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We present a phenomenological study of Dirac electroweakinos in a Uð1ÞR extension of the minimal
supersymmetric standard model with a strictly R-symmetric Higgs sector (minimal R-symmetric super-
symmetric standard model) and gauge-mediated supersymmetry breaking. One of the distinguishing
features of the MRSSM is that the lightest chargino can be lighter than the lightest neutralino. Decays from
the next-to-lightest-supersymmetric particle (NLSP) chargino to the gravitino lightest supersymmetric
particle will produce exotic signals. We apply LHC-13 mass limits from both prompt and long-lived
searches to the chargino NLSP regime of the MRSSM. Imposing the additional constraints coming from
the 125 GeV Higgs and from the electroweak sector, regions of the parameter space are found where the
gravitino lightest supersymmetric particle, chargino NLSP scenario survives all current bounds. We also
show that the fine-tuning of the model can reach a level slightly better than sub-percent with our choice of
parameters.
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I. INTRODUCTION

Weak scale supersymmetry persists as a compelling,
well-motivated extension of the standard model (SM) that
tackles its incompleteness in different fronts. On the purely
aesthetic side, these include a possible connection with
gravity [1,2], while on the TeV physics front, supersym-
metry stabilizes the Higgs vacuum expectation value (vev)
from quantum corrections, comes with a built-in radiative
breakdown of the electroweak (EW) symmetry, and con-
tains a candidate for dark matter.
A supersymmetric extension of the SM needs to be

natural, i.e., no large mass hierarchies, when one insists on
employing supersymmetry as a stabilizing symmetry for
the EW scale against radiative corrections [3]. This is
achieved through a low-scale spectrum of squarks, gluinos
and light electroweakinos, which are respectively detected
as jets and missing transverse energy (ET) at colliders.
Following this line of thought, multiple Run-I and Run-II
LHC searches have looked for superpartners in the context
of the minimal supersymmetric standard model (MSSM),
but to date nothing has been found. The lack of signals
beyond SM backgrounds translates into mass limits.

Under the MSSM interpretation, the current limits are
mq̃ ≥ 1.5 TeV [4], mt̃ ≥ 1.1 TeV (for non-compressed
spectra) [5,6] and mg̃ ≥ 1.8–1.96 TeV from multijet plus
ET [7] or decays to third-generation squarks plus neu-
tralinos [8]. These increasing bounds are a direct chal-
lenge to the premise of a theory without large, unnatural
cancellations, as the stop mass and gluino mass feed into
corrections to the soft mass of the Higgs and must be
cancelled off to achieve electroweak symmetry breaking
(EWSB). The higher the LHC stop and gluino limits, the
larger the Higgs mass corrections, and the more finely
tuned the theory. The situation is further complicated by
the fact that the measured Higgs mass is difficult to
achieve in the MSSM without large radiative corrections
from heavy particles.
Motivated by these issues, several studies have aban-

doned minimality in favor of a better agreement with null
experimental results on colored supersymmetric particles
and/or less fine-tuning (FT) [9–20]. Of particular interest
is the possibility of Dirac gauginos [21]. Unlike Majorana
masses, Dirac gaugino masses respect an R-symmetry
present in the supersymmetric kinetic terms.1 This seem-
ingly small change has several profound consequences. At
the very least, Dirac gaugino models require new matter
fields in the adjoint representation of the gauge group; the
fermionic components of these adjoint fields are what pair
up with the familiar gauginos to form Dirac particles.
While there are many different ways to incorporate Dirac
gauginos into a supersymmetry model, one interesting

*calvara1@nd.edu
†adelgad2@nd.edu
‡amarti41@nd.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3. 1Not to be confused with R-parity, PR ¼ ð−1Þ3ðB−LÞþ2s.

PHYSICAL REVIEW D 97, 115044 (2018)

2470-0010=2018=97(11)=115044(16) 115044-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.115044&domain=pdf&date_stamp=2018-06-28
https://doi.org/10.1103/PhysRevD.97.115044
https://doi.org/10.1103/PhysRevD.97.115044
https://doi.org/10.1103/PhysRevD.97.115044
https://doi.org/10.1103/PhysRevD.97.115044
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


possibility which we will focus on here is to impose the
R-symmetry respected by the Dirac masses onto all other
interactions. This variant of supersymmetry is known as
the minimal R-symmetric supersymmetric standard model
(MRSSM). With all interactions restricted by Uð1ÞR, it is
not surprising that the behavior of the MRSSM is quite
different from the MSSM. As one example, collider limits
on colored sparticles in the MRSSM are significantly
weaker than in the MSSM as several processes such as
pp → q̃Lq̃L; q̃Rq̃R violate R-symmetry and are therefore
forbidden.2 Dirac gaugino models have consequences
beyond changing the character of the gaugino mass. In
particular, the dependence on the supersymmetry breaking
messenger scale in the gaugino one-loop correction to
squark masses is removed. That property, dubbed super-
softness, relaxes the fine-tuning of EWSB [9–12].
There are multiple phenomenological and model-

building studies of Dirac gaugino models in the literature.
For example, R-symmetric Higgs sectors and the amelio-
ration of the supersymmetric flavor problem were studied
in Ref. [13], Refs. [14,24] examined the production of
the R-symmetric scalars, a viable embedding in gravity-
mediated supersymmetry breaking was shown in [15], and
loop level analyses of the Higgs potential were performed
in Refs. [16,17,25].
A peculiar feature of the MRSSM electroweakino sector

is that the lightest chargino can be lighter than the lightest
neutralino. This was first demonstrated in Ref. [19], and
shown to persist in a wide region of parameter space.
The same reference also brought attention to the peculiar
collider signals that result when a specific realization of
supersymmetry breaking, gauge mediation (GMSB), is
adopted [26]. In GMSB, the gravitino3 (G̃) is the lightest
supersymmetric particle (LSP), and the decay of the lightest
chargino (the next-to-LSP or NLSP for short) to G̃ leads to
a variety of distinctive exotic signals, spectrum and decay
patterns that facilitate identification.
The focus of the current paper is this chargino NLSP

regime of the MRSSM with gauge mediated supersym-
metry breaking. Complementarily to standard jetsþ ET
searches, we are motivated by the fact that interpretations of
LHC results in terms of R-symmetric chargino NLSP are
relatively unexplored and that up-to-date analyses of the
corresponding exotic signals (displaced dijets, disappear-
ing tracks and kinks) are available [27–29]. Our goal is to
apply the latest

ffiffiffi
s

p ¼ 13 TeV results from the LHC to
bound the masses of the chargino NLSP and gravitino LSP,
while reproducing mh ¼ 125 GeV (in its specific MRSSM
realization). The topologies of our interest are those

corresponding to Drell-Yan production of the light electro-
weakinos, such as chargino NLSP pair production or
production of a chargino NLSP plus a neutralino (the
next-to-next-lightest supersymmetric particle, or NNLSP).
The specific constraining searches—prompt or long-lived
—will depend on the scale of the gravitino mass. We will
also ‘complete’ the model by later specifying the rest of the
spectrum not directly involved with the chargino NLSP
signals or the Higgs mass. Having the full spectrum then
allows us to calculate the fine-tuning (FT) at a benchmark
point. Even though supersoftness has demonstrated
improving the FT with respect to the MSSM, the inclusion
of non-supersoft operators (as will be done here) suggests
that the same level of FTof purely supersoft setups may not
be strictly maintained.
The layout of the present work is as follows: the next

section summarizes the MRSSM, highlighting the role of
the R-symmetry and the new states. Next, Sec. III shows the
current collider constraints on the chargino NLSP mass for
the prompt and exotic, long-lived cases. After that, Sec. IV
portrays the parametric form of the Higgs mass at one-loop
and its degree of compatibility with the chargino NLSP
regime. Later, Sec. V presents the rest of the model’s mass
spectrum, with emphasis on keeping the sfermions safe
from observed limits. The computation of the FT in our
class of models is first quoted analytically, and then
numerically estimated in Sec. VI. Concluding remarks can
be found in Sec. VII.

