;2

�
; Tð2Þ ¼

�
1 0

0 i

�
: ð23Þ

They satisfy the following algebraic relations:

S2ð2Þ ¼ I; T4
ð2Þ ¼ I; ðSð2ÞTð2ÞÞ3 ¼ eπi=4I: ð24Þ

They construct a closed algebra with the order 192, which
we denote here by Gð2Þ. By such an algebra, the modular
transformation is represented by two zero modes, ψ0;2 and
ψ1;2. We find that ðSð2ÞTð2ÞÞ3 is a center. Indeed, there are
eight center elements and their group is Z8. Other diagonal
elements correspond to Z4, which is generated by Tð2Þ.
Here, we denote

a ¼ ðSð2ÞTð2ÞÞ3; a0 ¼ Tð2Þ: ð25Þ

The diagonal elements are represented by ama0n, i.e.,
Z8 × Z4.
Here, we examine the right coset Hg for g ∈ Gð2Þ, where

H is the above Z8 × Z4, i.e.,H ¼ fama0ng. There would be
6ð¼ 192=ð8 × 4ÞÞ cosets. Indeed, we obtain the following
six cosets:

H; HSð2Þ; HSð2ÞTk
ð2Þ; HSð2ÞT2

ð2ÞSð2Þ; ð26Þ

with k¼1, 2, 3. By simple computations, we findHSð2ÞTk
ð2Þ

Sð2Þ ∼HSð2ÞT4−k
ð2Þ Sð2Þ and HSð2ÞT2

ð2ÞSð2ÞT ∼HSð2ÞT2
ð2ÞSð2Þ.

Furthermore, we would make a (non-Abelian) subgroup
with the order 6 by choosing properly six elements such
that we pick one element up from each coset and their
algebra is closed. The non-Abelian group with the order 6 is
unique, i.e., S3. For example, we may be able to obtain the
Z3 generator fromHSð2ÞTð2Þ because ðSð2ÞTð2ÞÞ3 ∈ H. That
is, we define

b ¼ ama0nSð2ÞTð2Þ: ð27Þ

Then, we require b3 ¼ I. There are three solutions,
ðm; nÞ ¼ ð3; 2Þ, (5, 0) mod (8,4). Similarly, we can obtain
the Z2 generator, e.g., from HSð2ÞT2

ð2ÞSð2Þ because

ðSð2ÞT2
ð2ÞSð2ÞÞ2 ∈ H. Then, we define

c ¼ am
0
a0n0Sð2ÞT2

ð2ÞSð2Þ: ð28Þ

We find c2 ¼ I when n0 ¼ −m0 mod 4. On top of that, we
require ðbcÞ2 ¼ I, and that leads to the conditions n ¼
−m0 − 1 mod 4 and m ¼ m0 þ 2 mod 8. As a result, there
are six solutions, ðm; n;m0Þ ¼ ð3; 2; 1Þ, (3, 2, 5), (5, 0, 3),
(5, 0, 7) with n0 ¼ −m0 mod 4.
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For example, for ðm; n;m0Þ ¼ ð3; 2; 5Þ we write

b ¼ 1ffiffiffi
2

p
�

ρ3 ρ−3

ρ−1 ρ−3

�
; c ¼

�
0 ρ−3

ρ3 0

�
: ð29Þ

The six elements of the subgroup are written explicitly,

�
1 0

0 1

�
;

1ffiffiffi
2

p
�
1 1

1 −1

�
;

�
0 ρ−3

ρ3 0

�
;

1ffiffiffi
2

p
�−1 i

−i 1

�
;

1ffiffiffi
2

p
�

ρ3 ρ−3

ρ−1 ρ−3

�
;

1ffiffiffi
2

p
�
ρ−3 ρ

ρ3 ρ3

�
; ð30Þ

where ρ ¼ e2πi=8. They correspond to S3 ≃ Γð2Þ ≃ Δð6Þ
because they satisfy the following algebraic relations:

c2 ¼ b3 ¼ ðbcÞ2 ¼ I: ð31Þ
Moreover, they satisfy the following algebraic relation with
Z8 × Z4:

b−1ab1 ¼ a; cac ¼ a; b−1a0b ¼ a;

ca0c−1 ¼ a2a03: ð32Þ
Thus, the algebra of Gð2Þ is isomorphic to ðZ8 × Z4Þ⋊S3.
We have started by choosing HSð2ÞT2

ð2ÞSð2Þ for a candi-
date of the Z2 generator. We can obtain the same results by
starting with HSð2Þ for a candidate of the Z2 generator.

2. Magnetic flux M =4

Similarly, we study the case with the magnetic flux
M ¼ 4. There are four zero modes, ψ i;M with i ¼ 0, 1, 2, 3.
The S and T transformations are represented by ψ i;M,

Sð4Þ ¼
1

2

0
BBB@

1 1 1 1

1 i −1 −i
1 −1 1 −1
1 −i −1 i

1
CCCA;

Tð4Þ ¼

0
BBB@

1

eπi=4

−1
eπi=4

1
CCCA: ð33Þ

This is a reducible representation. In order to obtain
irreducible representations, we use the flowing basis,

0
B@

ψ0.4

ψ1;4
þ

ψ2;4

1
CA ¼

0
B@

ψ0.4

1ffiffi
2

p ðψ1;4 þ ψ3;4Þ
ψ2;4

1
CA;

ψ1;4
− ¼ 1ffiffiffi

2
p ðψ1;4 − ψ3;4Þ: ð34Þ

This is nothing but zero modes on the T2=Z2 orbifold [20].
The former corresponds to Z2 even states, while the latter

corresponds to the Z2 odd state. Note that ðSTÞ3 transforms
the lattice basis ðα1; α2Þ → ð−α1;−α2Þ. Thus, it is reason-
able that the zero modes on the T2=Z2 orbifold correspond
to the irreducible representations.
The S and T representations by the Z2 odd zero mode are

quite simple, and these are represented by

Sð4−Þ ¼ i; Tð4Þ− ¼ eπi=4: ð35Þ

Their closed algebra is Z8.
On the other hand, the S and T transformations are

represented by the Z2 even zero- modes,

Sð4Þþ ¼ 1

2

0
BB@

1
ffiffiffi
2

p
1ffiffiffi

2
p

0 −
ffiffiffi
2

p

1 −
ffiffiffi
2

p
1

1
CCA;

Tð4Þþ ¼

0
BB@

1

eπi=4

−1

1
CCA: ð36Þ

They satisfy the following algebraic relation:

ðSð4ÞþÞ2 ¼ I; ðTð4ÞþÞ8 ¼ I; ðSð4ÞþTð4ÞþÞ3 ¼ eπi=4I:

ð37Þ

We denote the closed algebra of Sð4Þþ and Tð4Þþ by Gð4Þþ.
Its order is equal to 768, and it includes the center element
ðSð4ÞþTð4ÞþÞ3, i.e., Z8. Other diagonal elements correspond
to Z8, which is generated by Tð4Þþ. Again, we denote a ¼
ðSð4ÞþTð4ÞþÞ3 and a0 ¼ Tð4Þþ, and the diagonal elements are
written by ama0n, i.e., Z8 × Z8.
Similar to the case with M ¼ 2, we examine the coset

structure, Hg. Indeed, there are the following 12 cosets:

H; HSð4Þþ; HSkð4Þþ; HSð4ÞþTl
ð4ÞþSð4Þþ; ð38Þ

where k ¼ 1;…; 7 and l ¼ 2, 4, 6. By simple computation,
we find that

HSð4ÞþTk
ð4ÞþSð4Þþ ∼HSð4ÞþT8−k

ð4Þþ;

HSð4ÞþTl
ð4ÞþSð4ÞþT ∼HSð4ÞþT8−l

ð4ÞþSð4Þþ ð39Þ

for k ¼ odd and l ¼ even.
We make a subgroup with the order 12 by choosing

properly 12 elements such that we pick one element up
from each coset and their algebra is closed. The non-
Abelian group with the order 12 are D6, Q6, and A4.
Among them, A4 would be a good candidate. Indeed, we
can obtain the Z3 generator from HSð4ÞþTð4Þþ, gain. That
is, we define
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t ¼ ama0nSð4ÞþTð4Þþ: ð40Þ

The solutions for t3 ¼ I are obtained by ðm; nÞ ¼ ð1; 4Þ,
(3, 6), (5, 0), and (7, 2). We also define

s ¼ am
0
a0n0Sð4ÞþT4

ð4ÞþSð4Þþ: ð41Þ

The solutions for s2 ¼ I are obtained by ðm0; n0Þ ¼ ð0; 0Þ,
(0, 4), (4, 0), and (4, 4). These two generators satisfy
ðstÞ3 ¼ I if ðm0; n0Þ ¼ ð0; 4Þ, and (4, 0), i.e.,

s ¼

0
B@

0 0 �1

0 −1 0

�1 0 0

1
CA: ð42Þ

As a result, they satisfy

s2 ¼ t3 ¼ ðstÞ3 ¼ I: ð43Þ

That is the A4 algebra.

3. Large magnetic flux M

For larger magnetic fluxes, S and T transformations are
represented by zero modes ψ j;M, but those are reducible
representations. The irreducible representations are obtained
in the T2=Z2 orbifold basis,

ψ j;M
� ¼ 1ffiffiffi

2
p ðψ j;M � ψM−j;jÞ: ð44Þ

The representations of TðMÞ are simply obtained by

TðMÞþ

0
BBBBBBBBBB@

ψ0;M

ψ1;M
þ

..

.

ψ j;M
þ

..

.

ψM=2;M

1
CCCCCCCCCCA

¼

0
BBBBBBBBBB@

1

eπi=M

. .
.

eπij
2=M

. .
.

eπiM=4

1
CCCCCCCCCCA

×

0
BBBBBBBBBB@

ψ0;M

ψ1;M
þ

..

.

ψ j;M
þ

..

.

ψM=2;M

1
CCCCCCCCCCA

ð45Þ

and

TðMÞ−

0
BBBBBBBBBB@

ψ1;M
−

..

.

ψ j;M
−

..

.

ψM=2−1;M
−

1
CCCCCCCCCCA

¼

0
BBBBBBBBBB@

eπi=M

. .
.

eπij
2=M

. .
.

eπðM=2−1Þ2=M

1
CCCCCCCCCCA

0
BBBBBBBBBB@

ψ1;M
−

..

.

ψ j;M

..

.

ψM=2−1;M
−

1
CCCCCCCCCCA
: ð46Þ

Both correspond to Z2M.
On the other hand, the SðMÞ� transforms

SðMÞ�ψ
j;M
� ¼ 1ffiffiffiffiffiffiffi

2M
p

X
k

ðe2πjk=M � e2πiðM−jÞk=M;MÞψk;M:

ð47Þ

This representation is also written by

SðMÞ�ψ
j;M
�

¼ 1ffiffiffiffiffiffiffi
2M

p
X
k

ðe2πðM−jÞðM−kÞ=M � e2πijðM−kÞ=M;MÞψM−k;M:

ð48Þ

Thus, the S transformation is represented on the T2=Z2

orbifold basis by

SðMÞ�ψ
j;M
� ¼ 1ffiffiffiffiffi

M
p

X
k≤M=2

ðe2πjk=M � e2πiðM−jÞk=MÞψk;M
� :

ð49Þ
These are written by

SðMÞþψ
j;M
þ ¼ 2ffiffiffiffiffi

M
p

X
k≤M=2

cosð2πjk=MÞψ j;M
þ ;

