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We study the modular symmetry in magnetized D-brane models on 72. Non-Abelian flavor symmetry
D, in the model with magnetic flux M = 2 (in a certain unit) is a subgroup of the modular symmetry. We
also study the modular symmetry in heterotic orbifold models. The T?%/Z, orbifold model has the same
modular symmetry as the magnetized brane model with M = 2, and its flavor symmetry D, is a subgroup

of the modular symmetry.
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I. INTRODUCTION

Non-Abelian discrete flavor symmetries play an impor-
tant role in particle physics. In particular, many models
with various finite groups have been studied in order to
explain quark and lepton masses and their mixing angles.
(See for review [1-3].) Those symmetries may be useful for
dark matter physics and multi-Higgs models.

Superstring theory is a promising candidate for unified
theory including gravity. It has been shown that some non-
Abelian discrete flavor symmetries appear in superstring
theory with certain compactifications. Heterotic string theory
on toroidal Z, orbifolds can realize non-Abelian flavor
symmetries, e.g., Dy, and A(54) [4]. (See also [5,6].)]
Furthermore, magnetized D-brane models within the frame-
work of type II superstring theory can lead to similar flavor
symmetries [8—12]. Intersecting D-brane models are T-dual
to magnetized D-brane models. Then, one can realize the
same aspects in intersecting D-brane models as in the
magnetized ones.”

On the other hand, superstring theories on tori and
orbifolds have modular symmetry. Recently, the behavior
of zero modes under modular transformation was studied in
magnetized D-brane models in Ref. [14]. (See also [15].)
Also, the behavior of twisted sectors under modular
transformation was already studied in Refs. [16-18].
These modular transformations also act nontrivially on
flavors and transform mutually flavors from each other.

'In Ref. [7], a relation between gauge symmetries and non-
Abelian flavor symmetries is discussed at the enhancement point.
*See also [13].
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The remarkable difference is that modular transformation
also acts on Yukawa couplings as well as higher order
couplings, while those couplings are trivial singlets under
the usual non-Abelian symmetries.

The purpose of this paper is to study more how modular
transformation is represented by zero modes in magnetized
D-brane models, and to discuss relations between modular
transformation and non-Abelian flavor symmetries in
magnetized D-brane models. Intersecting D-brane models
have the same aspects as magnetized D-brane models,
because they are T-dual to each other. Furthermore,
intersecting D-brane models in type II superstring theory
and heterotic string theory have similarities, e.g., in two-
dimensional conformal field theory. Thus, here we study
modular symmetry and non-Abelian discrete flavor sym-
metries in heterotic orbifold models, too.

This paper is organized as follows. In Sec. II, we study
the modular symmetries in magnetized D-brane models
and the relation to the D, flavor symmetry. In Sec. 111, we
study the modular symmetries in heterotic orbifold models.
Section IV is the conclusion and discussions. We give brief
reviews on non-Abelian discrete flavor symmetries in
magnetized D-brane models and heterotic orbifold models
in Appendixes A and B, respectively.

II. MODULAR TRANSFORMATION IN
MAGNETIZED D-BRANE
MODELS

In this section, we study the modular transformation of
zero-mode wave functions in magnetized D-brane models.

A. Zero-mode wave function

Here, we give a brief review on zero-mode wave functions
on torus with magnetic flux [15]. For simplicity, we con-
centrate on T2 with U(1) magnetic flux. The complex
coordinate on 77 is denoted by z = x' + zx?, where 7 is

Published by the American Physical Society
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the complex modular parameter, and x! and x> are real
coordinates. The metric on 72 is given by

} o !
o= (= =) caae(* ) )
972z Yzz 5 0

We identify z~z+ 1 and z ~z + 7 on T°.
On T2, we introduce the U(1) magnetic flux F,

M
F=i""
T

— (dz A d2). 2)

which corresponds to the vector potential,

Az) = %Im(idz). (3)

Here we concentrate on vanishing Wilson lines.
In the above background, we consider the zero-mode
equation for the spinor field with the U(1) charge g = 1,

iD¥ = 0. (4)

The spinor field on 72 has two components,

¥(z.7) = (l’”). 5)

w_

The magnetic flux should be quantized such that M is an
integer. Either y, or yw_ has zero modes exclusively for
M # 0. For example, we set M to be positive. Then, y .
has M zero modes, while y_ has no zero mode. Hence, we
can realize a chiral theory. Their zero-mode profiles are
given by

J
ll/]vM(Z) _NelﬂMZ{inlilg[Ao/l}(MZ,MT)a (6)

with j=0,1,...
theta function,

,(M —1), where § denotes the Jacobi

9 |:d:| (1/7 ’L') _ Zelti(aJrl)zTeZni(aJrl)(u+b)' (7)
b leZ

Here, N denotes the normalization factor given by

1/4
N = <21212'M> ’ (8)

with A = 47°R*Imz.

The ground states of scalar fields also have the same
profiles as y7"*. Thus, the Yukawa coupling including one
scalar and two spinor fields can be computed by using these

zero-mode wave functions. Zero mode wave functions
satisfy the following relation:
MN 1/4
M+ N

% ZWH Jj+Mm.M+N

Ni—Mj+MNm

19[ MNGEEN) ](0,MN<M+N>T>. 9)
0

My M — A—1/2(21m1)1/4<

By use of this relation, their Yukawa couplings are given by
the wave function overlap integral,

Yijk :y/dzzl//i’MlI/j'N(l[/k'M/)*

2Imr\ /4
=y <7> Z Ok it j+Mm

mEZMr
Ni—M j+MNm
9 |: MNM'

} (0.MNM'7),  (10)

where y is constant. This Yukawa coupling vanishes for
M' # M + N. Similarly, we can compute higher order
couplings using the relation (9) [19]. In the above equation,
the Kronecker delta & ;, ju,, implies the coupling selec-
tion rule. For g = gcd(M, N, M’), nonvanishing Yukawa
couplings appear only if

i+j=k (mod g). (11)

Hence, we can define Z,, charges in these couplings [8].