II. THE MODEL

The MRSSM is a Dirac gaugino model where the
R-symmetry preserved by the supersymmetric and gaugino
masses is enforced on the entire theory. This setup is
obtained from the Fox-Nelson-Weiner model [9] of pseudo-
Dirac gauginos by promoting their Higgsino masses to be
R-symmetric. In this section we will briefly review the field
content and interactions of the MRSSM.
As we want to impose an R-symmetry on all interactions,

the first step is to identify a consistent set of R-charges
that admits the terms we require and forbids as many
dangerous operators as possible. As superpotential terms
must have R ¼ þ2, the choice R½Q;Uc;Dc; L; Ec� ¼ þ1
and R½Hu;d� ¼ 0 allows the usual MSSM Yukawa super-
potential while guaranteeing that EWSB does not also
spontaneously break R. By the same logic, gauge super-
fields carry R½WB̃;W̃;g̃� ¼ þ1—this charge is inherited by
their fermionic components, the gauginos χa, while the
gauge fields have R ¼ 0. From this charge assignment we
can see that R-symmetry is incompatible with Majorana
gaugino masses, as R½χaχa� ≠ 0. The same reasoning
forbids the traditional MSSM μ term, MSSM A-terms
and dim-5 ΔB ¼ 1 and ΔL ¼ 1 operators.
Gaugino and Higgsino masses are a phenomenological

necessity, and since they are not consistent with the
R-symmetry from the MSSM field content alone, the

2In addition, Dirac gauginos naturally sit in the ∼ several TeV
mass range, kinematically suppressing processes like q̃�L;Rq̃L;R
and the mixed-handedness modes q̃Lq̃R, q̃�Lq̃

�
R with respect to the

Majorana MSSM case [22,23].
3G̃ is the spin-3=2 partner of the spin-2 graviton.
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model needs to be extended. Specifically, the theory is
enlarged to include chiral superfields Aa (with a ¼ B̃; W̃; g̃)
respectively transforming as a singlet of hypercharge,
and the adjoint representations of weak isospin and color.
These Aa fields supply new fermion partners ψa for the
usual gauginos χa to form Dirac mass terms MD

a χaψa.
These mass terms respect Uð1ÞR if we choose R½Aa� ¼ 0
for their parent superfield. With this charge, R½ψa� ¼ −1,
the exact opposite of the gaugino R-charge. To generate
Higgsino masses, we extend the field content by a pair of
doubletsRu;d carryingR ¼ þ2 andwith hypercharge∓ 1=2
so that they can form superpotential bilinears with Hu;d:

μuRuHu þ μdHdRd; ð1Þ
where ΦΦ≡ εijΦiΦj (sign convention ε12 ¼ þ1). These
doublets, however, do not participate in EWSB (i.e.,
hR0

u;di ¼ 0) which also keeps the R-symmetry unbroken.
Note that the singlet and triplet scalar adjoints, who have
null R-charge, can and generically do acquire vevs vB̃;W̃ ≡
hAB̃;W̃i after EWSB.
While R-symmetry prevents us from writing Yukawa

terms between Ru;d and Q;Uc;Dc; L; Ec, trilinear inter-
actions between Ru;d the usual Higgses and the adjoints Aa

are possible and will prove to be important for generating a
viable Higgs mass.

W ⊃ λu
B̃
AB̃RuHu þ λu

W̃
AW̃RuHu

þ λd
B̃
AB̃HdRd þ λd

W̃
AW̃HdRd: ð2Þ

The GSM × Uð1ÞR charges of the MRSSM matter and
gauge content are summarized below in Table I.
Straightforward superfield expansion gives the R-assign-
ments for their bosonic and fermionic components.
Having summarized the supersymmetric interactions of

the MRSSM, we turn to the supersymmetry breaking
effects.

A. Supersymmetry breaking

Dirac gaugino masses MD
a are generated through a

hidden sector D-type spurion W 0 ≡ θD0 byZ
d2θ

W 0 ·Wa

Λmess
Aa; ð3Þ

dubbed the classical supersoft operator [9]. Expanding in
components, one finds thatMD

a ¼ 1ffiffi
2

p hD0i=Λmess, where the

scale Λmess stands for the scale of communication of
supersymmetry breaking. In a scheme where supersym-
metry is broken by W 0 ≡ θD0 alone, sfermion masses are
generated radiatively through loops of Dirac gauginos and
adjoints. Crucially, these loops are finite,

ðm2
f̃
ÞD ¼

X
a

αa
π
CaðfÞðMD

a Þ2 log
�

m2
ϕa

ðMD
a Þ2
�
; ð4Þ

where a runs over the SM factor groups, CaðfÞ is the
quadratic Casimir under group a for the superfield f,
andmϕa

is the mass of the scalar adjoint partner to ψa. The
absence of any Λmess dependence in m2

f̃
has two important

implications. First, as the squark masses are insensitive to
the largest scale in the problem, so are any quantities
derived from them, such as the Higgs soft mass.
Removing (reducing) the Λmess dependence in m2

Hu
; m2

Hd

translates to a significantly smaller traditional fine-tuning
measure [9]. Second, unlike the MSSM, where running
tends to erase any hierarchies between the sfermions and
the gauginos, sfermion masses in Dirac supersymmetry
are entirely a threshold effect. As such, mf̃ ≪ MD is
completely natural. Plugging in some numbers, one could
have a heavy (5–10 TeV) gluino, consistent with LHC
data, while keeping ∼TeV squarks. The operator in
Eq. (3) is the minimal ingredient for Dirac gaugino
masses, and supersymmetry breaking based exclusively
on it is known as the strictly supersoft limit. In this case,
the sfermion physical masses are fully specified once the
Dirac gaugino masses are chosen.
While predictive and simple, the spectrum of strictly

supersoft supersymmetry has its flaws. For one, the sym-
metries that allow (3) also permit the following D-breaking
operator Z

d2θ
W 0 ·W 0

Λ2
mess

AaAa; ð5Þ

known as the lemon twist term. Expanding in components,
Eq. (5) generates opposite sign masses for the real and
imaginary parts of the scalar adjoints and thus has the
potential to create a tachyon [9,11]. Another issue in strictly
supersoft supersymmetry is that the right handed sleptons are
often dangerously light. Right handed sleptons receive a
finite correction to their mass from bino sector loops, and the
ð4π=αaÞ1=2 hierarchy between gauginos and sfermion
masses dictated by Eq. (4) means even a 1 TeV bino only
generates m̃Ec ∼ 50 GeV.
To remedy these flaws, the MRSSM includes a second

source of supersymmetry breaking in the form of an F-term
vev of a chiral superfield X. By adding X, we are giving
up on strict supersoftness, however the theory can still be
kept R-symmetric by choosing a suitable R-charge for X,

TABLE I. R-charges for the MSSM fields (chiral multiplets and
SM strength superfields) and the MRSSM extension (adjoints
chiral superfields and doubly R-charged Higgses).

superfield Uð1ÞR-charge
Q;Uc;Dc; L; Ec þ1
Hu;d 0
WB̃;W̃;g̃ þ1

AB̃;W̃;g̃ 0
Ru;d þ2
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namely R½X� ¼ þ2. Notice that X differs from its usual
gauge mediation counterpart in that it is not a singlet
superfield, and therefore Majorana masses

R
d2θXWaWa

for the gauginos are still forbidden.4

While Majorana gaugino masses cannot be constructed
from X, several other R-symmetric operators involving X
are possible and are listed below:

(i) μ and Bμ terms. The μ-terms in Eq. (1) originate
from Z

d4θ
X†

Λmess
ðHuRu þHdRdÞ: ð6Þ

Even though the usual μ-term
R
d4θXHuHd cannot

be included in the superpotential, a soft Bμ term
itself is R-preserving and can be written down,

Z
d4θ

X†X
Λ2
mess

HuHd: ð7Þ

(ii) Nonholomorphic masses. While X carries R charge,
X†X is clearly a singlet and can be used to form
familiar supersymmetry breaking operators such as
nonholomorphic soft masses for the Higgs doublets,
sfermions, adjoints and R-Higgses:Z

d4θ
X†X
Λ2
mess

Φ†Φ; ð8Þ

where Φ ¼ Q;Uc;Dc; L; Ec;Hu;d; Ru;d; Aa. As we
are assuming all supersymmetry breaking is com-
municated via gauge mediation, these mass terms
arise at the 2-loop level and are flavor diagonal.

(iii) Adjoint B-terms. The adjoints acquire holomorphic
masses through F-breaking from

Z
d4θ

X†X
Λ2
mess

AaAa: ð9Þ

(iv) Adjoint A-terms. Provided R½X� ≠ 0, MSSM A-terms
remain incompatible with Uð1ÞR, but Higgs-adjoint
and pure-adjoint A-terms are permitted5Z

d2θ
X

Λmess
ðAB̃AW̃ · AW̃ þ AB̃Hu ·Hd

þ AB̃Hu · AW̃HdÞ þ H:c: ð10Þ

Provided the adjoint and Ec masses from X†X are large
enough, both of the issues discussed in the context of

strictly supersoft supersymmetry canbe avoided.Concocting
a spectrum does still require some care, as nonholomorphic
masses m2

Aa
and B-terms Ba for the adjoint scalars still have

the potential to generate a tachyon. To keep the masses of
all components positive, we require Ba terms small enough
compared tom2

a so as to maintain positive the eigenvalues of
the singlet-triplet block of the pseudoscalar mixing matrix
(quoted in Appendix A).
The final ingredient in the theory is the gravitino G̃.

The gravitino acquires a mass by absorbing the spin-1=2
mode that arises from the spontaneous breaking of
local supersymmetry. G̃ couples to the hidden sector
via a R-singlet chiral supermultiplet X0 that develops an
F-breaking vev hF0i. We emphasize that, while numeri-
cally hF0i ∼ hFi ∼ hDi, they do represent different sources
of supersymmetry breaking. The mass of the gravitino is
set by hF0i,

mG̃ ¼ hF0i=ð
ffiffiffi
3

p
M�

PÞ ð11Þ

where M�
P ≈ 2.4 × 1018 GeV is the reduced Planck mass

[30]. In gauge mediation, Λmess ≪ MP, so the gravitino is
orders of magnitude lighter than the other superparters
(whose masses go as m ∼ hFi=Λmess or m ∼ hDi=Λmess)
and is automatically the LSP. As X0 is a singlet it will
inevitably generate all possible soft masses, including
those that break the R-symmetry. However, these terms
will all be suppressed by powers of M�

P and are therefore
negligible compared to the D-term and F-term contribu-
tions mentioned already.

