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Supersymmetry breaking close to the scale of grand unification can explain cosmic inflation. As we
demonstrate in this paper, this can be achieved in strongly coupled supersymmetric gauge theories, such
that the energy scales of inflation and supersymmetry breaking are generated dynamically. As a
consequence, both scales are related to each other and exponentially suppressed compared to the Planck
scale. As an example, we consider a dynamical model in which gauging a global flavor symmetry in the
supersymmetry-breaking sector gives rise to a Fayet-Iliopoulos D term. This results in successful D-term
hybrid inflation in agreement with all theoretical and phenomenological constraints. The gauged flavor
symmetry can be identified with Uð1ÞB−L, where B and L denote baryon and lepton number, respectively.
In the end, we arrive at a consistent cosmological scenario that provides a unified picture of high-scale
supersymmetry breaking, viableD-term hybrid inflation, spontaneous B − L breaking at the scale of grand
unification, baryogenesis via leptogenesis, and standard model neutrino masses due to the type-I seesaw
mechanism.
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I. INTRODUCTION: GUT-SCALE SUSY
BREAKING AS THE ORIGIN

OF INFLATION

Supersymmetry (SUSY) is an elegant and well-
motivated extension of the standard model (SM). In
recent years, the experimental data collected at the Large
Hadron Collider (LHC) has, however, put increasing
pressure on conventional SUSY scenarios with superpart-
ner masses around the electroweak scale. No evidence
for supersymmetric particles has been found thus far; see,
e.g., the recent SUSY searches by the LHC experiments
ATLAS [1] and CMS [2]. Therefore, if supersymmetry
exists in nature, the superpartners of the SM particles
(sparticles) must have masses of at least Oð1Þ TeV, if not
much higher. The idea of heavy sparticles is also corrobo-
rated by the measured value of the Higgs boson mass [3,4].
In the minimal supersymmetric standard model (MSSM), a
125 GeV Higgs boson [5] can only be explained by means
of large radiative corrections [6–10]. This points towards a
large SUSY-breaking mass splitting between the top quark
and its scalar partners, the stop squarks.

If realized around the electroweak scale, supersymmetry
provides a natural solution to the large hierarchy problem in
the standard model. For decades, this observation has
reinforced the paradigm of low-scale supersymmetry that
would be testable in collider experiments. In the present
experimental situation, the null results at the LHC, how-
ever, bring about the little hierarchy problem. Sparticles
with masses of at least Oð1Þ TeV can only be reconciled
with the Oð100Þ GeV value of the electroweak scale at the
cost of fine-tuning. One is therefore led to adopt one of two
possible attitudes. Either one gives up on supersymmetry as
a well-motivated extension of the standard model, or one
challenges the concept of naturalness and accepts a certain
degree of fine-tuning. In this paper, we shall take the latter
approach. Our understanding of naturalness may be flawed
and, for some reason or another, not apply to the physics of
the electroweak scale. Moreover, dismissing supersym-
metry altogether would do injustice to supersymmetry’s
other merits. One must not forget that, irrespective of its
relation to the electroweak scale, supersymmetry also
(i) provides a natural particle candidate for dark matter,
(ii) facilitates the unification of the SM gauge coupling
constants at a high energy scale, and (iii) sets the stage for
the ultraviolet (UV) completion of the standard model in
string theory.
In fact, supersymmetry broken at a high scale [11–13]

has received significant interest in recent years. Many
authors have proposed models of high-scale SUSY break-
ing and its mediation to the visible sector, including
scenarios such as universal high-scale supersymmetry
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[14], split supersymmetry [15–17], mini-split supersym-
metry [18], minimal split supersymmetry [19], spread
supersymmetry [20,21], and pure gravity mediation
[22–24] (see also Ref. [25]). Another intriguing feature
of these models is that a high SUSY-breaking scale implies
a very heavy gravitino. The gravitino, thus, decays very fast
in the early Universe, which solves the cosmological
gravitino problem [26–29]. In addition, large sfermion
masses help reduce the tension with constraints on the
SUSY parameter space from flavor-changing neutral
currents and CP violation [30]. For these reasons, we
consider supersymmetry broken at a high energy scale
to be a leading candidate for new physics beyond the
standard model.
In this paper, we will take the idea of high-scale SUSY

breaking to the extreme and consider SUSY-breaking
scales ΛSUSY as large as the scale of gauge coupling
unification in typical grand unified theories (GUTs),
ΛSUSY ∼ ΛGUT ∼ 1016 GeV. Electroweak naturalness is
then certainly lost. But at the same time, another intriguing
possibility emerges which is out of reach in low-scale
supersymmetry. If ΛSUSY is large enough, cosmic inflation
in the early Universe [31–34] can be driven by the vacuum
energy density associated with the spontaneous breaking of
supersymmetry, hVi ⊃ Λ4

SUSY. This represents a remark-
able connection between particle physics and cosmology.
Inflation is a pillar of the cosmological standard model. Not
only does inflation explain the large degree of homogeneity
and isotropy of our Universe on cosmological scales, it is
also the origin of the primordial fluctuations that eventually
seed structure formation on galactic scales (see, e.g.,
Refs. [35,36] for reviews on inflation). At present, there
is, however, no consensus on how to make contact between
inflation and particle physics. Against this background, the
unification of inflation with the dynamics of spontaneous
SUSY breaking provides an elegant and economical
embedding of inflation into a microscopic theory.
The interplay between inflation and SUSY breaking has

been studied from different angles in the past (see, e.g.,
Refs. [37–39]). In the context of supergravity (SUGRA),
SUSY breaking in a hidden sector can, in particular,
result in severe gravitational corrections to the inflationary
dynamics [40]. In this case, one can no longer perform a
naive slow-roll analysis that only considers the properties
of the inflaton sector and disregards its gravitational
coupling to other sectors. Instead—and this is exactly what
we will do in this paper—one has to resort to a global and
combined analysis that accounts for the presence and
interaction of all relevant sectors, including the inflaton
sector, SUSY-breaking sector, and visible sector. The first
unified model that illustrates how inflation and soft SUSY
breaking in the visible sector may originate from the same
dynamics has been presented in Ref. [41]. In this model,
supersymmetry is broken dynamically by the nonperturba-
tive dynamics in a strongly coupled supersymmetric gauge

theory. Dynamical SUSY breaking (DSB) first occurs
in the hidden sector and is then mediated to the MSSM.
More recently, a number of related models have been
constructed in Refs. [42–44].1 All these models have in
common that the energy scales of inflation and SUSY
breaking end up being related to the dynamical scale Λdyn
of the strong dynamics. The scale Λdyn is generated via
dimensional transmutation, analogously to the scale of
quantum chromodynamics (QCD) in the standard model.
That is, at energies around Λdyn, the gauge coupling
constant in the hidden sector formally diverges. The unified
models in Refs. [41–44] therefore do not require any
dimensionful input parameters to explain the origin of
the energy scales of inflation and SUSY breaking. The
generation of Λdyn is, in particular, a nonperturbative effect
in the infrared. This explains the exponential hierarchy
between ΛSUSY and Λinf on the one hand and the Planck
scale MPl on the other hand. Meanwhile, several perturba-
tive models of inflation and SUSY breaking have recently
been discussed in the literature [51–53]. These models also
draw a unified picture of inflation and SUSY breaking. But
in contrast to strongly coupled models, they depend on
dimensionful input parameters which need to be put in by
hand. They, thus, fail to provide a dynamical explanation
for the separation of scales.
In this paper, we shall revisit our model in Ref. [43],

which gives rise to a viable scenario of D-term hybrid
inflation (DHI) [54,55] in the context of high-scale SUSY
breaking.2 Hybrid inflation [60,61] is an interesting sce-
nario on general grounds, as it establishes another con-
nection between particle physics and cosmology. In hybrid
inflation, the inflationary era ends in a rapid second-order
phase transition, the so-called waterfall transition, which
can be identified with the spontaneous breaking of a local
gauge symmetry in models of grand unification. As shown
in Ref. [43], this symmetry can be chosen to correspond to
Uð1ÞB−L, where B and L denote baryon and lepton number,
respectively. Inflation therefore ends in what is referred to
as the B − L phase transition [62–69]. That is, the end of
inflation coincides with the spontaneous breaking of B − L
in the visible sector. This can be used to generate
L-violating Majorana masses for a number of sterile
right-handed neutrinos. These neutrinos then lead to baryo-
genesis via leptogenesis [70] and generate the SM neutrino
masses via the seesaw mechanism [71–75]. The model in

1Besides, there is a more general class of models, sometimes
referred to as dynamical inflation, where inflation is a conse-
quence of dynamical SUSY breaking in a hidden sector. In these
models, the breaking of supersymmetry during inflation is,
however, not responsible for the breaking of supersymmetry in
the MSSM at low energies (see, e.g., Refs. [45–50]).

