
 

How blind are underground and surface detectors
to strongly interacting dark matter?
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Above a critical dark matter-nucleus scattering cross section any terrestrial direct detection experiment
loses sensitivity to dark matter, since the Earth crust, atmosphere, and potential shielding layers start to
block off the dark matter particles. This critical cross section is commonly determined by describing the
average energy loss of the dark matter particles analytically. However, this treatment overestimates the
stopping power of the Earth crust. Therefore the obtained bounds should be considered as conservative.
We perform Monte Carlo simulations to determine the precise value of the critical cross section for various
direct detection experiments and compare them to other dark matter constraints in the low mass regime.
In this region we find parameter space where typical underground and surface detectors are completely
blind to dark matter. This “hole” in the parameter space can hardly be closed with an increase in the detector
exposure. Dedicated surface or high-altitude experiments may be the only way to directly probe this part of
the parameter space.
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I. INTRODUCTION

The existence of large quantities of dark matter (DM) in
the universe is backed by strong astrophysical evidence
[1,2]. Direct detection experiments are consequently trying
to observe nongravitational interactions between DM
particles from the galactic halo and target atoms inside a
terrestrial detector [3,4]. So far no conclusive signal has
been reported, and detectors continue probing weaker and
weaker DM-nucleon interactions by increasing their expo-
sure [5] or extend their search to lower DM masses by
decreasing their recoil energy threshold [6,7]. Other
approaches focus on experimental signals other than
nuclear recoils to probe light DM, as e.g., DM-electron
scatterings [8] or inelastic DM-atom scatterings that pro-
duce photons [9,10].
These experiments are typically located underground,

beneath ∼1 km of rock, and equipped with additional
shielding layers in order to reduce background signals.
This comes at the price of impairing the experiment’s
sensitivity to strongly interacting DM, since elastic
DM-nucleus collisions occur not only in the target material
but also inside the Earth crust prior to reaching the detector.

These collisions slow down and deflect the DM, attenuat-
ing the flux of DM particles capable of triggering the
detector, such that the Earth crust could shield off DM.
Above a critical cross section the shielding effect of the
crust or the atmosphere is effective enough that any detector
on Earth becomes blind.
The scenario of strongly interacting DM.1 is highly

constrained by astrophysical observations. Strong inter-
actions between DM and baryons in the early universe lead
to momentum transfer between them and alter the
anisotropy of the cosmic microwave background (CMB)
[11–13]. Strong interactions between DM and cosmic ray
nuclei lead to the production of neutral pions and con-
sequently γ-rays [14–16]. They also introduce a collisional
damping effect during cosmological structure formation
[17]. Further constraints on strongly interacting DM are set
by satellite experiments such as IMP7/8 [18,19], early
experiments on the Skylab space station [19,20], searches
for new forces between nucleons [21], the rocket-based
X-ray Quantum Calorimeter experiment (XQC) [22], as
well as balloon-based experiments such as IMAX [19,23]
and the one by Rich et al. [24]. Considering that terrestrial
detectors lose sensitivity above a certain cross section, an
important question is whether or not there exists allowed
parameter space, a “window” between the constraints
mentioned above and the ones from direct detection [25].
Indeed there have been several allowed windows in the

constraints on strongly interacting DM over a wide range of
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DM masses [25,26]. In order to close these windows, new
constraints were derived based on DM capture and heat
flow inside the Earth [27], on observations by the IceCube
experiment [28] and the Fermi Gamma-ray Space
Telescope [15]. For light DM a window in the constraints
was closed by reanalyzing old results from DAMIC and
XQC [29], and using the new results of the CRESST 2017
surface run [30]. Most recently several holes in the
constraints on super-heavy DM were closed using direct
detection experiments only, namely by a reanalysis of
CDMS-I [31].
As we mentioned, predetection DM-nuclei scatterings

can reduce and effectively eliminate the flux of detectable
DM particles in underground detectors. Consequently
terrestrial experiments constrain DM-nucleon cross section
within a band only. Below the lower limit, there is simply
not enough exposure for an experiment to probe DM.
Above the upper critical cross section, no constraint can be
imposed, because DM interacts too strongly with nuclei
and loses enough energy or gets deflected, resulting in a
non-detectable flux at the location of the detector.
In this paper, we use Monte Carlo (MC) techniques to

precisely determine this upper critical cross section, above
which each experiment fails to probe DM. Previous works
on this matter treated the stopping of DM in an overburden
with analytic formulas which capture the average energy
loss of DM particles traversing through the Earth crust
[25,30–33]. However, this analytic treatment does not
suffice for a precise determination of the critical cross
section. Since the analytic description overestimates the
stopping power of the Earth crust by capturing the average
energy loss, the bounds obtained this way turn out to be
conservative, and may be extended towards higher cross
sections. For this purpose dedicated MC simulations of DM
particles propagating and scattering in the shielding layers
are necessary, as first applied in this context in [26], to
DM-electron scattering experiments in [34], and further
developed, motivated and applied in [29,35].
Similar simulations have been used to study diurnal

signal modulations for intermediate cross sections in
[36–38] and more recently with our DAMASCUS code
in the context of light DM [39,40]. Built upon this tool we
developed a dedicated simulation code for the determina-
tion of the critical cross section of strongly interacting DM.
In this paper we present results for CRESST-II [41], the
CRESST 2017 surface run [7], and XENON1T [5], and put
the direct detection constraints into context with constraints
from other sources. We also compare the MC methods to
analytic treatments.
In the first section of this paper we review the commonly

applied analytic methods to describe nuclear stopping of
DM inside matter, its application to direct detection, and
motivate the use of MC simulations. Then we move on to
describe our simulations and discuss the method to obtain
the critical DM-nucleon cross section. In Sec. IV we present

our findings, before we conclude in Sec. V. Furthermore
we provide the interested reader with a set of Appendices,
which go into more detail about computational methods,
the considered detectors and the implemented model of the
Earth crust and atmosphere.
The code DAMASCUS-CRUST developed for this paper

is publicly available [42].

