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The full solution of technicolor (TC) Schwinger-Dyson equations should include radiative corrections
induced by extended technicolor (ETC) (or other) interactions. We verify that when TC is embedded into a
larger theory including also QCD, these radiative corrections couple the different strongly interacting
Schwinger-Dyson equations, providing a tinymass to technifermions and changing the ultraviolet behavior of
the gap equation solution. We argue about the origin of the different quark masses without appealing for
different ETCbosonmasses, in one scenariowheremost of the newphysicswill appear in interactionswith the
third fermion generation and with a TC scalar boson possibly lighter than the TC characteristic scale (ΛTC).
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The origin of fermion and gauge boson masses in the
standard model (SM) of elementary particles is explained by
their interaction with the Higgs boson. The discovery of this
boson at theLHC [1,2] has crowned the SM; however, the data
still cannot discard the possibility of this boson being a
composite one. The case of a composite state, generating
dynamical gauge symmetry breaking, instead of an elemen-
tary one, is more akin to the phenomenon of spontaneous
symmetry breaking that originated from theGinzburg-Landau
Lagrangian. The latter can be derived from the microscopic
Bardeen-cooper-schrieffer (BCS) theory of superconductivity
describing the electron-hole interaction, which can be inter-
preted as a composite state. A similar mechanism happens in
QCD where the chiral symmetry breaking is promoted by a
nontrivial vacuum expectation value of a fermion bilinear
operator and the Higgs role is played by the composite σ
meson. In particular, the technicolor (TC) ideawas the earliest
attempt to build models in this direction [3,4].
The main ideas about TC models were reviewed in

Refs. [5,6] and recent phenomenological studies about this
class of models can be seen in Refs. [7–13] and references
therein. Despite the fact that TC models are much more

complex than the ones with elementary scalar bosons, the
main difficulty to build a realistic model lies in the ordinary
behavior of the technifermion self-energy that is propor-

tional to ΣTðp2Þ ∝ μ3TC
p2 ðp=μTCÞγ where μTC is the character-

istic TC dynamical mass at zero momentum and γ the
anomalous mass dimension. This self-energy leads to the
known quark mass (mQ) given by mQ ∝ μ3TC=M

2
E, where

ME is the mass of an extended technicolor boson (ETC),
which is a particle that may change flavors. In order to
describe, for example, the top quark mass we need a small
ME value, and this boson generates flavor changing neutral
currents at one undesirable level. A possible solution to this
dilemma requires a large γ value [14], which can be
obtained either with the introduction of (i) a large number
of fermions or (ii) with a gauged four-fermion interaction
[15–27]. Regardless of all these efforts, in these dynamical
symmetry breaking models, it has not been clear up to now
why the heaviest quark has a current mass of O(100) GeV
whereas the light quarks have a current mass of few MeV.
In addition, in the context of dynamical gauge symmetry
breaking models, it is not naturally expected to have a
scalar boson (the Higgs boson in this case) with a mass
smaller than the Fermi or TC scale.
In this work, we argue that the answer to these questions

may come out when QCD and TC are embedded into a
larger group, possibly ETC or a grand unified theory
(GUT).1 However there are two crucial requirements for
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1One example of a model where TC and QCD are embedded
into a larger ETC theory is the Farhi-Susskind GUT model [28].
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this scenario to work out: (i) the interconnection of the
Schwinger-Dyson equations (SDEs) describing the TC and
QCD self-energies, as shown in Fig. 1, and (ii) the inclusion
of a horizontal or family symmetry, where the third quark
generation couples preferentially to TC and the first quark
generation to QCD. As we see, a direct consequence of
point (i) is the generation of a hard TC self-energy, which
allows for a scalar boson mass smaller than ΛTC.