2This model has recently been employed in a supersymmetric
realization of the relaxion mechanism [56]. For other models of
hybrid inflation and high-scale SUSY breaking, see Refs. [57,58].
For more recent work on D-term inflation, see Ref. [59].
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Ref. [43], thus, provides a consistent picture of particle
physics and early Universe cosmology. It unifies the
dynamics of inflation, high-scale SUSY breaking, and
spontaneous B − L breaking. Remarkably enough, all of
these phenomena occur at energies close to the GUT scale.
The discussion in Ref. [43] mostly focused on model

building aspects. We gave a brief summary of our
model construction and only touched upon phenomenol-
ogy. The purpose of the present paper is therefore
threefold. We will (i) review the construction of our
model in more detail, including many aspects that were
left out in Ref. [43] (see Sec. II). We will (ii) perform a
more comprehensive scan of parameter space (see
Sec. III). In particular, we will identify new regimes of
successful inflation that were overlooked in Ref. [43].
And finally, we will (iii) provide a much broader phe-
nomenological discussion, including the implications of
our model for the MSSM particle spectrum, the B − L
phase transition, dark matter, and cosmic strings (see
Sec. IV). In the last section of this paper, we will conclude
and give an outlook on how our main observation—the
fact that SUSY breaking close to the GUT scale might
be the key to a unified picture of particle physics and
cosmology—could lead to a new understanding of
SUSY’s role in nature (see Sec. V). In the Appendix,
as a supplement to Secs. II and III, we collect various
technical formulas that help to translate between the
Einstein-frame and Jordan-frame formulations of super-
gravity (see the Appendix). This also includes a detailed
comparison of our Jordan-/Einstein-frame expressions for
the inflationary slow-roll parameters.

II. MODEL: STRONG DYNAMICS AND GAUGED
B−L IN THE JORDAN FRAME

We begin by reviewing the model constructed in
Ref. [43]. This will also allow us to introduce our notation
and conventions. The starting point of our analysis is the
idea to build a viable SUGRA model of hybrid inflation
that ends in the spontaneous breaking of B − L, i.e., in the
B − L phase transition.

A. Preliminary remarks on hybrid
inflation in supergravity

In the absence of supersymmetry, hybrid inflation is
incompatible with the statistical properties of the temper-
ature fluctuations in the cosmic microwave background
(CMB). Nonsupersymmetric hybrid inflation predicts the
primordial scalar CMB power spectrum to be blue-tilted,
i.e., it predicts a scalar spectral index ns greater than one
[60,61]. This needs to be compared with the recent mea-
surement by the Planck Collaboration, nobss ¼ 0.9677�
0.0060 [76]. Nonsupersymmetric hybrid inflation is, thus,
ruled out with a statistical significance of more than 5σ.
This conclusion serves as an independent motivation to

introduce supersymmetry, in addition to supersymmetry’s
other advantages (see Sec. I).
In supersymmetry, hybrid inflation is understood to be a

consequence of (temporary) spontaneous SUSY breaking,
which can be accomplished either by a nonvanishing F
term [77,78] or D term [54,55]. In the following, we will
outline both scenarios and explain why we will eventually
focus on D-term inflation. In both cases, the scalar inflaton
σ is contained in a chiral multiplet S that transforms as a
singlet under all gauge symmetries. S couples to charged
chiral multiplets in the superpotential Winf ,

Winf ⊇ κSΦΦ̄; ð1Þ

where κ is a dimensionless Yukawa coupling. Φ and Φ̄
denote the so-called waterfall fields, which transform in
conjugate representations of a gauge group G. We shall
identify G with Uð1ÞB−L and assign B − L charges þq
and −q to Φ and Φ̄. This sets the stage for the B − L phase
transition at the end of inflation. Any self-interaction of S
can be forbidden by invoking R symmetry. If we assign R
charges such that ½S�R ¼ 2 and ½ΦΦ̄�R ¼ 0, terms such as
S2 and S3 are not allowed. The Yukawa coupling in Eq. (1)
does not suffice to break supersymmetry. This is, however,
necessary to obtain a nonvanishing vacuum energy density
that can drive inflation. In F-term hybrid inflation
(FHI), one therefore equips S with an F term, jFSj ¼ μ2S.
Supersymmetry is then broken à la O’Raifeartaigh [79]
during inflation. In D-term inflation, one assumes instead a
nonzero Fayet-Iliopoulos (FI) D term in the D-term scalar
potential VD. This breaks supersymmetry during inflation
via the FI mechanism [80]. F-term and D-term inflation
are then characterized by the following expressions for
Winf and VD:

FHI∶ Winf ¼ κSΦΦ̄þ μ2SS; VD ¼ g2

2
½qðjϕj2 − jϕ̄j2Þ�2;

DHI∶ Winf ¼ κSΦΦ̄; VD ¼ g2

2
½q0ξ − qðjϕj2 − jϕ̄j2Þ�2:

ð2Þ

The gauge coupling constant g belongs to the gauge group
G. In our case, g consequently denotes the B − L gauge
coupling. The gauge charge q0 is factored out of the FI
parameter ξ for later convenience.
In both F-term and D-term inflation, the field S para-

metrizes a completely flat direction in the scalar potential,
at least at tree level and in global supersymmetry. This
explains why it is natural to identify S with the chiral
inflaton field. At large field values of S, the Yukawa
coupling in Eq. (1) induces large S-dependent masses
for the waterfall fields. Φ and Φ̄ can therefore be integrated
out, which results in a logarithmic effective potential for S.
This singles out the origin in field space, S ¼ 0, as the
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unique vacuum in the quantum theory. Inflation is, thus,
characterized by the slow-roll motion of S from large field
values towards the origin in field space. The SUSY-
breaking parameters μS (FHI) and ξ (DHI) induce a mass
splitting between the scalar components ofΦ and Φ̄. Below
a certain critical value of the inflaton field, this results in
one (linear combination of) scalar waterfall field(s) becom-
ing unstable. This triggers the B − L phase transition.
Inflation ends and the system approaches a ground state
in which B − L is spontaneously broken and supersym-
metry restored. As we will discuss in Sec. IV B, this can be
used to generate Majorana masses for the right-handed
neutrinos Ni in the seesaw extension of the MSSM. All we
have to do is to choose appropriate gauge charges and
introduce Yukawa couplings between Φ and three gener-
ations of sterile neutrinos, W ⊃ 1

2
hijΦNiNj.

Hybrid inflation is sensitive to gravitational corrections
in supergravity [81,82]. In the case of F-term inflation, R
symmetry breaking leads, in particular, to a SUGRA term
in the F-term scalar potential VF that is linear in the
complex inflaton field s ⊂ S [39,83–86]. To see this, recall
that R symmetry breaking can be accounted for by intro-
ducing a constant term in the superpotential, w ⊂ W. This
term ultimately sets the gravitino mass m3=2 in the low-
energy vacuum, w ∝ m3=2M2

Pl (where MPl denotes the
reduced Planck mass, MPl ≃ 2.44 × 1018 GeV). In F-term
inflation, the inflaton field itself possesses a nonzero F
term, jFSj ¼ μ2S. This F term couples to w in the SUGRA
scalar potential,

VF ⊃
μ2Sw

�

M2
Pl

½ðK−1Þss�Ks� − 3s� þ H:c: ð3Þ

Here, Ks� stands for the derivative of the Kähler potential K
with respect to s� and ðK−1Þss� denotes the ss� entry in the
inverse of the Kähler metric K. For a canonical Kähler
potential, K ⊃ S†S, one obtains

VF ⊃ −
2μ2Sw

�

M2
Pl

sþ H:c: ð4Þ

This tadpole term is a vivid example for the potential
impact of hidden-sector SUSY breaking on the dynamics of
inflation (see the discussion in Sec. I). Any analysis of
F-term inflation that ignores Eq. (3) is incomplete. The
tadpole term breaks the rotational invariance in the
complex inflaton plane and, hence, complicates the analy-
sis of the inflationary dynamics. In fact, it renders F-term
inflation a two-field model [86], which needs to be treated
with special care. Depending on the size of m3=2, the
tadpole term also potentially spoils slow-roll inflation. In
addition, it generates a false vacuum at large field values,
which limits the set of viable initial conditions for inflation
in phase space.

For these reasons, we will restrict ourselves to D-term
inflation in this paper. A dynamical realization of F-term
inflation that avoids the tadpole problem can be found
in Ref. [42]. The model in Ref. [42] also establishes a
connection between inflation and dynamical SUSY break-
ing around the scale of grand unification. In Ref. [42], there
was, however, no Uð1Þ symmetry that could be identified
with Uð1ÞB−L. Moreover, inflation does not end in a phase
transition in the waterfall sector. Together, these features
of Ref. [42] eliminate the possibility to unify inflation with
the dynamics of the B − L phase transition. A dynamical
model of F-term inflation that ends in the B − L phase
transition will be presented elsewhere.

B. Ingredients for a unified model of D-term inflation

The absence of the linear tadpole term in D-term
inflation tends to make SUGRA corrections more manage-
able. In particular, the issue of initial conditions appears
more favorable compared to F-term inflation (however, see
also Sec. III D). Nonetheless, D-term inflation still faces a
number of challenges. In this section, we will discuss these
challenges one by one and outline how they are respectively
met in our model. This serves the purpose to explain
the bigger physical picture behind our specific setup. In
Sec. II C, wewill then become more explicit and present the
details of our construction.

