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We propose a new mechanism to produce a fermion mass hierarchy dynamically in a model with a single
generation of fermions. A five-dimensional gauge theory on an interval with point interactions (zero-width
branes) takes responsibility for realizing three generations and each massless zero mode localizes at
boundaries of the segments on the extra dimension. An extra dimension coordinate-dependent vacuum
expectation value of a scalar field makes large differences in overlap integrals of the localized zero modes
and then an exponential fermion mass hierarchy can appear. The positions of the point interactions control
the magnitude of the fermion mass hierarchy and are determined by the minimization condition of the
Casimir energy. As a result of the minimization of the Casimir energy, an exponential mass hierarchy
appears dynamically. We also discuss the stability of the extra dimension.
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I. INTRODUCTION

The standard model (SM), which provides an articulate
description of the nature around TeV energy scale, was
completed by the discovery of the Higgs boson [1,2].
However, the SM still contains several mysteries and prob-
lems, which cannot be solved within the context of the SM.
One is so-called the generation problem. The SM contains
three sets of quarks and leptons, which have the exact same
quantum numbers except for their Yukawa couplings. Three
generations were introduced to the Kobayashi-Maskawa
theory [3] by hand though the origin of the generations is
not unveiled. Another problem is on the fermion mass
hierarchy. Each generation of the quarks and the charged
leptons has exactly the same quantum numbers though their
masses have an exponential hierarchy around 105. In the SM,
the masses are generated by the Higgs mechanism and are
determined by the dimensionless Yukawa couplings; how-
ever, there is no explanation to the question of why so large a
hierarchy appears in the dimensionless parameters.

Because of the above circumstance, various theories
beyond the SM have been explored. One possibility in the
context of four-dimensional (4d) gauge theory is a
scenario with noncompact gauge symmetry, which can
naturally produce the fermion mass hierarchy and three
generations [4–8]. Another way is achieved by using extra
dimensions. Extra dimension models with magnetic flux
[9] can lead to both the fermion mass hierarchy and three
generations. Magnetized orbifold models [10–19] are also
fascinating to discuss within the fermion flavor structure
and several achievements have been investigated.1

However, some parameters of the models have to be
chosen suitably by hand to make a fermion mass hier-
archy. Moreover, in the case of extra dimension models,
arguments for the stability of the extra dimension have
mostly been postponed. Therefore, it is worth searching
the dynamical generation mechanism of the fermion mass
hierarchy and discussing the stability of the extra dimen-
sion, simultaneously.
In this paper, we propose a dynamical generation mecha-

nism for the fermion mass hierarchy in a model with a single
generation of fermions in five dimensions (5d). An interval
extra dimension with point interactions [25–28] takes the
responsibility to produce the generations.2 Point interactions
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1We can find another geometric way to produce the gener-
ations in Refs. [20–24] in which a topological structure of a
vortex on a sphere plays an important role.

2In 5d, to the best of our knowledge, the first proposal was
given by the first manuscript of the series of our works [26] with a
concrete example where multiple chiral zero modes are generated
from one five-dimensional fermion.
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also play an important role to discuss the fermion mass
hierarchy. In the previous model [25–28], the positions of the
point interactions, which affect the fermion mass hierarchy,
have been controlled by hand. On the other hand, in this
paper, the positions of the point interactions are determined
dynamically through the minimization of the Casimir energy
[29,30] (or say, Radion effective potential [31–34]). As a
result, a large mass hierarchy appears dynamically in our
model.3 We also discuss the stability of the extra dimension
from a Casimir energy point of view.
This paper is organized as follows. In Sec. II, we review

the 4d spectrum of a 5d Uð1Þ gauge theory on an interval
extra dimension. A general class of boundary conditions
(BCs), which is important to determine the 4d spectrum of
the fields and phase structure of the symmetries, is derived
for gauge, fermion, and scalar fields. Using the knowledge
of the general boundary conditions, we display the 4d
spectrum at low energies and the profiles of the mode
functions with respect to the extra dimension. In Sec. III,
we discuss the stability of the extra dimension. Evaluating
the contribution of each field, we investigate the extra
dimension length dependence of the total Casimir energy.
In Sec. IV, a theory with point interactions is reviewed and
the 4d mass spectrum at low energies and the profiles of the
mode functions are shown. In Sec. V, using all the results,
we construct an SUð2Þ × Uð1Þ model, which can lead to
the fermion mass hierarchy dynamically with a single
generation of fermions. The minimization of the Casimir
energy determines the positions of the point interactions,
which are important parameters to produce the fermion
mass hierarchy, and leads to the stability of the extra
dimension. After that, we find that a fermion mass
hierarchy is realized dynamically. Section VI is devoted
to the conclusion and discussion. In the Appendix we
provide a self-contained review on the formulation of wave
functions of a 5d fermion under the presence of one point
interaction in the bulk part of an interval.

II. 4D SPECTRUM OF A 5D Uð1Þ GAUGE
THEORY ON AN INTERVAL

In this section, we first summarize the results of
allowed boundary conditions, which are consistent with
the requirements from the action principle, the gauge
invariance, and 4d Lorentz invariance, for gauge, fermion,
and scalar fields on an interval. The boundary conditions
are crucially important to determine the 4d mass spectrum
at low energies and also the phase structure of symmetries
[25–28,38–48]. We then derive the 4d mass spectrum of
the gauge and fermion fields, which are necessary to
evaluate Casimir energies. We further show that the scalar
field can possess a coordinate-dependent vacuum expect-
ation value (VEV) on the extra dimension [25–28,38–40],

which is found to be a crucial ingredient of our dynamical
generation mechanism for generating a fermion mass
hierarchy.

A. Consistent BCs for the fields

In this subsection, we investigate the general class of
BCs for an Abelian gauge field, a fermion field, and a scalar
field on an interval, respectively.

1. BCs for Abelian gauge, ghost, and antighost fields

First, we start from the gauge field:

SG ¼
Z

d4x
Z

L

0

dy

�
−
1

4
FMNFMN −

1

2
ð∂μAμ þ ∂yAyÞ2

− ic̄ð∂μ∂μ þ ∂2
yÞc
�
; ð2:1Þ

where

FMN ¼ ∂MANðxμ; yÞ − ∂NAMðxμ; yÞ;
ðM;N ¼ 0; 1; 2; 3; yÞ: ð2:2Þ

xμ (μ ¼ 0, 1, 2, 3) denotes the four-dimensionalMinkowski-
spacetime coordinate and y is the coordinate of the extra
dimension with 0 ≤ y ≤ L. Our choice of the 5d metric is
ηMN ¼ digð−1; 1; 1; 1; 1Þ.We introduced the second term as
a gauge fixing term and the third term as a kinetic term of
ghost fields. Thegeneral class of boundary conditions for the
gauge field is obtained from the action principle:

δSG ¼ 0: ð2:3Þ

We obtain the bulk field equation for AM, together with the
following surface term from the first term of the action after
taking the variation:

ð∂μAy − ∂yAμÞδAμ ¼ 0; at y ¼ 0; L: ð2:4Þ

Since the boundary condition Aμ ¼ 0 at y ¼ 0, L breaks 4d
gauge symmetry explicitly, the general class of boundary
conditions consistent with the 4d gauge invariance is given
by the following:

� ∂yAμ ¼ 0;

Ay ¼ 0;
at y ¼ 0; L: ð2:5Þ

TheBecchi-Rouet-Stora-Tyutin (BRST) transformation leads
us to BCs for the ghost field. The Abelian gauge fieldAM and
the ghost field c have a relation with each other through the
Grassmann-odd BRST transformation δB:

δBAM ¼ ∂Mc: ð2:6Þ
3See [35] (also [36,37]) for generating Yukawa hierarchies

through multiple dynamical scales.

FUJIMOTO, MIURA, NISHIWAKI, and SAKAMOTO PHYS. REV. D 97, 115039 (2018)

115039-2



This fact implies that ∂yc (c) should obey the same
boundary conditions as Ay (Aμ). Thus we obtain the BCs
for the ghost as

∂yc ¼ 0 at y ¼ 0; L: ð2:7Þ

The boundary condition for the antighost field c̄ can be
derived from the action principle for the third term of
the action. The variation for the third term produces the
following surface term:

c∂yðδcÞ − ð∂ycÞδc ¼ 0 at y ¼ 0; L: ð2:8Þ

Since cðx; yÞ obeys the boundary conditions (2.7), the
following boundary condition should be imposed for the
antighost field c̄:

∂yc ¼ 0 at y ¼ 0; L: ð2:9Þ

2. BCs for fermion

Next, we consider the BCs for the fermion with adding
the following action to Eq. (2.1):

SF ¼
Z

d4x
Z

L

0

dyΨðiΓMDM þMFÞΨ; ð2:10Þ

where

DMΨ ¼ ð∂M − ieAMÞΨ; ð2:11Þ

and Ψ is a 5d 4-component Dirac spinor.MF is a bulk mass
of the fermion and we take the gamma matrix ΓM as

Γμ ¼ γμ; ð2:12Þ

Γy ¼ −iγ5 ¼ γ0γ1γ2γ3: ð2:13Þ

From the action principle δSF ¼ 0, we obtain the following
condition for the surface term:

Ψ̄γ5δΨ ¼ 0; at y ¼ 0; L; ð2:14Þ

with the 5d Dirac equation,

iγμDμΨþ ðγ5Dy þMFÞΨ ¼ 0: ð2:15Þ

In terms of the chiral spinors ΨR=L (Ψ ¼ ΨR þΨL), which
are defined as γ5ΨR=L ¼ �ΨR=L, we can rewrite the above
equations as

ΨLδΨR −ΨRδΨL ¼ 0; at y ¼ 0; L; ð2:16Þ

iγμDμΨR þ ð−Dy þMFÞΨL ¼ 0; ð2:17Þ

iγμDμΨL þ ðDy þMFÞΨR ¼ 0: ð2:18Þ

Since boundary conditions which consist of a linear
combination ofΨR andΨL break the 4d Lorentz invariance,
the condition (2.16) should be reduced to the form

Ψ̄LδΨR ¼ 0 ¼ Ψ̄RδΨL; ð2:19Þ

which leads to the BCs:

ΨR ¼ 0 or ΨL ¼ 0. at y ¼ 0; L: ð2:20Þ

We should note that under the BC ΨR ¼ 0 (ΨL ¼ 0) at
boundaries, the 5d Dirac equation automatically determines
the BC for ΨL (ΨR) as

ΨR ¼ 0 → ð−Dy þMFÞΨL ¼ 0; ð2:21Þ

ΨL ¼ 0 → ðDy þMFÞΨR ¼ 0: ð2:22Þ

Thus we have the following four choices for the fermion
BCs [25–28]:

type-ðIÞ∶ΨRð0Þ ¼ 0 ¼ ΨRðLÞ;
type-ðIIÞ∶ΨLð0Þ ¼ 0 ¼ ΨLðLÞ;
type-ðIIIÞ∶ΨRð0Þ ¼ 0 ¼ ΨLðLÞ;
type-ðIVÞ∶ΨLð0Þ ¼ 0 ¼ ΨRðLÞ: ð2:23Þ