SðMÞ−ψ j;M
− ¼ 2iffiffiffiffiffi

M
p

X
k≤M=2

sinð2πjk=MÞψ j;M
− : ð50Þ

For example, for M ¼ 6, S and T are represented by Z2

even zero modes,
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Sð6Þþ

0
BBBBB@

ψ0;6

ψ1;6
þ

ψ2;6
þ

ψ3;6

1
CCCCCA

¼ 1ffiffiffi
6

p

0
BBBBB@

1
ffiffiffi
2

p ffiffiffi
2

p
1ffiffiffi

2
p

1 −1 −
ffiffiffi
2

p
ffiffiffi
2

p
−1 −1

ffiffiffi
2

p

1 −
ffiffiffi
2

p ffiffiffi
2

p
−1

1
CCCCCA

0
BBBBB@

ψ0;6

ψ1;6
þ

ψ2;6
þ

ψ3;6

1
CCCCCA
;

ð51Þ

Tð6Þþ

0
BBB@

ψ0;6

ψ1;6
þ

ψ2;6
þ

ψ3;6

1
CCCA ¼

0
BBB@

1

eπi=6

e2πi=3

e3πi=2

1
CCCA

0
BBB@

ψ0;6

ψ1;6
þ

ψ2;6
þ

ψ3;6

1
CCCA;

ð52Þ

while S and T are represented by Z2 odd zero mode,

Sð6Þ−

�
ψ1;6
−

ψ2;6
−

�
¼ iffiffiffi

2
p
�
1 1

1 −1

��
ψ1;6
−

ψ2;6
−

�
; ð53Þ

Tð6Þ−

�
ψ1;6
−

ψ2;6
−

�
¼
�
eπi=6 0

0 e2πi=3

��
ψ1;6
−

ψ2;6
−

�
: ð54Þ

C. Non-Abelian discrete flavor symmetries

In Ref. [8], it is shown that the models with M ¼ 2 as
well as even magnetic fluxes have the D4 flavor symmetry.
See Appendix A. One of the Z2 elements inD4 corresponds
to ðTð2ÞÞ2 on the zero modes, ψ0;2 and ψ1;2, i.e.,

Z ¼
�
1 0

0 −1

�
¼ ðTð2ÞÞ2: ð55Þ

In addition, the permutation ZC
2 element in D4 corresponds

to Sð2ÞTð2ÞTð2ÞSð2Þ, i.e.,

C ¼
�
0 1

1 0

�
¼ Sð2ÞTð2ÞTð2ÞSð2Þ: ð56Þ

Thus, the D4 group, which includes the eight elements
(A8), is a subgroup of Gð2Þ ≃ ðZ8 × Z4Þ⋊S3.
However, there is the difference between the modular

symmetry and the D4 flavor symmetry, which is studied in
Ref. [8]. The modular symmetry transforms the Yukawa
couplings, while the Yukawa couplings are invariant under
the D4 flavor symmetry. In order to study this point, here
we examine the Yukawa couplings among ψ i;2, ψ 0j;2, and
ψk;4. Both ψ i;2 and ψ 0j;2 are D4 doublets, and their tensor
product 2 × 2 is expanded by

2 × 2 ¼ 1þþ þ 1þ− þ 1−þ þ 1−−: ð57Þ

Thus, the products ψ i;2ψ 0j;2 correspond to four singlets,

1þ�∶ ψ0;2ψ 00;2 � ψ1;2ψ 01;2; 1−�∶ ψ0;2ψ 01;2 �ψ1;2ψ 00;2:

ð58Þ

On the other hand, by use of Eq. (9), the products ψ i;2ψ 0j;2

are expanded by ψk;4. For example, we can expand as

ψ0;2ψ 00;2 � ψ1;2ψ 01;2 ∼ ðYð0Þð16τÞ þ Yð8=16Þð16τÞ
� ðYð4=16Þð16τÞ þ Yð12=16Þð16τÞÞÞ
× ðψ0;4 � ψ2;4Þ ð59Þ

up to constant factors, where

Yðj=MÞðMτÞ ¼ N · ϑ

� j
M

0

�
ð0;MτÞ: ð60Þ

Note that Yðj=MÞðMτÞ ¼ Yð1−j=MÞðMτÞ. It is found that

ðTð4ÞÞ2ðψ0;4 � ψ2;4Þ ¼ ðψ0;4 � ψ2;4Þ;
ðSð4ÞTð4ÞTð4ÞSð4ÞÞðψ0;4 � ψ2;4Þ ¼ �ðψ0;4 � ψ2;4Þ: ð61Þ

Thus, the zeromodesψ0;4 � ψ2;4 are indeedD4 singlets, 1þ�
whenwe identify ðTð4ÞÞ2 and ðSð4ÞTð4ÞTð4ÞSð4ÞÞ asZ2 andZC

2

ofD4. In this sense, theD4 flavor symmetry is a subgroup of
the modular symmetry. Also, it is found that the above
Yukawa couplings, Yðm=4Þð16τÞ, with m ¼ 0, 1, 2, 3 are
invariant under T2 and STTS transformation.
Similarly, we can expand

ψ0;2ψ 01;2 þ ψ1;2ψ 00;2 ∼ ðYð2=16Þð16τÞ þ Yð6=16Þð16τÞÞ
× ðψ1;4 þ ψ3;4Þ; ð62Þ

up to constant factors. It is found that

ðTð2ÞÞ2ðψ0;2ψ 01;2 þ ψ1;2ψ 00;2Þ ¼ −ðψ0;2ψ 01;2 þ ψ1;2ψ 00;2Þ:
ð63Þ

On the other hand, we obtain

ðTð4ÞÞ2ðψ1;4 þ ψ3;4Þ ¼ iðψ1;4 þ ψ3;4Þ: ð64Þ

In addition, we find

T2∶ ðYð2=16Þð16τÞ þ Yð6=16Þð16τÞÞ → iðYð2=16Þð16τÞ
þ Yð6=16Þð16τÞÞ: ð65Þ

Thus, the T2 transformation is consistent between left-
and right-hand sides in (62). However, when we interpret
T2 as Z2 of the D4 flavor symmetry, we face inconsistency,
because Yukawa couplings are not invariant and ðψ1;4 þ
ψ3;4Þ has transformation behavior different from
ðψ0;2ψ 01;2 þ ψ1;2ψ 00;2Þ. We can make this consistent by
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defining Z2 of the D4 on ðψ1;4 þ ψ3;4Þ such that its
transformation absorbs the phase of Yukawa couplings
under T2 transformation. Then, the mode ðψ1;4 þ ψ3;4Þ
exactly corresponds to the D4 singlet, 1−þ. We find that
ðψ0;2ψ 01;2 þ ψ1;2ψ 00;2Þ is invariant under Sð2ÞTð2ÞTð2ÞSð2Þ,
and ðψ1;4 þ ψ3;4Þ is also invariant under Sð4ÞTð4ÞTð4ÞSð4Þ.
That is consistent. Therefore, the D4 flavor symmetry is a
subgroup of the modular symmetry on ψ j;2 (j ¼ 0, 1).
However, when the model includes couplings to zero
modes with larger M, we have to modify their modular
symmetries such that coupling constants are invariant under
the flavor symmetry. Then, we can define the D4 flavor
symmetry.
Here, we give a comment on the T2=Z2 orbifold. The