III. CHARGINO NLSP AND LHC
CONSTRAINTS

We now turn to study some interesting signatures that
distinguish the MRSSM from the MSSM, in particular the
possibility of a chargino NLSP that then decays to the LSP,
the gravitino. The discussion below details the bounds
coming from the LHC for this decay in order to get a glance
at the available parameter space.
Before exploring the bounds, a few properties of the

R-symmetric electroweakinos necessary for notation must
be highlighted. Due to the R-symmetry, there are two sets
of charginos that do not mix with each other, one with
R ¼ Q (dubbed χ̃�1;2) and another one with R ¼ −Q (named
ρ̃�1;2). The χ̃

� and ρ̃� mixing matrices are 2 × 2: in each one
a charged adjoint fermion and a charged higgsino that share
the same R and Q charges are paired up with a charged
wino and a charged fermion component of the Ru;d

doublets (their opposite-charge counterparts). Meanwhile,
the (Dirac) neutralino 4 × 4 mixing matrix pairs the neutral
gauginos and R-fermions with the neutral adjoint fermions
and Higgsinos. All three electroweakino mass matrices are
listed in Appendix A.

4Further motivation to consider F-breaking is the unavoidable
presence of couplings between gravity and the supersymmetry
breaking sector, although the effects from this coupling are
Planck-suppressed and are realized through a different spurion
θ2F0 that is an R-singlet.

5First pointed out in [16].
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It is possible to gain some intuition on how the mass of
the lightest chargino ends up being smaller than that of the
lightest neutralino. To this end, we will assume a large
value of tan β to ensure a large enough Higgs mass (see
Sec. IV) and small adjoint vevs va (a ¼ B̃; W̃) to avoid
problems with electroweak observables: the former
assumption decouples the down-type Higgsino, and the
latter one allows us to disregard λva pieces when compared
to MD and μ. In these simplifying limits,

Mχ̃ ≈
�
MD 0

0 −μ

�
;

Mρ̃ ≈
�

MD Oðgv= ffiffiffi
2

p Þ
Oðλv= ffiffiffi

2
p Þ −μ

�
; : ð12Þ

The lightest chargino always sits in the ρ̃ sector, as the
eigenvalues are repelled by the off-diagonal mass matrix
elements. The Higgsino/wino composition of the lightest
chargino depends on the relative sizes of MD and μ.
In the large tan β limit and ignoring adjoint vevs, the

neutralino mixing matrix takes the block diagonal form6

Mχ̃0 ≈

0
BBB@

MD 0 0 Oðgv=2Þ
0 MD 0 Oðgv=2Þ
0 0 μ 0

Oðλv= ffiffiffi
2

p Þ Oðλv=2Þ 0 μ

1
CCCA; ð13Þ

Removing the decoupled state with mass μ, the structure
of the neutralino mass matrix is similar to the ρ case. The
only difference between the two matrices is the size of the
off diagonal element ∝ g, which feeds into how much
the lightest eigenvalues is repelled below minðMD; μÞ. As
the off-diagonal element is larger in the ρ sector than in the
neutralino sector, the lightest chargino will be lighter than

the lightest neutralino.7 Moving away from the large tan β
limit and re-introducing the adjoint vevs, the hierarchy can
remain, though it becomes more complicated as we
introduce multiple λ couplings, especially with relative
sign differences. The chargino-neutralino hierarchy was
explored numerically in detail in Ref. [19] and will be
examined here in Sec. IV. Comparing this current work
with Ref. [19], a disclaimer is in order: we did not attempt
to borrow the expressions for Δmþ0 ≡mNLSP −mNNLSP
used in [19]. In [19], the simplifying assumptions of a

common triplet and a common singlet λ was imposed,
with the goal of making it simpler to uncover the chargino
NLSP parameter space. While we also seek Δmþ0 < 0,
we are also interested the set of conditions that will
increase the Higgs mass (see Sec. IV). As we will show,
the requirements these two conditions place on the λ
couplings are not identical.
Having stated which are the two lightest sparticles (ρ̃�1

from the discussion above, and G̃ from the gauge-media-
tion embedding) one is able to describe the relevant decay
process and the class of searches sensitive to it. Assuming
that all charged scalars from Higgs-adjoint mixtures are
heavier than the W, the chargino NLSP decays to a
gravitino through ρ̃�1 → W�G̃. Searches at

ffiffiffi
s

p ¼ 13 TeV
(and also

ffiffiffi
s

p ¼ 8 TeV ones) have set bounds on the
mNLSP −mLSP and the chargino mNLSP-lifetime planes,
respectively in the prompt and long-lived cases [29,
31–33]. These are results whose range include near-mass-
less mLSP values, thus enabling us to reinterpret their mass
limits as bounds on our model’s LSP ðG̃Þ and NLSP (ρ̃�1 ).
The mass of the gravitino will be dialed over a relatively
wide range starting on sub-eV up to tens of keV, spanning
both short- and long-lived regimes. In what follows, we
look at these regimes one at the time.

A. Prompt regime

First, we consider the short lifetime (i.e., prompt)
regime of the chargino NLSP (ρ̃�1 ), roughly characterized
by decay distances ddecay ≲ 1 cm [34], and assume there is
a neutralino NNLSP (χ̃01). This was argued in the dis-
cussion below Eqs. (12) and (13), and will be numerically
demonstrated once we reach Sec. IV. We will also assume
that all sfermion and adjoint scalar masses are heavy
compared to the light electroweakinos and play no role
in ρ̃�1 or χ̃01 decays. Within this setup, a crucial issue that
determines the applicability of the aforementioned
searches is the possibility that the NNLSP electroweakino
directly decays to a gravitino (plus another SM final state
X), thereby skipping ρ̃�1 . The decay directly to gravitino
occurs when kinematics are such that the partial width
ΓðNNLSP → G̃XÞ is relatively large compared to the
three-body ΓðNNLSP → ρ̃�1 f̄f

0Þ. Ref. [19] quantified this
effect by defining the ratio

RΓ ≡ ΓðNNLSP → ρ̃�1 f̄f
0Þ

ΓðNNLSP → G̃XÞ ; ð14Þ

which is proportional to m2
G̃
ðjΔmþ0j=mNLSPÞ5 (the full

dependence of RΓ is listed in Appendix B). If the ratio RΓ
is large enough, the two-body partial width Γðχ̃01 → ZG̃Þ is
sufficiently suppressed and the NNLSP decay is domi-
nated by χ̃01 → ρ̃�1 ff̄

0 three-body modes.
This RΓ ratio determines what final states are populated

from neutralino production (either in pairs or with a

6The
ffiffiffi
2

p
here originates in having normalized λW̃ (i.e., the

doublet-triplet-doublet contractions) differently in Eq. (2) com-
pared to Ref. [16].

7The fact that we can use the off-diagonal elements as a proxy
for the mass hierarchy relies on both the neutralino and ρ̃ masses
being Dirac and therefore diagonalized by bi-unitary transfor-
mations. In the MSSM, the neutralino and chargino mass
matrices are diagonalized differently so comparing eigenvalues
requires more work.
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chargino) and therefore dictates what searches are the most
sensitive. In particular, one of the most powerful ways to
bound electroweakinos is to look for chargino-neutralino
(NSLP-NNLSP) production in the final states 3lþ ET or
lþl− þ jjþ ET . However, if RΓ is large, chargino-
neutralino in our scenario will populate a different final
state: pp → χ̃01ρ̃

�
1 → ρ̃∓1 ρ̃�1 f0f → WþW−f0f þ ET .

If RΓ is small, direct BRðχ̃01 → ZG̃Þ cannot be neglected
compared with the three-body branching fractions, and
searches based on χ̃01ρ̃1 production that decay intoWZwill
apply.8 The

ffiffiffi
s

p ¼ 13 TeV search of Ref. [32] combined
results for the lþl− þ 2jþ ET and 3lþ ET final-state
configurations and set mNLSP ≳ 650 GeV at a nearly
massless LSP.
On the other hand, when RΓ is large, the fate of the

scenario depends on the mass splitting between the NNLSP
and the NLSP. If the mass splitting is large, the extra
fermions in the χ̃01 → ρ̃�1 ff̄

0 decay are energetic and may be
captured by 3lþ ET or lþl− þ jjþ ET searches despite
the unusual χ̃01 decay. However, if the NNLSP-NLSP mass
splitting is small, the extra fermions are too soft and a
different search channel is needed. We will see in Sec. IV
that MRSSM setups which reproduce the Higgs mass fall
into this near-degenerate category, with mass splittings
Oð10 GeVÞ, therefore we will focus on the small splitting
scenario here.
When the electroweakino spectrum is compressed,

production of any pair electroweakinos (χ̃01ρ̃
þ
1 ; χ̃

0
1χ̃

0
1, etc.)

is indistinguishable from chargino pair production (as all
other particles produced in the cascade are soft). Further,
while electric charge conservation alone allows both types
of chargino in the neutralino decay, χ̃01 → ρ̃�1 ff̄

0, R-sym-
metry does not; the neutralino decays to one and the
antineutralino to the other. As a result, the chargino pair
resulting from any electroweakino production in the
MRSSM always have the opposite sign and thus, after
the charginos decay, all fall into the WþW− þ 2G̃ final
state. Beyond the standard model production of WþW− þ
=E is subject to opposite-sign dilepton plus MET searches.
Using this channel, the ATLAS collaboration reports a
winolike chargino mass limit of 180 GeVat 95% C. L. limit
[31]. If we assume the signal efficiency is constant and
incorporateW branching fractions to leptons, we can recast
this limit into a “model-independent” cross section limit of:

σðpp → WþW−Þ≲ 0.600 pb ð15Þ

from 8 TeV data. Calculating cross sections in the MRSSM
via MADGRAPH 5 with the NNLSP-NLSP splitting fixed to
jΔmþ0j ¼ 10 GeV and summing over all processes that

lead to WþW− þ 2G̃, we find that the above cross section
limit translates into a mass limit of m�̃

ρ1
≥ 220 GeV.