2

The starting point in this analysis is the diagrammatic
representation of the coupled SDEs for the techniquark and
quark self-energies, shown in the first and second lines of
Fig. 1, respectively. In this figure, the curly lines corre-
spond to gluons (g) or technigluons (G) and the wavy lines
to the ETC (double) or other weakly interacting bosons.3

Notice that the above coupled system is rather intricate.
More specifically, it involves different full boson propa-
gators and fully dressed vertices, which should be closely
intertwined through the different mass scales of the
theories, namely, (ΛQCD;TC;ETC). Here, we restrict ourselves
to exploring the result of this coupled system in a rather
simplified context. First, without specifying a model, we
assume that QCD and TC are embedded into a gauge
group, like the SUð5ÞS of the Farhi-Susskind model. Then,
we neglect the possible contributions that the diagrams (c1)
and (c2) may give and later discuss their effects. Therefore,
in our analysis, the conventional self-energies of the
techniquarks (a1) and quarks (a2) only receive the pertur-
bative corrections generated by the ETC interaction, which
couples the techniquarks to quarks (and vice versa), as
represented by the diagrams (b1) and (b2). Finally, we
approximate the fully dressed propagators and vertices,

entering into the gap equations, by their tree level expres-
sions, ignoring the fact that the gauge bosons of the two
strongly interacting theories are dynamically massive as
suggested in a series of works [31–34].
After applying the above considerations, we arrive in the

following coupled system of integral equations for the self-
energies of the techniquarks and quarks, respectively (in
Euclidean space),

ΣTðp2Þ ¼ 3λT

Z
k

ΣTðk2Þ
ðp − kÞ2½k2 þ Σ2

Tðk2Þ�
þmTðp2Þ; ð1Þ

ΣQðp2Þ ¼ 3λQ

Z
k

ΣQðk2Þ
ðp − kÞ2½k2 þ Σ2

Qðk2Þ�
þmQðp2Þ; ð2Þ

with

mTðQÞðp2Þ¼ 3λE

Z
k

ΣQðTÞðk2Þ
½ðp−kÞ2þM2

E�½k2þΣ2
QðTÞðk2Þ�

; ð3Þ

where we have introduced the compact notation
R
k ¼

1=ð2π2Þ R∞
0 dk2k2

R
π
0 dθsin2θ with θ being the angle

between the momenta p and k. Moreover, we defined λi ¼
Ciαi with i ¼ T, Q, and E, where αi are the TC, QCD, and
ETC coupling constants, respectively. The Ci are the
corresponding Casimir eigenvalues for the different fer-
mionic representations, i.e., CQ ¼ 4=3, CT ¼ 3=4, and
CE ¼ 1, where this last value was chosen for simplicity,
since we are not going to define one specific model for the
ETC interaction.
We can easily identify the second term of Eq. (2) as an

effective current quark mass obtained through TC inter-
action, described by diagram (b2). With the appropriate
values for λQ, λE, and ME, we obtain a solution that is the
sum of the dynamical quark mass with its effective current
mass. In a similar way, Eq. (1) provides the dynamical
techniquark mass with a very tiny effective current mass
generated by the QCD correction, represented in the
diagram (b1). If we perform a four-fermion approximation
for the ETC contributions, by taking the limit of large ME
of the diagrams (b1) and (b2), the effective current masses
added to the SDEs reduce to

mTðQÞ ∝
λE

4πM2
E

Z
M2

E

0

dk2ΣQðTÞðk2Þ: ð4Þ

With the approximation performed in Eq. (4), which is
equivalent to adding a bare mass, the solutions of Eqs. (1)
and (2) are a superposition of the regular [∝ 1=p2] plus
irregular [∝ lnðp2Þ−γ� solutions [35–37]. Nowadays, it
is known that the SDE solutions may vary between these
two behaviors according to the boundary conditions
[14–19,22–27,38–40], but we certainly can expect that a

FIG. 1. The coupled systemof SDEs for TC (T≡ technifermion)
and QCD (Q≡ quark) including ETC and electroweak or other
corrections. GðgÞ indicate technigluons (gluons).

2Note that the ETC group can be composed either by TC and
QCD as in the Farhi-Susskind model or it may include the
electroweak group as well. As it is discussed later, the ETC role
could even be played by a GUT that should include TC, QCD,
and the electroweak theory. This is going to be possible because
the fermion masses in our scenario are weakly dependent on the
GUT mass.