II. REVIEW OF ANALYTIC METHODS

Different analytic methods have been applied to set
limits on the sensitivity of DM detectors on strongly
interacting DM. In this section we review these methods,
pointing out their shortcomings and motivate the use of
MC simulations.
We start by considering a DM particle of mass mχ and

energy Eχ moving through matter interacting with the
nuclei via spin-independent contact interactions. The aver-
age energy loss due to elastic scatterings is described
[25,32] by

dEχ

dx
¼ −

X
i

ni

ZEmax
R

0

dERER

dσSIχi
dER

; ð1Þ

where i runs over the abundant nuclei species, ni is their
corresponding number density, and ER is the nuclear recoil

energy with its maximum value Emax
R ¼ 2μ2χiv

2
χ

mi
. From this

point on μij denotes the reduced mass of particle i and j,
and mi is the nuclear mass of isotope i with mass number
Ai. The differential cross section2 is given by

dσχi
dER

¼ σtotχi ð0ÞF2
i ðq2Þ

Emax
R

; ð2aÞ

with

σtotχi ð0Þ ¼ σχn
μ2χi
μ2χn

A2
i : ð2bÞ

Here we introduced the spin-independent DM-nucleon
scattering cross section σχn, and the nuclear form factor
Fiðq2Þ, a function of the momentum transfer q, which is
related to the recoil energy via q2 ¼ 2miER. For light DM
setting Fiðq2Þ ≈ 1 is an excellent approximation, and the
differential cross section no longer depends on ER. Hence
in this case Eq. (1) reads

dEχ

dx
¼ −

X
i

ni
2μ2χiσ

tot
χi

mimχ
Eχ ; ð3Þ

2To avoid notation clutter we omit the “SI” from now on.
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and becomes solvable for a homogenous medium with
constant density and composition. Then DM particles of
initial energy Eini

χ travelling a distance d through this
medium will end up with the average final energy

Efin
χ ðdÞ ¼ Eini

χ exp

�
−
X
i

ni
2μ2χiσ

tot
χi

mimχ
d

�
ð4aÞ

¼ Eini
χ exp

�
−
2ρσχn
mχμ

2
χn

�X
i

fiμ4χiA
2
i

m2
i

�
d

�
: ð4bÞ

In the last expression ρ is the (constant) mass density of
the medium and fi the mass fraction of nuclei with mass
number Ai. In an earlier work we numerically confirmed,
that this equation indeed describes the average energy loss
accurately [34].

A. Method a

We can use the analytic description of nuclear stopping
to give a first estimate of the critical cross section. Every
direct detection experiment has a recoil energy threshold
Ethr
R . For a given DM mass mχ this corresponds to a

minimal energy Emin
χ , such that less energetic DM particle

can no longer trigger the detector,

Emin
χ ¼ mTmχ

4μ2χT
Ethr
R : ð5Þ

Here mT is the mass of the detector’s lightest target nuclei.
Above a certain cross section even the most energetic DM
particles of the halo travelling towards the detector on the
most direct path get slowed down below this value via
nuclear stopping. It may serve as a first estimate of the
critical cross section. Therefore we solve

Efin
χ ðdÞ ¼ Emin

χ ð6Þ

for σχn using the initial energy Eini
χ ¼ mχ

2
ðvesc þ v⊕Þ2 with

the maximum DM speed of the halo, the sum of the
galactic escape velocity vesc ≈ 544 km= sec and the Earth’s
velocity in the galactic frame, v⊕ ≈ 230 km= sec. The detec-
tor under consideration is assumed to be located at an
underground depth d. We therefore assumed that the particles
take the shortest way from the Earth surface to the detector.
The resulting estimate of the critical cross section is given by

σχn ¼
mχμ

2
χn

2ρd
P

i
fiμ4χiA

2
i

m2
i

log

�
Eini
χ

Emin
χ

�
: ð7Þ

This method has been developed and applied in [25,32,34].
It turned out to be a reasonably good first estimate of the
critical cross section for strongly interacting DM, but has a
number of shortcomings.

(1) Unlike the usual lower limit on the cross section set
by a direct detection experiment, the critical cross
section obtained this way is completely independent
of the experimental exposure. In order to set the
upper and lower constraint limits on the cross section
on equal footing, we need to find the critical cross
section using equivalent methods.

(2) To set viniχ ¼ vesc þ v⊕ seems rather arbitrary and
ignores the knowledge of the halo’s speed distribu-
tion. However, this makes this approach more
conservative.

(3) We assumed Fiðq2Þ ≈ 1 for the nuclear form factor,
which holds for light dark matter only.

(4) The actual particles do not travel on a straight line
toward the detector. This approach ignores deflections
of the particles. However, one can argue that also this
makes (7) more conservative since longer distances
travelled underground increase the energy loss.

(5) The analytic stopping equation overestimates the
stopping power in finding the precise constraint, as
pointedout in [29,35].Weemphasized that the analytic
stopping equation accurately describes the average
energylossofDMparticles travelling throughmatter. It
does not describe the few, rare particles from the
distribution’s tails, which scatter onmuch fewer nuclei
than the averageparticle. The number of these particles
is naturally suppressed, which is compensated by the
large probability to trigger the detector, once a DM
particle actually reaches it. The high cross section both
increases the energy loss in the overburden as well as
the detection event rates.

These points make it hard to evaluate precisely the validity of
Eq. (7), since point 2 and 4 underestimate the crust’s shielding
power, while point 5 overestimates it.
With analytic means problem 5 can hardly be solved,

while point 4 can be addressed in the single scattering
regime only [43], where the cross section is too low to
impair the overall sensitivity. However, point 1, 2 and 3 can
be addressed directly by implementing the analytic stop-
ping description into the computation of detection event
rates, as we will do next.