Having pinpointed the mass bounds in the limiting cases
of large or small RΓ, it is natural to ask how the bounds
interpolate between the extremes as RΓ is varied (for fixed
chargino neutralino mass splitting). Stated another way, we
would like to know the smallest RΓ (see Eq. (14) such that
the bound from Ref. [32] applies. The actual limit placed by
Ref. [32] is on the product σðpp → χ̃01ρ̃1ÞBRðχ̃01 → ZG̃Þ,
and by estimating the production cross section at 650 GeV
we find the bound translates to

σðpp → χ̃01ρ̃1ÞBRðχ̃01 → ZG̃Þ ≤ 0.005 pb: ð16Þ

At any given chargino mass ≲650 GeV, we can use the
Eq. (16) to solve9 for the minimal value of RΓ.
To visualize how these limits impact our model, we place

them on the gravitino-NLSP mass plane in the top panel of
Fig. 1. Contours of RΓ, indicated in Fig. 1 by gray curves,
have been superimposed for reference and vary with mG̃
according to Eq. (B1). For these contours, we fix
jΔmþ0j ≈ 10 GeV, a mass splitting value we will show
in Sec. IV is characteristic of points where mh takes its
correct value. In Fig. 1, the gray shade indicates the
lþl− þ ET exclusion (fromW−Wþ), which is independent
of RΓ and thus independent of the gravitino mass, and the
region in green denotes the lþl− þ 2jþ ET exclusion
(from WZ). If we had chosen smaller (larger) jΔmþ0j, the
exclusion curve from lþl− þ 2jþ ET would have the
same shape but would shift to the right (left).
To summarize, the mass constraints on our model from

prompt searches inform us that the gravitino cannot be too
light (sub-eV), with the actual value of the bound depend-
ing on the value of the ∼ several-hundred GeV chargino
NLSP mass. The near-verticality of the green border in
Fig. 1 implies that the size of the lower mG̃ bound is
roughly maintained across mNLSP variations of several
hundred GeV.

B. Long-lived regime

We now proceed with bounds on long-lived chargino
NLSP—charginos which decay inside the detector but far
away from the primary vertex. The final state is again
W�G̃, although with macroscopic lifetimes for ρ̃�1 . A
conventional way of classifying the possible signatures
is based on our capability of detecting the chargino
daughter that carries away the electric charge. The so
called dissapearing tracks (charged daughter is too soft)
and kink tracks (charged daughter is visible) belong to this
classification.

8RΓ is proportional to the fifth-power of the NNLSP-NLSP
mass difference, therefore RΓ will automatically be small in
compressed scenarios.

9Also obtained with MADGRAPH 5 and the MRSSM
modelfile.
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An extensive recast of long-lived superpartner searches
can be found in Ref. [27]. One of their categories is a
simplified GMSB scenario with ∼10 eV quasidegenerate
Higgsinos, that decay though H̃0 → ZG̃. Using the exclu-
sions set by the CMS displaced dijet analysis [35]
(100 μm≲ ddecay ≲ 60 cm), NLSP mass limits as stringent
as 600 GeV were set for a Oð10Þ cm travel length. We use
this result as a limit on the hadronic decays of the W� pair
of our own setup, an approximation that is enough given the
similarity in the NLSP composition (Higgsino) and the
small mass difference between the W and Z.

To translate the chargino NLSP lifetime axis of that
reference into a gravitino mass axis, one makes use of the
WG̃ partial width in Eq. (B1),

Γðρ̃�1 → W�G̃Þ ¼ κG̃W
m5

ρ̃1

96πM�2
P m2

G̃

�
1 −

M2
W

M2
ρ̃1

�
4

; ð17Þ

and ends up with the constraint shown as the blue-shaded
region in the bottom panel of Fig. 1.
It must be pointed out that the 13 TeV analysis of

Ref. [28], that looks for long lived gluinos, could be recast
for our situation. However we do not expect that it will give
any further constraint in the region shown in Fig. 1 due to
the large MET requirement (>250 GeV).10

For even larger lifetimes, the searches rely on identi-
fication of charged massive particles (CHAMPs) that
escape the detector without decaying (ddecay > 5–10 m).
These states propagate with high momentum, v=c < 0.9,
and high rates of ionization energy loss dE=dx [36]. The
limits [37] on long-lived charginos masses were quoted in
the mass-lifetime plane of Ref. [29], ruling out objects with
cτ ≥ 1 m. Just as done for the displaced dijet constraint, we
express the CHAMPs limit in terms of mG̃ and depict it as
the orange shaded region in the bottom panel in Fig. 1.
Combining the results from both panels, we see that light

chargino NLSPs are fairly constrained. For the range of
chargino masses we are interested in, the bound on prompt
scenarios is governed by the NLSP-NNLSP splitting and
gravitino mass. For 10 GeVmass splitting, we find ρ̃�1 must
be heavier than ∼225 GeV and decay to a gravitino heavier
than 0.3 eV. The upper limit on the gravitino mass (∝ ρ̃�1
lifetime) is more dependent on the chargino mass, ranging
between 30 eV for ρ̃�1 ∼ 225 GeV and increasing to 100 eV
for ρ̃�1 ∼ 350 GeV.
Having reviewed the regions where the chargino NLSP

mass can sit according to collider data, we now shift our
discussion to the Higgs mass constraint.

IV. A 125 GeV HIGGS

The presence of Higgs-adjoint mixing and the absence of
NMSSM-like terms AB̃HuHd or Hu · AW̃Hd in the super-
potential (by the R-symmetry) that could help increase the
Higgs quartic imply a MRSSM tree-level Higgs mass
bounded by mZ (see Appendix C). As such, we need to
rely on one-loop contributions to reach mh ¼ 125 GeV.
Numerous parameters enter into the effective scalar poten-
tial, and a subset of them that also appear in the electro-
weakino masses (MD, μ, the λ’s, and tan β) which we
explored and constrained in the preceding section. Thus,
the remaining step is to understand the implications for mh

FIG. 1. Top panel: Chargino NLSP mass constraints in the
prompt (sub-eV gravitino) region with RΓ contours superim-
posed, for a 10 GeV NNLSP-NLSP mass difference. For large
enough RΓ only the WþW− þ ET (gray region) bound applies.
Below a minimal RΓ theWZ þ ET sets the stringent constraint of
Eq. (16) (green region). Bottom panel: Same mass constraints,
now for macroscopic lengths (i.e., > 10 eV gravitino masses)
from mostly Higgsino displaced dijets (blue) and long-lived
CHAMPs (orange). Dashed gray contours provide reference
transverse distances for decay across the detector.

10Heavier charginos will likely be constrained by the 13 TeV
search, though these scenarios are less natural (See Sec. VI) and
therefore outside of the scope of this paper.
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from the electroweakino constraints, and find how much
flexibility is offered by the rest of the input parameters that
are unrelated to the electroweakinos (i.e., the adjoint Ba, the
m2

a, and the stop mass). We will see that, even though large
chunks of the mG̃-mρ̃�

1
plane are disfavored by the Higgs

mass condition in both chargino NLSP regimes, it is
possible to accommodate mh ¼ 125 GeV.
In order to comply with a 125 GeV Higgs, we start by

fixing the relevant parameters for mh and by reminding
the reader of the required machinery to reproduce it. The
enlargement of the Higgs sector field content in the MRSSM
and the presence of new operators affect the way EWSB and
a 125 GeV Higgs mass are realized. Nevertheless, the
vanishing vevs of the R-Higgses and the tiny adjoint vevs
(motivated below from electroweak precision tests) dictate
that EWSB is achieved much like in the MSSM—that is,
radiatively—through a suitable choice of soft masses. Several
references have worked the Higgs mass out at 1-loop in the
strictlyR-conserving case [16,17]; their findings for theHiggs
potential are listed and commented upon below.

(i) F-terms: the VF potential is schematically given by
termsX

Φ
j∂ΦðλAHRþ μHRÞj2; Φ ¼ H;R; A:

from Eqs. (1) and (2). After EWSB and nonzero
adjoint vevs, Higgs-adjoint mixings proportional to
λvva and to λvμ are respectively induced by jλAHj2
and by the cross term in jλAH þ μHj2 (here
v2 ≡ hH0

ui2 þ hH0
di2). Notice that insisting on

hR0
u;di ¼ 0 prevents mixing of R0

u;d with Aa and
H0

u;d. Also, electroweak precision tests require the va
be OðGeVÞ [16,17], implying that their effect on
Higgs-adjoint mixing must be tiny compared to λvμ.

(ii) D-terms: in addition to the MSSM Higgs D-term
and mixed quartics with the Ru;d, the D-term
potential contains triscalar interactions jHu;dj2Aa

proportional11 to g1MD
B̃
and g2MD

W̃
. These originate

from the supersoft operator (3), and they mix the
Higgs with the adjoints by an amount gavMD

a after
EWSB. The mixing controlled by gavMD

a is ex-
pected to compete with the one coming from λvμ,
especially if their signs happen to be opposite. Here
MD

a will range from hundreds of GeV to about 1 TeV
(depending on the gaugino scale) but they are
multiplied by gauge couplings, whereas the few-
hundred GeV μu;d mass parameters (responsible for
Higgsino mass size) multiply couplings λ which, as
shown later, will be required to be large (∼1).