3The SDE of Fig. 1 is similar to the ones describing the photon
perturbative corrections to the quark mass [29], where it is
understood that the strong interactions should be summed
first [30].
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slowly decreasing with momentum self-energy dominates
the large p2 behavior.
We have solved numerically the coupled Eqs. (1) and (2)

using αT ¼ 8.0 and αQ ¼ 0.87. The coupling values were
chosen such that in isolation (i.e., αE ¼ 0) the dynamical
techniquark and quark masses generated are respectively
μTC ≈ 1 TeV and μQCD ≈ 0.3 GeV, and the solutions
decrease as 1=p2. When the ETC interaction is turned
on, assuming αE ¼ 0.032 and ME ¼ 100 TeV, which was
assumed as a typical ETC mass scale [5,28], we verified
that the solutions seem to decrease like 1=p2 after the
μTCðQCDÞ scale and appear to be basically flat at large
momenta, consistent with a superposition of the regular and
irregular solutions, although these large momenta were of
the order of our numerical cutoff. This behavior is not
unexpected, since the quark condensation gives a tiny mass
to technifermions; however the asymptotic behavior, due to
the current mass, is overwhelmed by the large dynamical
TC mass, and it is difficult to extract a clear signal of the
superposition of the different solutions from the full ΣTðp2Þ
behavior.
Another way to verify that the self-energies decrease

slowly with the momenta is to determine their anomalous
dimension. As already mentioned, much of the information
about chiral symmetry breaking resides in the boundary
conditions of the SDE gap equation [38], fromwherewe can
derive the anomalous dimension, as shown in Ref. [40].
Using this observation, we determined an effective four-
fermion coupling constant κE ∝ CEαEfðmTðMEÞ; mQðMEÞÞ
[41], andwhen this constant κE is introduced into Eq. (15) of
Ref. [40], using μTCðQCDÞ as the dynamical TCðQCDÞ
masses of our coupled equations, we obtain γT ∼ 2. This
indicates again a hard asymptotic behavior for ΣTðp2Þ,
corroborating the fact that the self-energies are changed
when we consider the radiative corrections for the SDE;
however, due to the approximations of Ref. [40], it is not
possible to verify with high precision how the asymptotic
behavior of ΣTðp2Þ and ΣQðp2Þ are modified in the coupled
system.
The best way to verify how the asymptotic behavior of

ΣTðp2Þ [or ΣQðp2Þ] has changed to an irregular-type
solution is to compute the quark masses as a function of
the ETC mass. This behavior is extremely dependent on the
asymptotic self-energy. To observe this, let us suppose that
the TC self-energy is

ΣTðp2Þ ≈ μTC

�
μ2TC

p2 þ μ2TC

�
; ð5Þ

which was conveniently normalized to the dynamical
techniquark mass μTC as p2 → 0 and decays asymptotically
as 1=p2. Substituting Eq. (5) into Eq. (3), we obtain, in the
limit of zero momentum, that

mQ ∝ λE
μ3TC
M2

E
: ð6Þ

On the other hand, if we assume that the TC self-energy is
giving by an irregular-type solution, which can be cast in
the form

ΣTðp2Þ ≈ μTC½1þ δ1αT ln ½ðp2 þ μ2TCÞ=μ2TC��−δ2 ; ð7Þ

where δ1 and δ2 are constants depending on the TC gauge
group and fermionic representation. Note that Eq. (7) is
also normalized to μTC as p2 → 0. It follows that the
resulting quark mass calculated from Eq. (3) in this case is
given by [42]

mQ ∝ λEμTC½1þ δ1αT lnðM2
E=μ

2
TCÞ�−δ2 : ð8Þ

These quite different behaviors that may result for quark
masses are one clear identifier of the asymptotic behavior
of ΣTðp2Þ [and the same can be formulated with respect to
ΣQðp2Þ]. We stress that mQ is the current mass at zero
momentum, and the total mass should also include the
dynamical mass and all momentum dependence.
Turning on the ETC interactions (by choosing either