1. Dynamical generation of the FI term in the
strongly coupled SUSY-breaking sector

First of all, the origin of the FI term and its embedding
into supergravity are subtle issues that have been the
subject of a long debate in the literature. At this point, it
is important to distinguish between genuine FI terms and
effective FI terms. The former refer to field-independent
FI parameters ξa that parametrize constant shifts in the
auxiliary Da components of Abelian vector multiplets Va.
The latter denote field-dependent FI parameters ξa that
depend on the vacuum expectation values (VEVs) of
dynamical scalar moduli ψ i. Genuine FI terms,
ξa ¼ const, are FI terms in the original sense. That is,
they preserve the underlying gauge symmetry and are
compatible with massless vector multiplets. By contrast,
in the case of effective FI terms, ξa ¼ ξaðhψ iiÞ, the
underlying gauge symmetry is always spontaneously bro-
ken by the modulus VEVs hψ ii. Effective FI terms are
therefore FI terms only in a slightly more general sense.
The embedding of genuine FI terms into supergravity
always requires the underlying gauge symmetry to be
promoted to a gauged Uð1ÞR symmetry as well as the
presence of an exact global continuous symmetry [87,88].
While the requirement of a gauged Uð1ÞR symmetry poses
a challenge as soon as one wants to make contact with low-
energy phenomenology, the requirement of a global con-
tinuous symmetry is problematic from the viewpoint of
quantum gravity. As can be shown on very general grounds,
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quantum gravity is likely to violate any global symmetry
[89]. Coupling genuinely constant FI terms to gravity, thus,
appears to be almost impossible.3 Effective FI terms
promise to offer a possible way out of this problem.
Effective FI terms are frequently encountered in string
theory [92,93], where they arise in consequence of the
Green-Schwarz mechanism of anomaly cancellation [94].
However, such constructions typically suffer from the
presence of a shift-symmetric modulus field [95]. This
modulus field needs to be adequately stabilized [96].
Otherwise, it will absorb the effective FI term in its
VEV or cause a cosmological modulus problem [97,98].
To avoid all of the problems listed above, we will assume

that the FI term responsible for inflation is dynamically
generated in the strongly coupled SUSY-breaking sector.
That is, we will not resort to string theory, but work in the
context of field theory. To be precise, we will employ the
dynamical mechanism devised in Ref. [99]. A dynamical FI
term generated via this mechanism is automatically an
effective field-dependent FI term that is controlled by the
VEVs of moduli in the hidden sector,

ξ ¼ hψ̄ ψ̄�i − hψψ�i ∼ Λ2
dyn: ð5Þ

Here, ψ and ψ̄ belong to chiral multiplets Ψ and Ψ̄ that
carry B − L chargesþq0 and −q0, respectively. This ansatz
complies with our philosophy outlined in the Introduction
(see Sec. I). Being a dynamically generated quantity, the FI
parameter ξ does not need to be added by hand. Instead, it is
related to the dynamical scale Λdyn in the hidden sector
which is generated via dimensional transmutation. Let us
identify the UV embedding scale of our theory with the
Planck scale, ΛUV ¼ MPl. The renormalization group (RG)
running of the hidden-sector gauge coupling ghid then
results in the following relation:

Λdyn ¼ MPl exp

�
−

1

bhid

8π2

g2hidðMPlÞ
�
; ð6Þ

where bhid is the coefficient of the hidden-sector RG beta
function. This relation explains why Λdyn and, hence, ξ end
up being exponentially suppressed compared to the Planck
scale (which is the only available mass scale in our setup).
The advantage of our approach is that it comes with a
built-in mechanism for modulus stabilization. As usual, the

generation of ξ results in a shift-symmetric modulus field.
In our case, this will be a linear combination of Ψ and Ψ̄
(see Sec. II C). However, as the FI parameter ξ is generated
in the SUSY-breaking sector, the shift-symmetric modulus
couples to degrees of freedom (d.o.f.) involved in the
dynamical breaking of supersymmetry. The F term of the
SUSY-breaking Polonyi field therefore induces a mass for
the modulus field. This stabilizes all dangerous directions
in field space and prevents us from running into any
modulus problem.

2. Spontaneous B−L breaking in the hidden sector
before the end of inflation

The B − L phase transition at the end ofD-term inflation
is accompanied by the production of topological defects
in the form of cosmic strings [100,101] (for reviews on
cosmic strings, see Refs. [102,103]). Such cosmic strings
can leave an imprint in the CMB temperature anisotropies,
the spectrum of gravitational waves (GWs), and in the
diffuse gamma-ray background (DGRB). Cosmic string
decays can also affect the outcome of big bang nucleo-
synthesis (BBN). However, no signs of cosmic strings have
been detected thus far. Recent limits on the properties of
cosmic strings can be found in Refs. [104,105] (CMB),
Refs. [106–108] (GWs), and Ref. [109] (DGRB and BBN).
These bounds allow us to put severe constraints on the
parameter space of hybrid inflation [110,111]. In fact, the
minimal scenario ofD-term inflation is already ruled out by
the nonobservation of cosmic strings [112]. A possible way
out of this problem is to consider scenarios in which B − L
is spontaneously broken, in one way or another, already
during inflation. Cosmic strings then form at early times
and are sufficiently diluted before the end of inflation.
Fortunately, the dynamical generation of ξ in the hidden

sector [see Eq. (5)] provides the ideal starting point for
implementing this solution to the cosmic string problem.
The modulus VEVs hψi and hψ̄i spontaneously break
B − L in the hidden sector already during inflation.
Therefore, to prevent the formation of cosmic strings in
the waterfall sector at the end of inflation, all we have to do
is to communicate the breaking of B − L in the hidden
sector to the waterfall fields. This is readily done by adding
marginal couplings between the two sectors in the super-
potential or Kähler potential that are otherwise irrelevant
for the dynamics of inflation [56]. We will come back to
this issue in Sec. IV D.

3. Sequestered sectors in Jordan-frame supergravity

A notorious problem of any model of D-term inflation is
that additional charged scalar fields, other than the waterfall
fields Φ and Φ̄, threaten to destabilize the FI term during
inflation. Without any additional physical assumption,
there is no reason why Φ and Φ̄ should be the only fields
charged under the Uð1Þ symmetry whose FI term drives

3Shortly after completion of our work, two proposals appeared
in the literature that demonstrate how a novel type of genuine FI
terms, based on nonstandard supersymmetric invariants, can be
consistently coupled to supergravity [90,91]. These FI terms do
not require R symmetry to be gauged and, hence, do not suffer
from the presence of a global symmetry. On the other hand, they
result in highly nonlinear terms in the fermionic action. It would
be interesting to employ these novel FI terms in phenomeno-
logical applications in future work and investigate, e.g., their
potential use for inflation.
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inflation. In general, one should rather expect a whole set of
N charged pairs, fΦi; Φ̄ig, with the inflaton only coupling
to a subset of M such pairs,

W ⊃
XN
i¼1

κiSΦiΦ̄i; κi

�≠ 0; ∀ i ≤ M;

¼ 0; ∀ i > M:
ð7Þ

In this case, there are N −M pairs that are not sufficiently
stabilized by an inflaton-induced mass during inflation. At
the same time, these fields also enter into the D-term scalar
potential, where they threaten to absorb the FI parameter ξ
in their VEVs. In our scenario based on Uð1ÞB−L, the role
of these dangerous scalar directions is played by the scalar
partners of the MSSM quarks and leptons. The squarks q̃i
and sleptons l̃i are also charged under B − L, but do not
couple to the inflation field. Accounting for the presence
of these fields, the D-term scalar potential needs to be
rewritten as follows:

VD ¼ g2

2

h
q0ξ − qðjϕj2 − jϕ̄j2Þ −

X
i
qqiðjq̃ij2 − j ˜̄qij2Þ

−
X

i
qliðjl̃ij2 − j ˜̄lij2Þ

i
2
: ð8Þ

The squarks and sleptons therefore acquireD-term-induced
masses proportional to mD ¼ gjq0ξj1=2. As evident from
the sign relations in Eq. (8), half of these masses end up
being tachyonic (see also Ref. [113]). This renders the
corresponding directions in field space tachyonically unsta-
ble. The inflationary trajectory, thus, decays into a vacuum
in which B − L is broken by nonvanishing sfermion VEVs.
To avoid this problem, one needs to stabilize the

MSSM sfermions by means of additional mass contribu-
tions during inflation. Here, the simplest solution is to make
use of the soft scalar masses induced by the spontaneous
breaking of supersymmetry in the hidden sector. Let us
assume that these soft masses are all more or less close to a
common value m0. Then, to stabilize the MSSM sfermions
during inflation, we must require that m0 ≫ mD. This is,
however, too strong a condition if SUSY breaking is
communicated to the visible sector only via ordinary
gravity mediation in the Einstein frame (for a review on
gravity mediation, see Ref. [114]). In gravity mediation, we
expect the soft scalar masses to be of the order of the
gravitino mass, m0 ∼m3=2. This soft mass is universal such
that also the waterfall fields obtain soft masses of Oðm3=2Þ.
As a consequence, the stabilization of the MSSM sfermions
also stabilizes the waterfall fields. This is an unwanted but
unavoidable side effect. In such a scenario, the waterfall
fields would never become unstable and inflation would
never end.
A possible solution to this problem is to presume a

separation of scales of the following form:

m3=2 ≪ mD ≪ m0: ð9Þ

In this case, the MSSM sfermions remain stabilized at all
times, while the waterfall fields can become unstable at the
end of inflation. Parametrically large soft sfermion masses
can, e.g., be achieved by adding a direct coupling between
the visible and the hidden sector in the Kähler potential,