(iii) Soft terms: Vsoft includes a Bμ term, necessary for
EWSB, in addition to two soft masses for the

doublets. As opposed to their corresponding super-
potential analogs, the supersymmetry-breaking tris-
calars12 AB̃Hu ·Hd and Hu ·HdAW̃ of Eq. (10) are
R-invariant and permitted. Nevertheless, the GMSB
embedding makes these greatly suppressed, so they
barely contribute to Higgs-adjoint mixing.

To determine the mh value at each ðMD;madjÞ point, the
parameters tan β, μ, Bμ, and each of the λ’s must be fixed.
To get started, we pick a value of tan β, for instance
tan β ¼ 50. Earlier, we adopted the large tan β limit with the
purpose of simplifying the discussion of the chargino and
neutralino mass ordering from the entries of the matrices
(12) and (13). Although not strictly necessary to achieve the
Higgs mass, we stick to this limit because a mostly up-type
lightest Higgs has a more tractable analytical expression
for the effective 1-loop potential, and because a chargino
NLSP is more generic away from tan β ¼ 1 [19].
Next, also from the discussion on the electroweakino

mass matrices (12) and (13), we recall that the composition
of the chargino NLSP depends on the ordering of μ and
MD. To be consistent with the Higgsinolike chargino NLSP
bounds described in Sec. III.2, we pick these mass
parameters such that μ < MD. Let us then adopt a refer-
ence, common μu ¼ μd ≡ μ value of μ ¼ 250 GeV and
make sure of scanning over aMD ranges larger than several
hundreds of GeV. A Bμ ¼ ð400 GeVÞ2 not too far from μ is
fixed too.
Previous works ([16,17]) have shown that one way for

the Higgs mass to be increased is by first saturating the tree-
level piece through the λ sign choices (derived from the
Higgs mixing entries in Appendix C)

λu
B̃
; λu

W̃
< 0 and λd

B̃
; λd

W̃
> 0: ð18Þ

These conditions, however, do not automatically guarantee
a chargino NLSP regime Δmþ0 < 0. Back in Sec. III, when
describing the mixing matrices (12) and (13), we argued
that the relative signs between λ’s help setting ρ̃�1 as the
NLSP. We now numerically investigate the extent to which
one of the λu can deviate from the Higgs mass sign choice
(18). To exemplify it, we pick λd

B̃;W̃
¼ þ1 ¼ −λu

B̃
, whose

signs help decreasing the Higgs mixing, but set λu
W̃
¼ þ0.3,

with sign opposing the one required to (partially) cancel the
Hu − ϕ0

W̃
admixture. The specific λu

W̃
¼ þ0.3 value will be

justified a posteriori from the top panel of Fig. 3, but the
point to remember is that it will ensure a chargino NLSP
and a correct Higgs mass.
ðm2

hÞtree receives corrections through the one-loop con-
tributions to the quartic Higgs coupling coming from the
CP-even adjoint scalars and the stops, as given in Eqs. (C3)
and (C4). Since the latter requires specifying a stopmass, we
follow the latest searches [6,38] and pickm2

t̃ ¼ ð1.12 TeVÞ2.
11More precisely, the triscalar couplings are proportional to the

hidden sector D-spurion associated with MD
a .

12Do not mistake the adjoints Aa for triscalar A-term couplings.
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Furthermore, in order to follow the no-tachyon condition on
the adjoint B-terms, these are set to a common value Badj ¼
m2

adj=3 that is numerically safe.
With the current parameter space choices, the singlet and

triplet adjoint vevs vB̃ and vW̃ are fully specified at each
ðMD;madjÞ through their respective minimization condi-
tions, and we display their values as blue (vB̃) and red (vW̃)
dashed contours in Fig. 2. By its triplet nature, vW̃ is subject
to EWPT constraints due to its potentially dangerous
contribution to the T-parameter, and the shaded gray region
shows locations where it surpasses the ≈3 GeV bound [16]
(see also [17]). Although the vev of the singlet vB̃ is not
limited by EWPT, the fact it shares a similar functional
dependence with vW̃ and has comparable mass parameters
would led us to expect similar OðGeVÞ values. Indeed, this
is confirmed by the blue contours in the same plot.
Based on the 125 GeV contours and the T-parameter

constraint on vW̃ in Fig. 2, a sample point ðMD;madjÞ ¼
ð500; 1350Þ GeV is picked (the black star in the same graph)
right at the edge of the vW̃ exclusion. Its purpose is to fix a
subset of the parameters governing the EW-inos, which eases
their study in the following paragraphs. This is also a
necessary step in order to access a sample spectrum in
Sec. V. For reference, a �4 GeV band (in pink) is included,
and it accounts the 2-loop shift quoted by Ref. [39]. Yet, the
reader should be aware that the approximate nature of
Eq. (C3) implies an even larger error than shown.
At this stage, the Higgs-adjoint scalar mixtures and

electroweakino spectrum are completely fixed. For the
interested reader, the mixing matrices are collected in
Appendix A). In summary, our choices of parameters from
now on are collectively denoted PA,

PA∶ tβ ¼ 50; MD¼ 500GeV; madj ¼ 1.35 TeV;

μ¼ 250GeV; Badj ¼
1

3
ð1.35 TeVÞ2;

λd
B̃
¼ λW̃d ¼þ1; λu

B̃
¼−1; λu

W̃
¼þ0.3: ð19Þ

Wemust say that PA is merely illustrative, and the spectrum
and signals for different points can be carried out in a
similar way. Moreover, smaller tan β and other size and sign
choices for the λ’s can still reach correct Higgs mass, as
shown in [17]. The relevant behavior to keep in mind for
the moving pieces entering in the 1-loop mh, but not in the
EW-inos (i.e., the adjoint mass parameters) is that all
adjoint contributions to mh are proportional to the λ’s.
Keeping these couplings fixed, a larger m2

adj (as well as
Badj) decreases the tree-level adjoint term while logarithmi-
cally lifting the adjoint loop piece. This contribution
competes with the stops correction (C4), so larger(smaller)
adjoint mass parameters demand lighter(heavier) stops,
since if both masses were large one would overshoot the
mass of the Higgs.13

We proceed to motivate our λu
W̃
¼ þ0.3 selection. If we

take PA but let λu
W̃

float, the splitting Δmþ0 between the
lightest neutralino and lightest chargino would be a
function of this coupling. To be able to identify the λu

W̃
size where Δmþ0 flips sign, we look at the variation of the
light electroweakino masses as a function of it, with all
other quantities set at PA. This is precisely what is shown in
the upper curves of the top panel of Fig. 3. Around λu

W̃
≳

−0.25 one notices that the ρ�1 chargino mass goes below the
lightest neutralino and becomes the NLSP. For reference,
the tree- and loop-level mh are shown, in dotted and dashed
lines, on top of the electroweakino masses. Also shown is
the ρ̃�1 mass bound from WþW− in Eq. (15) (gray shade).
This chargino NLSP roughly complies with a 125 GeV
Higgs in the 0.1≲ λu

W̃
≲ 0.7 range, backing up our previous

selection of λu
W̃
¼ 0.3 back in Eq. (19). For reference, at this

specific point

mρ̃�
1
¼ 225 GeV; mχ̃0

1
¼ 236 GeV: ð20Þ

To briefly compare ourmh and EW-ino results against other
parameter choices, we show in the bottom panel of Fig. 3 a
second benchmark with distinct MD, μ and madj. We call
this benchmark PB,

PB∶ MD ¼ 600 GeV; μ ¼ 300 GeV;

madj ¼ 1.60 TeV: ð21Þ

FIG. 2. The 125 GeV Higgs mass contour (solid) and the tree-
level value of the singlet (blue dashed) and triplet (red dashed)
adjoint vevs for μ ¼ 250 GeV, Bμ ¼ 400 GeV, tan β ¼ 50, and
supersymmetric couplings λd

B̃
¼ λd

W̃
¼ þ1, λu

B̃
¼ −1 and

λu
W̃
¼ þ0.3. Stops are quasidegenerate and fixed at 1.12 TeV.

In the gray region vW̃ exceeds the EWPT bound. The star pins
down a chargino NLSP benchmark point PA.

13Two-loop corrections to mh, which are outside the scope
of our analysis, have been found to be around 5 GeV [39] and
they would imply a change of few GeV on the masses of
charginos.
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Clearly, PB displays heavier EW-inos while still accom-
modating a ρ̃�1 NLSP and mh, albeit in a smaller λu

W̃
range.