αE ¼ 0.032 or αE ¼ 0.32), we study numerically Eqs. (1)
and (2) and determine how ΣQð0Þ behaves with ME for the
coupled SDE system. This behavior can be seen in Fig. 2.
Because of the fact that the dynamical quark mass is
negligible in comparison with the current mass, it turns out
that ΣQð0Þ ≅ mQ. Then, ΣQð0Þ can be accurately fitted by

mfit
Q ¼ ai½lnðM2

E=μ
2
TCÞ�−bi ; ð9Þ

FIG. 2. The comparison of the behavior of ΣQð0Þ as a function
of ME with the fit given by Eq. (9). Fit 1 was obtained with
αE ¼ 0.032 and fit 2 with αE ¼ 0.32; the other parameters are
described in the text.
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which is precisely the same behavior found in Eq. (8). More
specifically, the set of optimal values when αE ¼ 0.032 is
a1 ¼ 203.92 GeV and b1 ¼ 2.53, to be denoted by fit 1. For
fit 2, defined when αE ¼ 0.32, we have a2 ¼ 912.9 GeV
and b2 ¼ 2.82. The reduced chi square of both fits is
R2 ¼ 0.99. The quark mass turns out to be heavy and of
order of a few GeV as can be seen in Fig. 2. However, we
have to remember that in the numerical calculation, we used
CE ¼ 1, which is a rather naive assumption, since any theory
embedding TC and QCD is represented by a large gauge
group with fermions in higher dimensional representations
and increasedCE values. Moreover, as in the GUTmodel of
Ref. [28], one specific quarkmay obtainmass from different
diagrams classified as (b2) in Fig. 1, which when added
generate masses up to O(100) GeV. These masses are
roughly proportional to μTC [of O(1) TeV] times λE.
The fit of Eq. (9) shows unmistakably how the loga-

rithmic factor enters into action in Fig. 2, and is consistent
with the prediction of Eq. (8). It must be remembered that
mQ, given by Eq. (3), also runs and the full result of the
quark mass should include the momentum dependence.
The large coefficients ai appearing in Eq. (9) are just a
consequence of extending our fit, which is only appropriate
for the asymptotic regime of the dynamical masses, to small
ME values. We recall that such small ME values are not
phenomenologically acceptable mass scales, if this theory
is supposed to embed TC and QCD. We also do not expect
that technigluon (gluon) masses and vertex corrections
affect these results. Notice that in this scenario it is perfectly
possible to obtain an infrared mass of O(100) GeV, which is
of the order of the top quark mass.
The coupled SDE system indicates that the techniquarks

obtain a dynamical mass (μTC) that at zero momentum is of
order of 1 TeV. The self-energy momentum dependence is a
superposition of the regular and irregular solution, whose
asymptotic behavior is dominated by the irregular solution
that appears due to a tiny current mass generated by the
QCD condensation. Quark masses also have a dynamical
mass of the order of 300 MeV; however, they can obtain a
current mass from TC condensation up to O(100) GeV,
which can explain the third generation quark masses. In this
case, the total quark mass is totally dominated by the
irregular solution, i.e., the one that runs with the momen-
tum as a logarithm. Apart from the small logarithmic
dependence on ME, the ordinary quark masses are always
proportional to αECEμTC, as given by Eq. (8). The
technifermion masses are mostly dynamical and propor-
tional to μTC. However this scenario is not complete until
we take into account all radiative corrections. We have
neglected the diagrams (c1) and (c2) of Fig. 1. All self-
energies in these diagrams also run logarithmically with the
momentum, and the diagram (c1) generates for the techni-
quarks an effective mass proportional to μTC times, for
example, an electroweak charge or any other charge of
interaction that contributes to the third diagram of Fig. 1,

and, depending on the model, an ETC charge. Ordinary
quarks also obtain a mass of a fewMeV, which may appear,
due to the electroweak or other interactions, depicted in the
diagram (c2). For instance, for the QED interaction we have
mQ ∝ αeme2qμQCD, where αem is the QED coupling constant
and eq the quark charge. This fact leads to a quite
interesting solution for the fermionic mass spectra. In this
scenario we must have a family or horizontal symmetry
imposing that the third quark family couples preferentially
to TC, i.e., the diagram (b2) of Fig. 1, whereas the first
quark family obtains masses preferentially from QCD,
receiving most of the radiative contributions from the
diagram (c2). The final quark mass matrix can be of the
Fritzch type

mf ¼

0
B@

0 A 0

A� 0 B

0 B� C

1
CA; ð10Þ

where A ≈ αeme2qμQCD and C ≈ αECEμTC, providing a
natural explanation of the different mass scales. The factor
B should also appear naturally and be between A and C,
because the TC and QCD scalars mix, due to the many
interactions that may connect QCD and TC.
To produce a mass matrix like the one of Eq. (10) we can

choose as a horizontal symmetry the SUð3ÞH group
assigning to the first and third family different quantum
numbers, in such a way that the third family couples only to
TC and the first one only to QCD. Higher order loop
contributions to the SDE give intermediate masses to the
second quark generation, which explains the origin of the
term B.
To verify the origin of the term B, let us represent the TC

and QCD scalar composite fields by η and ϕ that will be
formed in the 6̄ and 3 representations of SUð3ÞH. The most
general effective potential is described by