K ⊃
aij
M2�

Q†
i QjX†X: ð10Þ

Here, Qi and X stand for a generic MSSM matter field and
the SUSY-breaking Polonyi field, respectively. M� denotes
the mass scale at which the effective operator in Eq. (10)
is generated. The constants aij are dimensionless Wilson
coefficients that are expected to be of Oð1Þ. Any spec-
ulations regarding the underlying UV physics are left for
future work. In this paper, we will content ourselves with
the observation that Eq. (10) results in soft masses that
can be parametrically large compared to m3=2. Provided
that the cutoff scale is sufficiently below the Planck scale,
M� ≪ MPl, one finds

m0 ∼
MPl

M�
m3=2 ≫ m3=2: ð11Þ

Now, however, we need a conspiracy among certain
parameters. Successful inflation is only possible as long
as the parameters g, q0, ξ,m3=2, andM� conspire in order to
satisfy the following relation:

Einstein frame∶ 1 ≪
mD

m3=2
≪

MPl

M�
: ð12Þ

We do not see any compelling argument why this relation
should be automatically fulfilled. For this reason, we will
go one step further and solve the MSSM sfermion problem
in a more elegant way.
Let us assume that the canonical description of hybrid

inflation in supergravity corresponds to an embedding into
a (specific) Jordan frame rather than an embedding into the
Einstein frame [115,116]. At this point, recall that every
Jordan-frame formulation of supergravity is characterized
by a specific choice for the so-called frame function Ω.
The frame function is an arbitrary function of the complex
scalar fields in the theory, Ω ¼ Ωðϕi;ϕ�̄

{ Þ. For a given Ω,
the metric tensor in the Jordan frame, gJμν, is related to the
metric tensor in the Einstein tensor, gμν, via the following
Weyl rescaling:

gJμν ¼ C2gμν; C ¼
�
−
3M2

Pl

Ω

�
1=2

: ð13Þ

Here, C denotes what we will refer to as the conformal
factor. We emphasize that the Weyl transformation in
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Eq. (13) does not change the physical predictions of the
theory. The physical content of the Jordan frame is
equivalent to the physical content of the Einstein frame,
even at the quantum level [117,118]. In what follows, we
will simply assume that the SUGRA embedding of hybrid
inflation is most conveniently described in the Jordan
frame. More details on the conversion between the
Einstein-frame and Jordan-frame formulations of super-
gravity can be found in the Appendix.
Given the freedom in defining the frame function Ω,

there is, in principle, an infinite number of possible Jordan
frames. In the following, we will, however, focus on one
particular choice which stands out for several reasons. In
this frame, the frame function Ω is determined by the
Kähler potential K,

Ω ¼ −3M2
Pl exp

�
−

K
3M2

Pl

�
: ð14Þ

This relation is understood to hold in superspace, such that
the frame function Ω becomes a function of chiral multip-
lets, Ω ¼ ΩðΦi;Φ

†
{̄ Þ. This choice for Ω is motivated by the

curved superspace approach to old minimal supergravity in
the Einstein frame [119,120]. In this derivation of the
SUGRA action, the function Ω as defined in Eq. (14) is
identified as the generalized kinetic energy on curved
superspace. Meanwhile, Ω is also a meaningful quantity
in the derivation of the Einstein-frame action based on local
superconformal symmetry [121,122]. In this approach to
old minimal supergravity, the functionΩ is identified as the
prefactor of the kinetic term of the chiral compensator
superfield. For our purposes, the advantage of the choice in
Eq. (14) is that it sets the stage for canonically normalized
kinetic terms for the complex scalar fields in the Jordan
frame. Indeed, to obtain canonically normalized kinetic
terms, the defining relation in Eq. (14) needs to be
combined with the following ansatz for Ω [115]:

Ω ¼ −3M2
Pl þ F; F ¼ δ{̄jΦ

†
{̄Φj þ ½JðΦiÞ þ H:c:�: ð15Þ

Here, we introduced F as the kinetic function of the chiral
matter fields. The additional −3M2

Pl term in Ω accounts for
the kinetic term of the gravitational d.o.f. J is an arbitrary
holomorphic function.
We mention in passing that the relations in Eqs. (14) and

(15) also provide the basis for a class of SUGRA models
known as canonical superconformal supergravity (CSS)
models [116]. In these models, the pure supergravity part of
the total action is invariant under local Poincaré trans-
formations as usual. At the same time, the matter and gauge
sectors of the theory can be made invariant under a local
superconformal symmetry by setting the holomorphic
function J to zero. This larger set of symmetry trans-
formations renders CSS models particularly simple. In the
Jordan frame, one obtains canonical kinetic terms for all

fields. Moreover, one finds that the Jordan-frame scalar
potential coincides with the scalar potential in global
supersymmetry. In our scenario, we will, however, break
the superconformal symmetry via the holomorphic function
J to a large degree [see Eq. (27) below]. For this reason, one
should not regard our model to be of the CSS type. A model
of D-term inflation based on the idea of superconformal
symmetry has been constructed in Ref. [123]. This model
employs a constant FI term that does not depend on the
inflaton field value in the Einstein frame. Our model will by
contrast involve an effective FI term that does not depend on
the inflaton field value in the Jordan frame (see Sec. II E).
In Ref. [123], the dynamics of inflation were moreover
described by a two-field model, whereas we will only deal
with a single inflaton field. Interestingly enough, the model
in Ref. [123] reproduces the predictions of Starobinsky
inflation [31] in the limit of large inflaton field values [124].
Together with Eq. (14), the ansatz in Eq. (15) results in

the following Kähler potential:

K ¼ −3M2
Pl ln

�
1 −

F
3M2

Pl

�
: ð16Þ

This is an important result. If we choose the kinetic
function F or, equivalently, the holomorphic function J
appropriately, this Kähler potential can be readily used to
sequester the different sectors of our model. In fact,
Eq. (16) turns into a Kähler potential of the sequestering
type [125] if the function F can be split into separate
(canonical) contributions from the hidden, visible, and
inflation sectors,

K ¼ −3M2
Pl ln

�
1 −

Fhid þ Fvis þ Finf

3M2
Pl

�
: ð17Þ

Kähler potentials of this form have been derived in the
context of extra dimensions [125] as well as in strongly
coupled conformal field theories (CFTs) [126–129]. They
are also similar to the Kähler potential in models of no-
scale supergravity [130–132] that can be derived from
string theory [133].4 If the various sectors do not couple to
each other in the superpotential, the Kähler potential in
Eq. (17) leads to vanishing soft scalar masses at tree level in
all sectors except for the hidden sector.
The possibility to sequester different sectors is a crucial

property of Eq. (16) which we will use to solve the MSSM
sfermion problem. Altogether, we will choose the function
F in our model as follows:

F → Ftot ¼ Fhid þ Fvis þ Finf þ
aij
M2�

Q†
i QjX†X: ð18Þ

4In no-scale supergravity, the kinetic term of the gravitational
d.o.f. depends on a dynamical modulus field T. This is accounted
for by replacing the 1 inside the logarithm in Eq. (17) by a field-
dependent quantity: 1 → ðT þ T†Þ=MPl.
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From now on, we will refer to the total kinetic function as
Ftot and reserve the symbol F for the kinetic function of the
inflaton field S (see further below). We will also assume that
the holomorphic function J in Eq. (15) is a function of S
only. That is, the kinetic functions Fhid, Fvis, and Finf are
supposed to consist of standard canonical terms for all fields
except for S. The kinetic function Ftot as defined in Eq. (18)
combines two important features. (i) It leads to a sequester-
ing between the hidden sector and the inflaton sector. The
waterfall fields consequently obtain no soft masses at tree
level. This is necessary to be able to trigger the B − L phase
transition at the end of inflation, irrespective of the size of the
gravitino mass. (ii) The MSSM sfermions are stabilized
thanks to higher-dimensional operators inFtot that couple the
visible sector to the SUSY-breaking sector. At this point, we
stick to the mechanism that we already discussed in the case
of the Einstein frame [see Eq. (10)]. Together, these two
features allow us to realize successful inflation and solve the
MSSM sfermion problem.
Our solution of the MSSM sfermion problem in the

Jordan frame is conceptually different from the solution in
the Einstein frame discussed around Eq. (12). Now, as the
waterfall fields do not acquire a soft mass at tree level,
the requirement in Eq. (12) turns into the following two
conditions:

Jordan frame∶ 0 ≪
mD

m3=2
≪

MPl

M�
: ð19Þ

The first inequality is a consequence of our decision to
work in a Jordan frame with canonical kinetic terms. It is
trivially fulfilled. We are, thus, left with only one sensible
physical condition, M� ≪ m3=2MPl=mD. To satisfy this
condition, we no longer have to rely on a conspiracy
among different parameter values. Instead, we simply have
to deal with an upper bound on the scale M� which derives
from the requirement that all dangerous scalar directions in
field space must be sufficiently stabilized during inflation.
We therefore manage to solve the MSSM sfermion problem
in B − L D-term inflation by means of model-building
decisions rather than by resorting to a specific part of
parameter space.
In the following, we will remain agnostic as to the UV

origin of Ftot in Eq. (18). We settle for the observation
that, apart from additional Planck-suppressed interactions,
Eq. (18) can be motivated by demanding canonically
normalized kinetic terms in the (standard) Jordan frame.
This is the reason why wewill formulate parts of our analysis
in the language of Jordan-frame supergravity. Beyond that, it
might be possible to embed our model into extra dimensions,
strongly coupled CFTs, no-scale supergravity and/or string
theory. But such a task is beyond the scope of this paper and
left for future work. For our purposes, the formalism of
Jordan-frame supergravity simply provides a convenient
technical framework. We shall not speculate about the
underlying physics at higher energies.