At the same λu
W̃
¼ þ0.3, the lightest EW-inos in PB are

mρ̃�
1
¼ 275 GeV; mχ̃0

1
¼ 287 GeV: ð22Þ

For the rest of this section, the working λu
W̃

range is
translated into a restriction on mρ̃�

1
, and until Sec. V the

benchmark value λu
W̃
will be used to calculate the scalar and

electroweakino spectrum.
Having explored the Higgs mass constraint in the

MRSSM, we now apply it to the prompt and long-lived
regimes of Fig. 1. In the top panel of Fig. 3 plot, the 0.1 <
λu
W̃
< 0.7 range for mh ¼ 125 GeV shows a one-to-one

correspondence with the 215 GeV≲m�̃
ρ1
≲ 240 GeV mass

interval. We draw this range, corresponding to PA, as a
band delimited by solid magenta lines in both panels of
Fig. 4. For the prompt chargino case (top panel), one
observes that theWþW− þ ET bound falls outside the solid
mh band, leaving the RΓ green line obtained previously (the
lþl− þ 2jþ ET limit at small RΓ) and themh constraint as
the only limits across varying gravitino masses. Combining
both constraints, there is a mG̃ lower bound approximately
around 0.3 eV. We remind the reader that at fixed mG̃,
moving vertically within the solid magenta band (i.e., for
varying λu

W̃
coupling) implies varying values of the Δmþ0

mass difference, and that this generates distinct RΓ curves

than in the fixed-Δmþ0 contours of the top panel of Fig. 1.
Yet, to motivate the use of the same RΓ green line as in the
jΔmþ0j ¼ 10 GeV case of Fig. 1, we stress that in the
mh ¼ 125 GeV vicinity the value taken by jΔmþ0j is
indeed around 10 GeV (evident from the top Fig. 3).
When the same solid mh band is superimposed on the
bottom panel of Fig. 1, an upper gravitino mass bound is
obtained between 20 and 30 eV, where the mG̃ encounters
the Higgsino displaced dijet limit in blue. Taking all
collider constraints together at PA, where mρ̃�

1
¼

225 GeV and mχ̃0
1
¼ 236 GeV, the gravitino mass is then

restricted between 0.2 eV < mG̃ < 20 eV. When the pre-
vious procedure is redone for the PB benchmark, one gets

FIG. 4. Top panel: Zoomed-in version of the top panel in Fig. 1
(prompt gravitino regime), with the Higgs mass constraint
appearing as the range within the magenta band (solid for PA
benchmark, dashed for PB). Bottom panel: A zoomed-in version
of the bottom panel of Fig. 1 (longevous gravitino regime), with
the Higgs mass constraint superimposed as a magenta band on the
chargino NSLP mass axis.

FIG. 3. Top panel: Light electroweakino masses (colored lines).
The tree- (dotted) and 1-loop (black solid) Higgs mass are shown
as a function of λu

W̃
, with any other parameter set at the benchmark

point PA. Bottom panel: Analog to the top panel, but for the
benchmark point PB.
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instead the dashed magenta band, and the upper gravitino
mass bound slightly increases to mG̃ < 50 eV. The PB
Higgs mass band is narrower because the working λu

W̃
range

in the bottom panel of Fig. 3 is smaller than for PA.
Before concluding this section, we comment on dis-

criminating among different Higgsino scenarios. Recall
that the collider limits shown for the current regime apply to
a generic charged Higgsino, a NLSP that can also be
arranged in a corner of the MSSM parameter space [19]. On
kinematic grounds, an observable that could help discern-
ing the MRSSM chargino NLSP from the MSSM one is the
size of Δmþ0. When this mass difference is large enough,
an MSSM scenario is unlikely because even radiatively
jΔmþ0j ≳ 5 GeV is difficult to arrange. A second handle to
help identify the right scenario is the lack of same sign
dilepton signals in the Dirac (MRSSM) case. Finally, to
distinguish the chargino NLSP from other potential NLSPs,
a more comprehensive analysis comparing rates in different
channels is required. As one example, slepton NLSPs
decay to same-flavor lepton pairs, while the WþW− from
chargino NLSPs can decay to all leptons flavor combina-
tions (as well as to jets), so one can look for correlated
signals in different lepton flavor bins to differentiate
between scenarios.

V. FULL SPECTRUM

With the purpose of offering a complete low-energy
model, we now present the remaining parts of the spectrum
at PA, PB. The physical masses are sketched in Fig. 5
except for ϕg̃ (too heavy) and G̃ (too light). Excluding mh,
which relies on the approximate expression (C3), all of
them have been verified with SPHENO 3.3 via the SARAH
4.8 implementation of the MRSSM [40,41]. To continue,
some relevant comments are included for each sector.
Higgs sector: Among the CP-even scalars, the SM-like

Higgs h is mostly up-type, the next two heavier neutral
states ϕB̃;ϕW̃ are mostly singlet and mostly triplet mix-
tures; the heaviestH0 is dominantly down-type. Besides the
Z Goldstone, there are 3 pseudoscalars: the heaviest one A0

dominated by H0
d, and the other two are adjoint-mixtures

σB̃;W̃ . Similarly, the four charged scalars mix into a W�

Goldstone, a heavy, charged down-type HiggsHþ, and two
charged Tþ

1;2. Up to a small mixing with the Higgs doublets,
the physical adjoint masses are mainly set by the size of
m2

ϕa
and m2

σa (themselves larger than MD and the gv-sized
pieces) in Eq. (23). No R ¼ þ2 scalar enters in this
category because their neutral and charged states do not
mix with the up/down doublets or with the adjoints.
Electroweakinos: Denoting the fermion of the Ru;d

doublets by R-Higgsinos, the four neutralinos χ̃0i are
divided into two R-Higgsino-Higgsino mixtures, and two
gaugino-adjoint fermion combinations. One can show
(see Appendix A) that the charginos are split into two

disconnected sets (χ̃-type and ρ̃-type) due to the different
electric and R-charges. Still, both of these sets display a
light H − R Higgsino and a heavy electroweak Dirac
gaugino.
Gluino and sgluons: The supersoft origin of Mg̃ permits

a several-TeV heavy gluino without introducing large fine-
tuning. With this in mind, we pick Mg̃ ¼ 3.5 TeV, which
also becomes the physical mass of g̃ because it is the only
colored fermion octet.
Similarly, being the only scalar color octets, the two

sgluon states are already physical CP eigenstates with
masses determined by

m2
ϕg̃

¼ m2
adj þ 2Badj þ 4ðMD

g̃ Þ2

m2
σg̃ ¼ m2

adj − 2Badj: ð23Þ

For the CP-even state, in the upper equation in (23), the
third contribution originates from the supersoft operator
(3). Hence, the several-TeV gluino mass causes ϕ2

g̃ be
considerably heavier (≈7.21 TeV, not shown in the figure)
than its pseudoscalar counterpart, which stays at near
780 GeV.
R-scalars: The R ¼ þ2 scalars do not mix with the

Higgs states or the adjoints. The neutral R0
u;d have each a

FIG. 5. Top panel: Spectrumat the benchmarkpointPA. TheCP-
even sgluon ϕg̃ sits at 7.2 TeV and it is not shown. The gravitino,
too-light atmG̃ ≪ 1 GeV, is also outside this range. Bottom panel:
The PB benchmark analog to the top panel [see Eq. (21)].
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m2
R soft mass and become states R0

1;2, which up to a
Oðλ2v2Þ mixing amount are effectively mass eigenstates.
Regarding the charged components, the R−

u and Rþ
d mixing

is prevented by the R-symmetry at the superpotential level,
and these become physical states Rþ

1;2. The R-scalar
spectrum is then set by its soft mass only, and for
definiteness m2

R ¼ ð400 GeVÞ2 is picked.
Sfermions: The sfermions count with two sources for

their soft masses, the (D-breaking) finite log from (4), and
the F-breaking piece (8). Clearly, in the strictly supersoft
limit, the finite log establishes a fixed hierarchy
∼ð4π=αaÞ1=2 between the gaugino and sfermion masses
for each MD

a value. Among squarks, the finite log is well
approximated by the color term alone due to the αs size,
and as an example, at Mg̃ ¼ 3.5 TeV we have m2

q̃ ¼
ð945 GeVÞ2. On the other hand, current mass bounds
on 1st and 2nd generation squarks (q̃1;2) place them at no
less than 1.5 TeV [4], thus these can be made sit right
at the bound for a F-piece not smaller than ðmsoft2ÞF ¼
ð1200 GeVÞ2. The corresponding bounds for stops/sbot-
toms are weaker, laying around 1.12 TeV, a value that is
reproduced by a F-breaking mass about half the size
(≈600 GeV) of the one used for the q̃1;2.
Despite the similar origin between slepton and squark

mass contributions, there are critical numerical differences.
In the absence of F-breaking, the proportionality of slepton
masses to the electroweak αa¼1;2 implies smaller finite logs
compared to the squarks, even if all three gaugino masses
were comparable. However, too-light sleptons can be
troublesome, and require raisingMD accordingly. But once
additional F-breaking is turned on, the need of increasing
MD to raise m2

l̃
is partially removed: in principle we can

take advantage of this effect to enforce the chargino as a
NLSP by providing an F-term piece just large enough to
avoid any slepton becoming the NLSP. Yet, these F-terms
are chosen even heavier so as to make sleptons heavier than
the rest of the electroweakinos and effectively removing
them from the NNLSP decays.14 For simplicity, we adopt
the very same ðm2

softÞF ¼ ð1200 GeVÞ2 as for the 1st and
2nd generation squarks. Hence, all sfermion soft masses are
built from a common F-term piece and a αa-dependent
supersoft part, m2

f̃
¼ ðm2

f̃
ÞD þ ðm2

softÞF.
We finish the current section by drawing in the bottom

panel of Fig. 5 the corresponding spectrum at the bench-
mark PB in Eq. (21). In this case the EW-inos and the
mostly-adjoint scalars are heavier, a consequence of having
chosen larger μ, MD and madj values. Likewise, larger
contributions to the fine-tuning are expected for PB.

