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We interpret the physical symmetry preserving the lepton number as a shadow of a finite pseudo-
Riemannian structure of the standard model. Using the pseudo-Riemannian generalizations of real spectral
triples we describe the geometries with indefinite metric over finite-dimensional algebras and their
Riemannian shadows. We apply the discussion to the standard model spectral triple, and classify possible
time orientations leading to restrictions on the physical parameters and symmetries.
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I. INTRODUCTION

Noncommutative geometry offers an intriguing possibil-
ity of a new insight into the structure of all fundamental
interactions, linking purely geometric gravity with the
electroweak and strong interactions of elementary fermions
[1]. The possibility is explored in one way into extending
the geometric notions to describe models that could
approximate spacetime [2] and, on the other hand, to
gather the information about the structure of geometry
underlying experimentally verified models of fundamental
constituents of matter [3,4].
The crucial role in the understanding of the geometric

interpretation of the standard model of particle physics
is based on the finite geometry, linked to the finite-
dimensional algebra C ⊕ H ⊕ M3ðCÞ and the related
finite spectral triple. Even though finite spectral triples
have been classified some time ago [5,6] and the model
has been extensively studied, it still can surprise and shed
new light on the structure of fundamental interaction. An
example is the recent discovery of unexpected duality [7] in
the standard model Clifford algebra (called Hodge duality)
that is satisfied only for certain values of physical param-
eters (bare masses and mixing matrices).
Though the quest for the better understanding of the

structure has already brought new results, some issues still
remain unsolved, like the consistent Lorentzian framework
for standard model description [8–10], the fermion dou-
bling problem [11,12] or the classification of possible
Dirac operators [13,14]. The latter appears to be, so far,
the most important issue, as even with the requirement of

some additional symmetries (second-order condition
[7] later incorporated as originating from the Hodge
duality [15]) there exist Dirac operators that allow for
the SUð3Þ symmetry breaking and lead to the unphysical
leptoquarks [16].
In this paper we propose an alternative explanation of the

observed quarks-leptons symmetry which prevents the
SUð3Þ-breaking, as a shadow of the Lorentzian structure.
We propose also that the consistent model-building for
the physical interactions and possible extensions of the
standard model within the noncommutative geometry
framework should use possibly the pseudo-Riemannian
extension of finite spectral triples, for which we present a
consistent and clear framework. We demonstrate that the
pseudo-Riemannian framework allows for more restrictions
and, in the discussed case introduces an extra symmetry
grading, which we interpret as the lepton-quark symmetry
(that was postulated as the so-called S0-symmetry in
[6,17,18]). The physical interpretation of this symmetry
is the lepton number conservation, which is strongly
confirmed by current experimental data [19].
To finish the introduction let us briefly describe the

notation and mathematical constructions used in this paper.
We consistently use particle physics convention with
positive sign of the metric for the time direction and
negative sign for spatial directions. We use the notion of
a Clifford algebra, which is a matrix algebra that encodes
the γ matrices of the Dirac operator. The definition of the
Clifford algebra is taken so that for a vector space with a
quadratic form of signature ðp; qÞ it is generated by p
matrices of square 1 and q of square −1 that anticommute
with each other. We work with a complexified Clifford
algebra, which represented on a space of complex spinors,
however, with the real structure of the Clifford algebra
encoded through an antilinear operator on the space of
spinors. The signature of the metric is visible in an
additional structure on the spinor space, which gives rise
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to an indefinite scalar product (called Krein product).
Details of these constructions and definitions are given
in Sec. II A.

II. PSEUDO-RIEMANNIAN SPECTRAL TRIPLES

Let us recall that a real pseudo-Riemannian spectral
triple of signature ðp; qÞ is a system ðA; π;H; D; J; γ; βÞ
where A is an involutive unital algebra, π its faithful
*-representation on an Hilbert space H such that the
following conditions hold. First, for even pþ q there
exists a Z2-grading γ† ¼ γ, γ2 ¼ 1 commuting with the
representation of A, J is an antilinear isometry and for all
a, b ∈ A we have ½Jπða�ÞJ−1; πðbÞ� ¼ 0. Furthermore,
there exists an additional grading β ¼ β†, β2 ¼ 1 also
commuting with the representation of A, which defines
the Krein structure on the Hilbert space. The latter is an
indefinite bilinear form defined as ðϕ;ψÞβ ¼ ðϕ; βψÞ,
where ð·; ·Þ is the usual positive definite scalar product
on the Hilbert space. As a last requirement, we postulate
the existence of a (possibly unbounded) densely defined
operator D, which is β-self-adjoint, i.e., D† ¼ ð−1ÞpβDβ
and such that ½D; πðaÞ� is bounded for every a ∈ A, is odd
with respect to γ-grading:Dγ ¼ −γD. The operatorsD, γ, J
satisfy following (anti)commutation relations, which
depend on the signature of the pseudo-Riemannian space
through p − q modulo 8:

DJ ¼ ϵJD; J2 ¼ ϵ0id; Jγ ¼ ϵ00γJ; ð1Þ

where ϵ, ϵ0, ϵ00 ¼ �1 are given in the Table I:
The number p − qmodulo 8, which determines the signs

ϵ, ϵ0, ϵ00, is called KO-dimension of the spectral triple as it
relates to the real K-theory and periodicity (modulo 8) in
real Clifford algebras.
The Krein structure β satisfies alone relations which

depend only on p:

βγ ¼ ð−1Þpγβ; βJ ¼ ð−1Þpðp−1Þ2 ϵpJβ: ð2Þ

Finally, to implement the condition that for manifolds D
is a first order differential operator, we impose the 1st-order
condition, requiring that for all a, b ∈ A

½JπðaÞJ−1; ½D; πðbÞ�� ¼ 0: ð3Þ

A spectral triple defined above is orientable if there exists
a finite collection of elements from the algebra (which
could be together combined in a so-called Hochschild cycle
of dimension n ¼ pþ q), ðai; ai0; ai1;…; ainÞ; i ¼ 1;…; k
such that

Xk
i¼1

ðJπðaiÞJ−1Þπðai0Þ½D; πðai1Þ�…½D; πðainÞ�

¼
�
γ n even;

1 n odd:
ð4Þ

The orientation corresponds to the existence of the nowhere
vanishing volume form.
In the pseudo-Riemannian case we can also define a

separate notion of time-orientation (even if there are multi-
dimensional times, that is p > 1) in the following way. We
say that β is a time orientation if there exists a collection of
elements from the algebra ðbi; bi0; bi1;…; bipÞ; i ¼ 1;…; k
such that

β ¼
Xk
i¼1

ðJπðbiÞJ−1Þπðbi0Þ½D; πðbi1Þ� � � � ½D; πðbipÞ�: ð5Þ

In the case of Lorentzian manifolds (p ¼ 1) the above notion
of time orientability is equivalent to the existence of global
timelike vector field.
Using β we can define the operator hDi ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ðDD† þD†DÞ

q
, which is self-adjoint on H. Then,

if we require that hDi has compact resolvent and
½hDi; ½D; πðaÞ�� is bounded for all a ∈ A we have a
pseudo-Riemannian version of the regularity and spectral
condition for the Dirac operator.

A. Clifford algebras of arbitrary signature

Before we proceed with the special case of finite-
dimensional triples, let us briefly recall the conventions
and basic properties of Clifford algebras for a metric of
indefinite signature ðp; qÞ, which motivate the above
definition. We include this short paragraph so that the note
is complete and self-contained.
Let us take the algebra generated by γa, a ¼ 1;…; pþ q,

with the relations γaγb þ γbγa ¼ 2ηab1, where η is diagonal
with p pluses and q minuses. We use the convention
that gamma matrices are unitary so that the “time”
gammas (first p of them) are self-adjoint while the
remaining ones are antiself-adjoint: γ†i ¼ γi; i ¼ 1;…; p
and γ†i ¼ −γi; i ¼ pþ 1;…; pþ q.
In even dimensions pþ q ¼ 2d, we can define: γ ¼

i
p−q
2 γ1γ2 � � � γpþq, so that γ is self-adjoint and γ2 ¼ 1. Now,

from the properties of Clifford algebras we know that there
exists a linear unitary operator B, such that Bγi ¼ ϵγ�i B and
BB� ¼ ϵ0. If B is combined with complex conjugation on

TABLE I. Signs for KO-dimension (mod 8).