B. Modular transformation

Here, we study modular transformation. First, we give a
brief review on results of modular transformation [14].
(See also [15].) Then, we will study in more detail.

The T? is constructed by R?/A, and the lattice A is
spanned by the vectors (ay,a,), where a; =2zR and
a, = 2zRt. However, the same lattice can be described
by another basis,

(@)-Ca) o

where a, b, ¢, d are integers satisfying ad — bc = 1. That is
the SL(2,Z) transformation.
The modular parameter 7 = a,/a; transforms as

atr+b
T —

_ 13
ct+d (13)

under (12). This transformation includes two important
generators, S and 7,
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S: 17> —1, (14)
T
T:7—->7+1. (15)
They satisfy
S =1, (ST)® =1. (16)

On top of that, if we impose the algebraic relation,
TN =1, (17)

that corresponds to the congruence subgroup of modular
group, I'(N). For example, it is found that T'(2) =~ S,
I'(3)~A,, T'(4)~S,, and T'(5) ~As. Since group Ay
has the symmetry of the tetrahedron, it is often called
the tetrahedral group T = A,. Also, it may be useful to
mention about A(3N?) =~ (Zy X Zy)xZ; and A(6N?)~
(Zy X Zy)xS3. We find that S;=~A(6), Ay~A(12),
and S, ~ A(24).

Following [14], we restrict ourselves to even magnetic
fluxes M (M > 0). Under S, the zero-mode wave functions
transform as [14,15]

. 1 iy
WJ,M - \/_MZeanjk/kaM‘ (18)
k

On the other hand, the zero-mode wave functions transform
as [14]

YN I, (19)
under 7. Generically, the 7 transformation satisfies
M =1, (20)

on the zero modes, y/*™. Furthermore, in Ref. [14] it is
shown that

(ST)? = em/4, (21)

on the zero modes, y/M.
In what follows, we study more concretely.

1. Magnetic flux M =2

Let us study the case with the magnetic flux M = 2
concretely. There are two zero modes, 2 and y!2. The S
transformation acts on these zero modes as

WO,Z S WO,Z g 1 ( 1 1 )
- s =— .
l//1’2 (2) WI,Z 2 \/E 1 =1

(22)

The T transformation acts as

0,2 0,2
W w 10
()=o) (3 0)

They satisfy the following algebraic relations:

S2.o=1, T, =1,

Q) = Q) = (S(Q)T(2>)3 = e”i/4]I. (24)

They construct a closed algebra with the order 192, which
we denote here by G(,). By such an algebra, the modular
transformation is represented by two zero modes, w2 and
w'2. We find that (S;)T ) is a center. Indeed, there are
eight center elements and their group is Zg. Other diagonal
elements correspond to Z,, which is generated by T ).
Here, we denote

a = (S(2>T<2))3, a = T(2>. (25)

The diagonal elements are represented by a™d’”, i.e.,
Zg X Zy.

Here, we examine the right coset Hg for g € G(,), where
H is the above Zg X Z,, 1.e., H = {a™a""}. There would be
6(=192/(8 x 4)) cosets. Indeed, we obtain the following
six cosets:

H,  HSy.,  HSyT}

oy HS@ThSe.  (26)

2

with k=1, 2, 3. By simple computations, we find HS,) T]({z)

S(z) ~ HS(z) T?ikS(z) and HS(Z) T%2>S<2)T ~ HS(2> T<22)S(2>.
Furthermore, we would make a (non-Abelian) subgroup
with the order 6 by choosing properly six elements such
that we pick one element up from each coset and their
algebra is closed. The non-Abelian group with the order 6 is
unique, i.e., S3. For example, we may be able to obtain the
Z generator from HS 5T ) because (S(5T2))* € H. That

1s, we define
b= a’”a’”S(z)T(z). (27)

Then, we require b> =1. There are three solutions,
(m,n) = (3, 2), (5, 0) mod (8,4). Similarly, we can obtain
the Z, generator, e.g., from HS(Z)T%Z)S(Q) because

(S(z) T%2>S(2))2 € H. Then, we define

c = am/a’”/S(z) T%z)S@) (28)
We find ¢?> = I when n’ = —m’ mod 4. On top of that, we
require (bc)?> =1, and that leads to the conditions n =
—m’' — 1 mod 4 and m = m’ + 2 mod 8. As a result, there
are six solutions, (m,n,m') = (3,2,1), (3, 2, 5), (5, 0, 3),
(5, 0, 7) with ' = —m’ mod 4.
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For example, for (m,n,m’") = (3,2,5) we write

1 (p p 0 p7?
b:—< L) e=1 . (29)
V2\p' p o0

The six elements of the subgroup are written explicitly,
(1 0) 1 <1 1) <0 p—3> 1 <—1 i>
01) v2\1 -1)" \p* o) V2\-i 1)
1 3 -3 1 -3

_(p P > _<p p>, (30)
V2\pt p) 2\ P

where p = ¢?7/8, They correspond to S; ~T'(2) ~ A(6)
because they satisfy the following algebraic relations:

2 =b=(bc)> =1 (31)

Moreover, they satisfy the following algebraic relation with

Zs X Z4:

b~lab' = aq, b~ lad'b=a,

cdc™' = a’d>. (32)

Thus, the algebra of G(y) is isomorphic to (Zg X Z4)xS5.
We have started by choosing HS;) ») for a candi-

date of the Z, generator. We can obtaln t<he same results by
starting with HS(,) for a candidate of the Z, generator.

cac = a,

2. Magnetic flux M =4

Similarly, we study the case with the magnetic flux
M = 4. There are four zero modes, y** withi = 0, 1, 2, 3.
The S and T transformations are represented by y*M,

11 1 1
N I S R
Sw=311 21 1 1|
1 - -1 i
1
ni/4
Tw= . : (33)
i/

This is a reducible representation. In order to obtain
irreducible representations, we use the flowing basis,

O w04
ot | = [ B |,
y,2,4 l//2’4
1
L4 — (14 _ 34y 34
W ﬂ(w W) (34)

This is nothing but zero modes on the T2 /Z, orbifold [20].
The former corresponds to Z, even states, while the latter

corresponds to the Z, odd state. Note that (ST)? transforms
the lattice basis (a;, @) = (—a;, —a,). Thus, it is reason-
able that the zero modes on the 72 /Z, orbifold correspond
to the irreducible representations.

The S and T representations by the Z, odd zero mode are
quite simple, and these are represented by

S(4_) = i, T(4)_ = e”i/4. (35)

Their closed algebra is Zg.

On the other hand, the S and T transformations are
represented by the Z, even zero- modes,

X 1 V2 1
S(4)+:5 \/§ 0 —\/§ )
1 =2 1
1
Ty = emi/4 . (36)
—1

They satisfy the following algebraic relation:

(S T(@))’ =™/ L.
(37)

We denote the closed algebra of S, and T 4), by G4),.
Its order is equal to 768, and it includes the center element
(S4)+T@)+)?, i.e., Zg. Other diagonal elements correspond
to Zg, which is generated by T'4),. Again, we denote a =
(S4)+T4)+)? and @’ = T4y, and the diagonal elements are
written by a™a'", i.e., Zg X Zg.

Similar to the case with M = 2, we examine the coset
structure, Hg. Indeed, there are the following 12 cosets:

HSk

H,  HSuy, (4)+°

HS(4) Tl Swe. (38)

where k = 1, ...
we find that

,7and ¢ = 2,4, 6. By simple computation,

k
HS) Ty S ~ HSw T8

4 8—¢
HS(a) Tl ST~ HS ) T Swe (39)

for k = odd and £ = even.

We make a subgroup with the order 12 by choosing
properly 12 elements such that we pick one element up
from each coset and their algebra is closed. The non-
Abelian group with the order 12 are D¢, Qg, and Ay.
Among them, A, would be a good candidate. Indeed, we
can obtain the Z3 generator from HSy), T 4),, gain. That
1s, we define
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= dmd/nS(4)+T(4)+. (40)
The solutions for > =1 are obtained by (m,n) = (1,4),
3, 6), (5, 0), and (7, 2). We also define

s = a"d" ) Ty Sy

(41)
The solutions for s> = I are obtained by (m’,n’) = (0, 0),
O, 4), (4, 0), and (4, 4). These two generators satisfy
(st)> =Tif (m',n') = (0, 4), and (4, 0), i.e.,

0 0 =1
s = 0O -1 0 (42)
+1 0 0
As a result, they satisfy
s?=1=(st)’ =1L (43)

That is the A, algebra.

3. Large magnetic flux M

For larger magnetic fluxes, S and T transformations are
represented by zero modes y/**, but those are reducible
representations. The irreducible representations are obtained
in the 7% /Z, orbifold basis,

[I/]_*M ezri/M

M/2—1.M

Both correspond to Z,,,.
On the other hand, the S+ transforms

M 2jk/M eeri(M—j)k/M,M) kM

1
S =— g (e '
(M)£V+ L4
V2M 7,
(47)
This representation is also written by

S(M)ill/{éM
_ 1 Z(ezzz(M—j)(M—k)/M:t e2m’j(M—k)/M.M)wM—k,M.
2M 4

(48)

7ij? /M

; 1 . .
M _ " M M= 44
wy \/E(vf 7)) (44)
The representations of 7', are simply obtained by
yoM 1
yl emi/M
T+ WQM = TP IM
. wiM /4
yM/2M e
oM
i
X ]M (45)
L
yM/2M
and
ylY
| (46)
" (M/2-1)*/M M/2-1.M

Thus, the S transformation is represented on the 72/Z,
orbifold basis by

; 1 . o
S(M):tl//iM _ Z (e2zr]k/M + e2m(M—])k/M)W/;M'
M, 51
(49)
These are written by
. 2 . .
Sonwh" = Vi, > cos(2zjk/M)y,
k<M /2
. 2i .
Syt = — sin(2zjk/M)yiM. 50
-t = > sin(2mjk/M)y (50)

k<M/2
For example, for M = 6, S and T are represented by Z,
even zero modes,
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p° 1 V2 V2o wo
S wi{ IR RN B o | R |
vy \/6 \/i -1 -1 \/5 l//%f
3o 1 =2 V2 -1 3o
(51)
Y0 1 0
1.6 i 16
T6)+ W;‘s = - 2i/3 W2+6 ’
vy e vy
30 e37i/2 30
(52)

while S and T are represented by Z, odd zero mode,

16 /1 1 16
S(6)—(W26> :L< >(w26>’ (53)
W V2\1 -1/ \y?
1,6 7i/6 0 1,6
T(6>—<W;6>:<e : )(W_ > (54)
Vs 0 62751/3 l//%()