Vðη;ϕÞ ¼ μ2ηη
†ηþ ληðη†ηÞ2 þ μ2ϕϕ

†ϕþ λϕðϕ†ϕÞ2; ð11Þ

where we can identify the vacuum expectation values
(vevs) of the TC and QCD condensates as given by the
ratio of their respective masses and couplings, i.e.,

v2η ¼ −
μ2η
λη

; v2ϕ ¼ −
μ2ϕ
λϕ

: ð12Þ

Such potential is quite plausible if we consider the results
of Refs. [43,44], where it was shown that the interactions of
a composite Higgs boson are very similar to the ones of a
fundamental boson. This system leads to an intermediate
mass scale and to a mass matrix identical to Eq. (10).
The QCD and TC vevs, due to the horizontal symmetry,

can be written respectively in the following form [45,46],
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hηi ∼

0
B@

0

0

vη

1
CA; hϕi ∼

0
B@

0 0 0

0 0 0

0 0 vϕ

1
CA; ð13Þ

which are of the order of approximately 250 MeV and
250 GeV. We can now verify what fermionic mass matrix
one can obtain with the vevs of Eq. (13). Assuming that the
composite scalars η and ϕ have ordinary Yukawa couplings
to fermions described by the following effective Yukawa
Lagrangian,

LY ¼ aΨ̄i
Lλη

k
λU

j
Rϵijk þ bΨ̄i

Lλϕ
ijUj

R; ð14Þ

where Ψ and U are the ordinary fermion fields. In addition,
λ is a weak hypercharge SUð2Þw index. For instance, λ ¼ 1
represents charge 2=3 quarks and λ ¼ 2 correspond to the
charge 1=3 quarks. In addition, i, j, and k indicate the
components of the composite scalar bosons of the repre-
sentations 3 and 6̄ of SUð3ÞH; a and b are the coupling
constants. Substituting the vevs of Eq. (13) in the Yukawa
Lagrangian for the charge 2=3 quarks, we obtain

LY ¼ ac̄LvηuR − aūLvηcR þ bt̄LvφtR; ð15Þ

leading to a mass matrix in the ðu; c; tÞ basis that is given by

m̄
2
3 ¼

0
B@

0 −avη 0

avη 0 0

0 0 bvϕ

1
CA: ð16Þ

The third generation fermions obtain large masses because
coupling directly to technifermions, while the first gen-
eration ones obtain masses coupling to ordinary quarks.
Having this picture in mind, we can now see that the most
general vev for this system includes the mass generation for
the intermediate family.
Note that there is no way to prevent the coupling at

higher order of the different composite scalar bosons with
SUð3ÞH quantum numbers. Examples of such couplings are
shown in Fig. 3, where the effective coupling between
scalars and gauge bosons involves the self-energy solution
that we have discussed, and is also enhanced due to its hard
behavior with the momentum.

These diagrams produce the following contribution to
the potential,

Vδðη;ϕÞ ¼ λ1η
†ηϕ†ϕþ λ2η

†ϕηϕ† þ � � � ; ð17Þ

which should be added to Eq. (11), shifting the vev matrix
in order to reproduce a fermionic Fritzch mass matrix of
Eq. (10). Details about this mechanism can be seen in
Refs. [45–47].
Therefore, the mass generation of the different fermion

families is just one effect of the alignment of the two
different strong interactions in the presence of the hori-
zontal symmetry. Another type of model, which naturally
suppresses the TC coupling to the light quarks, can be
formulated choosing the technifermion representation
under QCD in such a way that they do not couple, at
leading order, to the first two quark generations.
Up to now we have not discussed the leptonic mass