4. Shift symmetry in the direction of the inflaton field

Working in the Jordan frame not only helps to protect
the waterfall fields against large soft masses. In ordinary
gravity mediation in the Einstein frame, the inflaton also
acquires a soft mass of the order of the gravitino mass.
This results in the notorious eta problem in supergravity
[77,134]. To see this, recall that the gravitino mass is related
to the F term of the SUSY-breaking Polonyi field as
follows:

m3=2 ¼
hjFXjiffiffiffi
3

p
MPl

: ð20Þ

At the same time, the Hubble rate duringD-term inflation is
controlled by the size of the FI term,

Hinf ¼
hVDi1=2ffiffiffi
3

p
MPl

¼ hDiffiffiffi
6

p
MPl

¼ gq0ξffiffiffi
6

p
MPl

: ð21Þ

General arguments in supergravity indicate that D terms
are always accompanied by an F term which is at least as
large or even larger [135,136]. In our case, we intend to
dynamically generate the FI term in conjunction with the
Polonyi F term in the SUSY-breaking sector. On general
grounds, we, thus, expect that hjFXji≳ hDi. Therefore,
if the inflaton indeed obtained a soft mass of Oðm3=2Þ,
we would immediately encounter an eta problem, i.e., a
slow-roll parameter η much larger than one,

η ¼ M2
Pl
V 00

V
∼
�
m3=2

Hinf

�
2

≫ 1; ð22Þ

where V 00 denotes the second derivative of the scalar
potential with respect to the inflaton field. This serves as
an additional motivation for our specific Jordan frame.
There, the soft mass of the inflaton vanishes (at least as long
as F ¼ S†S and J ¼ 0), which renders the most dangerous
contribution to η zero.
This is, however, not the end of the story. To fully solve

the eta problem, we need to work a bit harder. In the Jordan
frame, the complex scalars are nonminimally coupled to the
Ricci scalar RJ via the frame function Ω. This follows from
the Jordan-frame equivalent of the Einstein-Hilbert action,

S ⊃
1

2

Z
d4x

ffiffiffiffiffiffiffiffi
−gJ

p �
−
Ωtot

3

�
RJ

¼ 1

2

Z
d4x

ffiffiffiffiffiffiffiffi
−gJ

p �
M2

Pl −
Ftot

3

�
RJ; ð23Þ

which contains the nonminimal term −Ftot=3RJ. This
coupling yields additional mass contributions for the scalar
fields. Consider, e.g., the canonical terms in the total kinetic
function, Ftot ⊃ δ{̄jΦ

†
{̄Φj,
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S ⊃ −
Z

d4x
ffiffiffiffiffiffiffiffi
−gJ

p X
i

ζiRJjϕij2; ζi ¼ ζ ¼ 1

6
; ð24Þ

which describes the special case of a set of conformally
coupled scalars. Each complex scalar with a canonical term
in the kinetic function Ftot therefore acquires a universal
gravity-induced mass mR,

m2
R ¼ ζRJ ¼ 2H2

J; ð25Þ

where HJ denotes the Hubble parameter in the Jordan
frame and where we used the relation between the Ricci
scalar and the Hubble parameter in exact de Sitter space,
RJ ¼ 12H2

J. This gravitational mass correction spoils slow-
roll inflation as long as it is not sufficiently suppressed.
That is, an inflaton kinetic function that only consists
of a canonical term, F ¼ S†S, results in too large an η
parameter,

η ∼
m2

R

3H2
J
¼ 2

3
: ð26Þ

Thus, to fully solve the eta problem, we have to make use
of the holomorphic function J in Eq. (15). The freedom in
defining J allows us to realize an approximate shift
symmetry in the direction of the inflaton field. Such a
shift symmetry is a common tool in SUGRA models of
inflation, as it allows to suppress the most dangerous
SUGRA contributions to the inflaton potential [137]. In
our case, an approximate shift symmetry is realized for the
following kinetic function of the inflaton field:

F ¼ S†Sþ ½JðSÞ þ H:c:�; JðSÞ ¼ −
1

2
ð1 − 2χÞS2: ð27Þ

Here, χ is a positive shift-symmetry-breaking parameter
which we will assume to be small, 0 < χ ≪ 1. To see that
Eq. (27) indeed features a shift symmetry, it is convenient
to rewrite F as follows:

F ¼ 1

2
χðS† þ SÞ2 − 1

2
ð1 − χÞðS† − SÞ2 ¼ χσ2 þ ð1 − χÞτ2;

S ¼ 1ffiffiffi
2

p ðσ þ iτÞ: ð28Þ

This form of F illustrates that, for χ ≪ 1, the kinetic
function is approximately invariant under shifts in σ, i.e.,
the real scalar part of the inflaton field S. Conversely, χ
values close to one, 1 − χ ≪ 1, lead to an approximate shift
symmetry in τ, i.e., the imaginary scalar component of S.
In the following, we will focus without loss of generality on
the first of these two cases. In passing, we also mention that
the trivial case χ ¼ χCSS ¼ 1=2 (which renders the hol-
omorphic function J vanishing) corresponds to an inflaton
field that is conformally coupled to the Ricci scalar. This

choice for the parameter χ would allow to construct a
SUGRAmodel that is invariant under local superconformal
symmetry [see the discussion below Eq. (15)]. However, as
argued above, we would then fail to solve the eta problem
[see Eq. (26)]. For this reason, we need to break the
superconformal symmetry. In fact, by choosing χ ≪ χCSS,
we break the superconformal symmetry in a maximal sense
in favor of an approximate shift symmetry.
Given the kinetic function in Eq. (28), it is straightfor-

ward to solve the eta problem. In consequence of the
approximate shift symmetry, all contributions to the infla-
ton mass mσ end up being suppressed by χ. This follows
from an explicit computation of mσ in the Einstein frame
[see Eq. (116) in Sec. II E],

m2
σ ≈ 2χ½m2

R − ð1 − 2χÞm2
3=2�: ð29Þ

As expected, mσ reduces to mR in the limit χ → 1=2. On
the other hand, if χ is chosen small enough, mσ becomes
suppressed, so that the slow-roll parameter η remains
sufficiently small during inflation.5

5. Explicit breaking of the shift symmetry

An exact shift symmetry is out of reach in our model, as
the Yukawa coupling in the superpotential, Winf ¼ κSΦΦ̄,
breaks any inflaton (or waterfall field) shift symmetry
explicitly. Therefore, while χ may be zero at tree level, a
nonvanishing value of the shift-symmetry-breaking param-
eter χ is always generated via radiative corrections. To see
this, let us consider the one-particle-irreducible effective
action in global supersymmetry. The superpotential does
not receive any quantum corrections in consequence of the
SUSY nonrenormalization theorem [138]. The renormal-
ization of the Kähler potential is, however, nontrivial
and results in a one-loop effective Kähler potential K1l

[139–142]. Along the inflationary trajectory,Φ ¼ Φ̄ ¼ 0, a
calculation in the MS renormalization scheme yields

K1l ¼ 2χ1l

�
1 −

1

2
ln

�
κ2S†S
μ̄2

��
S†S; χ1l ¼ κ2

16π2
; ð30Þ

where μ̄ denotes the MS renormalization scale. Note that
this result for K1l corresponds to a wave-function renorm-
alization of the inflaton field S. Next, let us embed the
effective Kähler potential in Eq. (30) into supergravity. In

5Imposing an approximate shift symmetry in the direction of
the inflaton field would also allow to solve the eta problem in the
Einstein frame. There, the inflaton mass also vanishes in the limit
of an exact shift symmetry. From this perspective, our solution
to the eta problem actually does not serve as an additional
motivation to work in the Jordan frame. However, our arguments
regarding the MSSM sfermion problem remain unchanged. This
problem is best solved in the Jordan frame [see the discussion
around Eq. (19)]. We will therefore continue to work in the
Jordan frame.
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the Einstein frame, the relevant quantity is the total Kähler
potential Ktot, which simply follows from adding K1l to
the tree-level Kähler potential, Ktot ¼ Ktree þ K1l. In the
Jordan frame, we are by contrast interested in the total
frame function, Ωtot ¼ Ωtree þ Ω1l. One can show that the
one-loop correction to the tree-level frame function is
related to K1l as follows:

Ω1l¼Ωtree

�
exp

�
−
K1l

3M2
Pl

�
−1

�
¼K1lþOðM−2

Pl Þ: ð31Þ

Here, the higher-order terms correspond to Planck-
suppressed radiative corrections which are negligibly small.
Together, Eqs. (28), (30), and (31) allow us to determine the
effective χ parameter that is induced by the breaking of shift
symmetry in the superpotential. Along the direction of the
real inflaton component, τ ¼ 0, we obtain the following
one-loop kinetic function for the inflaton field:

F1l ≃ K1l →
τ¼0 1

2
χeffðS† þ SÞ2;

χeff ¼ χ1l

�
1 −

1

2
ln

�
κ2S†S
μ̄2

��
∼ χ1l: ð32Þ

In the absence of any tree-level contribution, the shift-
symmetry-breaking parameter χ is therefore expected to be
of the order of κ2=ð16π2Þ. This is an important result which
was overlooked in Ref. [43]. There, we simply varied χ as
a free parameter for fixed κ. Of course, this is a valid
procedure, given the fact that χ can very well receive further
tree-level contributions (or further radiative corrections
from inflaton couplings to extra heavy states). In this
case, χ is simply the sum of various contributions,
χ ¼ χtree þ χ1l, which can take any arbitrary value. But
the case χ ¼ χ1l—which we had neglected thus far—is
special, as it corresponds to a scenario with minimal field
content and number of free parameters. We will study this
scenario in more detail in Sec. III C. This will represent one
of the main results of this paper and a significant step
forward beyond our analysis in Ref. [43]. In particular, we
will find that χ ¼ χ1l leads to inflation in new parts of
parameter space that we had dismissed before.
Finally, we point out that the fact that we are unable to

realize an exact shift symmetry is a virtue rather than a
shortcoming of our model. A slightly broken shift sym-
metry allows us to get a handle on the scalar spectral index
ns which we would otherwise lack in the case of an exact
shift symmetry. The prediction for ns in standard D-term
inflation in global supersymmetry roughly corresponds to

ns ¼ 1þ 2η − 6ε ≃ 1þ 2η≳ 1 −
1

Ne
≃ 0.98; ð33Þ

whereNe denotes the number of e-folds between the end of
inflation and the time tCMB when the CMB pivot scale,

kCMB ¼ 0.05 Mpc−1, exits the Hubble horizon during
inflation. The prediction in Eq. (33) exceeds the current
best-fit value, nobss ¼ 0.9677� 0.0060 [76], by at least 2σ.
This puts some phenomenological pressure on the simplest
version of D-term inflation. To improve on the predicted
value of ns, various SUGRAmodels have been proposed in
the literature [123,124,143–146]. However, in our scenario,
no extra effort is needed to enhance the absolute value of
the slow-roll parameter η and, thus, reproduce the best-fit
value for ns. The inflaton mass in Eq. (29) approximately
results in

η ∼ −
2χ

3

�
m3=2

HJ

�
2

: ð34Þ

Therefore, to realize ns values around ns ≃ 0.96, all we
have to do is to choose χ small enough,

ns ≃ 0.96 ⇒ η ∼ −0.02 ⇒ χ ∼ 0.03

�
HJ

m3=2

�
2

: ð35Þ

In this sense, the approximate shift symmetry in the kinetic
function of the inflaton field automatically provides a
possibility to achieve a scalar spectral index consistent
with the observational data.

6. Three physical assumptions to solve
five problems of D-term inflation

So far, we have mainly outlined the ingredients of our
construction in physical and less technical terms. We hope
that this part of our discussion will also be accessible to
readers without a strong background in SUGRA model
building. A more technical description of our model will be
given in the next three subsections (see Secs. II C, II D, and
II E). Readers less interested in the technical aspects of
our model and more interested in its phenomenological
implications may skip directly to Sec. III.
Before entering the technical part of our discussion, let

us summarize our insights up to this point. On the one
hand, we showed that D-term inflation faces a number of
challenges. We discussed the following five problems:
(i) the generation of the FI term in the D-term scalar
potential and its embedding into supergravity, (ii) the
production of dangerous cosmic strings at the end of
inflation, (iii) the stabilization of dangerous MSSM sfer-
mion directions in the scalar potential during and after
inflation, (iv) the eta problem in supergravity, and (v) the
tension between the lower bound on ns in D-term inflation
and the current best-fit value. On the other hand, we argued
that all five of these problems can be solved if one makes
the following three assumptions: (i) the FI term is dynami-
cally generated in the hidden SUSY-breaking sector, (ii) the
canonical description of D-term inflation in supergravity
corresponds to the embedding into the (standard) Jordan
frame with canonically normalized kinetic terms for all
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scalar fields, and (iii) the kinetic function of the inflaton
field exhibits a slightly broken shift symmetry. Our model
therefore turns out to be a viable SUGRA realization of
B − L D-term inflation that is consistent with all theoretical
and phenomenological constraints.

C. SUSY-breaking dynamics in the hidden sector

In the previous subsection, we summarized our physical
ideas about how to realize a viable SUGRA model of
D-term inflation that (i) unifies the dynamics of supersym-
metry breaking and inflation and that (ii) ends in the B − L
phase transition at energies around the GUT scale. In
the following, we will show how these ideas can be
implemented into a specific model of dynamical SUSY
breaking—the Izawa-Yanagida-Intriligator-Thomas (IYIT)
model [147,148]—which represents the simplest vector-
like model of dynamical SUSY breaking. Despite this
choice, we believe that our general ideas extend beyond our
specific model. In future work, it would be interesting to
study alternative DSB models and assess which other
models might give rise to unified dynamics of supersym-
metry breaking and inflation.

1. IYIT sector at high and low energies

We begin by reviewing the IYIT model. In its most
general form, the IYIT model corresponds to a strongly
coupled supersymmetric SpðNÞ gauge theory.6 At high
energies, its charged matter content consists ofNf ¼ N þ 1

vector-like pairs of quark flavors, where each quark fieldΨi
transforms in the fundamental representation of SpðNÞ.
The theory becomes confining at energies around the
dynamical scale Λdyn which is generated via dimensional
transmutation. Below Λdyn, the dynamical d.o.f. in the IYIT
sector correspond to a set of Nfð2Nf − 1Þ gauge-invariant
composite meson fields Mij,

Mij≃
1

ηΛdyn
hΨiΨji; η∼4π; i;j¼1;2;…;2Nf; ð36Þ

where Mji ¼ −Mij and where η denotes a numerical
factor of Oð4πÞ that follows from naive dimensional
analysis (NDA) [149–152]. It turns out to be useful to
absorb the NDA factor η in the dynamical scale Λdyn. In
the following, we will therefore work with the reduced
dynamical scale Λ,

Λ ¼ Λdyn

η
∼
Λdyn

4π
: ð37Þ

At low energies, the scalar meson VEVs parametrize a
moduli space of degenerate supersymmetric vacua. This
moduli space is subject to a constraint equation, which,
in the classical limit, corresponds to the requirement that
the Pfaffian of the antisymmetric meson matrix Mij must
vanish, PfðMijÞ ¼ 0. This constraint, however, becomes
deformed in the quantum theory. There, it reads [153]

PfðMijÞ ≃ ΛNf : ð38Þ

To break supersymmetry in the IYIT sector, one needs to
lift the flat directions in moduli space. This is readily
achieved by coupling the IYIT quarks Ψi to a set of
Nfð2Nf − 1Þ singlet fields Zij:

at high energies∶ Whid ¼
1

2
λijZijΨiΨj; ð39Þ

where λij ¼ −λji are dimensionless coupling constants. At
high energies, these couplings are nothing but ordinary
Yukawa couplings which do not affect the vacuum structure
of the theory. At low energies, the terms in Eq. (39),
however, turn into mass terms for the meson and singlet
fields Mij and Zij:

at low energies∶ Whid ≃
1

2
λijΛZijMij: ð40Þ

These mass terms single out the origin in field space
as the true supersymmetric ground state. The quantum-
mechanically deformed moduli constraint in Eq. (38),
however, prevents the system from reaching the origin in
field space. This breaks supersymmetry. The theory is
forced to settle into a vacuum away from the origin,
hMiji ≠ 0, where some of the singlet F-term conditions,
FZij

¼ 0, cannot be satisfied. Supersymmetry is, hence,
broken à la O’Raifeartaigh by nonvanishing F terms [79].
In the following, we shall focus on the minimal N ¼ 1

realization of the IYIT model, for simplicity. In this case,
the Spð1Þ gauge dynamics are equivalent to those of an
SUð2Þ theory, Spð1Þ ≅ SUð2Þ, and we have to deal with
four quark fields Ψi and six singlet fields Zij at high
energies. This translates into six meson fields Mij (and six
singlet fields Zij) at low energies. As we will see shortly, it
turns out to be convenient to label the fields in the low-
energy theory in a suggestive manner. To do so, we first
note that Eq. (39) exhibits a global Uð1ÞA flavor symmetry
that corresponds to an axial quark phase rotation. The
Uð1ÞA charges of the two quark flavors at high energies can
be chosen as follows:

½Ψ1�A ¼ ½Ψ2�A ¼ þ q0
2
; ½Ψ3�A ¼ ½Ψ4�A ¼ −

q0
2
: ð41Þ

This normalization ensures that the charged meson fields at
low energies carry Uð1ÞA charges �q0,

6In our notation, the compact symplectic group SpðNÞ is
identical to the unitary group over the quaternions, UðN;HÞ.
Here, N denotes the dimension of the quaternionic vector space
HN that SpðNÞ acts on in its fundamental representation.
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½M12�A ¼ þq0; ½M34�A ¼ −q0;

½M13�A ¼ ½M14�A ¼ ½M23�A ¼ ½M24�A ¼ 0; ð42Þ

and similarly for the Zij. In the second step, we relabel all
fields according to their Uð1ÞA charges,

M12 → Mþ; M34 → M−; M13 → M1
0;

M14 → M2
0; M23 → M3

0; M24 → M4
0;

Z12 → Z−; Z34 → Zþ; Z13 → Z1
0;

Z14 → Z2
0; Z23 → Z3

0; Z24 → Z4
0: ð43Þ

In this notation, the low-energy superpotential in Eq. (40)
takes the following form:

Whid ≃ ΛðλþMþZ− þ λ−M−Zþ þ λ10M
1
0Z

1
0 þ λ20M

2
0Z

2
0

þ λ30M
3
0Z

3
0 þ λ40M

4
0Z

4
0Þ; ð44Þ

where we also relabeled the λij. Meanwhile, the constraint
in Eq. (38) can now be written as follows:

PfðMijÞ ¼ MþM− −M1
0M

4
0 þM2

0M
3
0 ≃ Λ2: ð45Þ

Together, Eqs. (44) and (45) allow to explicitly calculate
the VEVs in the SUSY-breaking vacuum. As it turns out,
the location of the true ground state in meson field space
depends on the hierarchy among three geometric means
of Yukawa couplings, λ ¼ ðλþλ−Þ1=2, λ140 ¼ ðλ10λ40Þ1=2,
λ230 ¼ ðλ20λ30Þ1=2:

λ < min fλ140 ; λ230 g ⇒ hMþM−i ≃ Λ2; hM1
0M

4
0i ¼ 0; hM2

0M
3
0i ¼ 0;

λ140 < min fλ; λ230 g ⇒ hMþM−i ¼ 0; hM1
0M

4
0i ≃ Λ2; hM2

0M
3
0i ¼ 0;

λ230 < min fλ; λ140 g ⇒ hMþM−i ¼ 0; hM1
0M

4
0i ¼ 0; hM2

0M
3
0i ≃ Λ2: ð46Þ

Wewill assume that the first of these three cases is realized,
λ < min fλ140 ; λ230 g. In this case, it is the charged meson
fields that obtain a nonzero VEV, hMþM−i ≃ Λ2. This case
is special in the sense that the global Uð1ÞA flavor
symmetry becomes spontaneously broken at low energies.
In the other two cases, the flavor symmetry remains
unbroken even in the SUSY-breaking vacuum.

2. Properties of the low-energy vacuum

Let us now discuss the properties of the Uð1ÞA-breaking
vacuum in a bit more detail. In this vacuum, all neutral
fields are stabilized by their supersymmetric masses in
Eq. (44). The relevant terms in the superpotential and
Pfaffian constraint are therefore only those involving
charged fields,

Whid ≃ ΛðλþMþZ− þ λ−M−ZþÞ;
PfðMijÞ ¼ MþM− ≃ Λ2: ð47Þ

The constraint is most easily accounted for by adding a
Lagrange multiplier term to the superpotential,

Whid ≃ ΛðλþMþZ− þ λ−M−ZþÞ þ λTTðMþM− − Λ2Þ;
ð48Þ

where the field T represents the actual Lagrange multiplier.
The physical nature of the field T depends on strong-
coupling effects in the Kähler potential. If it acquires a
nonperturbative kinetic term from the strong gauge dynam-
ics, T becomes physical. On the other hand, if no kinetic
term is generated, T is merely an auxiliary field that

remains unphysical. Unfortunately, it is unknown which
of these cases is realized, as the Kähler potential for T in the
strong-coupling regime is incalculable. At any rate, the
difference between the two cases is mostly irrelevant for
our purposes. All effects in the case of a physical Lagrange
multiplier field T are suppressed by powers of λ=ð4πÞ
[154]. Thus, as long as we stay in the perturbative regime,
λ ≪ 4π, our results will not be affected by the physical
status of the field T. In the following, we will therefore
assume that T remains unphysical, for simplicity. In
practice, this means that we will take the limit λT → ∞
wherever possible. For discussions of the IYIT model based
on the assumption of a physical Lagrange multiplier field
T, see, e.g., Refs. [42,155].
Given the superpotential in Eq. (48) (and taking the limit

λT → ∞ at the end of the calculation), one can easily show
that the vacuum energy density is minimized for the
following meson VEVs:

hM�i ¼
λ

λ�
Λ: ð49Þ

These meson VEVs induce SUSY-breaking F terms for
the singlet fields Z�. To determine the total F-term SUSY
breaking scale μ, it is useful to transform the fields M�
and Z� to a new basis,

�
A

M

�
¼ 1

fA

� hMþi −hM−i
hM−i hMþi

��
Mþ
M−

�
;

�
X

Y

�
¼ 1ffiffiffi

2
p

�
1 1

1 −1

��
Zþ
Z−

�
; ð50Þ
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where we introduced fA to denote the total energy scale of
spontaneous Uð1ÞA breaking,

fA ¼ ðhM2þi þ hM2
−iÞ1=2 ¼

�
λþ
λ−

þ λ−
λþ

�
1=2

Λ: ð51Þ

In the new field basis, the fields M and T share a
supersymmetric Dirac mass term, mMT ¼ λTfA, that for-
mally diverges in the limit λT → ∞. This allows us to
identify M as the meson field that becomes eliminated by
the Pfaffian constraint. The remaining meson d.o.f. are then
described by the orthogonal linear combination, i.e., by the
field A. Note that this automatically implies that the field A
plays the role of the chiral Goldstone multiplet of sponta-
neous Uð1ÞA breaking. From this perspective, the energy
scale fA may also be regarded as the Goldstone decay
constant. To obtain the superpotential describing the low-
energy dynamics of A, X, and Y, we proceed as follows:
(i) we perform the field rotation in Eq. (50), (ii) shift the
meson fields A and M by their nonvanishing VEVs,

A →
1

fA
ðhM2þi − hM2

−iÞ þ A;

M →
2

fA
hMþihM−i þM; ð52Þ

and (iii) integrate out the heavy fieldsM and T. This results
in the following superpotential:

Whid ≃ μ2X −mFYAþ 1

2
λXXA2: ð53Þ

Here, μ denotes the total F-term SUSY breaking scale,

μ ¼ ½ðλ2þhM2þi þ λ2−hM2
−iÞΛ2�1=4 ¼ 21=4λ1=2Λ: ð54Þ

By construction, the singlet field X is the only field
with a nonzero F term, hjFXji ¼ μ2. It can therefore be
identified with the SUSY-breaking Polonyi field. The
orthogonal field Y shares a Dirac mass term with the
Uð1ÞA Goldstone field A which is given in terms of
the mass scales μ and fA,

mF¼
μ2

fA
¼ρλΛ; ρ¼

�
1

2

�
rλþ

1

rλ

��
−1=2

; rλ¼
λþ
λ−

: ð55Þ

Here, ρ measures the degeneracy between λþ and λ−. For
λþ→ λ−, the parameter ρ approaches one, ρ→ 1. For
λþ≪ λ− or λþ ≪ λ−, it goes to zero, ρ→ 0. In the following,
we will assume that both λþ and λ− are sufficiently small,
so that we always stay in the perturbative regime. For
definiteness, let us require that both couplings are always
at least half an order of magnitude smaller than 4π,

λ� < λpert ¼ 4 ≃ 10−1=24π: ð56Þ

This translates into a lower bound on the hierarchy
parameter ρ in dependence of λ ¼ ðλþλ−Þ1=2,

λ� < λpert ⇒ ρ > ρpert ¼
�
1

2

�
rpert þ

1

rpert

��
−1=2

;

rpert ¼
λþλ−
λ2pert

: ð57Þ

Moreover, to simplify our analysis, we will replace ρ by its
expectation value ρ̄ in the following. We compute ρ̄ by
averaging ρ over all possible values of λ�, varying both
couplings on a linear scale,

ρ̄ ¼ 1

λ2pert

Z
λpert

0

Z
λpert

0

ρdλþdλ− ≃ 0.80: ð58Þ

Note that this result is independent of the concrete value of
λpert. With ρ fixed at this value, the perturbativity constraint
in Eq. (57) turns into an upper bound on the Yukawa
coupling λ,