B. Method b

The differential event rate of a generic direct detection
experiment is given [44] by

dRi

dER
¼ nT

ρχ
mχ

Z
v>vminðERÞ

dvvfdðvÞ
dσχi
dER

ðER; vÞ; ð8Þ

where fdðvÞ is the speed distribution at the detector’s
location.3It is straightforward to include the effect on

3We are not interested in directional detectors at this point and
already integrated out the angular part of the full velocity
distribution fðv⃗Þ.
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nuclear stopping by altering the speed distribution. For this
purpose we rewrite Eq. (4) in terms of speed,

vfinχ ðdÞ ¼ viniχ exp
�
−

ρσχn
mχμ

2
χn

�X
i

fiμ4χiA
2
i

m2
i

�
d
�
; ð9aÞ

≡ viniχ exp ½−Δd� ð9bÞ

Next we need to find the DM speed distribution function
fdðvÞ at depth d based on our knowledge of the distribution
fðvÞ at the surface. Since we assume that all particle move
on a straight line from the surface to the detector while
getting decelerated, the particle flux is conserved,

fdðvfinχ Þvfinχ dvfinχ ¼ fðviniχ Þviniχ dviniχ

¼ exp ½2Δd�fðexp ½Δd�vfinχ Þvfinχ dvfinχ :

We can read off the underground distribution,

⇒ fdðvfinχ Þ ¼ exp ½2Δd�fðexp ½Δd�vfinχ Þ: ð10Þ

The speed distribution fdðvÞ can be seen in Fig. 1. This
expression can be substituted into (8). The resulting
spectrum can be written in terms of the surface distribution
fðvÞ,

dRi

dER
ðdÞ ¼ nT

ρχ
mχ

Z
v>eΔdvminðERÞ

dvvfðvÞ dσχi
dER

ðER; e−ΔdvÞ:

ð11Þ

The result can then be used to compute recoil spectra and
event counts in the usual way, and the shielding effect of the

overburden is included automatically, i.e., the signal
weakens rapidly with increasing cross section above some
critical value. At this point we see that the critical cross
section obtained from method a is exactly the value, above
which we obtain zero using Eq. (11). Hence method a will
always slightly overestimate the upper bound of the
excluded band compared to method b.
This method was further refined and applied [30], taking

into account the geometry of the whole Earth, not just the
overburden above the laboratory as well the atmosphere.
However, close to the critical cross section the DM-matter
interactions are so strong that virtually all DM particles
reach the detector from above. For intermediate cross
sections additional attenuation occurs due to DM particles
passing through the bulk of the Earth before reaching the
detector from below, which is not included in Eq. (10).
Finally the nuclear form factor can also be included, as

done in the context of constraining super-heavy DM
[31,45], fixing problem 3 of our previous list. This leaves
us with point 4 and 5, both of which can be solved by MC
simulations of DM trajectories undergoing scatterings on
nuclei of the shielding layers above a detector.

III. MONTE CARLO SIMULATIONS

The general principles of our MC simulations are laid out
in detail in [39]. We simulate DM particles that travel
underground on straight lines until they scatter elastically
on a nucleus, where the particle gets decelerated and
deflected. As opposed to the DAMASCUS code we model
the overburden, i.e., the Earth crust, the atmosphere and
shielding layers as planar layers instead of a spherical Earth
model. Close to the critical cross section the DM-baryon
interaction is so strong that particles reach the detector
virtually exclusively from above. For the details of the crust
and atmosphere models we refer to Appendix C.
The number of shielding layers in our simulations is

variable, each layer is characterized by its density and
nuclear composition. The mean free path λ inside layer i is
given by

λ−1i ¼
X
k

λ−1ik ≡X
k

nikσtotχk ¼
X
i

fik
ρi
mk

σtotχk: ð12Þ

Here ρi denotes the ith layer’s mass density, and nik, fik the
corresponding number density and elemental abundance of
the isotope k. Before a DM particle scatters inside a
shielding layer, it travels freely for a distance

−λi logð1 − ξÞ; with ξ ∈ ½0; 1�; ð13Þ

with ξ being a uniformly distributed random number.
Where a particle passes a boundary into another shielding
layer before the next scattering, the mean free path changes
along the way. To account for this discontinuity, we
implement a recursive algorithm to find the location of
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FIG. 1. The DM speed distributions given by Eq. (10) for mχ ¼
1 GeV and σχn ¼ 10−30 cm2 at different underground depths d.
Note the assumption that all particles move directly from the
surface straight down to the given depth. Because the particle flux
is conserved, the density grows as the particles get slower. This is
reflected by the fact that the distribution function is no longer
normalized.
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the next scattering regardless of howmany layer boundaries
are crossed. A flow chart can be found in Fig. 2.
Once the location of scattering is determined, the

collision on a nucleus is simulated, where the probability
of colliding on nucleus species k of layer i is given by

Pk ¼
λ−1ik
λ−1i

: ð14Þ

The particle’s velocity changes from v⃗χ to

v⃗0χ ¼
mkjv⃗χ jn⃗þmχ v⃗χ

mkmχ
: ð15Þ

The unit vector n⃗ yields the final direction of the DM
particle in the center-of-mass frame. Here we implicitly
assumed that the target nuclei are particles at rest. The
relative velocity is dominated by the incoming DM particle.
We denote the angle between n⃗ and the incoming velocity
v⃗χ as α. For light DM the distribution of n⃗ is isotropic. For
more details on the distribution function of α, or rather
cos α, we refer to the Appendix A 2.
The main goal of the MC simulations is to obtain

a precise estimate for the DM speed distribution fðvÞ
at the detector’s location over the interval of interest
½vmin; ðvesc þ v⊕Þ�. The minimum speed depends on the
experiment’s threshold Ethr, target atoms, and the energy
resolution σE,

vmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mTðEthr − 3σEÞ

2μ2χT

s
; ð16Þ

where mT is again the mass of the lightest target isotope.
For light DM the interval of interest typically lies in the
high velocity tail.