C. Non-Abelian discrete flavor symmetries

In Ref. [8], it is shown that the models with M = 2 as
well as even magnetic fluxes have the D, flavor symmetry.
See Appendix A. One of the Z, elements in D, corresponds
to (T(3))* on the zero modes, w*? and y'?, ie.,

Z= ((1) _01> = (T (55)

In addition, the permutation Z§ element in D, corresponds
to S(Z)T(z)T<2)S(2), ie.,

0 1

Thus, the D4 group, which includes the eight elements
(A8), is a subgroup of G y) =~ (Zg x Z;)xS3.

However, there is the difference between the modular
symmetry and the D, flavor symmetry, which is studied in
Ref. [8]. The modular symmetry transforms the Yukawa
couplings, while the Yukawa couplings are invariant under
the D, flavor symmetry. In order to study this point here
we examine the Yukawa couplings among w2, w7, and
w4 Both w'? and y'/? are D, doublets, and their tensor
product 2 x 2 is expanded by

2x2=1, +1._+1_ +1_. (57)

Thus, the products y*?y'/2 correspond to four singlets,

1.2 /12 1 1,2 102

Ly 2y 2y R e A

(58)
On the other hand, by use of Eq. (9), the products y/2y/'/2
are expanded by yw*4. For example, we can expand as
W0.2w/0,2 + WI,ZW )(161') + Y<8/16)(16T)
+ (YW/19)(167) + Y(12/19)(167)))
% (WOA 4 ll/2’4) (59)

12 (y©

up to constant factors, where
J
YUM(Mz) =N -9 {Ag } (0, Mz). (60)

Note that YU/M) (Mz) = Y(1=//M)(Mz). 1t is found that

(T 2y £y = (O £y,
(ST TwSw) W' £y>*) = £ £y>4).  (61)

Thus, the zero modes y** + y2>* are indeed D, singlets, 1,
when we identify (7'(4))* and (S T'(4)T (4)S )) as Z, and Z§
of D,. In this sense, the D, flavor symmetry is a subgroup of
the modular symmetry. Also, it is found that the above
Yukawa couplings, Y"/4)(16z), with m =0, 1, 2, 3 are
invariant under 72 and STTS transformation.

Similarly, we can expand

/12+w12 02 ., ( 2/16 (161‘) 6/16 (167:))

x ('t ), (62)

w2y

up to constant factors. It is found that

( ) (WOZ /12+W12W/02) (WOZ /12+W12W102)

(63)
On the other hand, we obtain
(T@)* (' +y ) =iy +y?%). (64)
In addition, we find
T2 (Y?/10)(167) + Y(©/19(167)) — i(Y?/10)(167)
+ Y©/19)(167)). (65)

Thus, the 72 transformation is consistent between left-
and right-hand sides in (62). However, when we interpret
T? as Z, of the D, flavor symmetry, we face inconsistency,
because Yukawa couplings are not invariant and (y'* +
w>*) has transformation behavior different from
(w2212 4y 2y/02) We can make this consistent by
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defining Z, of the D, on (y'*+y>*) such that its
transformation absorbs the phase of Yukawa couplings
under 7?2 transformation. Then, the mode (y'#* + y34)
exactly corresponds to the D, singlet, 1_,. We find that
(w212 4y 2y/02) is invariant under ST (5)T(2)S(2)»
and (y'* +y>*) is also invariant under ST 4T (4)S().
That is consistent. Therefore, the D, flavor symmetry is a
subgroup of the modular symmetry on y/? (j =0, 1).
However, when the model includes couplings to zero
modes with larger M, we have to modify their modular
symmetries such that coupling constants are invariant under
the flavor symmetry. Then, we can define the D, flavor
symmetry.

Here, we give a comment on the 72/Z, orbifold. The
T?/Z, orbifold basis gives the irreducible representations
of the modular symmetry. The D, flavor symmetry is
defined through the modular symmetry, as above. That is
the reason why the D, flavor symmetry remains on the
T?/Z, orbifold [11,12].

III. HETEROTIC ORBIFOLD MODELS

Intersecting D-brane models in type II superstring theory
is T-dual to magnetized D-brane models. Thus, intersecting
D-brane models also have the same behavior under
modular transformation as magnetized D-brane models.
Furthermore, intersecting D-brane models in type II super-
string theory and heterotic string theory on orbifolds have
similarities, e.g., in two-dimensional conformal field
theory. For example, computations of three-point couplings
as well as n-point couplings are similar to each other. Here,
we study modular symmetry in heterotic orbifold models.
Using results in Refs. [16-18], we compare the modular
symmetries in heterotic orbifold models with non-Abelian
flavor symmetries and also the modular symmetries in the
magnetized D-brane models, which have been derived in
the previous section.

A. Twisted sector

Here, we give a brief review on heterotic string theory on
orbifolds. The orbifold is the division of the torus 7" by the
Zy twist 0, ie., T"/Zy. Since the T" is constructed by
R"/A, the Zy twist 0 should be an automorphism of the
lattice A. Here, we focus on two-dimensional orbifolds,
T?/Zy. The six-dimensional orbifolds can be constructed
by products of two-dimensional ones. All of the possible
orbifolds are classified as 7?/Zy with N = 2, 3, 4, 6.