p − q mod 8 0 1 2 3 4 5 6 7

ϵ þ − þ þ þ − þ þ
ϵ0 þ þ − − − − þ þ
ϵ00 þ − þ −
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spinors to give an antilinear operator J: Jψ ¼ Bψ�, then
we have: J2 ¼ ϵ0 and JD ¼ ϵDJ, where D is the Dirac
operator ([20], Satz 3.1): D ¼ −

P
jη

jjγj∂j. In the case of
even pþ q we additionally have: Bγ ¼ ϵ00γB, where all
signs are taken from the Table I.
There exists also another unitary operator A such that

AγiA† ¼ ð−1Þpþ1γ†i , which satisfies: A2 ¼ ð−1Þ12pðp−1Þ,
Aγ ¼ ð−1ÞpγA, and A�B ¼ ϵpBA.
The simplest choice for A is A ¼ γ1…γp. Note that

the Dirac operator D will be A (anti)self-adjoint in the
following sense:

ADA† ¼ A
X
j

ð−ηjjÞγj∂jA†

¼ ð−1Þpþ1
X
j

ð−ηjjÞγ†j∂j ¼ ð−1ÞpD†: ð6Þ

To translate the notation to that used in [21] we define
β ¼ i

1
2
pðp−1ÞA, and then we have: β ¼ β†, β2 ¼ 1, βγ ¼

ð−1Þpγβ, and Jβ ¼ ð−1Þ12pðp−1ÞϵpβJ, where the last one
follows from the observation that Jβ ¼ α�

α ϵ
pβJ, with

β ¼ αA.
The condition for the Dirac operator translates then to:

βDβ ¼ ð−1ÞpD†.
As a last remark, we note that the existence of β is

equivalent to having the Krein product ð·; ·Þβ on the Hilbert
space, where the scalar product and Krein product are
related through ðψ ;ϕÞ ¼ ðψ ; βϕÞβ. Then the (essentially)
Krein self-adjointness of the operator T is equivalent to the
following condition for the Hilbert adjoint T†, T† ¼ βTβ.
Therefore we see that the operator ipD is (essentially) Krein
self-adjoint, which is consistent with [20]-Satz.3.17, 3.19
and [22]- Thm. 3.17.

B. Riemannian triples from pseudo-Riemannian

Let ðA; π;H; D; J; γ; βÞ be a pseudo-Riemannian spec-
tral triple of signature ðp; qÞ. Since from the beginning we
are working with the Hilbert space representation, a
passage to the Riemannian spectral triple appears easy.
Define Dþ ¼ 1

2
ðDþD†Þ and D− ¼ i

2
ðD −D†Þ. Both D�

are by definition self-adjoint and since Dγ ¼ −γD and γ is
self-adjoint then also D† anticommutes with γ, therefore
D�γ ¼ −γD�. Using the β-self-adjointness we see that
also D†J ¼ ϵJD†. This means that JDþ ¼ ϵDþJ but
(as J is antilinear) JD− ¼ −ϵD−J. The first order condition
also holds for both D�, since it holds for D and
D†: ½D†; πðbÞ� ¼ ð−1Þpβ½D; πðbÞ�β, and βJπðaÞJ−1β ¼
JπðaÞJ−1 for any a, b ∈ A.
As a result we obtain a pair of Riemannian real spectral

triples, ðA; π;H; D�; J; γÞ which, however, differ by
KO-dimension. Each of them has an additional grading
β, which commutes or anticommutes with the Dirac
operator: βD� ¼ �ð−1ÞpD�β and satisfies the conditions

β2 ¼ 1; β† ¼ β and βγ ¼ ð−1Þpγβ, βJ ¼ ð−1Þpðp−1Þ2 ϵpJβ.
It is worth noting that in many cases the obtained triples
are degenerate in the sense that the kernel of the commu-
tator with each D� is bigger than C ⊂ A.
Yet using both Dþ and D− we can reconstruct a

Riemannian spectral triple. Let us define JE ¼ Jβ.
Clearly, this is still an antiunitary operator that satisfies:

J2E ¼ ϵ0ϵpð−1Þpðp−1Þ2 ; JEγ ¼ ð−1Þpϵ00γJE: ð7Þ

Furthermore, we have JED ¼ ð−1ÞpϵD†JE and therefore
for both Dþ; D−:

JED� ¼ ð−1ÞpϵD�: ð8Þ

As a result, we see that with the choice DE ¼ Dþ þD−,
ðA; π;H; DE; JE; γÞ becomes a Riemannian spectral
triple. To match the signs in the Table I for the right
KO-dimension we might, however, need to take (depend-
ing on p) J0E ¼ JEγ, which would guarantee that for the
even-dimensional triples we recover the appropriate con-
vention for the signs.
For odd KO-dimensions of the pseudo-Riemannian

spectral triple we always get a Riemannian spectral triple
with JE as a real structure whereas for evenKO-dimensions
we choose fJE ¼ JE as a real structure for p even andfJE ¼ J0E for p odd.
The resulting values of KO-dimensions of the

Riemannian spectral triple ðA; π;H; DE; J̃E; γÞ, dependent
on the value of p (mod 4), are collected in the Table II.
Note that comparing the result with Table I we see that

it is consistent with passing from the signature ðp; qÞ to
(0, −ðpþ qÞ).
This procedure of obtaining a Riemannian spectral triple

from a pseudo-Riemannian one could be illustrated easily
in many commutative and noncommutative examples,
including the noncommutative torus. For example, it is
easy to demonstrate that the above procedure applied to the
Lorentzian spectral triple constructed for the noncommu-
tative torus T 2

θ in [8], Sec. III, gives the usual Riemannian
spectral triple over T2

θ.

TABLE II. KO-dimension (mod 8) for the Riemannian triple
obtained from the pseudo-Riemannian triple of signature ðp; qÞ.

p − q (mod 8)

p (mod 4) 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7
1 2 3 4 5 6 7 0 1
2 4 5 6 7 0 1 2 3
3 6 7 0 1 2 3 4 5
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A more interesting application, however, is to the finite
spectral triples and, in particular, the one of the standard
model.

III. FINITE SPECTRAL TRIPLES

A finite spectral triple is a spectral triple over an algebra,
which is a finite direct sum of (complex) matrix algebras.
From the general consideration (see [5]) we know that
for a finite real spectral triple the algebra A and the Hilbert
space H can be decomposed as

A ≅ ⨁
N

i¼1

MniðCÞ; H ¼ ⨁
i;j
Hij; ð9Þ

with Hij ¼ πðPiÞJπðPjÞJ−1H, where Pi ∈ A is the iden-
tity matrix in the ith entry and zeroes elsewhere. Each of the
subspacesHij could be written asHij ¼ Cni ⊗ Crij ⊗ Cnj ,
where rij ∈ N with the convention that rij ¼ 0 means
Hij¼0. The representation π is πðaÞξij¼ðai⊗1⊗1Þξij,
where ai ¼ Pia ¼ aPi and ξij ∈ Hij. The opposite repre-
sentation (conjugated by J) is Jπða�ÞJ−1ξij ¼ ξijð1 ⊗ 1 ⊗
aTj Þ, where the latter denotes the matrix multiplication from
the right and T is the matrix transposition.
We can recall here some of the results of [5], which do

not depend on the fact that we extend the triple to be
(possibly) pseudo-Riemannian. First, in case pþ q is even,
there exists a grading γ, which when restricted to Hij is
determined by an internal self-adjoint grading Γij on Crij :
γjHij

¼ γij ¼ 1ni ⊗ Γij ⊗ 1nj . The antiunitary operator
J maps Hij onto Hji and therefore rij ¼ rji. Observe that
γij ¼ ϵ00γji and therefore qij ≔ rijγij is a matrix which is
symmetric for KO-dimensions 0 and 4 and antisymmetric
for KO-dimensions 2 and 6.
The construction of the Dirac operator follows again

the procedure of [5] and (apart from one condition) is
again independent of the signature. First, we define a
linear map Dij;kl∶ Hkl → Hij, which is Dij;kl ¼ ðπðPiÞ
JπðPjÞJ−1ÞDðπðPkÞJπðPlÞJ−1Þ.
Using the first order condition we conclude (using the

same arguments as in [5]) that the componentsDij;kl vanish
unless i ¼ k or j ¼ l. If i ¼ k then D commutes with the
representation π and if j ¼ l then it commutes with π°.
Furthermore, we have an analogue of Lemma 7 from [5]:
there exists ξ ¼ P