The above steps repeat until either the particle gets
reflected into space, gets decelerated below the minimum
speed, or reaches the depth of the detector. In the last case
we record its speed.
To make the connection from the data to direct detection

rates, we need to estimate the speed distribution fdðvÞ at
depth d. Our estimate is given by the product of an
attenuation factor and the normalized speed distribution,

f̂dðvÞ ¼ a × f̂KDEd ðvÞ: ð17Þ

The attenuation factor accounts for the fraction of particles
making it to detector depth, while still being detectable,

a ¼
P

N
i¼1 wi

Ntot
: ð18Þ

Note that we only sample initial conditions within the
interval of interest ½vmin; ðvesc þ v⊕Þ� to speed up compu-
tations. Hence, if we simulate Nsim particles, this corre-
sponds to a total particle number of

Ntot ¼
NsimR vescþv⊕

vmin dvfðvÞ : ð19Þ

Here we assumed to have simulated Nsim trajectories to get
N data points, associated with each is a statistical weight
wi. Finally fKDEd ðvÞ is the normalized kernel density
estimate (KDE) of the speed PDF on the interval
½vmin; vesc þ v⊕�, which we describe in detail in
Appendix A 1.
For a given point in parameter space ðmχ ; σχnÞ and a

given experiment at depth d, the simulations provide us
with a sample of speed data and their corresponding
weights fðv1; w1Þ;…; ðvN; wNÞg as well as the attenuation

FIG. 2. Recursive algorithm to find the location of the next scattering with multiple layers and importance sampling (hence the
presence of δλ, see Appendix A 2). The algorithm concludes when either the location of the next scattering is found, the particle gets
reflected into space, or the particle reaches the detector depth. Note that λ refers to the local mean free path of a particle at x⃗0 with speed
v0. It is furthermore important that x⃗exit is uniquely identified as element of the new layer.
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factor a. We follow the following steps to extract the recoil
spectrum.
(1) Estimate the speed distribution via Eq. (17) using

KDE, see Appendix A 1.
(2) Compute dR

dER
via numerical integration using Eq. (8).

(3) Depending on the experiment of interest compute
the recoil spectrum dR

dE including the detector’s
energy resolution, efficiency, and quenching factors.

(4) Compute detection signal counts and likelihoods.
For a given DM mass mχ we repeat the simulations for
different cross sections. Starting at the usual upper bound
we systematically increase the cross section until the
likelihood grows above (1-CL), and the experiment no
longer constrains the cross section. The exact value of the
critical cross section is finally determined by interpolating
the likelihood as a function of the cross section.

A. Computational details

The simulation code DAMASCUS-CRUST is written in
C++ loosely based on our previous DAMASCUS tool [40].
It is publicly available [42]. All simulations for this work
were run on the Abacus 2.0, a 14.016 core supercomputer
of the DeIC National HPC Center, SDU. At various places
we use interpolation with Steffen splines, which has the
great advantage of avoiding spurious extrema [46]. All
numerical integrations in the simulation and data analysis
are performed with the adaptive Simpson method [47]. For
the non-parametric, data-based estimate of the speed
distribution function we use univariate Kernel Density
Estimation (KDE). To speed up the simulations we imple-
ment Importance Sampling (IS) as proposed by Mahdawi
and Farrar [29,35]. The details on both KDE and IS are
presented in Appendix A.

IV. RESULTS

We compare the different methods reviewed in Sec. II
with results from the MC simulations. As an illustrative
example we show the number of events at XENON1T
for a DM mass of mχ ¼ 10 GeV as a function of the
DM-nucleon scattering cross section in Fig. 3. Without the
stopping effect of the 1400 m of rock overburden taken into
account the number of events naturally keeps growing with
the cross section. If, instead of the unmodified Maxwell-
Boltzmann distribution, we use Eq. (10), we successfully
reproduce the characteristic behaviour. While the over-
burden’s shielding effect has virtually no effect for inter-
mediate cross sections, since the mean free path is much
longer than the underground depth, above a critical cross
section the event number in the detector drops drastically.
By looking for the cross section for which the likelihood
drops below 0.1, we obtain the 90% CL bound.
It should be mentioned at this point that the assumption

that all particles reach the detector from above is of course
only valid for high cross sections. In the intermediate

regime particles entering the detector from below will travel
through the bulk of the Earth and undergo scatterings. This
leads to additional attenuations and diurnal modulations,
which will not show up in Fig. 3. For the investigation of
the intermediate regime, we refer to [39].
Comparing the blue curve to the MC results, the

advantage of the simulation approach becomes very clear.
The analytic stopping equation obviously overestimates the
stopping power of an overburden and makes the event
number drop too fast with increasing cross section. In
reality, particles which scatter fewer times than the average
still reach the detector capable of triggering it. Therefore
MC simulations make constraints on strongly interacting
DMmore stringent, extending to higher cross sections. The
resulting limits are not just more restrictive, but also more
accurate, robust and consistent, since upper and lower
bounds are on equal footing.
In a recent paper [35] the authors claim that the analytic

description fails in deriving the critical cross section of
strongly interacting DM, quoting a discrepancy in the
number of events of multiple orders of magnitude.
However, looking at Fig. 3 it is clear that any method
which conservatively underestimates the critical cross
section, will lead to much higher event numbers compared
to the corresponding MC simulations. Yet, this discrepancy
says very little about the accuracy of the critical cross
section estimate as the actual quantity of interest, since the
event number drops very steeply. The limits obtained with
the analytic descriptions may be conservative and improv-
able, but they are still valid. They typically underestimate
the critical cross section just by a factor of a few.
For completeness we also include the corresponding

bound obtained with method a, i.e., the simple speed cutoff

0.1

0.5

1
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1011

1014

FIG. 3. The expected number of events and likelihood at
XENON1T as a function of the DM-nucleon scattering cross
section for a DMmass of 10 GeV. Note that for intermediate cross
sections, particles arriving at the detector from below will also
contribute and attenuate event counts, giving rise to diurnal
modulations. This is not taken into account here, where all
particles are assumed to reach the detector from above and the
focus lies on finding the critical cross section of strongly
interacting DM.
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criterion. In this case it gives a reasonable and conservative
estimate, which is more restrictive than the limit of method
b as expected. However, without the MC results a quality
assessment would not have been possible, as discussed
in Sec. II.
We show the main results of this study in Fig. 4, the

constraints on DM with masses between 100 MeV and
20 GeV from CRESST-II, XENON1T, DAMIC(2011), and
the CRESST 2017 surface run, together with constraints
from the XQC experiment and the CMB. For each mass and
detector,4we obtain an excluded band of cross sections,
from a lower limit to the upper critical cross section due to
shielding of strongly interacting DM.
The DAMIC(2011) constraints are fully covered by the

two experiments of the CRESST collaboration. The pur-
pose of including these result is to compare them to limits
obtained with the DMATIS code [29] as an independent and
valuable cross check of our simulation. For the masses
between 1 and 100 GeV we find an average relative
deviation between the two limits of about 15%with slightly
higher deviations for masses of order Oð1 GeVÞ. But
overall the two limits seem to agree to a reasonable
precision. Further cross checks and comparisons might
be desirable, though the DMATIS code has not been released
at the time of submission of this paper.