On orbifolds, there are fixed points, which satisfy the
following condition:

xi = (0"x)" + kaa}(, (66)
k

where x' are real coordinates, a}'{ are two lattice vectors, and
my, are integers for i, k = 1, 2. Thus, the fixed points can be

represented by corresponding space group elements
(0", > mat), or in short (6", (my, m,)).

The heterotic string theory on orbifolds has localized
modes at fixed points, and these are the so-called twisted
strings. These twisted states can be labeled by use of fixed
points, 6 (n, m,)- All of the twisted states oy (,,, ) have the
same spectrum, if discrete Wilson lines vanish. Thus, the
massless modes are degenerate by the number of fixed
points.

On the 7?2 /Z, orbifold, there are four fixed points, which
are denoted by (6, (0,0)), (0,(1,0)), (6, (0,1)), (6, (1,1)).
The corresponding twisted states are denoted by oy (,, ) for
m,n=20, 1.

On the T?/Z; orbifold, @; and @, correspond to the
SU(3) simple roots, and they are identified with each other
by the Z; twist. Thus, three fixed points on the 72/Z;
orbifold are represented by the space group elements,
(0, ma;) for m =0, 1, 2, or in short (6, m). The corre-
sponding twisted states are denoted by o4, form = 0, 1, 2.

Similarly, we can obtain the fixed points and twisted
states on the 72/Z,, where a; and a, correspond to the
SO(4) simple roots and they are identified with each other
by the Z, twist. For the Z, twist 8, two fixed points satisfy
Eq. (66), and these can be represented by (6, ma,) for
m =0, 1, or in short (@, m). Then, the first twisted states
are denoted by oy, for m = 0, 1. In addition, for 6°, there
are four points, which satisfy Eq. (66), and these can be
denoted by (6°,(m,n)) for m, n =0, 1. Indeed, these
correspond to the four fixed points on the 72/Z, orbifold.
Then, the second twisted states are denoted by 6 (,, ,,) for
m, n =0, 1. However, the fixed points (6, (1,0)) and
(6, (0, 1)) transform each other under the Z, twist 6. Thus,
the Z, invariant states are written by [21]

O (1.1) (67)
while 64 _ transforms to —c4 _ under the Z, twist, where

692.(0’0), 692‘+,

1
Oy = 7 (6e2,1.0) T 02 0.1))- (68)

Similarly, we can obtain the fixed points on 77 /Z,. There
is a fixed point (0, 0) for the Z twist 0, and a single twisted
state oy . The second twisted sector has three fixed points
(6%, m) (m =0, 1, 2), which correspond to the three fixed
points on the T?/Z; orbifold. The two fixed points (62, 1)
and (67, 2) transform each other by the Z twist, while (62, 0)
is invariant. Thus, we can write the Zg-invariant 0?-twisted
states by
092’ 4 (69)

092’0,

while 6, _ transforms to —c, _ under the Zg twist, where

1
O+ = ﬁ(o-ﬁz.l +0p,). (70)
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The third twisted sector has four fixed points, which corre-
spond to the fixed points on 72 /Z,, and the corresponding 6°
twisted states. Their linear combinations are Z4 eigenstates
similar to the second twisted states. Since the first twisted
sector has the single fixed point and twisted state, the modular
symmetry as well as non-Abelian discrete flavor symmetry is
rather trivial. We do not discuss the T2/ Z orbifold itself.

B. Modular symmetry

In Ref. [16], modular symmetry in heterotic string theory
on orbifolds was studied in detail. Here we use those
results.

1. T?/Z, orbifold

The S and T transformations are represented by the first
twisted sectors of 72 /Z4 orbifold as [16]

09,0 09,0 1 1 1 >
' - S o, S, =— R
<0'9,1> “ <59,1> “ V2 <1 -1
60,0 00,0 I 0
0.1 0y 0 i

These are exactly the same as representations of S and
T(3) on two-zero modes, w2 and y'? in the magnetized
model with magnetic flux M = 2. Hence, the twisted
sectors on the 72/Z, orbifold has the same behavior of
modular symmetry as the magnetized model with magnetic
flux M = 2. Indeed, the twisted sectors have the D, flavor
symmetry and two twisted states, 6y and oy 1, correspond
to the D4 doublet [4]. The whole flavor symmetry of the
T?/Z, orbifold model is slightly larger than D,. (See
Appendix B.) The 7?/Z, orbifold model has the Z,
symmetry, which transforms the first twisted sector,

O9.m - e”i/zaﬁ.m’ (72)
for m = 0, 1 and the second twisted sector,

0(7‘2,(m,n) - emaé)z,(m,n)7 (73)
for m, n =0, 1. The above Z, transformation (72) is
nothing but (7,7, )° as clearly seen from Eq. (24). Thus,
the whole flavor symmetry originates from the modular
symmetry.

The second twisted sectors correspond to D, singlets,
1.4 [4], as

Lii: op200) L 002 10) 1itops, (74)
up to coefficients. Compared with the results in Sec. 11 C,
the D, behavior of the second twisted states corresponds to
one of the zero modes y”* with magnetic flux M = 4.
Their correspondence can be written as

24
Oo2(1,1) YT,

062,(1,0) ~ 1/13’4- (75)

0.4
02 (00) ~¥ s

1.4
Oz (10) ¥

The above correspondence can also been seen from the
Yukawa couplings. By use of operator product expansion,
we obtain the following relations [16]:

0600600 ~ Y0.0(Ce2,(00) T Fe2,(1.1))»
00.109.1 ~ Y1.1(002 (0.0) T G2 (1.1))>
00,000,1 + 00,1000 ~ Y0100 (76)

up to constants. The second twisted state o, _ cannot
couple with the first twisted sectors. Using results in
Ref. [16], it is found that

Yoo 1 0 O Yoo
(Tz4)2 Yl,l = 0 1 0 Yl.l . (77)
Yo 0 0 -1 Yo,

This is the same as behavior of the Yukawa couplings under
T? studied in Sec. 11 C.