spectra. We say that the family or horizontal symmetry
should also be extended to the leptonic sector. In this case
only the τ lepton obtains mass from technifermion con-
densation, and the other first two leptonic generations
remain massless. More complicated mass spectra depend
on specific models. In order to give an idea of the possible
different models, let us now indicate techniquarks and
technileptons by T and L, whereas ordinary quarks and
leptons are indicated by Q and l, respectively, and assume
that there is a family symmetry imposing that the TC sector
connects only to the third ordinary fermion generation. If
technileptons couple only to themselves and to ordinary
leptons (i.e., there is not LT or LQ coupling) the techni-
lepton self-energy is decoupled from the others, and its
solution is soft (∝ 1=p2). In this case only the τ lepton
obtains a tiny mass. If we now admit that the theory has LT
and/or LQ couplings, then we have a new set of coupled
equations. Now the technilepton self-energy is hard, as in
the techniquark case, and the τ lepton may obtain a few
GeV mass. Finally, a leptonic mass matrix like the one of
Eq. (10) is generated only at higher perturbative level, when
ordinary quarks and leptons may be unified at a deeper
level (with, for instance, lQ couplings), and probably
related to some very heavy unified gauge boson mass.
Generating naturally lmasses smaller than Q masses. Note
that the larger the gauge group is unifying these theories the
more complex the set of coupled SDE. Of course, here we
are assuming only left-handed neutrinos, and a full explan-
ation of the fermionic mass spectra (including neutrino
masses) is a hard task and out of the scope of this work.
It is interesting to give an idea of what kind of model it is

possible to build in this scenario. We can follow similar
ideas as the ones in the Farhi-Susskind model. In that
model, the SUð5ÞS group was broken to SUð2ÞHC and
SUð3Þc, whereHC indicates the hypercolor (or TC) theory;
however it was not discussed in detail how the SUð2Þ scale
ΛHC could be larger than ΛQCD. In principle, we can adopt

FIG. 3. Higher order corrections coupling the η and ϕ
composite bosons. The effective coupling between two scalars
and two W’s occurs through a fermion loop.
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the most attractive channel hypothesis to have one idea
about the symmetry breaking of the larger group. It is not
impossible that the symmetry breaking pattern of a quite
large group leads to a group smaller than SUð3Þc with a
fundamental scale larger than ΛQCD, since this is a quite
model dependent problem. However, the most probable
breaking of a larger group into QCD plus another stronger
interaction with ΛTC > ΛQCD would happen when TC is
given at least by a SUð4ÞTC group.
Now, let us consider a unified theory based on the SUð9Þ

gauge group, containing a SUð4ÞTC TC theory and the
standard model. The anomaly free fermionic representa-
tions of this theory are [48]

5 ⊗ ½9; 8�i ⊕ 1 ⊗ ½9; 2�i; ð18Þ

where i ¼ 1, 2, 3 is a family or horizontal index that appears
due to the necessary replication of families associated to a
SUð3ÞH horizontal group; the ½8� and ½2� are antisymmetric
under SUð9Þ. These representations can be decomposed
according to the group product SUð4ÞTC ⊗ SUð5Þgg, where
SUð5Þgg is the standard Georgi-Glashow GUT [49]. The
technifermions in this model transforming as ½4; 5�i and
½4̄; 1�i should have different quantum SUð3ÞH numbers than
the ordinary fermions transforming as ½1; 10�i and ½6̄; 1�i in
order to produce a matrix like Eq. (10). According to the
most attractive channel hypothesis [50,51], for the TC and
QCD condensates (and their scalar bosons) appearing
respectively in the 6̄ and 3 of the SUð3ÞH, as discussed
previously, it is enough that the standard left-handed (right-
handed) fermions transform as triplets (antitriplets) under
SUð3ÞH. Evidently, the full set of coupled SDE in this
specific model is extremely complex involving couplings of
the SUð9Þ, SUð5Þgg, SM ones, and the horizontal bosons,
and all their implications are analyzed in a future work.
We may wonder what happens with pseudo-Goldstone

bosons in the scenario we are proposing here. Diagram (a1)
of Fig. 1 generates a dynamical TC mass at a TeV scale.
However, assuming that technifermions have an electroweak
or other similar charge, the diagrams (b1) and (c1) of
Fig. 1 generate effective “bare” masses mT ∝ αiμTC ∝
Oð1 − 10Þ GeV. In this case, we can obtain a lower bound
on the pseudo-Goldstone masses (mΠ) using the Gell-Mann-
Oakes-Renner relation to estimate m2