Both CRESST-II and XENON1T are located deep
underground at LNGS. Hence it comes to no surprise that
they turn out to be rather insensitive to strongly interacting
DM. In the low-mass regime they constrain cross sections
up to ∼10−30 cm2 and ∼10−31 cm2 respectively.
Most interesting is last year’s CRESST 2017 surface run

of a prototype detector developed for the ν-cleus experi-
ment. As opposed to the vast majority of DM detectors it
was not placed underground and is therefore ideal to
constrain strongly interacting DM. It probes and constraints
cross section around three orders of magnitude higher than
XENON1T and CRESST-II despite its small exposure. The
resulting constraint close all allowed windows between
other terrestrial detectors and the XQC experiments.
However, a window between the new constraints and the
CMB limits remains, which might get narrowed by taking
constraints from cosmic rays into account [14].
In Fig. 5 we compare our CRESST 2017 surface run MC

constraints with analytic results from recent works.
Depending on the DM mass the constraints reported in
[30,31], whose analytic methods are based on method b of
this paper, underestimate the critical cross section by up to a
factor of 2. It should be mentioned again that this method
assumes that a DM particle simply moves along a straight
path through the Earth while continuously losing energy, an
approximation that breaks down for light DM, as discussed
in Sec. II. Most recently, the authors of [16] presented a
new, and simple analytic method to establish very
conservative limits, which circumvents this assumption.
It is based on rescaling the number of events while filtering
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XENON1T
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FIG. 4. Our results for the 90% CL constraints on light DM for
CRESST-II [41], the CRESST 2017 surface run [7], DAMIC
(2011) [48], and XENON1T [5]. Also included are constraints
from XQC [22], and the CMB [13]. At the bottom of the plot we
included the neutrino background [49], and in black dashed lines
we indicate the new constraints from CRESST-III [6].
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FIG. 5. Comparison of the CRESST 2017 surface run con-
straints on strongly interacting DM between analytically obtained
constraints by Davis (2017) [30], Kavanagh (2017) [31], and
Hooper et al. (2018) [16], and MC results of this paper.

4For details on the considered detectors we refer to
Appendix B.
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out DM particles that scatter at least once in the overburden.
The constraints are therefore considering only the unscat-
tered DM population to set a constraint. But a single
scattering is not sufficient to render the flux of the
remaining, scattered DM particles undetectable, which is
why their constraints are so conservative. The constraints
fromMC simulations improve upon these results by at least
one order of magnitude.
We should emphasize that the exposure has only little

effect on the critical cross section as opposed to the lower
limit. Despite an exposure larger by a factor of ∼700, the
bounds for masses below 20 GeV by XENON1T exceed
the ones by CRESST-II by ∼10% only. Comparing to
DAMIC(2011) and the CRESST surface run(2017), it
becomes clear that the underground depth is by far the
dominating factor. This means that in order to close the
window between the CMB and CRESST 2017 surface run
constraints by means of direct detection, a dedicated
surface or high-altitude run of a sensitive portable detector
is needed.

V. CONCLUSIONS

In this paper we determine for the first time the precise
limits that different underground detectors set on the DM
cross section-mass parameter space focusing in the inter-
esting and to great extent unconstrained low DM mass
region. We determine the precise critical DM-nucleon
scattering cross section with MC techniques above which
a given detector with a certain depth becomes blind to DM.
This is important because it is essential to know if there are
blind spots in the DM parameter space not covered by
terrestrial detectors. In such a case surface or high-altitude
runs of detectors may close remaining windows in the
parameter space.
We presented a brief review of the analytic methods,

described the details of our MC simulations and pre-
sented updated limits for CRESST-II, XENON1T, and
the CRESST surface run(2017). In addition we compared
the MC results with the analytic methods confirming
that the critical cross section estimated via the analytic
methods presented in [32] is typically within a factor of a
few below the precise MC one.
We found that the recent surface run of the pro-

totype detector by the CRESST collaboration constrains
strongly interacting DM with cross sections up to about
2 × 10−27 cm2. This closes the allowed window for light
DM between the constraints by terrestrial detectors and the
XQC experiment, as also shown in [30]. However there is
still an open window between the CMB constraints and the
ones of the CRESST 2017 surface run. It is open for masses
between 140 and about 300 MeV and extends over more
than an order of magnitude in cross section. If DM lies
within this window, we find that all underground detectors
are completely blind to DM almost regardless of how much

they can improve in exposure. Dedicated surface or
preferably high-altitude experiments could close this win-
dow. Furthermore, a number of complementary astrophysi-
cal constraints to direct detection exist as listed in the
introduction, which could exclude the detectors’ blind
spots. Constraints from cosmic rays narrow the allowed
window [14]. Under the assumption that DM can annihilate
into standard model particles, the constraints from the
anomalous heat flow in the Earth rule out the upper left
corner of Fig. 4 and close the small window in parameter
space [27]. Naturally, these constraints do not apply to e.g.,
asymmetric DM. The DAMASCUS-CRUST code we devel-
oped for this purpose can be used for any future experiment
of a given target, depth, exposure and energy threshold,
providing a definite and precise answer on what parameter
space can be excluded.
Finally, we should also emphasize that DM with mass

beneath the reach of CRESST could also have large enough
cross sections, such that underground scatterings have to be
taken into account. Hence, future efforts should be put
towards performing a similar analysis for DM-electron
scattering experiments. For models with a dark-photon
portal a large hierarchy between the DM-electron and the
DM-nucleon scattering cross section follows, such that
nuclear stopping becomes very relevant for detectors
probing DM-electron interactions. Furthermore, it would
be desirable in this context to weaken the assumption of a
heavy mediator, since scenarios with light mediators are
much less constrained. In conclusion we hope that this
paper and the corresponding code will serve as a tool to
specify the extend to which direct detection experiments
constrain models with strong DM-nucleus interactions.
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APPENDIX A: COMPUTATIONAL METHODS