i≠jPidPj such that for every a ∈ A we
have da ¼ ½ξ; a� and moreover, for the Dirac operator we
haveD ¼ πðξÞ þ ϵJπðξÞJ−1 þ δ. Here δ denotes the part of
the Dirac operator (which, in principle can exists) that
commutes both with the algebra as well as with the
opposite algebra JAJ−1. The (anti)commutation relation
with J enforces Dij;kl ¼ ϵJDji;lkJ−1 We note that obser-
vations 5.-7. and Lemmas 8.-11. from [5] remains
unchanged, since the proofs depend only on the properties

of an algebra A and the fact that da ¼ ½ξ; a�. Moreover, the
discussion in B.2 of [5] remains unchanged, since it uses
only such properties of Dirac operator which do not depend
on the signature.

A. The Krein structure for finite spectral triples

So far we have not considered the existence of β.
Let us check what this requirement implies for the
rest of the spectral triple. First of all, observe that
since β commutes with the algebra, it is uniquely
determined by a family of βij∶ Hij → Hij such that:
βij ¼ β†ij, β

2
ij ¼ 1.

The first important statement concerns the existence of
β for odd p, which can be formulated in the following
way. If at least one subspace Hij such that rij > 0 has
γij ¼ �1 then there exists no pseudo-Riemannian spectral
triple on it with p odd. Indeed, in the case of odd p, we
have: βijγij ¼ −γijβij, so if γij is proportional to the
identity matrix we have necessarily βij ¼ 0 which contra-
dicts β2ij ¼ 1.
Since D is β-self-adjoint and commutes with the repre-

sentation π, D†
ij;kl ¼ ð−1ÞpβDkl;ijβ, for p ¼ 2k with k ∈ N

we have βJ ¼ ð−1ÞkJβ and since for even spectral triples
we have pþ q ∈ 2Z then also the KO-dimension is even,
and therefore DJ ¼ JD.

B. The Riemannian part of finite spectral triples

The procedure to obtain a Riemannian finite spectral
triple from a pseudo-Riemannian one is again straightfor-
ward, yet the Riemannian spectral triples that are associated
with Dþ and D− are potentially interesting as they both
have an extra symmetry β. Note that not every pseudo-
Riemannian is possible, as if γij ¼ �1 for at least one pair i,
j then necessarily p needs to be even as on the subspace
Hij we must have βγ ¼ γβ.
Nevertheless, bearing in mind that limitation, one can

reformulate the problem of constructing a pseudo-
Riemannian real finite spectral triple as equivalent to the
construction of two Riemannian finite-dimensional real
spectral triples together with a Z2-grading β that satisfies
certain commutation relations with γ and J and Dirac
operators that commute or anticommute with β.
A simple example of this, could be illustrated by a

finite spectral triple over an algebra with two summands.
For simplicity we could take them both to be C, so that
A ¼ C ⊕ C and Hij ¼ C for i, j ¼ 1, 2. This is the basic
setup leading to the real spectral triple for an algebra of
functions over two points. We should remark here that
the Hilbert space is C4 and we can easily write the
representation and all operations using matrices in
M4ðCÞ. Identifying C4 as H11 ⊕ H21 ⊕ H12 ⊕ H22 we
have π, J, γ:
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πðz ⊕ wÞ ¼

0
BBB@

z 0 0 0

0 z 0 0

0 0 w 0

0 0 0 w

1
CCCA;

γ ¼

0
BBB@

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

1
CCCA;

J ¼

0
BBB@

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

1
CCCA∘ � : ð10Þ

Now, we can easily identify a nontrivial additional
symmetry (Z2-grading) β and construct a Dirac operator
Dþ, which is real, satisfies first-order condition and
commutes with β:

β ¼

0
BBB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

1
CCCA; Dþ ¼

0
BBB@

0 d d� 0

d� 0 0 0

d 0 0 0

0 0 0 0

1
CCCA:

ð11Þ

This data gives us a Riemannian real spectral triple of
KO-dimension 0 over the algebra of functions on two
points, which has an additional symmetry. In contrast to the
full Riemannian spectral triple, where the Dirac operator
has two arbitrary complex entries (see [23] for details) the
restriction due to the β-symmetry gives only one free
parameter into the family of possible Dirac operators.
It is an easy exercise, which we omit, to construct a

second Riemannian spectral triple, with a Dirac operator
D−, which, in addition would satisfy D−β ¼ −βD−. Both
these triples could be seen as Riemannian parts of a pseudo-
Riemannian spectral triple with signature (4,4) or (0,0).
Again, it is easy to check that the full pseudo-Riemannian
real spectral triple over the algebra of function on two
points would have the full Dirac operator D:

D ¼

0
BBB@

0 d d� 0

d� 0 0 c

d 0 0 c�

0 −c� −c 0

1
CCCA; ð12Þ

where c, d are arbitrary complex numbers.
We shall explore this effect more for the spectral triple of

the standard model.