Π ≈mThψ̄TψTi=2F2
Π,

where in the right-hand side we have the TC condensate
divided by the technipion decay constant. This relation
roughly implies a lower bound of Oð30–90Þ GeV for the
pseudo-Goldstone masses.
Another way to observe the increase of the pseudo-

Goldstone masses is to compute the effect of electroweak
(or other) radiative corrections to these bosons. The
diagram of Fig. 4 shows the radiative correction to the
pseudo-Goldstone boson mass induced by one gauge boson
A with coupling constant gA, mass MA, and a vertex

indicated by Γ that is proportional to the technipion wave
function. It is quite important to remember that the
technipion wave function is related to the technifermion
self-energy as ΦΠ

BSðp; qÞjq→0 ≈ ΣTðp2Þ. Therefore we can
recognize that the calculation of this diagram is quite
different if the technipion wave function (or the vertex) is
hard or soft. A rough evaluation of this diagram within the
dynamical perturbation theory approach [52] gives

m2
Π ∝ g2A

�
μ2TC
F2
Π

�
M2

A: ð19Þ

This calculation is certainly very model dependent.
However, when the pseudoscalar vertex is soft the result
turns out to be suppressed by the MA mass, and does not
increase with MA as shown in Eq. (19). As a consequence
pseudo-Goldstone boson masses turn out to be heavier in
the scenario presented here.
Finally a last consequence that results from the slowly

decreasing TC self-energy is the possible explanation of
why the observed Higgs boson mass (mH) may be so light
compared with the composition mass scale (μTC). The
conventional prediction for the scalar mass in composite
models is m2

H ≈ 4μ2TC, derived from the homogeneous
Bethe-Salpeter equation (BSE). However, this relation is
modified by the inhomogeneous BSE normalization con-
dition when the scalar wave function, which is directly
related to the fermion self-energy, is a slowly decreasing
function with the momentum. In this case, the above mass
relation is then replaced by m2

H ≈ 4μ2TCfðαT; CTÞ where the
function fðαT; CTÞ depends on the TC gauge group, its
coupling constant and fermionic representation, and can be
naturally a factor of Oð1=10Þ [53–55].
In this work we have given evidences that radiative

corrections to TC (QCD) change the UV technifermion
(quark) self-energy behavior. This happens when TC and
QCD are embedded in a unified theory as in the Farhi-
Susskind model. This fact can be observed by noticing that
there are perturbative contributions to the SDE that intro-
duce effective four-fermion interactions like the one shown
in Eq. (4), or by modifications of the gap equation
boundary conditions that produce a large mass anomalous
dimension. However the most clear evidence of a hard

FIG. 4. Radiative correction to the mass of the pseudo-Gold-
stone boson.
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asymptotic self-energy is shown in Fig. 2, which indicates
generated current masses weakly dependent on the ETC
boson mass. As a consequence a large splitting between the
masses of different generations must appear by the impo-
sition of a family or horizontal symmetry in such a way that
TC gives masses preferentially to the third family and QCD
to the first one. Of course, the horizontal or family
symmetry also generates an enormous complexity to the
coupled set of gap equations, which is peculiar to the
attempt of obtaining the fermion mass spectra in the context
of dynamical symmetry breaking, but the origin of these
mass spectra is just a consequence of the two strong
interactions aligning with the horizontal symmetry. The
experimental consequences of this scenario are that the new
interactions with TC, which can be simply based on one
SUð2ÞTC theory, mostly occur with the third fermionic
generation; and the scalar boson mass, the one playing the
role of the Higgs boson, can also be lighter than usually

thought. The scalar boson mass (mH) relation with μTC is
modified by the BSE normalization condition, which
suppresses the ordinary expected value m2

H ≈ 4μ2TC. In this
type of model it is possible that TC pseudo-Goldstone
boson masses may also turn out to be large and consistent
with the present experimental limits [42,47], and all these
aspects are under study [41].
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