1. Univariate kernel density estimation

A central problem for the data treatment in this study is
the question how to estimate an unknown probability
density function (PDF) fðxÞ with domain I, i.e., x ∈ I,
based on a data set fx1;…; xNg and possibly weights
fw1;…; wNg in a non-parametric way. Histograms are the
first straight-forward idea that comes to mind, but there is a
more sophisticated method, which has the advantage of
producing a continuous and smooth estimate of the true
PDF, Kernel density estimation (KDE) [50,51]. The PDF
can be estimated via
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f̂hðxÞ ¼
1

h
P

iwi

XN
i¼1

wiK

�
x − xi
h

�
: ðA1Þ

The parameter h is called the bandwidth. An applicable
kernel KðxÞ satisfies

KðxÞ ≥ 0; ∀ x ∈ I; ðA2aÞ
Z
I
dxKðxÞ ¼ 1; ðA2bÞ

Z
I
dxxKðxÞ ¼ 0: ðA2cÞ

Commonly used kernels include uniform, triangular,
Epanechnikov (parabolic), cosine, and many more. We
usually choose a simple Gaussian kernel,

KðxÞ ¼ 1ffiffiffiffiffiffi
2π

p exp

�
−x2

2

�
: ðA3Þ

We also define the scaled kernel,

KhðxÞ≡ 1

h
K

�
x
h

�
; ðA4Þ

such that

f̂hðxÞ ¼
1P
iwi

XN
i¼1

wiKhðx − xiÞ: ðA5Þ

The bandwidth h is the only free parameter and its choice is
therefore crucial, similarly to the bin width for histograms.
Choose h too large and the KDE f̂hðxÞ might oversmooth
crucial features of the true PDF fðxÞ. Choose it too small
and we might resolve statistical fluctuations. One estimate
is Silverman’s rule of thumb [52],

h ¼
�

4

3N

�
1=5

σ̂; ðA6Þ

which takes the sample’s size N and standard deviation σ̂
into account.
The Gaussian kernel (A3) might be problematic since

the kernel domain is ð−∞;∞Þ. It is a well-known and
extensively studied problem of KDE that this can introduce
a significant error in cases, where the domain I is bounded.
The estimate given by (A4) underestimates the true PDF
close to the boundary. This is due to the fact, that the kernel
does not contain information of the boundary and assigns
weight to the region beyond the boundary, where naturally
no data is found, as visible in the green line of fig. 6.
The issue is most severe for large probability mass close

to the boundary, i.e., if the true PDF does not vanish at

edges. This is typically the case for the PDF we estimate in
the MC simulations of this work. Many methods of
boundary bias removal have been proposed, see e.g.,
[53] and references therein. An effective and easy to
implement example is to simply reflect the data around
the boundary. Say we have a PDF fðxÞ with support
½xmin; xmax� and fðxminÞ > 0, and a data sample fx1;…; xNg
with xmin ≤ xi ≤ xmax. We could now adjust Eq. (A4) via

f̂hðxÞ ¼
1P
iwi

XN
i¼1

wi½Khðx − xiÞ þ Khðx − xrefli Þ�; ðA7Þ

with xrefli ≡ 2xmin − xi. This illustrates how the generation
of pseudo-data beyond the boundary can reduce boundary
bias. This specific example however has the drawback that
it leads to f̂0ðxminÞ ¼ 0, which might not be a feature of the
true PDF. Cowling and Hall proposed a procedure to
generate pseudodata without this disadvantage [54].
There are ways to linearly combine data points from within
the support into pseudo-data points ðxð−1Þ;…; xð−mÞÞ
beyond the boundary, in a way that the correct edge
behaviour of fðxÞ is reproduced. The corrected KDE is then

f̂hðxÞ ¼
1P
iwi

×

�XN
i¼1

wiKhðx − xiÞ þ
Xm
i¼1

wð−iÞKhðx − xð−iÞÞ
�
:

ðA8aÞ

One way of combining data into pseudo data is the
following three-point-rule,

xð−iÞ ¼ 4xmin − 6xi þ 4x2i − x3i; ðA8bÞ

600 650 700 750
0.000

0.005

0.010

0.015

FIG. 6. Kernel density estimation of a small data set
(N ¼ 5000) on a bounded domain. Clearly the standard KDE
underestimates the PDF close to the lower boundary. Once the
pseudodata method of Cowling and Hall is implemented, the bias
vanishes.
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wð−iÞ ¼
wi þ w2i þ w3i

3
; ðA8cÞ

m ¼ N
3
: ðA8dÞ

Since the normalization of (A8a) on its support is no longer
guaranteed, it might be necessary to renormalize the PDF.
The result can be seen in Fig. 6.

2. Importance sampling

A challenge to MC simulations arises, if the desired
sample is composed of rare events. In our scenario it might
be the case, that in order to get a single DM speed data point
at detector depth we would have to simulate millions and
millions of particles. This is, in the best case, inconvenient
and inefficient, since it requires a tremendous amount of
computing power. In the worst case MC simulations might
not be applicable at all. This happens typically if the
regions of interest of the involved PDFs fall into their tails.
Introducing importance sampling (IS), a standard technique
in rare event MC simulations, can soften this problem
considerably5 The basic idea is to artificially increase the
number of rare events in a controlled manner, compensat-
ing by a proper weighting factor.
Assuming for simplicity that the simulations involve a

single probability density function fðxÞ, which determines
the behavior of every single particle trajectory. However,
our final data set consists exclusively of particles that make
it to the detector depth while still being detectable. Hence,
we aggressively filtered out trajectories or events based
on a given criterion. These events can be very rare, and
their statistical properties are expected to differ from the
“typical” particle, most of which had been filtered out.
Consequently, the underlying PDF gðxÞ of the data set
differs from fðxÞ.
A MC simulation with IS makes use of this, in order to