IV. THE STANDARD MODEL

In this section we shall discuss the finite spectral triple
for standard model, using the conventions consistent
with [4,7]. As an algebra we take

AF ¼ C ⊕ H ⊕ M3ðCÞ; ð13Þ

represented on the Hilbert space

HF ¼ ðHl ⊕ HqÞ ⊕ ðHl̄ ⊕ Hq̄Þ; ð14Þ

where the basis for the leptonic space Hl is ordered as
fνR; eR; ðνL; eLÞg and the quark space Hq have a basis
fuR; dR; ðuL; dLÞg (in each color). The generic algebra
element, ðλ ⊕ h ⊕ mÞ from C ⊕ H ⊕ M3ðCÞ, is repre-
sented on Hl and Hq (for each color) as πðλ; h; mÞ ¼
λ ⊕ λ̄ ⊕ h, whereas the representation onHl̄ is by λ and on
Hq̄ by 14 ⊗ m, where we used the fact that we have
3 colours. In the case when we consider N generations the
Hilbert space is respectively enlarged by tensoring it with
CN whereas the representation is extended diagonally.
The physical Dirac operator in this description of the

standard model has a form

DF ¼
�
S T†

T S̄

�
; S ¼

�
Sl

Sq ⊗ 13

�
; ð15Þ

with

Sl ¼

2
666664

Y†
ν

Y†
e

Yν

Ye

3
777775;

Sq ¼

2
666664

Y†
u

Y†
d

Yu

Yd

3
777775; ð16Þ

where Yν, Ye, Yu, Yd are Yukawa mass matrices. The
operator T is given by TνR ¼ YRν̄R, for a certain symmetric
Majorana mass matrix YR ∈ MNðCÞ and T gives zero on
other fermions. It is well known that ðAF;HF;DFÞ together
with γF acting as 1 on right-handed and as −1 on left-handed
particles, and JF conjugation composed with exchanging
particles with antiparticles, form a spectral triple.
Note that this spectral triple is nonorientable [24]. The

reason is that we have included sterile right-handed
neutrinos and any operator of the form

P
kπðλk;…Þ

JFπðμk;…ÞJ−1F acting on νR and ν̄R reproduces them with
the same value

P
kλkμ̄k, but γFνR ¼ νR and γFν̄R ¼ −ν̄R.
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There is no such problem for right electron since the
representation on electron differs by complex conjugation.
Orientability can be restored if one assumes that there are
only left-handed neutrinos,1 then one can easily find a
Hochschild cycle that provides the orientability, however,
with the expense that neutrino masses cannot be of the
same origin as for other leptons and quarks but arising
from an effective mass terms such as Weinberg effective
Lagrangian [25]. It is also well known that the above Dirac
operator is not unique (see [7,16]) within the model-
building scheme of noncommutative geometry. Even the
introduction of more constraints, like the second-order
condition [7] or Hodge-duality [15] does not allow to
exclude the terms, which would introduce the couplings
between lepton and quarks and lead to the leptoquark
fields [16].

A. The pseudo-Riemannian shadow
for the standard model

The solution to the problem lies in the introduction of an
additional symmetry, in terms of the Z2-grading, which
distinguishes between lepton and quarks. This symmetry,
which could be taken as a 0-cycle:

β ¼ πð1; 1;−1ÞJFπð1; 1;−1ÞJ−1F ; ð17Þ

has had various interpretations and originally was linked to
K-theoretic origins [6,17]. However, in the light of the
discussion of the pseudo-Riemannian spectral triples we
propose, another explanation that uses the pseudo-
Riemannian construction.
Observe that β (17) satisfies all commutation relations

with γF and JF that are consistent with p ¼ 4k. Since the
total KO-dimension is unchanged when passing to the
Riemannian restriction with Dþ then q ¼ 4kþ 2 (mod 8).
For p ¼ 0 (i.e., k ¼ 0) q has to be equal 2 (mod 8), hence
the simplest choice for the (finite part of) standard model is
the pseudo-Riemannian spectral triple of signature (0,2).
Therefore ðAF;HF;DF; γF; JF; βÞ could be seen as a

Riemannian restriction of a real even pseudo-Riemannian
spectral triple of signature (0,2) [note that this choice is not
unique and it is also possible to chose in a consistent way,
e.g., the signature (4,6)].