2. T?/Z, orbifold
Here, let us study the 7%/Z, orbifold in a way similar to
the previous section on the 72/Z,. The S transformation

is represented by the four twisted states on the 7%/Z,
orbifold [16],

60,(0,0) 00,(0,0)
09,(0,1) =S, 09,(0.1) ’
00,(1,0) | %6.1.0)
009,(1.1) 09,(1.1)
I 1 1 1
111 -1 1
S, == 78
272011 1 -1 -1 (78)
1 -1 -1 1
Also the T transformation is represented as
06,(0,0) 09,(0,0)
c o
0.(0.1) -7, 6.(0,1) ’
09,(1,0) 09,(1,0)
0¢,(1,1) 0¢,(1,1)
1 0 0 0
T 0O -1 0 0 (79)
2710 0 -1 0

0O 0 0 -1

The representation S, is similar to Sz, and S,). Indeed, we
find that S, = S(3) ® S(2). However, the representation
Ty, is different from T, and 7).
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The matrices Sz, and T, satisfy the following relations:

(SZZ)2 - (Tzz)2 = (SZZTZZ)6 =L (80)

These correspond to the Dg. Indeed, the order of closed
algebra including S, and T, is equal to 12. At any rate,
these matrices are reducible. We change the basis in order
to obtain irreducible representations,

1 0 0 O
o] 1 ] ] 09,(0,0)
oy | 0% B Go,(1,0) 81)
03 0 % \_/_13 0 09,(0,1) .
1 )
Oy 0 7 o e 00.(1.1)

Then, ¢, and o, correspond to the Dg doublet, while o3 and
o4 correspond to the Dy singlets. For example, S, Tz, and
T, are represented by

o cos(2z/6) —sin(2z/6) 0 O
oy sin(2z/6)  cos(2z/6) 0 O
SZZTZZ -
o3 0 0 1 0
04 0 0 0 -1
0
02
X b
03
0y
(] 1 0 0 0 (]
0O -1 0 0
| 7| = o (82)
z 03 0 0 -1 0 03
Oy O 0 0 -1 0y

It is found that o3 and o4 correspond to 1__ and 1_,.

The twisted sector on the 72/Z, orbifold has the flavor
symmetry (D4 X Dy4)/Z,. However, this flavor symmetry
seems independent of the above Dg, because they do not
include any common elements. The twisted sector on the
S'/Z, orbifold has the flavor symmetry D,. The flavor
symmetry of the T?/Z, orbifold is obtained as a kind
of product, D4 x Dy, although two D, groups have a
common Z, element. Thus, the flavor symmetry of 72/Z,
originates from the product of symmetries of the one-
dimensional orbifold. On the other hand, the modular
symmetry appears in two or more dimensions, but not in
one dimension. Hence, these symmetries would be inde-
pendent. When we include the above Dg as low-energy
effective field theory in addition to the flavor symmetry
(D4 x Dy4)/Z,, low-energy effective field theory would
have larger symmetry including Dy and (D4 X Dy)/Z,,
although Yukawa couplings as well as higher order
couplings transform nontrivially under Dy.

3. T?%/Z; orbifold

The § and T transformations are represented by the first
twisted sectors of the 72/Z5 orbifold as [16]

09,0 09,0
09,1 —’523 091 |»
092 09,2
. 1 1 1
Sz, _ﬁ 1 e2mi3 p2rif3 |
1 =273 p2xi/3
09,0 09,0
091 | =Tz | 001 |.
092 092
1 0 0
T, =0 & ° 0 |. (83)
0 0 o27i/3

These forms look similar to S and 7 transformations in
magnetized models (18) and (19). Indeed, they correspond
to submatrices of S and T'4) in the magnetized models
with the magnetic flux M = 6. Alternatively, in Ref. [17]
the following S and T representations were studied’

/11 1
l . .
S/Z3 — _7§ 1 627[1/3 6_27”/3 ,
1 e~27i/3  2mif3
e2n:i/3 0 0
= o 1 0] (84)
0 0 1

At any rate, the above representations are reducible
representations. Thus, we use the flowing basis,

Ot
(o0} N (85)

O

where 6, = (6, +£0_)/v/2. The (6,,0,) is a doublet,
while o_ is a singlet. The former corresponds to the Zg
invariant states among the 6> twisted sector on the T2/Z;
orbifold. Similarly, o_ is the 6 twisted state, which
transforms o¢_ — —o_ under the Zg twist. Alternatively,
we can say that the doublet (o, , 6) corresponds to Z, even
states and the singlet o_ is the Z, odd states, where the Z,
means the z rotation of the lattice vectors, (a,a,) —
(—a;, —ay). This point is similar to the aspect in magnet-
ized D-brane models, where irreducible representations

3See also Ref. [18].
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correspond to the T2 /Z, orbifold basis. Also, note that the
first twisted states of the 7% /Z, orbifold correspond already
to the Z,-invariant basis.
For example, we represent S, and 77 on the above
. 3 3
basis [17],

. 27i/3 0
I I Gy
VB \V2 -1 ’ 0 1

on the doublet (6,,00)7, while o_ is the trivial singlet.
Here, we define

-1 0 i
Z:<0 _1), T, =ZzTy, (87)

Then, they satisfy the following algebraic relations [17,18]:

(4,02 = (T2 = (ST, =2,  Z2=L (88)
This group is the so-called 7’, which is the binary extension
of A4 =T.