T2=Z2 orbifold basis gives the irreducible representations
of the modular symmetry. The D4 flavor symmetry is
defined through the modular symmetry, as above. That is
the reason why the D4 flavor symmetry remains on the
T2=Z2 orbifold [11,12].

III. HETEROTIC ORBIFOLD MODELS

Intersecting D-brane models in type II superstring theory
is T-dual to magnetized D-brane models. Thus, intersecting
D-brane models also have the same behavior under
modular transformation as magnetized D-brane models.
Furthermore, intersecting D-brane models in type II super-
string theory and heterotic string theory on orbifolds have
similarities, e.g., in two-dimensional conformal field
theory. For example, computations of three-point couplings
as well as n-point couplings are similar to each other. Here,
we study modular symmetry in heterotic orbifold models.
Using results in Refs. [16–18], we compare the modular
symmetries in heterotic orbifold models with non-Abelian
flavor symmetries and also the modular symmetries in the
magnetized D-brane models, which have been derived in
the previous section.

A. Twisted sector

Here, we give a brief review on heterotic string theory on
orbifolds. The orbifold is the division of the torus Tn by the
ZN twist θ, i.e., Tn=ZN . Since the Tn is constructed by
Rn=Λ, the ZN twist θ should be an automorphism of the
lattice Λ. Here, we focus on two-dimensional orbifolds,
T2=ZN . The six-dimensional orbifolds can be constructed
by products of two-dimensional ones. All of the possible
orbifolds are classified as T2=ZN with N ¼ 2, 3, 4, 6.
On orbifolds, there are fixed points, which satisfy the

following condition:

xi ¼ ðθnxÞi þ
X
k

mkα
i
k; ð66Þ

where xi are real coordinates, αik are two lattice vectors, and
mk are integers for i, k ¼ 1, 2. Thus, the fixed points can be

represented by corresponding space group elements
ðθn;Pkmkα

i
kÞ, or in short ðθn; ðm1; m2ÞÞ.

The heterotic string theory on orbifolds has localized
modes at fixed points, and these are the so-called twisted
strings. These twisted states can be labeled by use of fixed
points, σθ;ðm1;m2Þ. All of the twisted states σθ;ðm1;m2Þ have the
same spectrum, if discrete Wilson lines vanish. Thus, the
massless modes are degenerate by the number of fixed
points.
On the T2=Z2 orbifold, there are four fixed points, which

are denoted by ðθ; ð0; 0ÞÞ, ðθ; ð1; 0ÞÞ, ðθ; ð0; 1ÞÞ, ðθ; ð1; 1ÞÞ.
The corresponding twisted states are denoted by σθ;ðm;nÞ for
m, n ¼ 0, 1.
On the T2=Z3 orbifold, α1 and α2 correspond to the

SUð3Þ simple roots, and they are identified with each other
by the Z3 twist. Thus, three fixed points on the T2=Z3

orbifold are represented by the space group elements,
ðθ; mα1Þ for m ¼ 0, 1, 2, or in short ðθ; mÞ. The corre-
sponding twisted states are denoted by σθ;m form ¼ 0, 1, 2.
Similarly, we can obtain the fixed points and twisted

states on the T2=Z4, where α1 and α2 correspond to the
SOð4Þ simple roots and they are identified with each other
by the Z4 twist. For the Z4 twist θ, two fixed points satisfy
Eq. (66), and these can be represented by ðθ; mα1Þ for
m ¼ 0, 1, or in short ðθ; mÞ. Then, the first twisted states
are denoted by σθ;m for m ¼ 0, 1. In addition, for θ2, there
are four points, which satisfy Eq. (66), and these can be
denoted by ðθ2; ðm; nÞÞ for m, n ¼ 0, 1. Indeed, these
correspond to the four fixed points on the T2=Z2 orbifold.
Then, the second twisted states are denoted by σθ2;ðm;nÞ for
m, n ¼ 0, 1. However, the fixed points ðθ2; ð1; 0ÞÞ and
ðθ2; ð0; 1ÞÞ transform each other under the Z4 twist θ. Thus,
the Z4 invariant states are written by [21]

σθ2;ð0;0Þ; σθ2;þ; σθ2;ð1;1Þ; ð67Þ
while σθ2;− transforms to −σθ2;− under the Z4 twist, where

σθ2;� ¼ 1ffiffiffi
2

p ðσθ2;ð1;0Þ � σθ2;ð0;1ÞÞ: ð68Þ

Similarly, we can obtain the fixed points on T2=Z6. There
is a fixed point ðθ; 0Þ for the Z6 twist θ, and a single twisted
state σθ;0. The second twisted sector has three fixed points
ðθ2; mÞ (m ¼ 0, 1, 2), which correspond to the three fixed
points on the T2=Z3 orbifold. The two fixed points ðθ2; 1Þ
and ðθ2; 2Þ transform each other by theZ6 twist, while ðθ2; 0Þ
is invariant. Thus, we can write the Z6-invariant θ2-twisted
states by

σθ2;0; σθ2;þ; ð69Þ
while σθ2;− transforms to −σθ2;− under the Z6 twist, where

σθ2;� ¼ 1ffiffiffi
2

p ðσθ2;1 � σθ2;2Þ: ð70Þ
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The third twisted sector has four fixed points, which corre-
spond to the fixed points on T2=Z2, and the corresponding θ3

twisted states. Their linear combinations are Z6 eigenstates
similar to the second twisted states. Since the first twisted
sector has the single fixed point and twisted state, themodular
symmetry as well as non-Abelian discrete flavor symmetry is
rather trivial. We do not discuss the T2=Z6 orbifold itself.