increase the chance of these rare events. Instead of fðxÞ, we
change the simulation PDF to some new PDF ĝðxÞ, which
should approximate gðxÞ, mimicking the PDF of the
successful events during the simulations, and therefore rare
events occur more frequently. The introduced bias has to be
compensated by a data weight function, as we describe
below. If ĝðxÞ is chosen poorly, the method becomes
unstable. It is crucial that the biased PDFs approximate
the distributions of the final data set. This is why we ran
consistency checks and compared “brute force” simulations
with IS simulations for several examples.
The weighting factor can be understood based on a

simple observation. Assume we have a random variable X
with PDF fXðxÞ and we are interested in the expectation
value of a quantity YðXÞ on a given interval I,

hYiI ¼
Z
I
dxYðxÞfðxÞ: ðA9aÞ

We can trivially rewrite this as

¼
Z
I
dxYðxÞ fðxÞ

ĝðxÞ ĝðxÞ: ðA9bÞ

The function ĝðxÞ can be regarded as the new PDF and the

factor fðxÞ
ĝðxÞ as the weighting function. Consequently, we

sample from ĝðxÞ instead of fðxÞ during the simulations.
Provided that we chose ĝðxÞ as described above, the desired
rare events will be favoured, and we can significantly
reduce the amount of MC runs necessary to gather the data
sample we need.
In many cases this method makes MC simulations

practically feasible, where normal MC simulations would
fail due to lack of time and resources. This makes the
method particularly useful to simulate strongly interacting
DM particles moving through the Earth crust and shielding
layers [29,35]. Detectable DM particles which make it to
the detector depth turn out to differ in their statistical
properties from the average DM particle in two ways:
(1) They scatter fewer times, and travel freely further

than the mean free path.
(2) They scatter more in the forward direction.

Both points make the survival to the detector depth more
likely. This also indicates how we should alter the PDFs of
our MC simulations. In the following, we describe these
modifications to the PDFs and the corresponding weight
functions in detail.
The distance x a DM particle travels through matter

without scattering on one of its constituents has the
underlying PDF

fλðxÞ ¼
1

λ
exp

�
−
x
λ

�
; ðA10Þ

with the mean free path λ. By increasing the mean free path,
we introduce a bias that favors DM trajectories that can
make it to the detector with enough energy to get detected.
We therefore chose the altered PDF

gλðxÞ ¼
1

ð1þ δλÞλ
exp

�
−

x
ð1þ δλÞλ

�
; ðA11Þ

with δλ > 0. Every time we sample a distance li from this
PDF by solving

Z
li

0

dxgλðxÞ ¼ ξ; ðA12Þ

where ξ ∈ ð0; 1Þ is a uniform random number, we keep
track of the weighting factor

5For an introduction to IS in rare event simulations, we refer
to [55].
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wλ;i ¼
fλðliÞ
gλðliÞ

¼ ð1þ δλÞ exp
�
−

δλli
ð1þ δλÞλ

�
: ðA13Þ

If the trajectory consists of nS scattering events, the overall
weight of the trajectory is

wλ ¼
YnS
i¼0

wλ;i: ðA14Þ

Especially when the particle freely passes different shield-
ing layers a more useful expression for the weight is

wλ;i ¼ ð1þ δλÞð1 − ξÞδλ : ðA15Þ

Next we turn to the scattering angle, where we want to
favour forward scattering. For light DM we can approxi-
mate the nuclear form factor FAðq2Þ ≈ 1 and the scattering
is isotropic in the center of mass frame. In other words cosα
is a uniform random quantity with PDF

fαðcos αÞ ¼
1

2
; ðA16Þ

and domain ½−1; 1�. Since forward scattering favors detect-
able particles at detector depth, we introduce the following
IS biased PDF

gαðcos αÞ ¼
1þ δα cos α

2
; with δα ∈ ½0; 1�: ðA17Þ

At each scattering we sample from gα, i.e., we obtain cos αi
by generating a uniform random number ξ ∈ ð0; 1Þ and
solving

Z
cos αi

−1
d cos αgαðcos αÞ ¼ ξ; ðA18Þ

⇔ cos αi ¼
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − δαÞ2 þ 4δαξ

p
δα

: ðA19Þ

Note that limδα→0 cos αi ¼ 2ξ − 1 as expected. We keep
track of the weighting factor,

wα;i ¼
fαðcos αiÞ
gαðcos αiÞ

¼ 1

1þ δα cos αi
¼ ½ð1 − δαÞ2 þ 4δαξ�−1=2: ðA20Þ

For heavier DM the approximation for the nuclear form
factor FAðq2Þ ≈ 1 no longer holds. Then the scattering is
not isotropic in the center-of-mass frame anymore. Instead
the PDF for the scattering angle cosα of a DM particle of
speed vχ scattering on a nucleus with mass number A is
given by

fαðcos α; vχÞ ¼
F2
Aðq2ÞRþ1

−1 dðcos α0ÞF2
Aðq02Þ

; ðA21Þ

where q2 ¼ 2μ2χAv
2
χð1 − cos αÞ. We implemented the Helm

form factor [56] in our code, which is given by

FAðqÞ ¼ 3

�
sinðqrnÞ
ðqrnÞ3

−
cosðqrnÞ
ðqrnÞ2

�
exp

�
−
q2s2

2

�
;

ðA22aÞ

with

rn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 7

3
π2a2 − 5s2

r
; ðA22bÞ

c ¼ ð1.23A1=3 − 0.6Þ fm; ðA22cÞ

a ¼ 0.52 fm; ðA22dÞ

s ¼ 0.9 fm: ðA22eÞ

In analogy to Eq. (A17), the IS biased PDF is chosen to be

gαðcos α; vχÞ ¼ fαðcos α; vχÞ þ
δα
2
cos α; ðA23Þ

in order to favor forward scattering. In this case a slight
subtlety enters, since the inclusion of the loss of coherence
already favours forward scattering naturally. Therefore we
have to be careful that gαðcos α; vχÞ does not yield negative
values for backwards scattering. This occurs if

δα > 2fαð−1; vχÞ: ðA24Þ

If this is the case for a particular scattering we adjust δα to
zero for this scattering, and set the corresponding weight
wα;i to 1 correspondingly.
The overall weight factor of a successful trajectory with

nS scatterings is then

wα ¼
YnS
i¼1

wα;i: ðA25Þ

If we use IS for both involved PDFs, for l and cos α, the
overall weight of a data point is w ¼ wλwα.