The non-Abelian discrete flavor symmetry on the 72/Z5
orbifold is A(54), and the three twisted states correspond to
the triplet of A(54). Thus, this modular symmetry seems
independent of the A(54) flavor symmetry.

Two representations are related as

Sy, = —iSz,, T, =e™B3(T, )™ (89)
When we change phases of S, T, and ST, the group such
as (Zy x Zy)»xH in Secs. II and TII would change to
(ZN/ X ZM/)XIH.

IV. CONCLUSION

We have studied the modular symmetries in magnetized
D-brane models. Representations due to zero modes on T2
are reducible except the models with the magnetic flux
M = 2. TIrreducible representations are provided by zero
modes on the 72 /Z,, i.e., Z, even states and odd states. It is
reasonable because (ST)? transforms the lattice vectors
(ar, ) to (—ay, —a,). The orders of modular groups are
large, and in general, they include the Zg symmetry as the
center. The D, flavor symmetry is a subgroup of the
modular group, which is represented in the models with
the magnetic flux M = 2. The system including zero modes
with M = 2, M = 4, and larger even M, also includes the
D, flavor symmetry, when we define transformations of
couplings in a proper way.

We have also studied the modular symmetries in
heterotic orbifold models. The heterotic model on the
T?/Z, has exactly the same representation as the mag-
netized model with M = 2, and the modular symmetry
includes the D, flavor symmetry. The representation due

to the twisted states on the T?/Z; orbifold is reducible,
similar to representations due to zero modes in magnet-
ized D-brane models on 7. Their irreducible representa-
tions correspond to Z, even and odd states, similar to
those in magnetized D-brane models. Thus, the A(54)
flavor symmetry seems independent of the modular
symmetry in the 72/Z; orbifold models. Note that the
first twisted states on the 72 /Z, are Z,-invariant states. In
this sense, we find that the modular symmetry is the
symmetry on the Z, orbifold in both heterotic orbifold
models and magnetized D-brane models. The symmetries,
which remain under the Z, twist, can be realized as the
modular symmetry.

We have set vanishing Wilson lines. It would be
interesting to extend our analysis to magnetized D-brane
models with discrete Wilson lines on orbifolds [22]. It
would also be interesting to extend our analysis on zero
modes to higher Kaluza-Klein modes [23].

Four-dimensional low energy-effective field theory is
modular invariant [24-26]. Anomalies of the modular
symmetry were studied [27,28], and they have important
aspects [29-31]. The non-Abelian flavor symmetries such
as D, can be anomalous. (See for anomalies of non-Abelian
discrete symmetries, e.g., [2,32,33].) In certain models, the
modular symmetries are related with the non-Abelian
flavor symmetry D,. It would be interesting to study their
anomaly relations.

We also give a comment on phenomenological applica-
tion. Recently, the mixing angles in the lepton sector were
studied in the models, whose flavor symmetries are con-
gruence subgroups, I'(N) [34,35]. In those models, the
couplings are nontrivial representations of I'(N) and
modular functions. Our models show massless modes
represent larger finite groups. It would be interesting to
apply our results to derive realistic lepton mass matrices as
well as quark mass matrices.
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APPENDIX A: NON-ABELIAN DISCRETE
FLAVOR SYMMETRY IN MAGNETIZED
D-BRANE MODELS

In this appendix, we give a brief review on non-Abelian
discrete flavor symmetries in magnetized D-brane
models [8].

As mentioned in Sec. Il A, the Yukawa couplings as well
as higher order couplings have the coupling selection rule
(11). That is, we can define Z, charges for zero modes.
Such Z, transformation is represented on y"M=9 by
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where p = ¢?*/9. Furthermore, their effective field theory
has the following permutation symmetry:

l//i’g - wi+1.g’ (AZ)
and such permutation can be represented by
01 00 0
0 0 0
C= (A3)
1 00 0 ---0

This is another ch symmetry. However, these two gen-
erators do not commute with each other,

CZ =pZC. (A4)
Thus, the flavor symmetry corresponds to the closed

algebra including Z and C. Its diagonal elements are given
by Z"Z'", ie., Z, x Z; where

p
Z =

P

and the full group corresponds to (Z, x Z,)xZ§.

Furthermore, the zero modes y***=9" with the magnetic
flux M =gn also represent (Z, x Z)xZS. The zero
modes, y'*=9", have Z, charges (mod g). Under C, they
transform as

i,M=gn i+n,M=gn

W -y (A6)
For example, the model with g =2 has the D, flavor

symmetry. The zero modes,

(1:)
w'?
correspond to the D, doublet 2, where eight D, elements
are represented by

(A7)

TABLE I. D, representation.

Magnetic flux M D, representations

2 2
4 1,1, 1_,,1__
6 3x2

(o 1)
+ )
0 1
(o 21)
+ .
0 -1
In addition, when the model has the zero modes y'* (i = 0,
1, 2, 3), the zero modes w** and yw>* (w'* and y>*)
transform each other under C, and they have Z, charge
even (odd). Thus, %% 4 w>* correspond to 1, of D,
representations, while y'# 4 y3* correspond to 1_,.
Furthermore, among the zero modes y'® (i =0, 1, 2, 3,

4, 5), the zero modes y*® and '+ transform each other
under C. Hence, three pairs of zero modes,

0O o e
36 )’ 46 )’ 56 )’ (A9)
7 788 7
correspond to three D, doublets. These results are shown in
Table I.