3. BCs for scalar field

Finally, we consider the general class of boundary
conditions for a scalar field:

SΦ ¼
Z

d4x
Z

L

0

dy

�
Φ�ðDMDM −M2ÞΦ −

λ

2
ðΦ�ΦÞ2

�
;

ð2:24Þ

where

DMΦ ¼ ð∂M − ie0AMÞΦ; ð2:25Þ

and Φðx; yÞ denotes a 5d complex scalar field. As in the
previous cases, we obtain the surface term from the action
principle δSΦ ¼ 0:

Φ�DyδΦ − ðDyΦÞ�δΦ ¼ 0; at y ¼ 0; L: ð2:26Þ

Under the infinitesimal special variation δΦ ¼ εΦ, we can
rewrite the above surface term as

jΦ − iL0DyΦj2 ¼ jΦþ iL0DyΦj2 at y ¼ 0; L; ð2:27Þ

where L0 is an arbitral nonzero real constant, which
possesses mass dimension −1. The above equation implies
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that Φ − iL0DyΦ and Φþ iL0DyΦ have a difference only
up to a phase at the boundaries:

Φ − iL0ðDyΦÞ ¼ eiθ0ðΦþ iL0DyΦÞ at y ¼ 0; ð2:28Þ

Φ − iL0ðDyΦÞ ¼ eiθLðΦþ iL0DyΦÞ at y ¼ L: ð2:29Þ

With Lþ ≡ L0 cot
θ0
2
and L− ≡ −L0 cot

θL
2
, we obtain the

general class of BCs for the scalar field [25–28],
�Φð0Þ þ LþDyΦð0Þ ¼ 0;

ΦðLÞ − L−DyΦðLÞ ¼ 0;
ð−∞ ≤ L� ≤ þ∞Þ: ð2:30Þ

These boundary conditions are known as the Robin boun-
dary condition. Note that the derived Robin boundary
condition satisfies the condition (2.26) under the assumption
that Φ and δΦ satisfy the same boundary condition.
We should emphasize that all derived boundary con-

ditions (2.5), (2.7), (2.9), (2.23), (2.30) are consistent with
the 5d gauge invariance.

B. 4d spectrum

In the previous subsection, we investigated the general
class of BCs for each field. Now, we derive the 4d spectrum
of the gauge field and the fermion field under the derived
boundary conditions, respectively. For the scalar field, we
only investigate the vacuum expectation value for our
purpose.

1. 4d spectrum of Abelian gauge, ghost,
and antighost fields

First, we start from the Abelian gauge, the ghost, and the
antighost fields. The action and the boundary conditions are
given by Eq. (2.1) and Eqs. (2.5), (2.7), (2.9). The action SG
can be rewritten as

SG ¼
Z

d4x
Z

L

0

dy

�
1

2
Aμð∂ν∂ν þ ∂2

yÞAμ

þ 1

2
Ayð∂μ∂μ þ ∂2

yÞAy − ic̄ð∂μ∂μ þ ∂2
yÞc
�
: ð2:31Þ

To obtain the 4d spectrum, we expand the fields as follows:

Aμðx; yÞ ¼
X
n

AðnÞ
μ ðxÞfnðyÞ; ð2:32Þ

Ayðx; yÞ ¼
X
n

AðnÞ
y ðxÞgnðyÞ; ð2:33Þ

cðx; yÞ ¼
X
n

cðnÞðxÞΞnðyÞ; ð2:34Þ

c̄ðx; yÞ ¼
X
n

c̄ðnÞðxÞΞnðyÞ; ð2:35Þ

where ffnðyÞg ðfgnðyÞgÞ are eigenfunctions of the
Hermitian operator D†D (DD†):

�
D†DfnðyÞ ¼ m2

nfnðyÞ;
DD†gnðyÞ ¼ m2

ngnðyÞ;
ð2:36Þ

and we defined D and D† as

D≡ ∂y; ð2:37Þ

D† ≡ −∂y: ð2:38Þ

fΞnðyÞg are eigenfunctions of the Hermitian operator
ð−∂2

yÞ,

−∂2
yΞnðyÞ ¼ m2

nΞnðyÞ: ð2:39Þ

Note that ffng, fgng, and fΞng form complete sets,
respectively, and can obey the orthonormal relations:Z

L

0

dyf�nðyÞfmðyÞ ¼ δn;m; ð2:40Þ
Z

L

0

dyg�nðyÞgmðyÞ ¼ δn;m; ð2:41Þ
Z

L

0

dyΞ�
nðyÞΞmðyÞ ¼ δn;m: ð2:42Þ

Furthermore, ffng and fgng satisfy the quantum-mechani-
cal supersymmetry (QM-SUSY) relations [46–51],

�
DfnðyÞ ¼ mngnðyÞ;
D†gnðyÞ ¼ mnfnðyÞ:

ð2:43Þ

Under the BCs (2.5), (2.7), (2.9), we can derive the explicit
forms of ffng, fgng, and fΞng with the mass eigenvalue
mn as

f0 ¼
ffiffiffi
1
L

q
;

fn ¼
ffiffiffi
2
L

q
cos ðnπL yÞ; ðn ¼ 1; 2; 3; � � �Þ;

gn ¼ −
ffiffiffi
2
L

q
sin ðnπL yÞ; ðn ¼ 1; 2; 3; � � �Þ;

Ξ0 ¼
ffiffiffi
1
L

q
;

Ξn ¼
ffiffiffi
2
L

q
cos ðnπL yÞ; ðn ¼ 1; 2; 3; � � �Þ;

mn ¼ nπ
L ; ðn ¼ 0; 1; 2; � � �Þ:

ð2:44Þ

Substituting the above expansions into the action (2.31) and
executing the integration with respect to the extra dimen-
sion, we obtain the following reduced action:
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SG ¼
Z

d4x
�
1

2
Að0Þ
μ ημνð∂α∂αÞAð0Þ

ν þ
X∞
n¼1

1

2
AðnÞ
μ ημνð∂α∂α −m2

nÞAðnÞ
ν þ

X∞
n¼1

1

2
AðnÞ
y ð∂α∂α −m2

nÞAðnÞ
y

− ic̄ð0Þð∂α∂αÞcð0Þ − i
X∞
n¼1

c̄ðnÞð∂α∂α −m2
nÞcðnÞ

�
: ð2:45Þ

A schematic figure of the 4d spectrum is depicted in Fig. 1.

2. 4d spectrum of fermion

Second, we investigate the 4d spectrum of the fermion on
an interval. The action and BCs are given by Eqs. (2.10)
and (2.23). To evaluate the 4d spectrum of the fermion, we
expand the fermion as

Ψðx; yÞ ¼ ΨRðx; yÞ þ ΨLðx; yÞ
¼
X
n

ψ ðnÞ
R ðxÞF ðnÞ

ψR ðyÞ þ
X
n

ψ ðnÞ
L ðxÞGðnÞ

ψL ðyÞ;

ð2:46Þ

where fF ðnÞ
ψR g (fGðnÞ

ψL g) are eigenfunctions of the Hermitian
operator D†D (DD†):

(
D†DF ðnÞ

ψR ðyÞ ¼ m2
ψ ðnÞF

ðnÞ
ψR ðyÞ;

DD†GðnÞ
ψL ðyÞ ¼ m2

ψ ðnÞG
ðnÞ
ψL ðyÞ;

ð2:47Þ

and form complete sets. In the above, the operators D and
D† are defined as

D≡ ∂y þMF; ð2:48Þ

D† ≡ −∂y þMF: ð2:49Þ

Furthermore, fF ðnÞ
ψR g and fGðnÞ

ψL g satisfy the QM-SUSY
relations:

(
DF ðnÞ

ψR ðyÞ ¼ mψ ðnÞGðnÞ
ψL ðyÞ;

D†GðnÞ
ψL ðyÞ ¼ mψ ðnÞF ðnÞ

ψR ðyÞ:
ð2:50Þ

We can obtain the explicit forms of the wavefunctions after
we solve the eigenvalue equations (2.47) while taking into
account the BCs (2.23). However, we here concentrate on
the existence of a chiral massless zero mode and the form of
its wavefunction. Zero-mode solutions are obtained from
the QM-SUSY relations (2.50) with mψ ð0Þ ¼ 0:

DF ð0Þ
ψR ¼ 0; ð2:51Þ

D†Gð0Þ
ψL ¼ 0: ð2:52Þ

The solutions of the above equations would be given as
follows:

F ð0Þ
ψR ðyÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MF

1 − e−2MFL

r
e−MFy; ð2:53Þ

Gð0Þ
ψL ðyÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MF

e2MFL − 1

r
eMFy: ð2:54Þ

Schematic figures of the zero-mode solutions are depicted

in Fig. 2. The zero-mode solution F ð0Þ
ψR (Gð0Þ

ψL ) localizes to
the boundary y ¼ 0 (y ¼ L) in the case of MF > 0 and
localizes to y ¼ L (y ¼ 0) in the case ofMF < 0. It should
be emphasized that the zero-mode solutions (2.53) [(2.54)]
are consistent only with the type-(II) [type-(I)] BC given in
(2.23) because of (2.21) and (2.22), respectively. Therefore
we will concentrate on the type-(I) and type-(II) BCs in the
following. The mass spectrum of both type-(I) and type-(II)
is given by

mψ ð0Þ ¼ 0; ð2:55Þ

mψ ðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
nπ
L

�
2

þM2
F

s
; ðn ¼ 1; 2; 3; � � �Þ: ð2:56Þ

Inserting the mode expansions into the action and using the
orthonormal relations of the mode functions, we have

FIG. 1. A schematic figure of the 4d spectrum of the Abelian
gauge field with ghosts on an interval. Each black oval pair
indicates a QM-SUSY pair to make a mass term.
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SF ¼
Z

d4x

�
Lm¼0 þ

X∞
n¼1

ψ ðnÞðxÞðiγμ∂μ þmnÞψ ðnÞðxÞ
�
;

ð2:57Þ

where

Lm¼0 ¼
8<
:ψ ð0Þ

L ðxÞðiγμ∂μÞψ ð0Þ
L ðxÞ; for type-ðIÞ;

ψ ð0Þ
R ðxÞðiγμ∂μÞψ ð0Þ

R ðxÞ; for type-ðIIÞ;
ð2:58Þ

and ψ ðnÞ ¼ ψ ðnÞ
R þ ψ ðnÞ

L . A typical spectrum of the fermion
is depicted in Fig. 3. A chiral massless zero mode exists in
the case of both type-(I) and type-(II).