B. Modular symmetry

In Ref. [16], modular symmetry in heterotic string theory
on orbifolds was studied in detail. Here we use those
results.

1. T2=Z4 orbifold

The S and T transformations are represented by the first
twisted sectors of T2=Z4 orbifold as [16]

�
σθ;0

σθ;1

�
→ SZ4

�
σθ;0

σθ;1

�
; SZ4

¼ 1ffiffiffi
2

p
�
1 1

1 −1

�
;

�
σθ;0

σθ;1

�
→ TZ4

�
σθ;0

σθ;1

�
; TZ4

¼
�
1 0

0 i

�
: ð71Þ

These are exactly the same as representations of Sð2Þ and
Tð2Þ on two-zero modes, ψ0;2 and ψ1;2 in the magnetized
model with magnetic flux M ¼ 2. Hence, the twisted
sectors on the T2=Z4 orbifold has the same behavior of
modular symmetry as the magnetized model with magnetic
flux M ¼ 2. Indeed, the twisted sectors have the D4 flavor
symmetry and two twisted states, σθ;0 and σθ;1, correspond
to the D4 doublet [4]. The whole flavor symmetry of the
T2=Z4 orbifold model is slightly larger than D4. (See
Appendix B.) The T2=Z4 orbifold model has the Z4

symmetry, which transforms the first twisted sector,

σθ;m → eπi=2σθ;m; ð72Þ

for m ¼ 0, 1 and the second twisted sector,

σθ2;ðm;nÞ → eπiσθ2;ðm;nÞ; ð73Þ

for m, n ¼ 0, 1. The above Z4 transformation (72) is
nothing but ðSZ4

TZ4
Þ6 as clearly seen from Eq. (24). Thus,

the whole flavor symmetry originates from the modular
symmetry.
The second twisted sectors correspond to D4 singlets,

1�1;� [4], as

1þ�∶ σθ2;ð0;0Þ � σθ2;ð1;1Þ; 1−�∶ σθ2;�; ð74Þ

up to coefficients. Compared with the results in Sec. II C,
the D4 behavior of the second twisted states corresponds to
one of the zero modes ψm;4 with magnetic flux M ¼ 4.
Their correspondence can be written as

σθ2;ð0;0Þ ∼ ψ0;4; σθ2;ð1;1Þ ∼ ψ2;4;

σθ2;ð1;0Þ ∼ ψ1;4; σθ2;ð1;0Þ ∼ ψ3;4: ð75Þ
The above correspondence can also been seen from the

Yukawa couplings. By use of operator product expansion,
we obtain the following relations [16]:

σθ;0σθ;0 ∼ Y0;0ðσθ2;ð0;0Þ þ σθ2;ð1;1ÞÞ;
σθ;1σθ;1 ∼ Y1;1ðσθ2;ð0;0Þ þ σθ2;ð1;1ÞÞ;

σθ;0σθ;1 þ σθ;1σθ;0 ∼ Y0;1σθ2;þ ð76Þ
up to constants. The second twisted state σθ2;− cannot
couple with the first twisted sectors. Using results in
Ref. [16], it is found that

ðTZ4
Þ2
0
B@

Y0;0

Y1;1

Y0;1

1
CA ¼

0
B@

1 0 0

0 1 0

0 0 −1

1
CA
0
B@

Y0;0

Y1;1

Y0;1

1
CA: ð77Þ

This is the same as behavior of the Yukawa couplings under
T2 studied in Sec. II C.

2. T2=Z2 orbifold

Here, let us study the T2=Z2 orbifold in a way similar to
the previous section on the T2=Z4. The S transformation
is represented by the four twisted states on the T2=Z2

orbifold [16],
0
BBB@

σθ;ð0;0Þ
σθ;ð0;1Þ
σθ;ð1;0Þ
σθ;ð1;1Þ

1
CCCA → SZ2

0
BBB@

σθ;ð0;0Þ
σθ;ð0;1Þ
σθ;ð1;0Þ
σθ;ð1;1Þ

1
CCCA;

SZ2
¼ 1

2

0
BBB@

1 1 1 1

1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

1
CCCA: ð78Þ

Also the T transformation is represented as
0
BBB@

σθ;ð0;0Þ
σθ;ð0;1Þ
σθ;ð1;0Þ
σθ;ð1;1Þ

1
CCCA → TZ2

0
BBB@

σθ;ð0;0Þ
σθ;ð0;1Þ
σθ;ð1;0Þ
σθ;ð1;1Þ

1
CCCA;

TZ2
¼

0
BBB@

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

1
CCCA: ð79Þ

The representation SZ2
is similar to SZ4

and Sð2Þ. Indeed, we
find that SZ2

¼ Sð2Þ ⊗ Sð2Þ. However, the representation
TZ2

is different from TZ4
and Tð2Þ.
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The matrices SZ2
and TZ2

satisfy the following relations:

ðSZ2
Þ2 ¼ ðTZ2

Þ2 ¼ ðSZ2
TZ2

Þ6 ¼ I: ð80Þ

These correspond to the D6. Indeed, the order of closed
algebra including SZ2

and TZ2
is equal to 12. At any rate,

these matrices are reducible. We change the basis in order
to obtain irreducible representations,

0
BBB@

σ1

σ2

σ3

σ4

1
CCCA ¼

0
BBBBB@

1 0 0 0

0 1ffiffi
3

p 1ffiffi
3

p 1ffiffi
3

p

0 1ffiffi
2

p −1ffiffi
3

p 0

0 1ffiffi
6

p 1ffiffi
6

p −2ffiffi
6

p

1
CCCCCA

0
BBB@

σθ;ð0;0Þ
σθ;ð1;0Þ
σθ;ð0;1Þ
σθ;ð1;1Þ

1
CCCA: ð81Þ

Then, σ1 and σ2 correspond to theD6 doublet, while σ3 and
σ4 correspond to the D6 singlets. For example, SZ2