APPENDIX B: DESCRIPTION OF DIRECT
DETECTION EXPERIMENTS

In this Appendix we review the details of the different
detectors relevant for the analysis of this work.
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1. CRESST-II

The phase 2 of the CRESST-II experiment set leading
limits on light DM for masses down to 0.5 GeV [41,57].
The target material of the Lise module consists of 300 g of
CaWO4 crystals. CRESST-II was located at the LNGS
under 1400 m of rock. It realized an energy threshold of
Ethr ¼ 307 eV and an energy resolution of σE ¼ 62 eV.
The theoretical recoil spectrum is given by

dR
dE

¼
Z

dERGaussðEjER; σEÞ
X
i

ϵiðEÞ
dRi

dER
; ðB1Þ

where we substitute Eq. (8). In the acceptance region of
½Ethr; 40 keV� 1949 events survived all cuts, and the energy
data was released in [57], together with the cut survival
probability ϵiðEÞ for each of the three targets. The exposure
corresponded to 52.15 kg days. Using Yellin’s maximum
gap method [58] to compute the likelihood of a given point
in parameter space reproduces the 90% CL constraints on
light DM accurately.
Meanwhile the results from the phase 1 of CRESST-III

have been published [6], and provide new, leading con-
straints on light DM. Compared to CRESST-II the threshold
was lowered to ∼100 eV, such that the experiment probes
DM as light as 350 MeV. With an exposure of 2.39 kg days
33 events were detected in the acceptance region. Since the
recoil data has not been released by the CRESST collabo-
ration at the time this manuscript was prepared, we only
include full results for CRESST-II. However, due to their
similarity the inclusion of new result will be straightforward
as soon as the new data gets released.

2. CRESST 2017 surface run

In July 2017 the CRESST collaboration presented results
from a surface run of a prototype detector developed for the
ν-cleus experiment with a 0.49 g sapphire (Al2O3) target
[7]. Despite a small net exposure of only 0.046 g days this
experiment is perfect for this work, since it was set up in a
surface building of the Max Planck Insitute in Munich with
only ∼30 cm of concrete ceiling and the Earth atmosphere
as shielding. With a remarkable low threshold of Ethr ≈
19.7 eV and energy resolution σE ≈ 3.74 eV it constraints
DM mass as low as 140 MeV. The number of observed
events in the region of interest ½Ethr; 600 eV� was 511, and
the cut efficiency was conservatively set to 1. The energy
data of the 511 events is made public as ancillary files along
with the preprint on arXiv. Otherwise the analysis is the
same as used for CRESST-II, using Eq. (B1) and Yellin’s
maximum gap method, which reproduces the official
constraints up to a factor of ∼2.

3. XENON1T

The XENON collaboration published their first results
from XENON1T in May 2017 [5]. The results obtained

with an exposure of 35.6 ton days were consistent with the
background-only hypothesis. The nuclear recoil energy
threshold was Ethr ¼ 5 keV, such that XENON1T probes
DM heavier than a few GeV. Its region of interest extends
from the threshold to 40 keV. Just as the CRESST-II
experiment, the XENON1T detector is set up at LNGS
underneath 1400 m of rock.
We implemented a simplified analysis for XENON1T

based on Eq. (8) with an assumed flat efficiency of 82%
across the region of interest.

4. DAMIC(2011)

The DAMIC experiment uses silicon CCDs to search
for light DM [48]. The results from an engineering run
using a 0.5 g target in 2011 yield stronger constraints on
strongly interacting DM than later DAMIC runs,
because it was operated at a relatively shallow under-
ground site at Fermilab with a depth of only around
350 feet(∼106.7 m), and lead shielding of 6 inches
(∼15 cm). Even though the excluded area due to
DAMIC(2011) is already covered by CRESST-II and
the CRESST surface run (2017) we include it in our
analysis. Comparing this result to the ones by Mahdawi
and Farrar [29], who use equivalent simulations for
specifically this experiment, is a valuable cross-check
and validation of our and their results.
The DAMIC(2011) run had an exposure of 0.107 kg

days and a threshold of Ethr ¼ 0.04 keVee and observed
106 events in a region of interest of ½Ethr; 2 keVee�. To
match the results of [29] we compute the likelihood and
90% CL constraints via Poisson statistics. The region of
interest in terms of the nuclear recoil energy is chosen to be
[0.55 keV, 7 keV].

APPENDIX C: MODELING THE EARTH CRUST
AND ATMOSPHERE

We model the Earth crust as a layer of constant
mass density ρ ¼ 2.7 g cm−3, consisting of nuclei, whose

TABLE I. Nuclear composition of the Earth crust (left) and
atmosphere (right)

Element [wt%] Element [wt%]

16O 46.6 14N 75.6
28Si 27.7 16O 23.1
27Al 8.1 40Ar 1.3
56Fe 5.0 12C 0.02
40Ca 3.6 20Ne 0.001
39Ka 2.8
23Na 2.6
24Mg 2.1
Total 98.5 Total 100
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abundances are given on the left hand side of
Table I [59].
In order to account for the atmosphere we imple-

mented the US Standard Atmosphere (1976) [60],
which extends to an altitude of 86 km. The composition
is listed on the right hand side of Table I. The
density profile is plotted in fig. 7. For the sake of
easy implementation we divide the atmosphere in a set
of layers with constant density, such that the integralR
ρðxÞdx is the same for each layer. As a cross-check

we varied the number of layers, to ensure that
our results are stable and do not depend on this
discretization.
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