3. Vacuum expectation value of the scalar

Finally, we comment on the vacuum expectation value of
the scalar field. The action and the BCs are given by
Eqs. (2.24) and (2.30). It was found in Refs. [25,26] that
under the Robin boundary condition (2.30), Φðx; yÞ can
possess a nonvanishing vacuum expectation value
hΦðx; yÞi ¼ ϕðyÞ with the form

ϕðyÞ ¼
Mffiffi
λ

p ð ffiffiffiffiffiffiffiffiffiffiffiffi
1þ X

p
− 1Þ12

cn
h
Mð1þ XÞ14ðy − y0Þ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ð1þ 1ffiffiffiffiffiffiffi

1þX
p

q
Þ
i ; ð2:59Þ

with

X ¼ 4λjQj
M4

: ð2:60Þ

cnðy; aÞ is the Jacobi’s elliptic function, and y0, Q are
constants which are determined by the parameters L� of the
Robin BCs. Choosing suitable values of L�, we can
approximately take the form of the scalar VEV ϕðyÞ as

ϕðyÞ ∼AeMy; ð2:61Þ

where A is a constant with mass dimension 3
2
.

III. CASIMIR ENERGY AND STABILITY
OF THE EXTRA DIMENSION

In the previous section, we succeeded in obtaining the 4d
spectrum of the fields with the specified BCs. Taking the
result into account, we evaluate the Casimir energy E½L� as
a function of the length L of the extra dimension and show
that the minimization of the Casimir energy provides a
mechanism to stabilize the extra dimension.
For our purpose, we only concentrate on the gauge and

fermion field contributions to the Casimir energy while
ignoring the effect of the scalar field in this paper. We
summarize the action and the BCs which we consider,

S ¼ SG þ SF; ð3:1Þ

(a)

(b)

FIG. 2. Schematic figures of chiral massless fermion zero mode
solutions.

Type-(I) case Type-(II) case

FIG. 3. A typical mass spectrum of the fermion on an interval.
Each black oval pair indicates a QM-SUSY pair to make a
mass term.
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SG ¼
Z

d4x
Z

L

0

dy

�
−
1

4
FMNFMN −

1

2
ð∂μAμ þ ∂yAyÞ2

− ic̄ð∂μ∂μ þ ∂2
yÞc
�
; ð3:2Þ

SF ¼
Z

d4x
Z

L

0

dyΨ̄ðiΓμ∂μ þ iΓy∂y þMFÞΨ; ð3:3Þ

� ∂yAμ ¼ 0;

Ay ¼ 0;
at y ¼ 0; L; ð3:4Þ

∂yc ¼ 0 ¼ ∂yc̄ at y ¼ 0; L; ð3:5Þ

type-ðIÞ∶ΨRð0Þ ¼ 0 ¼ ΨRðLÞ;
type-ðIIÞ∶ΨLð0Þ ¼ 0 ¼ ΨLðLÞ: ð3:6Þ

We focus on the situation in which a chiral massless zero
mode exists. As an example, we consider the type-(II) BC
first. To evaluate the Casimir energy, we examine the
partition function Z½L�.

Z½L� ¼
Z

½dAμdAydΨdΨ̄dcdc̄�eiS: ð3:7Þ

The gauge field part of the partition function reads

ZG½L� ¼
Z

½dAμdAydcdc̄�eiSG ð3:8Þ

∝ exp

�
i
Z

d4x

�
i
Z

d4p
ð2πÞ4

�
lnpμpμ

þ 3

2

X∞
n¼1

lnðpμpμ þm2
nÞ
���

: ð3:9Þ

After moving to the Euclidian space, we obtain the Casimir
energy of the gauge field:

ZEuclid
G ½L� ∝ exp

�
−EUð1Þ½L�

Z
d4xE

�
; ð3:10Þ

where

EUð1Þ½L� ¼
Z

d4pE

ð2πÞ4
�
lnp2

E þ
3

2

X∞
n¼1

lnðp2
E þm2

nÞ
�

¼
Z

d4pE

ð2πÞ4
�
1

4
lnp2

E þ
3

4

X∞
n¼−∞

ln

�
p2
E þ

�
nπ
L

�
2
��

:

ð3:11Þ

and p2
E ¼ ðp0

EÞ2 þ ðp1
EÞ2 þ ðp2

EÞ2 þ ðp3
EÞ2. For further

concrete discussions, we divide EUð1Þ½L� into two parts:

EUð1Þ½L� ¼ EUð1Þ
part1½L� þ EUð1Þ

part2½L�; ð3:12Þ

EUð1Þ
part1½L� ¼

Z
d4pE

ð2πÞ4
1

4
lnp2

E; ð3:13Þ

EUð1Þ
part2½L� ¼

Z
d4pE

ð2πÞ4
3

4

X∞
n¼−∞

ln

�
p2
E þ

�
nπ
L

�
2
�

ð3:14Þ

Now we find that EUð1Þ
part1½L� has no L dependence. Our

interest is only in the L dependence of the Casimir energy
EUð1Þ½L� so that we simply ignore this part. We emphasize
that this part actually does not affect any results of the L
dependence of the Casimir energy EUð1Þ½L�. On the other

hand, EUð1Þ
part2½L� has an L dependence and plays a crucial role

when we discuss the L dependence of the total Casimir
energy. By using the formulas

− lnA ¼ d
ds

A−s
				
s¼0

; ð3:15Þ

A−s ¼ 1

ΓðsÞ
Z

∞

0

dtts−1e−At; ð3:16Þ

d
ds

ts

ΓðsÞ
				
s¼0

¼ 1; ð3:17Þ

with the Gamma function ΓðsÞ ¼ R∞0 dtts−1e−t, we can

rewrite EUð1Þ
part2½L� as

EUð1Þ
part2½L� ¼ −

3

4
·

1

16π2
X∞
n¼−∞

Z
∞

0

dtt−3e−ðnπL Þ2t: ð3:18Þ

The Poisson summation formula

X∞
n¼−∞

e−ðnπL Þ2t ¼
X∞
w¼−∞

Lffiffiffiffiffi
πt

p e−
w2L2

t ð3:19Þ

will help us to move on. Here, the index w is an integer
which represents the winding number. By utilizing the
Poisson summation formula, we obtain

EUð1Þ
part2½L� ¼ −

3L

64π5=2

X∞
w¼−∞

Z
∞

0

dtt−
7
2e−

w2L2
t ; ð3:20Þ

and find that EUð1Þ
part2½L� contains a UV divergence when

t → 0. To remove this UV divergence, we define the
regularized total Casimir energy as

1

L
EUð1Þ
part2½L�reg ≡ 1

L
EUð1Þ
part2½L� −

1

L
EUð1Þ
part2½L�

				
L→∞

: ð3:21Þ
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We note that this regularization is equivalent simply to
removing the w ¼ 0 mode from the Casimir energy. The
w ≠ 0 modes express winding modes and provide finite
contributions to the L dependence of the Casimir energy.
On the other hand, w ¼ 0 corresponds to an unwinding
mode and it causes a UV divergence. Since the regularized

Casimir energy EUð1Þ
part2½L�reg does not contain any unwinding

mode, it has no UV divergence and becomes finite. The

explicit form of EUð1Þ
part2½L� is

EUð1Þ
part2½L�reg ¼ −

3L

32π5=2

X∞
w¼1

Z
∞

0

dtt−
7
2e−

w2L2
t

¼ −
3L

32π5=2

X∞
w¼1

1

w5L5

Z
∞

0

dt0t052−1e−t0

¼ −
9

128π2L4
ζð5Þ; ð3:22Þ

where we performed the integration by substitution t0 ≡
w2L2

t and used Γð5
2
Þ ¼ 3

ffiffi
π

p
4
. From the above analysis, we

obtain the regularized Casimir energy EUð1Þ½L�reg of the
gauge field:

EUð1Þ½L�reg ¼ −
9

128π2L4
ζð5Þ: ð3:23Þ

In the same way, we next evaluate the Casimir energy of
the fermion with the type-(II) boundary condition. [It is
found that the type-(I) boundary condition leads to the same
conclusion as the type-(II) for the Casimir energy.] To move
on, we introduce the chiral representation:

ψ ðnÞ ¼
�
ξðnÞ

0

�
þ
�

0

ηðnÞ

�
: ð3:24Þ

The Gamma matrices are represented by

γμ ¼
�

0 σ̄μ

σμ 0

�
; ð3:25Þ

where

σ̄μ ¼ ð1; σÞ; ð3:26Þ

σμ ¼ ð1;−σÞ; ð3:27Þ

and σ are Pauli matrices. The partition function of the
fermion reads

ZF½MF; L� ¼
Z

½dΨdΨ̄�eiSF

∝ exp

�
i
Z

d4x

�
−i
Z

d4p
ð2πÞ4

�
lnpμpμ

þ 2
X∞
n¼1

lnðpμpμ þm2
ψ ðnÞ Þ

���
; ð3:28Þ

where the overall minus sign originates in the Grassmann
property of fermions. After moving to the Euclidian space,
we obtain the Casimir energy of the fermion:

ZEuclid
F ½MF; L� ∝ exp

�
−EðFÞ½MF; L�

Z
d4xE

�
; ð3:29Þ

where

EðFÞ½MF; L� ¼ −
Z

d4pE

ð2πÞ4
�
lnp2

E þ 2
X∞
n¼1

lnðp2
E þm2

ψ ðnÞ Þ
�

¼ −
Z

d4pE

ð2πÞ4
�
lnp2

E − lnðp2
E þM2

FÞ

þ
X∞
n¼−∞

ln

�
p2
E þ

�
nπ
L

�
2

þM2
F

��
:

ð3:30Þ

We divide EðFÞ½MF; L� into two parts as is the case of the
gauge field:

EðFÞ½MF; L� ¼ EðFÞ
part1½MF; L� þ EðFÞ

part2½MF; L�; ð3:31Þ

EðFÞ
part1½MF; L� ¼ −

Z
d4pE

ð2πÞ4 ½lnp
2
E − lnðp2

E þM2
FÞ�;

ð3:32Þ

EðFÞ
part2½MF; L� ¼ −

Z
d4pE

ð2πÞ4
X∞
n¼−∞

ln

�
p2
E þ

�
nπ
L

�
2

þM2
F

�
:

ð3:33Þ

In the same way as the gauge field, EðFÞ
part1½MF; L� does not

contain any L dependence. Since we have an interest in the
L dependence of the Casimir energy, we just ignore this

part. EðFÞ
part2½MF; L� can be also evaluated as the gauge field

case. Using the formulas (3.15)–(3.17), we can rewrite

EðFÞ
part2½MF; L� as

EðFÞ
part2½MF; L� ¼

1

16π2
X∞
n¼−∞

Z
∞

0

dtt−3e−fðnπL Þ2þM2
Fgt:

ð3:34Þ
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By using the Poisson summation formula (3.19), we obtain

the following form for EðFÞ
part2½MF;L�:

EðFÞ
part2½MF;L� ¼

L

16π5=2

X∞
w¼−∞

Z
∞

0

dtt−
7
2e−

w2L2
t −M2

Ft: ð3:35Þ

Since EðFÞ
part2½MF; L� contains UV divergence when t → 0,

we regularize it as

1

L
EðFÞ
part2½MF;L�reg ≡ 1

L
EðFÞ
part2½MF;L�−

1

L
EðFÞ
part2½MF;L�

			
L→∞

:

ð3:36Þ

The regularized Casimir energy EðFÞ
part2½MF; L�reg is expressed

by the modified Bessel function KνðzÞ as

EðFÞ
part2½MF; L�reg ¼

L

4π5=2

X∞
w¼1

�jMFj
wL

�5
2

K5
2
ð2wjMFjLÞ;

ð3:37Þ

where the modified Bessel function is defined by

2

�
A
B

�ν
2

Kνð2
ffiffiffiffiffiffiffi
AB

p
Þ ¼

Z
∞

0

dtt−ν−1e−At−
B
t : ð3:38Þ

Moreover, the modified Bessel function KD
2
ðzÞ with D ¼

odd integer can be expressed as

KD
2
ðzÞ ¼

ffiffiffiffiffi
π

2z

r
e−z
XD−1

2

k¼0



D−1
2

þ k
�
!

k!ðD−1
2

− kÞ!ð2zÞk : ð3:39Þ

Therefore the explicit form of EðFÞ
part2½MF; L�reg is given by

EðFÞ
part2½MF; L�reg ¼

jMFj2
8π2L2

X∞
w¼1

e−2wjMFjL

w3

×

�
1þ 3

2wjMFjL
þ 3

4w2ðjMFjLÞ2
�
:

ð3:40Þ

From the analysis, we obtain the L dependence of the
regularized total Casimir energy EðFÞ½MF; L�reg of the
fermion as

EðFÞ½MF; L�reg ¼
jMFj2
8π2L2

X∞
w¼1

e−2wjMF jL

w3

×

�
1þ 3

2wjMFjL
þ 3

4w2ðjMFjLÞ2
�
:

ð3:41Þ
Schematic figures of the regularized Casimir energy of the
fermion EðFÞ½MF; L�reg and its derivative d

dL E
ðFÞ½MF; L�reg

are depicted in Figs. 4 and 5.
Combining all the results and concentrating on the L

dependence of the Casimir energy, we obtain the regular-
ized Casimir energy E½MF; L�reg as

1 2 3 4
L

0.0001

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006
E F MF ,L reg.

FIG. 4. A schematic figure of the L dependence of the Casimir
energy EðFÞ½MF; L�reg The blue, cyan, green, and red lines
correspond to the cases of MF ¼ 3.5, MF ¼ 2, MF ¼ 1.1, and
MF ¼ 0.4, respectively. In this plot, MF and L should be
regarded as dimensionless parameters by multiplying a funda-
mental scale of the theory.

1 2 3 4
L

0.0010

0.0008

0.0006

0.0004

0.0002

d

dL
E F MF ,L reg.

FIG. 5. Schematic figure of the L dependence of the derivative
of the Casimir energy d

dL E
ðFÞ½MF;L�reg The blue, cyan, green,

and red lines correspond to the cases of MF ¼ 3.5, MF ¼ 2,
MF ¼ 1.1, and MF ¼ 0.4, respectively. In this plot, MF and L
should be regarded as dimensionless parameters by multiplying a
fundamental scale of the theory.
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E½MF; L�reg ¼ EUð1Þ½L�reg þ EðFÞ½MF; L�reg

¼ −
9

128π2L4
ζð5Þ þ jMFj2

8π2L2

X∞
w¼1

e−2wjMFjL

w3

×

�
1þ 3

2wjMFjL
þ 3

4w2ðjMFjLÞ2
�
:

ð3:42Þ
Schematic figures of the total Casimir energy E½MF; L�reg
and its derivative d

dL E½MF;L�reg are depicted in Figs. 6 and
7. We can find that there exists a nontrivial global minimum
to the Casimir energy. Thus we can conclude that the extra
dimension is stable in this setup.
We should give a comment for the above results. It was

discussed in Ref. [29] that, in the case of MF ¼ 0, the L
dependence of EðFÞ½MF; L�reg becomes

EðFÞ½MF; L�reg ∼
α

L4
ðα∶constÞ; ð3:43Þ

so that the finite global minimum does not appear in the
Casimir energy. In the case of MF ≠ 0, the fermion’s
positive contribution to the Casimir energy becomes dom-
inant for L → 0 because the fermion has more degrees of
freedom than the gauge field. On the other hand, the negative
contribution of the gauge field becomes dominant for
L → ∞ since the contribution of the fermion is suppressed
by the exponential factor via the bulk mass. Therefore, we
have revisited that the extra dimension can be stabilized if the

following two conditions, which were pointed out in
Ref. [29], are satisfied: (i) 5d massless gauge bosons exist
and all 5d fermions have nonzero bulk masses; and (ii) the
degrees of freedom of fermions are sufficiently larger than
those of bosons. In our interval extra dimension case, in
contrast with orbifold models, a bulk mass MF is not
forbidden from any symmetry and should be involved so
that the finite global minimum of the Casimir energy can
emerge.

IV. THEORY WITH POINT INTERACTIONS

In the papers [26–28,52], a new way to produce gen-
erations and a mass hierarchy was proposed with intro-
ducing zero-width branes, so-called point interactions, to
the extra dimension. In this section, we briefly review a
theory with point interactions at first. In the theory,
massless zero modes become degenerate and a nontrivial
number of generations appears from a one-generation 5d
fermion (where a self-contained comprehensive review on
the formulation is provided in the Appendix). In this
section, we clarify the 4d mass spectrum of the theory
with point interactions, which plays an important role in the
calculation of the Casimir energy.

A. BCs and 4d mass spectrum

In a theory with point interactions, we can recognize the
point interactions as extra boundary points and need to
impose extra boundary conditions at the points. Assuming
that only the fermion feels the point interactions at y ¼ L1,

0.5 1.0 1.5 2.0
L

0.015

0.010

0.005

0.005

E MF ,L reg.

FIG. 6. Schematic figure of the total Casimir energy
E½MF; L�reg as a function of the length L of the extra dimension.
The blue, cyan, green, and red lines correspond to the cases of
MF ¼ 1.7, MF ¼ 1.5, MF ¼ 1.3, and MF ¼ 1, respectively. In
this plot, MF and L should be regarded as dimensionless
parameters by multiplying a fundamental scale of the theory.
We can find a nontrivial global minimum and can conclude that
the extra dimension is stable.

0.2 0.4 0.6 0.8 1.0 1.2
L

0.02

0.01

0.01

0.02

0.03

d

dL
E MF ,L reg.

FIG. 7. Schematic figure of the derivative of the total Casimir
energy d

dL E½MF; L�reg as a function of the length L of the extra
dimension. The blue, cyan, green, and red lines correspond to the
cases of MF ¼ 1.7, MF ¼ 1.5, MF ¼ 1.3, and MF ¼ 1, respec-
tively. In this plot,MF and L should be regarded as dimensionless
parameters by multiplying a fundamental scale of the theory. We
can find a nontrivial global minimum.
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L2, we can obtain three-generation chiral massless zero
modes from the following BCs:

ΨRðyÞ ¼ 0 at y ¼ 0; L1 � ε; L2 � ε; L; ð4:1Þ

or

ΨLðyÞ ¼ 0 at y ¼ 0; L1 � ε; L2 � ε; L; ð4:2Þ

where ε represents an infinitesimal positive constant. We
should emphasize that the above BCs are consistent with
the 5d gauge invariance since they are invariant under the
5d gauge transformation:

ΨRðx; yÞ → Ψ̃Rðx; yÞ ¼ e−igΛðx;yÞΨRðx; yÞ; ð4:3Þ

ΨLðx; yÞ → Ψ̃Lðx; yÞ ¼ e−igΛðx;yÞΨLðx; yÞ: ð4:4Þ

We expand a 5d fermion Ψðx; yÞ with the BCs (4.1)
or (4.2):

Ψðx; yÞ ¼ ΨRðx; yÞ þ ΨLðx; yÞ ¼
X
n

ψ ðnÞ
R ðxÞF ðnÞ

ψR ðyÞ

þ
X
n

ψ ðnÞ
L ðxÞGðnÞ

ψL ðyÞ: ð4:5Þ

It was found in Refs. [26–28] that we have three degenerate
zero modes Gð0Þ

i;ψL
ðyÞwith i ¼ 1, 2, 3 ðF ð0Þ

i;ψR
with i ¼ 1;

2; 3Þ under the BC (4.1) [the BC (4.2)] and can obtain three

degenerate massless chiral fermions ψ ð0Þ
i;LðxÞ [ψ ð0Þ

i;RðxÞ]:

Ψðx; yÞ ¼ Ψ0ðx; yÞ þ
X∞
n¼1

X3
i¼1

fψ ðnÞ
i;RðxÞF ðnÞ

i;ψR
ðyÞ þ ψ ðnÞ

i;LðxÞGðnÞ
i;ψL

ðyÞg; ð4:6Þ

Ψ0ðx; yÞ ¼
(P

3
i¼1 ψ

ð0Þ
i;LðxÞGð0Þ

i;ψL
ðyÞ; for ΨRðyÞ ¼ 0 at y ¼ 0; L1 � ε; L2 � ε; L;P

3
i¼1 ψ

ðnÞ
i;RðxÞF ð0Þ

i;ψR
ðyÞ; for ΨLðyÞ ¼ 0 at y ¼ 0; L1 � ε; L2 � ε; L;

ð4:7Þ

where Gð0Þ
i;ψL

ðyÞ [ðF ð0Þ
i;ψR

ðyÞ] is a solution of Eq. (2.52) [Eq. (2.51)] under the BC (4.1) with Eq. (2.21) [the BC (4.2) with