0 1 0 1
:l: ) :l: )
(o) #(5o)

(A8)

APPENDIX B: NON-ABELIAN DISCRETE
FLAVOR SYMMETRY IN HETEROTIC
ORBIFOLD MODELS

Here, we give a brief review on non-Abelian discrete
flavor symmetries in heterotic orbifold models [4].

The twisted string x’ on the orbifold satisfy the following
boundary condition:

(o =2r) = (0"x(c = 0))' + Y _mai.  (BI)
k

similar to Eq. (66). Thus, the twisted string can be
characterized by the space group element g¢=
(0", > mat). The product of the two space group
elements (0™, v;) and (6", v,) is computed as

(0", v1)(0",vy) = (M0, v, + 0" vy).  (B2)

The space group element g belongs to the same conjugacy
class as hgh™!, where h is any space group element on the
same orbifold.

Now, let us consider the couplings among twisted strings
corresponding to space group elements (6", wv;). Their
couplings are allowed by the space group invariance if the
following condition,

[T v) = (1,0).

k

(B3)
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is satisfied up to the conjugacy class. That includes the
point group selection rule, [[,0" = 1, which is the Zy
invariance on the Z, orbifold. We can define discrete
Abelian symmetries from the space group invariance as
well as the point group invariance. These symmetries
together with geometrical symmetries of orbifolds become
non-Abelian discrete flavor symmetries in heterotic
orbifold models. We show them explicitly on concrete
orbifolds.

1. S'/Z, orbifold

The S'/Z, orbifold has two fixed points, which are
denoted by the space group elements, (8,ma) with m=0, 1,
where «a is the lattice vector. In short, we denote them by
(6, m) and the corresponding twisted states are denoted by
6(o.m)- These states transform

()= (o =) ()
- b
09,1 0 -1 00,1

under the Z, twist. In addition, the space group invariance
requires > _,m; = 0 (mod 2) for the couplings correspond-
ing to the product of the space group elements [ [, (6, m;)
with m; =0, 1. Hence, we can define another Z, sym-

metry, under which 6y is even, while 64 ) is odd. That
is, another Z, transformation can be written by

()= (o 5) ()
- .
0.1 0 -1/ \og1

Furthermore, there is the geometrical permutation sym-

metry, which exchanges two fixed points with each other.
Such a permutation is represented by

(o) = (0 0) (o)
— .
60,1 1 0 69’1
The closed algebra including Egs. (B4), (BS), and (B6)
is D4 acd (Zz X Zz)XZz.

(B4)

(BS)

(B6)

2. T?/Z; orbifold
As shown in Sec. 11, the 7% /Z; orbifold has three fixed
points denoted by (8,m) with m =0, 1, 2, and the
corresponding twisted states are denoted by o(g,,). The
Z5 twist transforms

09,0 e27[i/3 O 0 U(}’()
09’1 e d O 627[i/3 0 09’1 (B7)
092 0 0 e2m/3 %)

The space group invariance requires » _,m; = 0 (mod 3)
for the couplings corresponding to the product of the space

group elements [ [, (0, m;) with m; = 0, 1, 2. Then, we can
define another Z3 symmetry, under which 6y, transform

09,0 1 0 0 09,0
o1 | > |0 &3 0 og1 | (BY)
Ty 0 0 /3 Cg2

There is also the permutation symmetry of the three fixed
points, that is, S3. Thus, the flavor symmetry is A(54) ~
(Z3 X Z3)>4S3.

3. T?/Z, orbifold

As shown in Sec. I1I, the T?/Z, orbifold has two @ fixed
points denoted by (6, m) with m =0, 1, and the corre-
sponding twisted states are denoted by (g ,,). The Z, twist

transforms
()= (o 2) (o)
- .
0q,1 0 i/ \og:

The space group invariance requires » _,m; = 0 (mod 2)
for the couplings corresponding to the product of the space
group elements [ [, (6, m;) with m; = 0, 1. Then, we can
define another Z, symmetry, under which 6y, transform

(B9)

0]

=G 2
O d .
0.1 0 -1)\s,,

092

(B10)

There is also the permutation symmetry of the two fixed
points. Thus, the flavor symmetry is almost the same as the
one on the S'/Z, orbifold. The difference is the Z, twist,
although its squire is nothing but the Z, twist. Hence, the
flavor symmetry can be written as (D4 X Z4)/Z,.

4. T*/Z, orbifold

As shown in Sec. III, the 72/ Z, orbifold has two @ fixed
points denoted by (0, (m,n)) with m, n =0, 1, and the
corresponding twisted states are denoted by o (). The
space group invariance requires  J;m; =) :n;=0 (mod 2)
for the couplings corresponding to the product of the space
group elements [ [, (6, (my, n;)) with m;, n; = 0, 1. There
are two independent permutation symmetries between
(0,(0,n)) and (0, (1,n)), and (0, (m,0)) and (8, (m, 1)).
Thus, this structure seems be a product of two one-
dimensional orbifolds, S'/Zz. However, the Z, twist is
commented such as 6y ;) = —0g (mn)- Thus, the flavor
symmetry can be written by (D4 X Dy4)/Z,.
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