TZ2
and

TZ2
are represented by

SZ2
TZ2

0
BBB@

σ1

σ2

σ3

σ4

1
CCCA ¼

0
BBB@

cosð2π=6Þ − sinð2π=6Þ 0 0

sinð2π=6Þ cosð2π=6Þ 0 0

0 0 1 0

0 0 0 −1

1
CCCA

×

0
BBB@

σ1

σ2

σ3

σ4

1
CCCA;

TZ2

0
BBB@

σ1

σ2

σ3

σ4

1
CCCA ¼

0
BBB@

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

1
CCCA

0
BBB@

σ1

σ2

σ3

σ4

1
CCCA: ð82Þ

It is found that σ3 and σ4 correspond to 1−− and 1−þ.
The twisted sector on the T2=Z2 orbifold has the flavor

symmetry ðD4 ×D4Þ=Z2. However, this flavor symmetry
seems independent of the above D6, because they do not
include any common elements. The twisted sector on the
S1=Z2 orbifold has the flavor symmetry D4. The flavor
symmetry of the T2=Z2 orbifold is obtained as a kind
of product, D4 ×D4, although two D4 groups have a
common Z2 element. Thus, the flavor symmetry of T2=Z2

originates from the product of symmetries of the one-
dimensional orbifold. On the other hand, the modular
symmetry appears in two or more dimensions, but not in
one dimension. Hence, these symmetries would be inde-
pendent. When we include the above D6 as low-energy
effective field theory in addition to the flavor symmetry
ðD4 ×D4Þ=Z2, low-energy effective field theory would
have larger symmetry including D6 and ðD4 ×D4Þ=Z2,
although Yukawa couplings as well as higher order
couplings transform nontrivially under D6.

3. T2=Z3 orbifold

The S and T transformations are represented by the first
twisted sectors of the T2=Z3 orbifold as [16]

0
B@

σθ;0

σθ;1

σθ;2

1
CA → SZ3

0
B@

σθ;0

σθ;1

σθ;2

1
CA;

SZ3
¼ 1ffiffiffi

3
p

0
B@

1 1 1

1 e2πi=3 e−2πi=3

1 e−2πi=3 e2πi=3

1
CA;

0
B@

σθ;0

σθ;1

σθ;2

1
CA → TZ3

0
B@

σθ;0

σθ;1

σθ;2

1
CA;

TZ3
¼

0
B@

1 0 0

0 e2πi=3 0

0 0 e2πi=3

1
CA: ð83Þ

These forms look similar to S and T transformations in
magnetized models (18) and (19). Indeed, they correspond
to submatrices of Sð6Þ and Tð6Þ in the magnetized models
with the magnetic flux M ¼ 6. Alternatively, in Ref. [17]
the following S and T representations were studied3

S0Z3
¼ −

iffiffiffi
3

p

0
B@

1 1 1

1 e2πi=3 e−2πi=3

1 e−2πi=3 e2πi=3

1
CA;

T 0
Z3

¼

0
B@

e2πi=3 0 0

0 1 0

0 0 1

1
CA: ð84Þ

At any rate, the above representations are reducible
representations. Thus, we use the flowing basis,

0
B@

σþ
σ0

σ−

1
CA; ð85Þ

where σ� ¼ ðσ1 � σ−Þ=
ffiffiffi
2

p
. The ðσþ; σ0Þ is a doublet,

while σ− is a singlet. The former corresponds to the Z6

invariant states among the θ2 twisted sector on the T2=Z6

orbifold. Similarly, σ− is the θ2 twisted state, which
transforms σ− → −σ− under the Z6 twist. Alternatively,
we can say that the doublet ðσþ; σ0Þ corresponds to Z2 even
states and the singlet σ− is the Z2 odd states, where the Z2

means the π rotation of the lattice vectors, ðα1; α2Þ →
ð−α1;−α2Þ. This point is similar to the aspect in magnet-
ized D-brane models, where irreducible representations

3See also Ref. [18].
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correspond to the T2=Z2 orbifold basis. Also, note that the
first twisted states of the T2=Z4 orbifold correspond already
to the Z2-invariant basis.
For example, we represent S0Z3

and T 0
Z3

on the above
basis [17],

S0Z3
¼ iffiffiffi

3
p
�

1
ffiffiffi
2

p
ffiffiffi
2

p
−1

�
; T 0

Z3
¼
�
e2πi=3 0

0 1

�
; ð86Þ

on the doublet ðσþ; σ0ÞT , while σ− is the trivial singlet.
Here, we define

Z ¼
�−1 0

0 −1

�
; T̃Z3

¼ ZT 0
Z3
: ð87Þ

Then, they satisfy the following algebraic relations [17,18]:

ðS0Z3
Þ2 ¼ ðT̃Z3

Þ3 ¼ ðS0Z3
T̃Z3

Þ3 ¼ Z; Z2 ¼ I: ð88Þ

This group is the so-called T 0, which is the binary extension
of A4 ¼ T.
The non-Abelian discrete flavor symmetry on the T2=Z3

orbifold is Δð54Þ, and the three twisted states correspond to
the triplet of Δð54Þ. Thus, this modular symmetry seems
independent of the Δð54Þ flavor symmetry.
Two representations are related as

S0Z3
¼ −iSZ3

; T 0
Z3

¼ e2πi=3ðTZ3
Þ−1: ð89Þ

When we change phases of S, T, and ST, the group such
as ðZN × ZMÞ⋊H in Secs. II and III would change to
ðZN0 × ZM0 Þ⋊H.