Eq. (2.22)]. The explicit forms of Gð0Þ
i;ψL

ðyÞ and F ð0Þ
i;ψR

ðyÞ are given by

Gð0Þ
i;ψL

ðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2MF

e2MFli − 1

r
eMFðy−Li−1Þ½θðy − Li−1ÞθðLi − yÞ� ð4:8Þ

F ð0Þ
i;ψR

ðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2MF

1 − e−2MFli

r
e−MFðy−Li−1Þ½θðy − Li−1ÞθðLi − yÞ� ð4:9Þ

where

li ≡ Li − Li−1 ði ¼ 1; 2; 3; L3 ¼ L; L0 ¼ 0Þ; ð4:10Þ

and θðyÞ is the step function. Schematic figures of the

localized zero modes Gð0Þ
i;ψL

ðyÞ and F ð0Þ
i;ψR

ðyÞ are depicted in
Figs. 8 and 9. Each zero mode only lives in a segment and
localizes to a boundary.
After substituting Eq. (4.6) into the action (2.10) and

using the orthonormal relations

Z
L

0

dyðF ðnÞ
i;ψR

ðyÞÞ�F ðmÞ
j;ψR

ðyÞ ¼ δn;mδi;j; ð4:11Þ

Z
L

0

dyðGðnÞ
i;ψL

ðyÞÞ�GðmÞ
j;ψL

ðyÞ ¼ δn;mδi;j; ði; j ¼ 1; 2; 3Þ

ð4:12Þ

we obtain the 4d spectrum of the fermion,

FIG. 8. Schematic figures of localized zero modes Gð0Þ
i;ψL

ðyÞ
(i ¼ 1, 2, 3) withMF > 0. Each zero mode of Gð0Þ

i;ψL
ðyÞ only has a

nonvanishing value within the segment Li−1 < y < Li and local-
izes to a boundary.
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SF ¼
Z

d4x

�
Ln¼0 þ

X∞
n¼1

X3
i¼1

ψ̄ ðnÞ
i ðiγμ∂μ þmi;ψ ðnÞ Þψ ðnÞ

i

�
;

ð4:13Þ

where

Ln¼0 ¼
(P

3
i¼1 ψ

ð0Þ
i;LðxÞðiγμ∂μÞψ ð0Þ

i;LðxÞ for the BC ð4.1Þ;P
3
i¼1 ψ

ð0Þ
i;RðxÞðiγμ∂μÞψ ð0Þ

i;RðxÞ for the BC ð4.2Þ;
ð4:14Þ

and the 4d mass spectrum mi;ψ ðnÞ is given by

mi;ψ ðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

F þ
�
nπ
li

�
2

s
ði ¼ 1; 2; 3; n ¼ 1; 2; 3; � � �Þ;

ð4:15Þ

where li is defined by Eq. (4.10).

V. DYNAMICAL GENERATION OF FERMION
MASS HIERARCHY

In this section, by using the previous results, we consider
an SUð2Þ ×Uð1Þ model with a single generation of 5d
fermions, which produces three generations of 4d chiral
fermions by the point interactions, and discuss whether the
model can dynamically generate a fermion mass hierarchy.
To this end, we first set an action and BCs of this model.
The action consists of an SUð2Þ gauge field, a Uð1Þ gauge
field, a single generation SUð2Þ doublet fermion, a single
generation SUð2Þ singlet fermion, and an SUð2Þ doublet
scalar field. The contents of our model mimic those of the

SM without the color degree of freedom, where the Uð1Þ
(hyper)charges of Q and U take those of the quark doublet
and the up-type singlet. Extra BCs via point interactions are
a key ingredient to produce the three generations from one
generation 5d fermion as we reviewed in Sec. IV. The
positions of the point interactions crucially affect the
fermion mass hierarchy through the overlap integrals, as
we will see in Sec. V C. We will show that the positions of
the point interactions can be determined dynamically
through the minimization of the Casimir energy and then
find that an exponential fermion mass hierarchy naturally
appears. Following the results, we discuss the stability of
the extra dimension.

A. Action and BCs

We start with the following action for the gauge fields
and fermions:

S ¼ SG þ SF; ð5:1Þ

SG ¼
Z

d4x
Z

L

0

dy

�
−
1

4
WaMNWa

MN

−
1

2
ð∂MWa

MÞ2 − ic̄að∂MDMÞca

−
1

4
FMNFMN −

1

2
ð∂MAMÞ2 − ic̄ð∂M∂MÞc

�
; ð5:2Þ

SF ¼
Z

d4x
Z

L

0

dy

�
Q̄

�
iΓMDðQÞ

M þMðQÞ
F

�
Q

þ Ū

�
iΓM∂M þMðUÞ

F

�
U

�
; ð5:3Þ

where

Wa
MN ¼ ∂MWa

N − ∂NWa
M−gεabcWb

MW
c
N; ð5:4Þ

FMN¼ ∂MAN − ∂NAM; ð5:5Þ

DMca ¼ ∂Mca þ gεabcWb
Mc

c; ð5:6Þ

DðQÞ
M Q ¼ ð∂M−igWa

MTa−ig0AMÞQ: ð5:7Þ

Wa
M, AM, ca, c and c̄a, c̄ denote an SUð2Þ gauge, a Uð1Þ

gauge, ghost and antighost fields, respectively. g and g0
denote SUð2Þ and Uð1Þ couplings of the SUð2Þ doublet
fermion. Q and U indicate an SUð2Þ doublet fermion
and an SUð2Þ single fermion, respectively. A bulk mass of

the 5d fermion is denoted by MðΨÞ
F (Ψ ¼ Q, U). εabc is a

complete antisymmetric tensor and Ta is a generator of
SUð2Þ acts on a fundamental representation, which satisfies
the following algebra and the orthogonal relation:

½Ta; Tb� ¼ iεabcTc; ð5:8Þ

FIG. 9. Schematic figures of localized zero modes F ð0Þ
i;ψR

ðyÞ
(i ¼ 1, 2, 3) withMF > 0. Each zero mode of F ð0Þ

i;ψR
ðyÞ only has a

nonvanishing value within the segment Li−1 < y < Li and local-
izes to a boundary.
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trTaTb ¼
1

2
δa;b: ð5:9Þ

According to the analysis given in Sec. II, we choose
boundary conditions for the fields as follows:� ∂yWa

μðx; yÞ ¼ 0;

Wa
yðx; yÞ ¼ 0;

at y ¼ 0; L; ð5:10Þ
� ∂ycaðx; yÞ ¼ 0;

∂yc̄aðx; yÞ ¼ 0;
at y ¼ 0; L; ð5:11Þ

� ∂yAμðx; yÞ ¼ 0;

Ayðx; yÞ ¼ 0;
at y ¼ 0; L; ð5:12Þ

� ∂ycðx; yÞ ¼ 0;

∂yc̄ðx; yÞ ¼ 0;
at y ¼ 0; L; ð5:13Þ

QRðx; yÞ ¼ 0 at y ¼ 0; L1 � ε; L2 � ε; L; ð5:14Þ

ULðx; yÞ ¼ 0 at y ¼ 0; L1 � ε; L2 � ε; L; ð5:15Þ

whereL1 andL2 (0 < L1 < L2 < L) denote the positions of
the point interactions and ε represents an infinitesimal
positive constant. A schematic figure of the extra dimension
is depicted in Fig. 10. We introduced two point interactions
at y ¼ L1 and L2 for the fermions and put the situation that
all fermions feel the point interactions at the same positions
for simplicity. On the other hand, the gauge and the ghost
fields are assumed not to feel the point interactions at y ¼ L1

and L2. We note that the 5d gauge symmetries are intact
under the configuration of the boundary conditions.

B. Determination of the positions
of the point interactions

Using the results of Sec. III, we can evaluate the Casimir
energy as a function of the positions of the point inter-
actions fL1; L2g:

EðFÞ½MðQÞ
F ;MðUÞ

F ; L1; L2; L�reg

¼ 2 ·
jMðQÞ

F j2
8π2L2

1

X∞
w¼1

e−2wjM
ðQÞ
F jL1

w3

�
1þ 3

2wjMðQÞ
F jL1

þ 3

4w2jMðQÞ
F j2L2

1

�

þ 2 ·
jMðQÞ

F j2
8π2ðL2 − L1Þ2

X∞
w¼1

e−2wjM
ðQÞ
F jðL2−L1Þ

w3

�
1þ 3

2wjMðQÞ
F jðL2 − L1Þ

þ 3

4w2jMðQÞ
F j2ðL2 − L1Þ2

�

þ 2 ·
jMðQÞ

F j2
8π2ðL − L2Þ2

X∞
w¼1

e−2wjM
ðQÞ
F jðL−L2Þ

w3

�
1þ 3

2wjMðQÞ
F jðL − L2Þ

þ 3

4w2jMðQÞ
F j2ðL − L2Þ2

�

þ jMðUÞ
F j2

8π2L2
1

X∞
w¼1

e−2wjM
ðUÞ
F jL1

w3

�
1þ 3

2wjMðUÞ
F jL1

þ 3

4w2jMðUÞ
F j2L2

1

�

þ jMðUÞ
F j2

8π2ðL2 − L1Þ2
X∞
w¼1

e−2wjM
ðUÞ
F jðL2−L1Þ

w3

�
1þ 3

2wjMðUÞ
F jðL2 − L1Þ

þ 3

4w2jMðUÞ
F j2ðL2 − L1Þ2

�

þ jMðUÞ
F j2

8π2ðL − L2Þ2
X∞
w¼1

e−2wjM
ðUÞ
F jðL−L2Þ

w3

�
1þ 3

2wjMðUÞ
F jðL − L2Þ

þ 3

4w2jMðUÞ
F j2ðL − L2Þ2

�
: ð5:16Þ

With the fixed length L, the minimization condition
for the Casimir energy can determine the values of the
parameters fL1; L2g. The above potential turns out to

have the finite global minimum at L1 ¼ L
3
, L2 ¼ 2L

3
.

To verify this statement, we consider the following
function Iðx; y; zÞ:

Iðx; y; zÞ ¼ fðxÞ þ fðyÞ þ fðzÞ; ð5:17Þ

FIG. 10. A schematic figure of the extra dimension. Only the
fermions Q and U feel the point interactions (Green dots) at
y ¼ L1, L2 and the gauge fields Wa

μ, Wa
y , Aμ, and Ay do not. The

situation is completely consistent with 5d gauge invariance.
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x; y; z > 0; ð5:18Þ

xþ yþ z ¼ 1: ð5:19Þ

Iðx; y; zÞ imitates the function form of the fermion
Casimir energy with the variables x ¼ L̃1, y ¼ L̃2 − L̃1,
z ¼ 1 − L̃2, where L̃i (i ¼ 1, 2) is defined as L̃i ≡ Li=L.
We assume the function fðxÞ to be a monotonically
decreasing function and also f0ðxÞ≡ dfðxÞ

dx to be a mono-
tonically increasing one with limx→0fðxÞ ¼ þ∞. We note
that the fermion Casimir energy (3.41) turns out to satisfy
those assumptions (see Figs. 4 and 5). Substituting the
condition Eq. (5.19) into Eq. (5.17), we obtain

Iðx; y; 1 − x − yÞ ¼ fðxÞ þ fðyÞ þ fð1 − x − yÞ: ð5:20Þ

To investigate an extreme value of the above function, we
examine ∂I

∂x and
∂I
∂y:

∂I
∂x ¼ f0ðxÞ − f0ð1 − x − yÞ; ð5:21Þ

∂I
∂y ¼ f0ðyÞ − f0ð1 − x − yÞ: ð5:22Þ

From the conditions ∂I
∂x ¼ 0 and ∂I

∂y ¼ 0, we obtain the result

f0ðxÞ ¼ f0ðyÞ ¼ f0ð1 − x − yÞ: ð5:23Þ

Since we assumed that f0ðxÞ is a monotonically increasing
function, the result (5.23) can be realized only when

x ¼ y ¼ z ¼ 1

3
: ð5:24Þ

Thus we find that Iðx; y; zÞ has an extreme value
when x ¼ y ¼ z ¼ 1

3
. Moreover, the function takes a

local minimum at x ¼ y ¼ z ¼ 1
3
. To show this, we con-

sider the second-order differentials with the condition
x ¼ y ¼ z ¼ 1

3
:

∂2I
∂x2
				
x¼y¼1

3

¼ 2f00
�
1

3

�
; ð5:25Þ

∂2I
∂y∂x

				
x¼y¼1

3

¼ f00
�
1

3

�
; ð5:26Þ

∂2I
∂x∂y

				
x¼y¼1

3

¼ f00
�
1

3

�
; ð5:27Þ

∂2I
∂y2
				
x¼y¼1

3

¼ 2f00
�
1

3

�
: ð5:28Þ

We now consider the Hessian matrix M:

M ¼

0
BB@

∂2I
∂x2
			
x¼y¼1

3

∂2I
∂x∂y
			
x¼y¼1

3

∂2I
∂y∂x
			
x¼y¼1

3

∂2I
∂y2
			
x¼y¼1

3

1
CCA ¼

 
2f00ð1

3
Þ f00ð1

3
Þ

f00ð1
3
Þ 2f00ð1

3
Þ

!
:

ð5:29Þ

Since f0ðxÞ is a monotonically increasing function,
f00ðxÞ > 0. Thus we find that

trM > 0; ð5:30Þ

detM > 0: ð5:31Þ

The above results imply that the eigenvalues of the matrix
M are positive and hence that the position x ¼ y ¼ 1

3
is a

local minimum of the potential. Moreover, there is no other
stationary point; we found that the position x ¼ y ¼ 1

3
is a

global minimum of the function Iðx; y; zÞ. From the above
discussions, we conclude that the Casimir energy (5.16) has
a global minimum at L1 ¼ L

3
, L2 ¼ 2L

3
.

C. Fermion mass hierarchy

Under the above situation, we can produce the fermion
mass hierarchy dynamically by introducing the Yukawa
coupling to an SUð2Þ doublet scalar field Φðx; yÞ, which
possesses the y-dependent VEV4

hΦðyÞi ¼
�
ϕðyÞ
0

�
; ð5:32Þ

ϕðyÞ ¼ AeMy; ð5:33Þ

as in Eq. (2.61) because of the Robin boundary condi-
tion (2.30).5 The situation, in which the ith generation

4The SUð2Þ doublet scalar may be regarded as iσ2H� (H is
the Higgs field) in the standard notation.

5As we discussed in [26], if the warped scalar VEV is provided
in the Higgs doublet, a serious violation in the gauge universality
is expected. Thereby, in the previous works [26–28], we
introduced an additional singlet scalar with the warped VEV,
while the Higgs doublet has the ordinary constant VEV, and
considered “higher-dimensional” Yukawa terms where both the
Higgs doublet and the singlet scalar appear. (Note that we
prohibited the ordinary Yukawa terms by introducing the Z2

discrete symmetry: odd parity for the two scalars, even parity for
the others.) In this manuscript, we assumed that the Higgs doublet
contains the warped VEV for displaying the form of the Yukawa
terms in a simple way, for avoiding confusion originating from
why the two types of the scalars are introduced. This “simpli-
fication” is just making the explanation simplified, and mass
matrix takes basically the same form between this “simplified”
setup and in the original setup without gauge universality
violation. See the related discussion in Sec. VI.
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(i ¼ 1, 2, 3) fermion lives in the segment y ∈ ½Li−1; Li�
(L0 ≡ 0, L3 ≡ L) and the scalar field lives in every region,
makes a large mass hierarchy for the fermion masses
through the Yukawa interaction λQ̄ΦU:

mi ¼ λ

Z
L

0

dyðGð0Þ
i;QL

ðyÞÞ�ϕðyÞF ð0Þ
i;UR

ðyÞ; ði ¼ 1; 2; 3Þ:

ð5:34Þ

A schematic figure is depicted in Fig. 11. Since the
minimization of the Casimir energy determines the posi-
tions of the point interactions as to make the distances
between them equal, the exponential VEVof the scalar field
makes an exponential mass hierarchy such as

m2

m1

¼ m3

m2

¼ e
1
3
ML: ð5:35Þ

Thus, the fermion mass hierarchy around 105 can be
obtained by suitably choosing the parameter ML. We
emphasize that this mass hierarchy appears dynamically
since the positions of the point interactions and the form of
the VEV of the scalar are determined dynamically.

D. Stability of the extra dimension

We have shown that for any fixed length L, the positions
of the point interactions are determined dynamically to
the value L1 ¼ L

3
, L2 ¼ 2L

3
from the minimization of the

Casimir energy. Under this situation, we discuss the
stability of the whole extra dimension. In our model
the SUð2Þ doublet scalar field Φðx; yÞ possesses the
y-dependent VEV and breaks the gauge symmetry as
SUð2Þ × Uð1Þ → Uð1Þ0. Therefore, we will discuss the
stability of the extra dimension in the broken phase.

As we investigated in Sec. III, the extra dimension can be
stabilized if the following two conditions are satisfied:
(i) 5d massless gauge bosons exist and all 5d fermions have
nonzero bulk masses. (ii) The degrees of freedom of
fermions are sufficiently larger than those of bosons.
The first condition (i) will ensure that the Casimir energy
approaches to zero with negative values in L → ∞ limit, as
in (3.42). The second condition (ii) will ensure that the
Casimir energy goes to þ∞ in L → 0 limit, as in (3.42).
In our model, the SUð2Þ ×Uð1Þ gauge symmetry is

broken by the VEV of the scalar but a subgroup Uð1Þ0 is
still unbroken. Thus, the first condition (i) is satisfied in our
model. The second condition (ii) seems to be satisfied in
our model because the degrees of freedom of the fermions
become three times the number of 5d fermions due to the
point interactions. Moreover, there is still room for intro-
ducing extra fermions by using the type-(III) BCs, which
do not produce any exotic chiral massless fermions.
Therefore, in our setup, the extra dimension is expected
to be stabilized by the Casimir energy.6

VI. CONCLUSION AND DISCUSSION

In this paper, we proposed a new mechanism to produce
a fermion mass hierarchy dynamically by introducing the
point interactions to the 5d gauge theory on an interval.
The interval extra dimension can possibly be stable and the
point interactions produce generations of fermions. The
positions of the point interactions were determined by
minimizing the Casimir energy of the fermions. The extra
dimension coordinate-dependent VEV of the scalar field,
which is also produced dynamically under the Robin
boundary condition, makes exponentially different fermion
masses through the overlap integrals.
We give a comment for the contribution of the scalar

field to the Casimir energy at first. In this paper, we ignored
the effect of the scalar field to the Casimir energy for
simplicity because the contribution to the Casimir energy
from the scalar field will have no exact analytic expression
due to the Robin BC. However, the inclusion of the scalar
field will not change the conclusions about the stability of
the whole extra dimension and the positions of the point
interactions if the degrees of freedom of the fermions are
sufficiently larger than those of bosons.
Next, some comments are given to the flavor mixing of

the fermions. In our model, we introduced the point
interactions at y ¼ L1, L2 for both the SUð2Þ doublet
and the singlet fermions. Here, mass matrices are diagonal
and flavor mixing cannot appear. In general, however, there
is no need to share the point interactions in fermions so that

FIG. 11. Schematic figure of zero-mode profiles of chiral
massless fermions and the VEV of the scalar field ϕðyÞ. The
figure is depicted with the situationMðQÞ

F > 0 andMðUÞ
F < 0. The

position of the point interactions are fixed by the minimization of
the Casimir energy and the y-dependent scalar VEV produces an
exponential mass hierarchy through the overlap integrals with
respect to the extra dimension.

6In the full SM-like setup, the gluon and the scalar contribute
to the Casimir energy. To determine the value of the length L of
the extra dimension, we need to calculate the Casimir energy of
all the fields in the gauge symmetry broken phase with the
y-dependent VEV, which is beyond the scope of this paper.
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we can introduce the individual point interactions to each
fermion, respectively, which means that (e.g.) the SUð2Þ
doublet fermion feels the point interactions at y ¼ L1, L2

and the SUð2Þ singlet fermion feels the point interactions at
y ¼ L0

1, L0
2 [26–28]. Then the mode functions of the

SUð2Þ-doublet zero mode Gð0Þ
i;QL

ðyÞ and the SUð2Þ-singlet
zero mode F ð0Þ

j;UR
ðyÞmay have an overlap for i ≠ j. In other

words, off diagonal components may appear in the mass
matrix as

mij ¼ λ

Z
L

0

dyðGð0Þ
i;QL

ðyÞÞ�ϕðyÞF ð0Þ
j;UR

ðyÞ; ði; j ¼ 1; 2; 3Þ

ð6:1Þ
and a flavor mixing can be realized.
If the minimization of the Casimir energy determines the

positions of the point interactions as L1 ¼ L0
1, L2 ¼ L0

2,
flavor mixing does not appear so that we need an idea to
make L1 ≠ L0

1, L2 ≠ L0
2. One way to avoid the situation of

Li ¼ L0
i is to consider higher loop effects of the Casimir

energy, which may make L1 ≠ L0
1, L2 ≠ L0

2 through the
interactions. To introduce exotic 5d fermions, where they
contribute to the Casimir energy, is another way. No chiral
massless zero modes appear in an exotic fermion when we
assign a suitable choice of boundary conditions to it. Under
such conditions, the low energy matter contents of the
model, i.e., the Standard Model particles, do not have a
change. If we put a different boundary condition to y ¼ L1

(y ¼ L0
1) from y ¼ L2 (y ¼ L0

2), each segment has a differ-
ent contribution of the Casimir energy so that we may
produce the flavor mixing. A different strategy is to
introduce more than two point interactions, e.g., N − 1
point interactions for the SUð2Þ doublet fermion and N0 −
1 point interactions for the SUð2Þ singlet fermion, where we
divide the interval extra dimension into more than three
segments, i.e., N segments for the doublet and N0 segments
for the singlet. A combination of type-(I) [type-(II)] and
type-(III) BCs can produce three massless zero modes for
SUð2Þ doublet and singlet fermions, respectively. In this
situation, the minimization of the Casimir energy determines
the positions of N − 1 (N0 − 1) point interactions and zero
modes of the SUð2Þ doublet (singlet) appear in three of the
N (N0) segments. A suitable choice of the segments with
zero modes may possibly produce off-diagonal components
of the mass matrix, i.e., flavor mixing even after taking
account of the stabilization of the point interactions.
Finally, we focus on the gauge universality. It was pointed

out in Refs. [26–28] that the gauge symmetry breaking due
to the y-dependent VEV of the scalar field would cause a
gauge universality violation. That is because the y-dependent
VEVof the scalar modifies the flat profile of the zero-mode
function of the gauge boson and thereby the values of the 4d
gauge couplings change with respect to the generations
through the overlap integrals. Away to avoid this crisis is to
introduce two scalar fields; one is an SUð2Þ doublet scalar

and another is a gauge-singlet scalar field. In the situation
that the constant VEVof the SUð2Þ doublet scalar breaks the
gauge symmetry and the y-dependent VEV of the gauge-
singlet scalar provides a mass hierarchy, we can avoid the
gauge universality violation. It would be of great interest to
construct a more phenomenologically viable model along
the lines discussed in this paper.
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APPENDIX: REVIEW OF POINT INTERACTIONS
AND DERIVATION OF FERMION PROFILES
UNDER THE EXISTENCE OF ONE POINT