VI. FINE-TUNING ESTIMATE

To complement our numerical discussion, we present a
calculation of the FT. As already stated, the presence of
new scalar sector mass parameters and mixing with extra
states modifies the Higgs minimization condition with
respect to the MSSM case. The purpose of this section
is to identify numerically the level of FT around the
parameter benchmark adopted in the previous section.
The different contributions to the FT, their relative sizes

and their consequences for the interplay between scalar
adjoint, Dirac gaugino and stop masses have been studied
in detail in Ref. [16], following the FT measure defined in
[42]. Let us quote it here: the fine-tuning in the electroweak
vev (or equivalently, in m2

Z) is quantified through Δv≡
maxifΔig,

maxifΔig ¼ maxi

����X
j

ξiðΛmessÞ
m2

Z

m2
Z

dξjðmsoftÞ
dξjðmsoftÞ
dξiðΛmessÞ

����
ð24Þ

where i runs over the input parameters that fix the value
of m2

Z.
15 For the present model the parameters are ξi ¼

m2
adj; m

2
R;m

2
t̃ ; μ;M

D; Badj; λuB̃ and λu
W̃
, where for simplicity

we’ve already set common adjoint, gaugino and Higgsino
masses. For the stops, the inherent absence of the At
trilinear and MSSM μ-term implies vanishing LRmixing. It
follows then that m2

Q3;u3
become the physical masses,

mostly set by the finite log in Eq. (4) and differing only
by the subdominant wino piece acquired by mQ3

. In our
notation, mt̃ will refer to their geometrical average. Only
the u-type λ’s take part in the ξi list because we have
restricted ourselves to the large tan β limit (refer to Sec. IV).
Clearly, the adjoint vevs vadj are not included because they
are traded by combinations of the ξi via their (coupled)
minimization equations.
The analysis in Ref. [16] showed that the dominant Δv

contributions are Δμ (tree level), ΔRu
, Δt̃, and ΔW̃;B̃ (loop-

level). As such, the FT mainly depends on the respective
mass scales μ; mR;mt̃ and madj, plus the messenger cutoff
appearing as logðΛmess=msoftÞ in the one-loop pieces (with
msoft set at the stop mass). Contributions of MD to Δv are,
however, subleading. The Appendix D collects the explicit
dependence of the largest Δi’s. The cutoff Λmess must be
compatible with low-energy mediation but it is not fixed by
our benchmark, nor are the F- and D-breaking spurions.
The reason is that so far we have been working directly
with the ratios hDi=Λmess (Dirac gaugino masses) and
hFi=Λmess; hDi=Λmess (for sfermion and adjoint soft
masses). In the next paragraphs we look at the behavior
of the FT as a function of Λmess.

14Intermediate slepton mass values between the χ̃02 and ρ̃�1
causes χ̃02 to decay through l̃ instead.

15The Higgs mass FT measure Δmh
takes an analogous

form.
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The FT is now estimated around PA (for PB will be
somewhat larger since the whole spectrum is a bit heavier)
in Eq. (19). Given the various scales involved (μ; madj;
mt̃;Λmess), extracting useful FT information requires us to
pick appropriate 2D planes for these masses. We opt to
work in the ðΛmess; madjÞ plane at constant (i.e., benchmark)
μ and mt̃, as all FT pieces (except for Δμ) depend on the
cutoff, and two of them (ΔB̃;W̃) depend onmadj. Specifically,
wevarymadj might bevaried between 1.2–1.6TeV (safe from
EWPT in Fig. 2) while the messenger scale is varied within
the low-energy mediation range 104–1014 GeV of minimal
GMSB [26] (as explained earlier in Sec. I).16

The overall FT measure is portrayed in Fig. 6 as black
solid lines. Numerically, Δv is dominated by the stop
contribution; as it does not depend onmadj, the contours are
vertical. Also shown are the ΔB̃ piece (blue dashed) and the
madj value at PA (magenta line). As it depends only on μ
(set at 250 GeV), Δμ ≈ 30 at every point in the plane. If we
want to acheive better than percent-level fine-tuning, we
can see that Λmess must be less than ∼107 GeV.
How do these statements change for other μ or mt̃

choices? Larger (smaller) μ values give a larger (smaller)
Δμ, again uniform over the whole plane. On the other hand,
increasing stop masses still result in vertical Δt̃ contours,
but, by the 125 Higgs condition, lightermadj are demanded.
Then, the pink line (representing a benchmark with correct
Higgs mass) would sit lower. In this case Δt̃ would still
dominate the FT, and the plot would look similar but with
higher Δv label values.

Before finishing the current section and concluding, we
compare the relative sizes between msoft, the messenger
scale, and the supersymmetry breaking vevs17 hFi; hDi, at
PA. This is all done at a particular gravitino mass near the
lower limit in Fig. 4, say 1 eV, for illustration. In doing sowe
remind ourselves of the mass relationsMD ∼ hDi=Λmess and
mG̃ ∼ hFi=M�

P, assuming the Nmess ¼ 1 gauge-mediation
relation msoft ∼ hFi=Λmess. With ðm2

softÞF ¼ ð1200 GeVÞ2
(the common F-piece for sfermions and the squarks of the
first two generations), and replacing hFi by mG̃M

�
P, it holds

that

Λmess ∼
mG̃½GeV�ð1018 GeVÞ

1.2 × 103 GeV
∼

mG̃½GeV�
1.2 × 10−15

:

At a gravitino mass of 1 eV, the equation above gives us
Λmess ∼ 8 × 105 GeV, near the lower end of the low-media-
tion range. At that messenger scale, and the benchmark
gaugino mass MD ¼ 500 GeV,

ffiffiffiffiffiffiffi
hFi

p
≈ 3 × 104 GeV;

ffiffiffiffiffiffiffiffi
hDi

p
≈ 2 × 104 GeV;

indicating spurions of comparable size.18

VII. CONCLUSIONS

Model building with Dirac gauginos has led to phenom-
enological improvements over minimal supersymmetric
scenarios. This has been exemplified in the literature by
the studies of their effects in flavor, fine-tuning, and the
relaxation of LHC bounds on color sparticles. More recently,
a renewed wave of interest has taken Dirac gauginos and its
R-symmetric setups in additional directions, for example by
extending the soft terms to include non-supersoft operators
[12], taking advantage of the enlarged field content to
propose dark matter candidates [18], or studying the collider
prospects of the SUð3Þc scalar adjoints (sgluons) [43,44].
At the same time, some studies have deepened into the UV
aspects of Dirac gauginos, revealing that there are persistent
issues to be taken care of, for example the analog of the
GMSB μ − Bμ problem between the Dirac gaugino masses
and their corresponding adjoint Ba-terms [45]. Some ideas
on this direction can be found in [46,47].
The present work attempts to complement these cat-

egories of models by providing a study of the compat-
ibility between the chargino NLSP regime under LHC-13
constraints and mh ¼ 125 GeV in the MRSSM (in its
incarnation with R-symmetric Higgs sector). To do so, we
have first shown what the collider limits look like across
the chargino-gravitino plane. Next, by reaching the Higgs

FIG. 6. Measure Δv of fine-tuning (vertical lines) and sub-
dominant contribution ΔB̃ from the singlet adjoint (blue curves)
as a function of the messenger scale and the (common) adjoint
soft mass. The Higgs mass benchmark value used for madj is
indicated by the magenta line [point PA in Eq. (19)].

16Keeping mh ¼ 125 GeV in this madj interval requires a
deviation from the benchmark MD as large as 200 GeV, from
Fig. 2. Yet, MD adds to the FT subdominantly.

17Again, with F and the F0 of Eq. (11) developing comparable
vevs.

18These sizes of course will be affected to some extent when
going to Nmess > 1 and with distinct messenger scales for hFi
and hDi.
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mass at one loop with the help of ∼500 GeV electroweak
gaugino Dirac masses and > 1 TeV adjoint scalar soft
masses (together with the stop quantum correction), we
delimited a range where the mχ̃0