IV. CONCLUSION

We have studied the modular symmetries in magnetized
D-brane models. Representations due to zero modes on T2

are reducible except the models with the magnetic flux
M ¼ 2. Irreducible representations are provided by zero
modes on the T2=Z2, i.e., Z2 even states and odd states. It is
reasonable because ðSTÞ3 transforms the lattice vectors
ðα1; α2Þ to ð−α1;−α2Þ. The orders of modular groups are
large, and in general, they include the Z8 symmetry as the
center. The D4 flavor symmetry is a subgroup of the
modular group, which is represented in the models with
the magnetic fluxM ¼ 2. The system including zero modes
with M ¼ 2, M ¼ 4, and larger even M, also includes the
D4 flavor symmetry, when we define transformations of
couplings in a proper way.
We have also studied the modular symmetries in

heterotic orbifold models. The heterotic model on the
T2=Z4 has exactly the same representation as the mag-
netized model with M ¼ 2, and the modular symmetry
includes the D4 flavor symmetry. The representation due

to the twisted states on the T2=Z3 orbifold is reducible,
similar to representations due to zero modes in magnet-
ized D-brane models on T2. Their irreducible representa-
tions correspond to Z2 even and odd states, similar to
those in magnetized D-brane models. Thus, the Δð54Þ
flavor symmetry seems independent of the modular
symmetry in the T2=Z3 orbifold models. Note that the
first twisted states on the T2=Z4 are Z2-invariant states. In
this sense, we find that the modular symmetry is the
symmetry on the Z2 orbifold in both heterotic orbifold
models and magnetized D-brane models. The symmetries,
which remain under the Z2 twist, can be realized as the
modular symmetry.
We have set vanishing Wilson lines. It would be

interesting to extend our analysis to magnetized D-brane
models with discrete Wilson lines on orbifolds [22]. It
would also be interesting to extend our analysis on zero
modes to higher Kaluza-Klein modes [23].
Four-dimensional low energy-effective field theory is

modular invariant [24–26]. Anomalies of the modular
symmetry were studied [27,28], and they have important
aspects [29–31]. The non-Abelian flavor symmetries such
asD4 can be anomalous. (See for anomalies of non-Abelian
discrete symmetries, e.g., [2,32,33].) In certain models, the
modular symmetries are related with the non-Abelian
flavor symmetry D4. It would be interesting to study their
anomaly relations.
We also give a comment on phenomenological applica-

tion. Recently, the mixing angles in the lepton sector were
studied in the models, whose flavor symmetries are con-
gruence subgroups, ΓðNÞ [34,35]. In those models, the
couplings are nontrivial representations of ΓðNÞ and
modular functions. Our models show massless modes
represent larger finite groups. It would be interesting to
apply our results to derive realistic lepton mass matrices as
well as quark mass matrices.
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APPENDIX A: NON-ABELIAN DISCRETE
FLAVOR SYMMETRY IN MAGNETIZED

D-BRANE MODELS

In this appendix, we give a brief review on non-Abelian
discrete flavor symmetries in magnetized D-brane
models [8].
As mentioned in Sec. II A, the Yukawa couplings as well

as higher order couplings have the coupling selection rule
(11). That is, we can define Zg charges for zero modes.
Such Zg transformation is represented on ψ i;M¼g by
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Z ¼

0
BBBBBB@

1

ρ

ρ2

. .
.

ρg−1

1
CCCCCCA
; ðA1Þ

where ρ ¼ e2πi=g. Furthermore, their effective field theory
has the following permutation symmetry:

ψ i;g → ψ iþ1;g; ðA2Þ

and such permutation can be represented by

C ¼

0
BBBBB@

0 1 0 0 � � � 0

0 0 1 0 � � � 0

. .
.

1 0 0 0 � � � 0

1
CCCCCA
: ðA3Þ

This is another ZC
g symmetry. However, these two gen-

erators do not commute with each other,

CZ ¼ ρZC: ðA4Þ

Thus, the flavor symmetry corresponds to the closed
algebra including Z and C. Its diagonal elements are given
by ZmZ0n, i.e., Zg × Z0

g where

Z0 ¼

0
B@

ρ

. .
.

ρ

1
CA; ðA5Þ

and the full group corresponds to ðZg × Z0
gÞ⋊ZC

g .
Furthermore, the zero modes ψ i;M¼gn with the magnetic

flux M ¼ gn also represent ðZg × Z0
gÞ⋊ZC

g . The zero
modes, ψ i;M¼gn, have Zg charges (mod g). Under C, they
transform as

ψ i;M¼gn → ψ iþn;M¼gn: ðA6Þ

For example, the model with g ¼ 2 has the D4 flavor
symmetry. The zero modes,

�
ψ0;2

ψ1;2

�
; ðA7Þ

correspond to the D4 doublet 2, where eight D4 elements
are represented by

�
�
1 0

0 1

�
; �

�
0 1

1 0

�
; �

�
0 1

−1 0

�
;

�
�
1 0

0 −1

�
: ðA8Þ

In addition, when the model has the zero modes ψ i;4 (i ¼ 0,
1, 2, 3), the zero modes ψ0;4 and ψ2;4 (ψ1;4 and ψ3;4)
transform each other under C, and they have Z2 charge
even (odd). Thus, ψ0;4 � ψ2;4 correspond to 1þ� of D4

representations, while ψ1;4 � ψ3;4 correspond to 1−�.
Furthermore, among the zero modes ψ i;6 (i ¼ 0, 1, 2, 3,
4, 5), the zero modes ψ i;6 and ψ iþ3;6 transform each other
under C. Hence, three pairs of zero modes,�

ψ0;6

ψ3;6

�
;

�
ψ1;6

ψ4;6

�
;

�
ψ2;6

ψ5;6

�
; ðA9Þ

correspond to threeD4 doublets. These results are shown in
Table I.