B. Classification of pseudo-Riemannian shadows
for the standard model

The example in the previous section demonstrated that
the additional symmetry can be interpreted as a 0-cycle
being the shadow of the pseudo-Riemannian structure. In
this section we shall look for more general structures of this

type, aiming to step towards their classification and study
the physical consequences.
The approach we take here assumes as a starting point

the general structure of the finite spectral triple for the
standard model as discussed in [7], however, without
further restrictions on the Dirac operator than order one
condition. Then we shall look for all possible operators β,
which are 0-cycles and commute with the Dirac operator.
This shall lead to constraints on the Dirac operator, which
we shall then compare with the condition of Hodge duality
discussed in [7].
Let us briefly recall the details of the standard model

spectral triple. We take as a Hilbert space HF ¼ F ⊕ F�
with vectors from HF can be represented as a pair of
matrices, v; w ∈ M4ðCÞ,�

v

w

�
∈ HF;

v ¼

2
666664
νR u1R u2R u3R
eR d1R d2R d3R
νL u1L u2L u3L
eL d1L d2L d3L

3
777775;

w ¼

2
666664
νR eR νL eL

u1R d1R u1L d1L

u2R d2R u2L d2L

u3R d3R u3L d3L

3
777775: ð18Þ

This presentation is more convenient to describe all possible
Dirac operators and symmetries arising from pseudo-
Riemannian structures. It is easy to identify Hl and Hq

from (14) as the first column and, respectively, three last
columns of the F matrix. The bonus, however, is in the
identification of the algebra of all possible linear trans-
formations ofHF, as it could be described as elements of the
M4ðCÞ ⊗ M2ðCÞ ⊗ M4ðCÞ algebra. A simple tensor from
this algebra mL ⊗ m ⊗ mR acts on the vector composed
from v, w in the following way: mL acts by left matrix
multiplication on v,w;mR acts by right matrix multiplication
by its transpose (on v, w) while m acts a linear trans-
formation on the pair ½v; w�. If we denote by eij a matrix with
the 1 in position ði; jÞ and zero everywhere else, and use 1k
to denote the identity matrix in MkðCÞ then we can
conveniently write the real structure and the grading γ as

J

�
v

w

�
¼

�
w�

v�

�
;

γ ¼
�
12

−12

�
⊗ e11 ⊗ 14 þ 14 ⊗ e22 ⊗

�−12
12

�
;

ð19Þ
1Usually these are in the literature identified with Majorana

neutrinos, though the finite spectral triple of the standard model
does not involve spinorial degrees of freedom.
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whereas the elements of the algebra A ¼ C ⊕ H ⊕ M3ðCÞ
are represented on HF by

πðλ; q; mÞ ¼

2
64 λ

λ̄
0

0 q

3
75 ⊗ e11 ⊗ 14

þ
�
λ 0

0 m

�
⊗ e22 ⊗ 14; ð20Þ

where λ ∈ C, q ∈ H and m ∈ M3ðCÞ.
The most general Dirac operator is of the form D ¼

D0 þD1 þDR, whereD1 ¼ JD0J−1 andDR is J invariant.
We consider a spectral triple of KO-dimension 6, with a
self-adjoint Dirac operator, but such that commutes with
a suitable β that represents the shadow of a pseudo-
Riemannian structure. We limit our considerations to
the case of a Dirac operator that satisfies an order-one
condition. We have

D0 ¼
�

M

M†

�
⊗ e11 ⊗ e11þ

�
N

N†

�
⊗ e11 ⊗ ð1− e11Þ

þ
�
A B

0 0

�
⊗ e12 ⊗ e11þ

�
A† 0

B† 0

�
⊗ e21 ⊗ e11;

ð21Þ

where M, N, A, B are all in M2ðCÞ. Observe that the
assumed form of D0 includes already DR:

DR ¼ e11 ⊗ ðA11e21 þ A�
11e12Þ ⊗ e11: ð22Þ

The presentation of the Dirac operator in (15)–(16) corre-
sponds to M ¼ Sl, N ¼ Sq and A ¼ T (here to have the
matrix equality T needs to be restricted to the subspace of
right-handed leptons), B ¼ 0.
In the next step of our search for all possible shadows

of pseudo-Riemannian structures we look for a β that is
a 0-cycle, i.e., a sum of elements of the form

β ¼ πðλ1; q1; m1ÞJπðλ2; q2; m2ÞJ−1; ð23Þ

with λ1, λ2 ∈ C, q1, q2 ∈ H, m1, m2 ∈ M3ðCÞ. As we
impose the condition that β2 ¼ 1, Jβ ¼ βJ and β commutes
with the algebra, we obtain that all elements λ1, λ2 as well
as the matrices q1, q2 and m1, m2 must be �1 and pairwise
equal to each other (that is λ1 ¼ λ2, q1 ¼ q2, m1 ¼ m2).
Therefore, up to a trivial rescaling (by −1), we have three
possibilities. The one discussed in the preceding subsection
is λ1 ¼ 1, q1 ¼ 12 and m1 ¼ −13.
Let us discuss all three cases. First, if β ¼

πð1;−1; 1ÞJπð1;−1; 1ÞJ−1 then the restrictions for the
Dirac operator to commute with β are only M ¼ N ¼ 0,
with no restriction for A, B.

The second case, with β ¼ πð−1; 1; 1ÞJπð−1; 1; 1ÞJ−1
imposes similarly M;N ¼ 0, but then additionally B ¼ 0
and A that has to satisfy A ¼ A · diagð1;−1Þ.
The last case, with β ¼ πð1; 1;−1ÞJπð1; 1;−1ÞJ−1,

which was discussed in the preceding sections enforces
B ¼ 0 and A ¼ A · diagð1;−1Þwhile putting no constraints
onM andN, consistent with the discussion at the beginning
of Secs. IV and IVA. Note that the fact that A does
not vanish is consistent with the existence of terms that
involve only the sterile neutrino and thus compatible with
physical data.
It is worth noting that both only the last situation allows

for a physical Dirac operator (with Majorana mass terms for
the neutrinos) and, moreover, in the view of the results of
[7] it is the only case that satisfies the Hodge duality.
Therefore, as a consequence we see that the only possible

0-cycle for a real spectral triple over the standard model
that can be interpreted shadow of a pseudo-Riemannian
structure, which additionally allows Hodge duality is the
one with β ¼ πð1; 1;−1ÞJπð1; 1;−1ÞJ−1, resulting in the
symmetry that physically is interpreted as lepton number
conservation.

V. CONCLUSIONS

As the finite-dimensional spectral triple of the standard
model shares the property of degeneracy with the
Riemannian parts of the pseudo-Riemannian triples, i.e.,
the SUð3Þ symmetry remains unbroken due to the apparent
preserved symmetry between leptons and quarks, we
conjecture that this is the genuine origin of that feature.
Of course, to consider the full standard model as an almost
commutative geometry we need to construct the product
of the standard triple over a manifold M with the above-
defined triple. This could be in the Lorentzian setup only on
an algebraic level, as the analytic tools leading to the
spectral action and description of Yang-Mills and Higgs
terms in the action can be carried out only in the Euclidean
framework.
Moreover, the product geometry leads to the problem of

fermion doubling [26], which has been discussed in both
Euclidean and Lorentzian setup. However, the interpreta-
tion of the finite part as a Riemannian part of some possibly
bigger, pseudo-Riemannian finite geometry can shed a new
light on the issue, which we shall tackle in the next work.
Leaving these problems aside we can, however, offer a very
natural interpretation of the preserved symmetry between
the leptons and the quarks as originating from the much
deeper, pseudo-Riemannian geometrical structure of the
standard model. Together with the recently uncovered
property of Hodge duality [7] this allows to eliminate all
Dirac operators that would mix leptons and quarks and, in
consequence lead to leptoquarks and breaking of the SUð3Þ
symmetry. It offers also an intriguing possibly to look for
the full pseudo-Riemannian triple, which can be a next step
to reach beyond the standard model.
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