INTERACTION IN THE BULK OF AN INTERVAL

In this appendix, we first review a one-dimensional
quantum mechanical system with a point interaction, and
then apply the formulation for the five-dimensional Dirac
action on an interval with a point interaction.
The well-known Dirac δ-function potential in quantum

mechanics is an example of the point interaction, i.e., the
interaction of zero range. The consistent manner to treat
such a singularity has been given in Ref. [53]. According to
the formulation [53], we regard a point interaction as an
idealized long wavelength or infrared limit of localized
interactions in one dimension, and hence it is a singular
interaction with zero range at one point, say y ¼ L1 on a
line R. A system with such an interaction can be described
by the system on the line with the singular point removed,
namely, on RnfL1g. In order to construct a quantum
system on the domain D ¼ RnfL1g, we require that the
probability current jyðyÞ ¼ −iðð∂yφ

�Þφ − φ�ð∂yφÞÞðyÞ is
continuous around the singular point, i.e., [53]

jyðL1 − εÞ ¼ jyðL1 þ εÞ; ðA1Þ
where ε represents an infinitesimal positive constant. We
note that the above probability conservation guarantees the
Hemiticity of the Hamiltonian.
The requirement (A1) implies that any state in the

domain D must obey a certain set of boundary conditions
at y ¼ L1 � ε. For example, the Dirichlet BC

φðL1 − εÞ ¼ 0 ¼ φðL1 þ εÞ ðA2Þ
satisfies the condition (A1). The Dirichlet BC may be
understood as a point interaction given by the Dirac
δ-function potential VðyÞ ¼ αδðyÞ with the limit of the
coupling α → ∞. Another type of boundary conditions,
which also satisfies the condition (A1), is known as the
Robin BC, i.e.,
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− φ0ðL1 − εÞ þMφðL1 − εÞ
¼ 0 ¼ −φ0ðL1 þ εÞ þMφðL1 þ εÞ; ðA3Þ

where φ0ðyÞ ¼ ∂φðyÞ
∂y and M is a constant parameter with

mass-dimension one. The above two types of BCs will
become important in our analysis.
Interestingly, point interactions can appear not only in

one-dimensional quantum mechanics but also in extra
dimension scenarios [26], since finite-range-localized inter-
actions will be regarded as the point interaction in an
idealized long wavelength or infrared limit, like a domain
wall potential or a brane in extra dimension models. Hence,
as we will see below, we apply the above point interaction
treatment to the five-dimensional Dirac action on an
interval (y ∈ ½0; L�) with a point interaction at y ¼ L1,
and explain how to decompose a five-dimensional Dirac
field Ψðx; yÞ into Kaluza-Klein (KK) mass eigenmodes, in
a self-contained way.
The five-dimensional free action for Ψðx; yÞ that we

focus on is

S ¼
Z

d4x

�Z
L1−ε

0

dyþ
Z

L

L1þε
dy

�
Ψ̄ðx; yÞði∂MΓM þMFÞ

×Ψðx; yÞ; ðA4Þ

where the system contains an extra specific point at y ¼ L1

in addition to the two end points of the interval at y ¼ 0, L,
and is divided into two parts by the presence of the point
interaction at y ¼ L1. Using the knowledge of the point
interaction on one-dimensional quantum mechanical sys-
tems, we describe profiles of KK particles appearing in
one-extra-dimensional scenarios.
We first need to find a consistency requirement like the

probability current conservation (A1) in quantum mechan-
ics with a point interaction. Such a consistency requirement
of our system is a current conservation along the y
direction, i.e.,7

jyðx; yÞjy¼0 ¼ 0 ¼ jyðx; yÞjy¼L; ðA7Þ

jyðx; yÞjy¼L1−ε ¼ jyðx; yÞjy¼L1þε; ðA8Þ
where

jyðx; yÞ≡ ðΨ̄ΓyΨÞðx; yÞ: ðA9Þ
The conditions (A7) imply that there should be no current
flow in the y direction outside of the two ends of the
interval. The condition (A8) can be understood as the current
conservation in the y direction at the point interaction.
Since the current form Ψ̄ΓyΨ is equivalent to

ΨLΓyΨR þ ΨRΓyΨL, the Dirichlet BC

ΨR ¼ 0 or ΨL ¼ 0 at y ¼ 0; L1 − ε; L1 þ ε; L

ðA10Þ
is found to satisfy the conditions (A7) and (A8). Thus, in
the following analysis, we take the BCs

ΨR ¼ 0 at y ¼ 0; L1 − ε; L1 þ ε; L: ðA11Þ

We should emphasize that once the BCs for the right-
handed part of Ψ are fixed as above, the boundary
conditions for the opposite chirality, i.e., the left-handed
part of Ψ, are automatically determined through the
equation of motion as8

ð−∂y þMFÞΨL ¼ 0 at y ¼ 0; L1 − ε; L1 þ ε; L:

ðA12Þ
It is worthwhile noticing that wavefunctions ΨR=LðyÞ
and/or their derivativesΨ0

R=LðyÞ will become discontinuous
at y ¼ L1, as we will see later, because the continuity
conditions of ΨR=Lðy ¼ L1 − εÞ ¼ ΨR=Lðy ¼ L1 þ εÞ and
Ψ0

R=Lðy ¼ L1 − εÞ ¼ Ψ0
R=Lðy ¼ L1 þ εÞ are not imposed

on ΨR=LðyÞ here.
To perform the KK decomposition of the 5d fields

ΨLðx; yÞ and ΨRðx; yÞ, let us consider the following one-
dimensional eigenvalue equations:

ð−∂2
y þM2

FÞGðyÞ ¼ m2GðyÞ on D; ðA13Þ

ð−∂2
y þM2

FÞF ðyÞ ¼ m2F ðyÞ on D; ðA14Þ

with the BCs

ð−∂y þMFÞGðyÞ ¼ 0 at y ¼ 0; L1 − ε; L1 þ ε; L;

ðA15Þ

7The consistency requirement will be obtained from the action
principle δS ¼ 0 [54]. In this case, the derived conditions are
given by

½Ψ̄ΓyδΨ�y¼0 ¼ 0 ¼ ½Ψ̄ΓyδΨ�y¼L; ðA5Þ
½Ψ̄ΓyδΨ�y¼L1−ε ¼ ½Ψ̄ΓyδΨ�y¼L1þε; ðA6Þ

where δΨ means the variation of Ψ. Since Ψ and δΨ can be
regarded as independent fields with the assumption thatΨ and δΨ
take the same boundary conditions, it seems that the above
conditions are more restrictive than those of (A7) and (A8).
However, they turn out to reduce the same conclusions in our
analysis given below, and in fact the Dirichlet BC (A10) satisfies
(A5) and (A6). The above conditions have been analyzed in
Ref. [55] (see also [25,56,57]) and we will not discuss (A5) and
(A6) here.

8We cannot impose the Dirichlet BC for both ΨR and ΨL at a
boundary because it is enough for ΨR ¼ 0 or ΨL ¼ 0 to satisfy
the conditions (A7) and (A8), and in fact the requirement ΨR ¼
ΨL ¼ 0 at a boundary is overconstrained.
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F ðyÞ ¼ 0 at y ¼ 0; L1 − ε; L1 þ ε; L; ðA16Þ

where the one-dimensional domain D is defined by

D ¼ D1 ∪ D2; ðA17Þ
�
D1 ¼ fyj0 ≤ y < L1g;
D2 ¼ fyjL1 < y ≤ Lg: ðA18Þ

The eigenfunctions of the Eqs. (A13) and (A14) with the
BCs (A15) and (A16) are found to be of the form

Gð0Þ
1;ψL

ðyÞ ¼
( ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2MF
e2MFL1−1

q
eMFy on D1;

0 on D2;
ðA19Þ

GðnÞ
1;ψL

ðyÞ ¼
(

1
mðn;1Þ

ffiffiffiffi
2
L1

q
fnπL1

cosðnπyL1
Þ þMF sinðnπyL1

Þg on D1;

0 on D2;

ðA20Þ

F ðnÞ
1;ψR

ðyÞ ¼
8<
:

ffiffiffiffi
2
L1

q
sinðnπyL1

Þ on D1;

0 on D2;
ðA21Þ

Gð0Þ
2;ψL

ðyÞ ¼
8<
:

0 on D1;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MF

e2MFðL−L1Þ−1

q
eMFðy−L1Þ on D2;

ðA22Þ

GðnÞ
2;ψL

ðyÞ ¼
(
0 on D1;

1
mðn;2Þ

ffiffiffiffiffiffiffiffiffi
2

L−L1

q n
nπ

L−L1
cos


nπðy−L1Þ
L−L1

�
þMF sin



nπðy−L1Þ
L−L1

�o
on D2;

ðA23Þ

F ðnÞ
2;ψR

ðyÞ ¼
8<
:

0 on D1;ffiffiffiffiffiffiffiffiffi
2

L−L1

q
sin


nπðy−L1Þ
L−L1

�
on D2;

ðA24Þ

with n ¼ 1; 2; � � �. We notice that even though the eigen-

functions GðnÞ
1;ψL

ðyÞ and F ðn0Þ
1;ψR

ðyÞ [GðnÞ
2;ψL

ðyÞ and F ðn0Þ
2;ψR

ðyÞ]
entirely vanish on D2 (on D1), they are well defined on the
whole domain D and satisfy the eigenvalue equations

ð−∂2
y þM2

FÞGðnÞ
i;ψL

ðyÞ ¼ ðmi;ψ ðnÞ Þ2GðnÞ
i;ψL

ðyÞ on D; ðA25Þ

ð−∂2
y þM2

FÞF ðn0Þ
i;ψR

ðyÞ ¼ ðmi;ψ ðn0Þ Þ2F ðn0Þ
i;ψR

ðyÞ on D; ðA26Þ

and the BCs

ð−∂y þMFÞGðnÞ
i;ψL

ðyÞ ¼ 0 at y ¼ 0; L1 − ε; L1 þ ε; L;