APPENDIX B: NON-ABELIAN DISCRETE
FLAVOR SYMMETRY IN HETEROTIC

ORBIFOLD MODELS

Here, we give a brief review on non-Abelian discrete
flavor symmetries in heterotic orbifold models [4].
The twisted string xi on the orbifold satisfy the following

boundary condition:

xiðσ ¼ 2πÞ ¼ ðθnxðσ ¼ 0ÞÞi þ
X
k

mkα
i
k; ðB1Þ

similar to Eq. (66). Thus, the twisted string can be
characterized by the space group element g ¼
ðθn;Pkmkα

i
kÞ. The product of the two space group

elements ðθn1 ; v1Þ and ðθn2 ; v2Þ is computed as

ðθn1 ; v1Þðθn2 ; v2Þ ¼ ðθn1θn2 ; v1 þ θn1v2Þ: ðB2Þ
The space group element g belongs to the same conjugacy
class as hgh−1, where h is any space group element on the
same orbifold.
Now, let us consider the couplings among twisted strings

corresponding to space group elements ðθnk ; vkÞ. Their
couplings are allowed by the space group invariance if the
following condition,

Y
k

ðθnk ; vkÞ ¼ ð1; 0Þ; ðB3Þ

TABLE I. D4 representation.

Magnetic flux M D4 representations

2 2
4 1þþ, 1þ−, 1−þ, 1−−
6 3 × 2
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is satisfied up to the conjugacy class. That includes the
point group selection rule,

Q
kθ

nk ¼ 1, which is the ZN
invariance on the ZN orbifold. We can define discrete
Abelian symmetries from the space group invariance as
well as the point group invariance. These symmetries
together with geometrical symmetries of orbifolds become
non-Abelian discrete flavor symmetries in heterotic
orbifold models. We show them explicitly on concrete
orbifolds.

1. S1=Z2 orbifold

The S1=Z2 orbifold has two fixed points, which are
denoted by the space group elements, ðθ;mαÞwithm¼0, 1,
where α is the lattice vector. In short, we denote them by
ðθ; mÞ and the corresponding twisted states are denoted by
σðθ;mÞ. These states transform�

σθ;0

σθ;1

�
→

�−1 0

0 −1

��
σθ;0

σθ;1

�
; ðB4Þ

under the Z2 twist. In addition, the space group invariance
requires

P
kmk ¼ 0 (mod 2) for the couplings correspond-

ing to the product of the space group elements
Q

kðθ; mkÞ
with mk ¼ 0, 1. Hence, we can define another Z2 sym-
metry, under which σðθ;0Þ is even, while σðθ;1Þ is odd. That
is, another Z2 transformation can be written by�

σθ;0

σθ;1

�
→

�
1 0

0 −1

��
σθ;0

σθ;1

�
: ðB5Þ

Furthermore, there is the geometrical permutation sym-
metry, which exchanges two fixed points with each other.
Such a permutation is represented by�

σθ;0

σθ;1

�
→

�
0 1

1 0

��
σθ;0

σθ;1

�
: ðB6Þ

The closed algebra including Eqs. (B4), (B5), and (B6)
is D4 ≃ ðZ2 × Z2Þ⋊Z2.

2. T2=Z3 orbifold

As shown in Sec. III, the T2=Z3 orbifold has three fixed
points denoted by ðθ; mÞ with m ¼ 0, 1, 2, and the
corresponding twisted states are denoted by σðθ;mÞ. The
Z3 twist transforms0
B@

σθ;0

σθ;1

σθ;2

1
CA →

0
B@

e2πi=3 0 0

0 e2πi=3 0

0 0 e2πi=3

1
CA
0
B@

σθ;0

σθ;1

σθ;2

1
CA: ðB7Þ

The space group invariance requires
P

kmk ¼ 0 (mod 3)
for the couplings corresponding to the product of the space

group elements
Q

kðθ; mkÞ withmk ¼ 0, 1, 2. Then, we can
define another Z3 symmetry, under which σðθ;mÞ transform

0
B@

σθ;0

σθ;1

σθ;2

1
CA →

0
B@

1 0 0

0 e2πi=3 0

0 0 e2πi=3

1
CA
0
B@

σθ;0

σθ;1

σθ;2

1
CA: ðB8Þ

There is also the permutation symmetry of the three fixed
points, that is, S3. Thus, the flavor symmetry is Δð54Þ≃
ðZ3 × Z3Þ⋊S3.

3. T2=Z4 orbifold

As shown in Sec. III, the T2=Z4 orbifold has two θ fixed
points denoted by ðθ; mÞ with m ¼ 0, 1, and the corre-
sponding twisted states are denoted by σðθ;mÞ. The Z4 twist
transforms

�
σθ;0

σθ;1

�
→

�
i 0

0 i

��
σθ;0

σθ;1

�
: ðB9Þ

The space group invariance requires
P

kmk ¼ 0 (mod 2)
for the couplings corresponding to the product of the space
group elements

Q
kðθ; mkÞ with mk ¼ 0, 1. Then, we can

define another Z2 symmetry, under which σðθ;mÞ transform0
B@

σθ;0

σθ;1

σθ;2

1
CA →

�
1 0

0 −1

��
σθ;0

σθ;1

�
: ðB10Þ

There is also the permutation symmetry of the two fixed
points. Thus, the flavor symmetry is almost the same as the
one on the S1=Z2 orbifold. The difference is the Z4 twist,
although its squire is nothing but the Z2 twist. Hence, the
flavor symmetry can be written as ðD4 × Z4Þ=Z2.

4. T2=Z2 orbifold

As shown in Sec. III, the T2=Z4 orbifold has two θ fixed
points denoted by ðθ; ðm; nÞÞ with m, n ¼ 0, 1, and the
corresponding twisted states are denoted by σθ;ðm;nÞ. The
space group invariance requires

P
kmk¼

P
jnj¼0 (mod 2)

for the couplings corresponding to the product of the space
group elements

Q
kðθ; ðmk; njÞÞ with mk, nj ¼ 0, 1. There

are two independent permutation symmetries between
ðθ; ð0; nÞÞ and ðθ; ð1; nÞÞ, and ðθ; ðm; 0ÞÞ and ðθ; ðm; 1ÞÞ.
Thus, this structure seems be a product of two one-
dimensional orbifolds, S1=Z2. However, the Z2 twist is
commented such as σθ;ðm;nÞ → −σθ;ðm;nÞ. Thus, the flavor
symmetry can be written by ðD4 ×D4Þ=Z2.
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