1
> mρ̃�

1
mass ordering is

maintained under a variation of the (supersymmetric)
Higgs-adjoint couplings. Then, after translating this mh ¼
125 GeV requirement back to the mentioned plane, the
collider-safe region of the prompt regime is found to be
mildly-dependent on the (lightest) chargino-neutralino
splitting at sub-eV mG̃. On the other hand, gravitino
masses falling on the Oð10Þ eV ballpark are subject to
the displaced dijet bound. To anchor some numbers, in our
sample benchmark with chargino NLSP and the observed
Higgs mass value, the prompt and displaced dijet collider
searches together safely place gravitinos between
0.2 eV ≲mG̃ ≲ 20 eV. The neutralino NNLSP and char-
gino NLSP respectively sit at 236 and 225 GeV.
As presented here, it is clear that at the numerically

analyzed points the extra requirement of a chargino NLSP
scenario represents a tradeoff of some fine-tuning. To
understand this statement, one should remember that this
regime imposes conditions on the size and sign of the
supersymmetric Higgs-adjoint couplings (the λ parame-
ters). These conditions, however, do not strictly align with
those that fully saturate the tree-level Higgs mass piece.
Thus, not having all the λ couplings close enough to 1 has a
reducing effect on the adjoints contribution to the Higgs
mass. In turn, this demands a larger mh lift from the stops,
which at TeV-sized masses become the dominant source of
FT (at fixed μ). Another unavoidable feature of our model
is that having analyzed a low-energy scenario below the
messenger mass scale, our choices of relative sizes between
the mass parameters of the Dirac gauginos and adjoints do
not necessarily comply with UV considerations (i.e., the
Badj ∼ 16π2MD relation predicted in supersoft scenarios
with no messenger mixing). These are otherwise evaded by
adding more messenger pairs and/or introducing direct
interactions with SM superfields [45], but these consid-
erations fall out of the scope of our work.
Experimental hints pointing towards the existence of

scenarios with simultaneous R-symmetric chargino NLSP
and numerically correct Higgs are nontrivial to identify.
While the LHC sets constraints on the chargino NLSP
alone based on final states with E=T and dilepton (with and

without jets) or as macroscopic displaced dijet tracks,
experimental access to the NNLSP is auxiliary in telling
apart setups with R-symmetry from those without it. To do
that, one strategy is to look at the size of the NNLSP-NLSP
splitting: Δmþ0 of a few tens of GeV are ruled out for
MSSM-like models at large tan β but realizable in the
R-symmetric case. Meanwhile, the Higgs mass requirement
selects a preferred range for ρ̃�1 , yet we have shown that this
NLSP range is not unique but dependent on parameters that
also determine Higgs-adjoint mixtures and stop masses.
Therefore, extra discerning power is gained by looking at

these other states too. One final experimental consideration
is the fact that in a model where gauginos are Dirac there
are no processes leading to same sign dileptons, so one can
also use that fact as a discriminator between models
preserving the R-symmetry and models like the MSSM.
In conclusion, the present study shows the current status,

in terms of the corresponding parameter space, of the
chargino NLSP that decays into a gravitino. In a more
general sense, it exemplifies the kind of regions where a
full, realistic R-symmetric Dirac gaugino spectrum is
pushed in order to survive up-to-date bounds. This shows
once again how nonminimal models can still improve
naturalness with respect to minimal supersymmetric setups
but cannot be completely devoid of fine-tuning.
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APPENDIX A: ELECTROWEAKINO AND
PSEUDOSCALAR MASS MIXING

The neutralino mixing matrix Mχ̃0 , in the basis
ðB̃; W̃0; R̃0

d; R̃
0
uÞ × ðψ B̃;ψ W̃; H̃

0
d; H̃

0
uÞ, looks like

0
BBBBB@

MD þOðgvaÞ 0 − g0cβv
2

g0sβv
2

0 MD gcβv
2

− gsβv
2

λdcβvffiffi
2

p − λdcβv
2

μþOðλvaÞ 0

λusβvffiffi
2

p − λusβv
2

0 μþOðλvaÞ

1
CCCCCA
ðA1Þ

The R ¼ Q charginos, named χ̃�1;2, have a mixing matrix

Mχ̃� ¼
 
MD þOðgvaÞ λdcβvffiffi

2
p

gcβvffiffi
2

p −μ −OðλvaÞ

!
; ðA2Þ

in the ðψ−
W̃
; H̃−

d Þ × ðW̃þ; R̃þ
d Þ basis. TheR ¼ −Q charginos,

ρ̃�1;2, mix according to

Mρ̃� ¼
 
MD −OðgvaÞ gsβvffiffi

2
p

λusβvffiffi
2

p −μ −OðλvaÞ

!
ðA3Þ

in the ðW̃−; R̃−
u Þ × ðψþ

W̃
; H̃þ

u Þ basis. Again, the
ffiffiffi
2

p
in some

entries is due to different λW̃ normalization with respect to
[16].Within our numerical analysis atPA, the χ̃�1 is a mostly-
Higgsino NLSP and χ̃01 is the NNLSP.
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The pseudoscalar mixing matrix in the ðImðH0
dÞ;

ImðH0
uÞ; σB̃; σW̃Þ basis has a form

M2
CP-odd ¼

�
MMSSM 0

0 Msinglet-triplet

�
ðA4Þ

where MMSSM is the usual MSSM pseudoscalar block and
Msinglet-triplet is�m2

adj − 2Bsinglet þOðλ2v2Þ Oðλ2v2Þ
Oðλ2v2Þ m2

adj − 2Btriplet þOðλ2v2Þ

�
:

ðA5Þ

APPENDIX B: ELECTROWEAKINO-TO-
GRAVITINO PARTIAL WIDTHS

In the effective limit of the gravitino as the Goldstino, the
partial width of an electroweakino χ̃ into a SM gauge boson
V and a gravitino is

Γðχ̃ → VG̃Þ ¼ κG̃V
m5

χ̃

96πM�2
P m2

G̃

�
1 −

M2
V

M2
χ̃

�
4

: ðB1Þ

At large tan β, the Oð1Þ coefficients in front are κVG̃ ¼
1; 1; ðMW=MDÞ2s2W respectively for V ¼ W, Z, γ. The RΓ
ratio of Eq. (14) is given by [19]

RΓ ¼ Nf

4g4ðM�
PÞ2m2

G̃

5π2M4
W

ξ2L þ ξ2R
κZG̃

�jΔmþ0j
mNLSP

�
5

; ðB2Þ

where Nf ¼ 4 is the number of fermionic degrees of
freedom the ρ̃�1 decays to (those of G̃). In the Higgsino
limit of the MRSSM and with χ̃01 as the NNLSP,
ðξ2L þ ξ2RÞ ¼ 1=2.

APPENDIX C: ONE-LOOP HIGGS MASS

This Appendix details the tree-level Higgs mass mixing
entries and the one-loop mh, as previously described in
Refs. [16,17]. Neglecting terms containing the vevs of
the adjoints (due to the hierarchies MD, μu;d ≫ vadj set
by EWPT) the entries of M2

CP-even are, in the basis
fH0

d; H
0
u;ϕB̃;ϕ

0
W̃
g,

ðM2
CP-evenÞ2;3 ≈ vsβ½g1MD

B̃
þ

ffiffiffi
2

p
λu
B̃
μu�

ðM2
CP-evenÞ2;4 ≈ vsβ½−g2MD

W̃
− λu

W̃
μu�; ðC1Þ

which encodes the mixing of H0
u, and

ðM2
CP-evenÞ1;3 ≈ vcβ½−g1MD

B̃
þ

ffiffiffi
2

p
λd
B̃
μd�

ðM2
CP-evenÞ1;4 ≈ vcβ½g2MD

W̃
− λd

W̃
μd�; ðC2Þ

that describes the mixing of H0
d. The ϕa stand respectively

for the real components of the adjoint Aa scalar. As pointed
out in [16] an immediate way to increase the lightest

eigenvalue consists of choosing the λB̃;W̃ such that both
terms inside the square brackets in each entry above carry
opposite signs and cancel each other. Then Eqs. (C1) and
(C2) require that

λu
B̃
; λu

W̃
< 0 and λd

B̃
; λd

W̃
> 0

to favor the mentioned cancellation in all four entries.
The one-loop corrections to the quartic coupling of the

SM-like Higgs are controlled by the adjoint scalar masses,
the Dirac gaugino masses and the superpotential couplings
λu;da . Including the non-negative, tractable expression for
the loop piece of the Higgs quartic obtained via effective
potential techniques for ðMDÞ2 ≤ m2

adj in [16], the SM-like
Higgs mass is approximated in the large tan β limit by

m2
h≈M2

Z

−v2
� ðg1MD

B̃
þ ffiffiffi

2
p

λu
B̃
μuÞ2

4ðMD
B̃
Þ2þm2

adjþ2BB̃
þ ðg2MD

W̃
þλu

W̃
μuÞ2

4ðMD
W̃
Þ2þm2

adjþ2BW̃

�

þ2v2
�
5ðλW̃=

ffiffiffi
2

p Þ2þ2ðλW̃=
ffiffiffi
2

p Þ2λ2
B̃
þλ2

B̃

16π2

×log

�
m2

adj

ðMDÞ2
�
þðλW̃=

ffiffiffi
2

p Þ2λ2
B̃

16π2

�
þδm2

hjstops ðC3Þ

where MD and m2
adj are common gaugino and adjoint

masses. Regardless of the combined D- and F-breaking
origin of its soft mass, the stop one-loop correction to m2

h
is parametrically the same as for the MSSM,

δm2
hjstops ¼ 3 ·

y2t m2
t

4π2
log

m2
t̃

m2
t
: ðC4Þ

APPENDIX D: FINE-TUNING CONTRIBUTIONS

The leading contributions to Δv (the vev fine-tuning) are
listed below and are quoted from [16,42]

Δμ ≃
4μ2

m2
Z
; ðD1Þ

ΔW̃ ≃
���� 3ðλW̃=

ffiffiffi
2

p Þ2m2
adj

4π2m2
Z

L

����; ðD2Þ

ΔB̃ ≃
���� λ2B̃m2

adj

4π2m2
Z
L

����; ðD3Þ

ΔR ≃
���� ½λ2B̃ þ 3ðλW̃=

ffiffiffi
2

p Þ2�m2
R

16π2m2
Z

L

����; ðD4Þ

Δt̃ ≃
���� 3y2t m2

t̃

4π2m2
Z
L

����; ðD5Þ

where L≡ log ðΛmess=mt̃Þ. The Δi’s above receive small
Oðv2=m2

newÞ corrections where mnew stands for a combi-
nation of Dirac gaugino, soft adjoint masses, and
Badj-terms.
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