ðA27Þ

F ðn0Þ
i;ψR

ðyÞ ¼ 0 at y ¼ 0; L1 − ε; L1 þ ε; L; ðA28Þ

for n ¼ 0; 1; 2; � � �, n0 ¼ 1; 2; � � �, i ¼ 1, 2 with the
eigenvalues

m1;ψ ð0Þ ¼ 0; ði ¼ 1; 2Þ; ðA29Þ

m1;ψ ðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

F þ
�
nπ
L1

�
2

s
; ðn ¼ 1; 2; � � �Þ; ðA30Þ

m2;ψ ðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

F þ
�

nπ
L − L1

�
2

s
; ðn ¼ 1; 2; � � �Þ: ðA31Þ

It should be emphasized that no eigenfunctions with
nonzero eigenvalues take nontrivial values on both D1

and D2. This is because there is no degeneracy for nonzero
eigenvalues i.e., mi;ψ ðnÞ ≠ mi0;ψ ðn0Þ if n ≠ n0 or i ≠ i0 (except
for n ¼ n0 ¼ 0), as long as L1 is not equal to L=2. Hence,

any linear combination of GðnÞ
1;ψL

ðyÞ and GðnÞ
2;ψL

ðyÞ for n ≠ 0

(F ðn0Þ
1;ψR

ðyÞ and F ðn0Þ
2;ψR

ðyÞ) cannot become a solution to the
eigenvalue equation (A13) [(A14)].
The eigenfunctions GðnÞ

i;ψL
ðyÞ and F ðnÞ

i;ψR
ðyÞ satisfy the

orthonormal relations

Z
D
dyðGðnÞ

i;ψL
ðyÞÞ�GðmÞ

j;ψL
ðyÞ ¼ δn;mδi;j;Z

D
dyðF ðn0Þ

i;ψR
ðyÞÞ�F ðm0Þ

j;ψR
ðyÞ ¼ δn0;m0δi;j; ðA32Þ

for n;m ¼ 0; 1; 2; � � �, n0; m0 ¼ 1; 2; � � � and i, j ¼ 1, 2.
Furthermore, they obey the relations (sometimes called
supersymmetry relations)

ð∂y þMFÞF ðnÞ
i;ψR

ðyÞ ¼ mi;ψ ðnÞGðnÞ
i;ψL

ðyÞ on D; ðA33Þ

ð−∂y þMFÞGðnÞ
i;ψL

ðyÞ ¼ mi;ψ ðnÞF ðnÞ
i;ψR

ðyÞ on D; ðA34Þ

for n ¼ 0; 1; 2; � � � and i ¼ 1, 2 with F ð0Þ
i;ψR

ðyÞ≡ 0.
A crucially important fact is that the set of the eigen-

functions fGðnÞ
i;ψL

ðyÞ; n ¼ 0; 1; 2; � � � ; i ¼ 1; 2g [fF ðnÞ
i;ψR

ðyÞ;
n ¼ 1; 2; � � � ; i ¼ 1; 2g] forms a complete set for square
integrable functions on D with the BC (A15) [(A16)]. This
is because the differential operator −∂2

y þM2
F is Hermitian

with the BC (A15) [(A16)] and the set of the eigenfunctions
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fGðnÞ
i;ψL

ðyÞg [fF ðnÞ
i;ψR

ðyÞg] includes all the independent eigen-
functions of (A13) [(A14)] with the BC (A15) [(A16)].
The above observation shows that the five-dimensional

fields ΨLðx; yÞ and ΨRðx; yÞ with the BCs

ð−∂y þMFÞΨLðx; yÞ ¼ 0 at y ¼ 0; L1 − ε; L1 þ ε; L;

ðA35Þ

ΨRðx; yÞ ¼ 0 at y ¼ 0; L1 − ε; L1 þ ε; L ðA36Þ

can be decomposed, without any loss of generality, as

ΨLðx; yÞ ¼
X∞
n¼0

X2
i¼1

ψ ðnÞ
i;LðxÞGðnÞ

i;ψL
ðyÞ on D; ðA37Þ

ΨRðx; yÞ ¼
X∞
n¼1

X2
i¼1

ψ ðnÞ
i;RðxÞF ðnÞ

i;ψR
ðyÞ on D; ðA38Þ

where the coefficients of the decompositions ψ ðnÞ
i;LðxÞ and

ψ ðnÞ
i;RðxÞ correspond to four-dimensional left-handed and

right-handed chiral fermions, respectively.
Inserting the above expansions into the five-dimensional

Dirac action (A4) and integrating it over y with the
orthonormal relations (A32) and the supersymmetry rela-
tions (A33), (A34), we find

S ¼
Z

d4x

�X2
i¼1

ψ ð0Þ
i;LðxÞðiγμ∂μÞψ ð0Þ

i;LðxÞ

þ
X∞
n¼1

X2
i¼1

ψ ðnÞ
i ðxÞðiγμ∂μ þmi;ψ ðnÞ Þψ ðnÞ

i ðxÞ
�

ðA39Þ

where ψ ðnÞ
i ðxÞ≡ ψ ðnÞ

i;LðxÞ þ ψ ðnÞ
i;RðxÞ for n ¼ 1; 2; � � � and

i ¼ 1, 2. Here, we have used Γy ¼ −iγ5. It follows that
the four-dimensional massless left-handed chiral fermions

ψ ðnÞ
i;L (i ¼ 1, 2) appear in the four-dimensional spectrum and

they are twofold degenerate. The ψ ðnÞ
i (n ¼ 1; 2; � � � ; i ¼ 1,

2) corresponds to a four-dimensional massive Dirac fer-
mion with mass mi;ψ ðnÞ . (For a special case of L1 ¼ L=2,

ψ ðnÞ
1 and ψ ðnÞ

2 are degenerate with the same mass
m1;ψ ðnÞ ¼ m2;ψ ðnÞ , otherwise they are nondegenerate.)
Several comments are provided for completeness.
(1) If we impose the BCs [instead of those in Eq. (A11)]

ΨL ¼ 0 at y ¼ 0; L1 − ε; L1 þ ε; L; ðA40Þ

with the associated BCs,

ð∂y þMFÞΨR ¼ 0 at y ¼ 0; L1 − ε; L1 þ ε; L;

ðA41Þ

we obtain twofold-degenerated right-handed chiral
zero modes (see Ref. [26]).

(2) A simple generalization with multiple point inter-
actions can be analyzed straightforwardly. Espe-
cially, the case with two point interactions is
attractive since threefold-degenerated chiral zero
modes are realized (see Ref. [26]).

(3) An intrinsic profile of point interaction(s) can be
arranged for each 5d fermion field individually. This
property is one of the key ingredients of the flavor
model proposed in Ref. [26]. At the two end points
to the contrary, BCs should be arranged for all of the
fields living in the bulk since the points are kinds of
singularities on the background space.

(4) Since we removed the singular point from the
interval, according to the formulation [53], no
contribution via “brane-localized terms” emerges
in integrations along the y direction in the formu-
lation.

(5) While no degeneracy is observed (except for the
specific situation in L1 ¼ L=2) in the massive KK
modes, twofold degenerated states are found as two
left-handed chiral zero modes under the BCs in
(A11) [and (A12)]. This observation means that the

form of the zero-mode eigenfunctions Gð0Þ
1;ψL

and

Gð0Þ
2;ψL

[shown in (A19) and (A22)] is not the unique
choice. For example, we can consider two suitable

linear combinations of them, i.e., Gð0Þ
1;ψL

≡ aGð0Þ
1;ψL

þ
bGð0Þ

2;ψL
and Gð0Þ

2;ψL
≡ a0Gð0Þ

1;ψL
þ b0Gð0Þ

2;ψL
(assuming a,

a0, b, b0 being real). Even after imposing the
orthonormality condition in (A32) in the set

fGð0Þ
i;ψL

;Gðn0Þ
i;ψL

; n0 ¼ 1; 2; � � � ; i ¼ 1; 2g instead of

fGðnÞ
i;ψL

; n ¼ 0; 1; 2; � � � ; i ¼ 1; 2g, one real degree
of freedom remains to be unfixed, where we obtain
a series of the zero-mode eigenfunctions parame-
trized by the remaining real degree of freedom. We
focus on a concrete expression,

 
Gð0Þ

1;ψL
ðyÞ

Gð0Þ
2;ψL

ðyÞ

!
¼
�

cos θ sin θ

− sin θ cos θ

� Gð0Þ
1;ψL

ðyÞ
Gð0Þ
2;ψL

ðyÞ

!

ðA42Þ

with 0 ≤ θ ≤ 2π. It is important that no difference
comes out in the form of the effective Lagrangian
described in (A39) from the original 5d action in
(A4) through KK decomposition, irrespective of
the choice of the parameter θ. A clear reason behind
this fact is that the free system is exactly solved (and
the twofold degeneracy is found among the zero
mode), where no external interaction which discrim-
inates the difference in the zero-mode profiles is
switched on.
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Situations are changed when we switch on inter-
actions, which includes mass perturbation. When we
introduce an additional mass term as mass pertur-
bation, and if consequently the degeneracy is re-
solved, no redundancy remains in the form of the
mass eigenstates.9 Here, the rotational degree of
freedom does not change the mass eigenvalues after
the perturbation and does not affect physics (even
though the diagonalizing matrix depends on θ). To
take the simplest choice θ ¼ 0 makes analyses
transparent.

(6) It is noted that we can introduce point interactions in
orbifolds. Here, we sketch how to obtain twofold
degenerated localized chiral zero modes in the
geometry of S1=Z2, where we consider that the
fundamental region of y is ½0þ ε; L�, which is
shrunken from that of S1, ½−L;L�. The Z2 symmetry
is the identification under the reflection y → −y,
where

Ψðx;−yÞ ¼ ηΨγ5Ψðx; yÞ ðA43Þ

is imposed with the parity ηΨ ¼ �1. Instead of (A4),
we focus on the fermion action

SS1=Z2
¼
Z

d4x

�Z
L1−ε

0

dyþ
Z

L

L1þε
dy

�
Ψ̄ðx; yÞ

× ði∂MΓM þMFϵðyÞÞΨðx; yÞ; ðA44Þ

where ϵðyÞ represents the sign function, which is a
compulsory factor to make the mass term Z2

invariant (see e.g., [58]). Here, we select ηΨ ¼ −1
for realizing the left-handed chiral zero mode and
introduce a point interaction at y ¼ L1 which puts
the additional BC for Ψðx; yÞ as

ΨR ¼ 0 at y ¼ L1 − ε; L1 þ ε: ðA45Þ

Apparently in the fundamental region ½0þ ε; L�, the
two left-handed zero modes are realized as (A19)
and (A22). If the “corresponding” point interaction
is introduced at y ¼ −L1 as

ΨR ¼ 0 at y ¼ −L1 þ ε; − L1 − ε; ðA46Þ

the whole system remains to be Z2 symmetric.
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