λ� < λpert; ρ ¼ ρ̄

⇒ λ < ½1 − ð1 − ρ̄4Þ1=2�1=2 λpert
ρ̄

≃ 0.60λpert ≃ 2.41: ð59Þ

This yields in turn an upper bound on the F-term-induced
mass in the superpotential, mF ≲ 1.94Λ. The lesson from
this analysis is the following. From now on, we will work
with ρ ≃ 0.80 and λ≲ 2.41. The Yukawa couplings λ� are
then guaranteed to assume “typical values” [in the sense
of the average in Eq. (58)] which are, at the same time,
consistent with the requirement of perturbativity, λ < λpert.
Similar to the mass mF, the Yukawa coupling λX in

Eq. (53) is also given in terms of μ and fA,

λX ¼
�
μ

fA

�
2

¼
�
mF

μ

�
2

¼ ρ2λffiffiffi
2

p : ð60Þ

This Yukawa coupling between the Polonyi field X and the
Goldstone field A is a direct consequence of the TMþM−
term in Eq. (48). Similar couplings also exist between X
and the neutral meson fields. This is shown explicitly in
Appendix of Ref. [155] (see also Ref. [154]). Together,
these Yukawa couplings result in an effective Polonyi
mass m1l at the one-loop level. An explicit calculation
yields [155]

m1l ¼ c1lλ2Λ; c1l ¼
�
2 ln 2 − 1

32π2
neffM

�
1=2

: ð61Þ

Here, neffM denotes the effective number of meson loops
contributing to the Polonyi mass. Let us assume that all
neutral mesons share the same Yukawa coupling,
λ1;2;3;40 ≡ λ0. In this case, neffM can be brought into the
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following compact form (the full expression is complicated
and can be found in Ref. [155]):

neffM ¼ ρ6 þ 4l0; ð62Þ

where l0 ¼ lðλ=λ0Þ is a loop function that can be approxi-
mated by a simple quadratic power law,

lðxÞ ¼ 1

2 ln 2 − 1

�
1

2

�
1þ 1

x2

�
2

lnð1þ x2Þ

−
1

2

�
1 −

1

x2

�
2

lnð1 − x2Þ − 1

x2

�
≈ x2: ð63Þ

In the following, we will set λ0 ¼ 4π to account for the
presence of heavy composite states with masses around the
dynamical scale, mheavy ¼ λ0Λ ∼ Λdyn. Just like in QCD,
such heavy resonances are expected to appear in the
spectrum. Our perturbative language, however, does not
suffice to capture their dynamics at low energies. For this
reason, we will instead follow an effective approach and
mimic the effect of additional heavy states by means of a
particular choice for λ0. For a Yukawa coupling λ of Oð1Þ,
the one-loop coefficient c1l in Eq. (61) is then roughly
given by c1l ≃ 0.02. In global supersymmetry, the Polonyi
field X corresponds to a tree-level flat direction [see
Eq. (53)]. The loop-induced Polonyi mass m1l is therefore
crucial to stabilize the SUSY-breaking vacuum against
gravitational corrections in supergravity [154]. We will
discuss this issue in more detail in Sec. II D.

3. Dynamical generation of an effective FI term

The IYIT model can also be used to dynamically
generate an effective FI term. This was pointed out for
the first time in Ref. [99]. In this paper, we will make use of
this mechanism to generate the effective FI term required
for B − L D-term inflation. All we have to do now is to
promote the global Uð1ÞA flavor symmetry in the IYIT
superpotential [see Eq. (48)] to a local Uð1ÞB−L gauge
symmetry. The B − L gauge interactions then result in the
following D-term scalar potential in the IYIT sector:

VD ¼ g2q20
2

ðjmþj2 − jm−j2 þ jzþj2 − jz−j2Þ2: ð64Þ

Here and in the following, lowercase symbols (m�; z�, etc.)
denote the complex scalar components of the correspond-
ing chiral multiplets (M�, Z�, etc.). The charged mesons
M� acquire nonzero VEVs as a result of the dynamical
breaking of supersymmetry [see Eq. (49)]. These VEVs
spontaneously break B − L which leads to the following
effective FI term:

ξ ¼ hM2
−i − hM2þi: ð65Þ

This FI parameter is exactly of the form that we anticipated
in Eq. (5) in Sec. II B. In particular, we now see that, in our
dynamical model, the roles of the moduli Ψ and Ψ̄ are
played by the mesons M�. To evaluate the expression in
Eq. (65), it is, in principle, necessary to account for the
backreaction of the D-term scalar potential in Eq. (64) on
the meson VEVs in Eq. (49). In the following, we will,
however, restrict ourselves to the weakly gauged limit,
jgq0j≲ λ, where this backreaction is negligible. In this
case, we can simply continue to work with our results in
Eq. (49), such that Eq. (65) turns into

ξ ¼
�
λþ
λ−

−
λ−
λþ

�
Λ2 ¼ 2ð1 − ρ4Þ1=2

ρ2
Λ2: ð66Þ

Here, we assumed without loss of generality that λþ > λ−
such that the FI parameter is always positive, ξ > 0. Once
we set the parameter ρ to its expectation value, ρ̄ ≃ 0.80,
we obtain the following simple relation:

ξ1=2 ≃ 0.88fA ≃ 1.54Λ: ð67Þ

In Sec. II E, we will use this result as a key ingredient in
our construction of the inflaton potential. However, before
we are able to do so, we need to make sure that the FI
parameter ξ is not “eaten up” by the charged singlet fields
Z� in the IYIT sector. To this end, let us rewrite Eq. (64) as
follows:

VD ¼ g2q20
2

ðξ − xy� − x�yÞ2; ð68Þ

where we integrated out the meson fields and replaced the
fields Z� by the Polonyi field X and the stabilizer field Y.
From Eq. (68), it is evident that ξ results in a mass mixing
between X and Y,

Δm2
xy ¼ −g2q20ξ: ð69Þ

At the same time, X obtains an effective mass m1l at the
one-loop level, while Y acquires a tree-level mass mF from
the superpotential. Taken as a whole, this results in the
following two mass eigenvalues:

ðm�
xyÞ2¼

m2
Fþm2

1l

2
�
��

m2
F−m2

1l

2

�
2

þΔm4
xy

�
1=2

: ð70Þ

In the limit of vanishing mass mixing, Δmxy → 0, these
mass eigenvalues reduce to m1l and mF, respectively. For
too large mass mixing, the eigenvalue m−

xy can, however,
become tachyonic. In this case, one singlet mass eigenstate
becomes unstable and absorbs ξ in its VEV. To prevent this
from happening, the absolute value of Δmxy needs to be
smaller than the geometric mean of m1l and mF,
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m−
xy > 0 ⇒ jΔmxyj < ðm1lmFÞ1=2: ð71Þ

This requirement translates into an upper bound on the
gauge coupling constant g,

g < gmax ¼
1

jq0j
�
c1l
2

�
1=2 ðρλÞ3=2

ð1 − ρ4Þ1=4 : ð72Þ

For ρ ¼ ρ̄ and λ ≪ λpert, we hence obtain jgmaxq0j≃
7.8 × 10−2λ3=2. In Fig. 1, we plot the upper bound on
jgq0j as a function of λ and ρ. This figure illustrates that the
stability condition in Eq. (72) is always stronger than the
mere requirement of a weak gauge coupling, jgq0j ≲ λ.
The constraint in Eq. (72) is therefore a sufficient condition
to justify our analysis in the weakly gauged limit.

4. Modulus stabilization and mass
spectrum at low energies

The dynamically generated FI term in Eq. (65) is an
effective FI term that depends on the VEVs of the meson
fields M�. As shown in Ref. [95], such FI terms are
typically accompanied by a shift-symmetric modulus field
(see Sec. II B). Our dynamical model is no exception to this
statement. In our case, the role of the modulus field is
played by the B − L Goldstone multiplet A which contains
all meson d.o.f. after imposing the Pfaffian constraint in
Eq. (47). The field A is a chiral multiplet. It, hence, consists

of a real scalar c, a real pseudoscalar φ, and a Weyl fermion
ã. In analogy to supersymmetric models of the QCD axion,
these particles may also be referred to as the saxion c, axion
φ, and axino ã (see, e.g., Ref. [155]). In our model, the
pseudoscalar φ corresponds to the Goldstone boson of
spontaneous B − L breaking. It remains massless and
exhibits a derivative coupling to the B − L vector boson
Aμ. To see this, we have to apply the field transformation in
Eq. (50) to the kinetic terms of the scalar meson fields.
The kinetic part of the Lagrangian then ends up containing
the following terms:

−Lkin ⊃
1

4
ð∂μAν − ∂νAμÞð∂μAν − ∂νAμÞ

þ 1

2
ð∂μφþmVAμÞð∂μφþmVAμÞ: ð73Þ

Note that this is nothing but the Stückelberg Lagrangian
of an Abelian gauge field with mass mV ,

mV ¼
ffiffiffi
2

p
gq0fA: ð74Þ

In view of Eq. (73), the Goldstone boson φ can also be
regarded as the Stückelberg field of spontaneous B − L
breaking. This is consistent with the fact that the B − L
Higgs multiplet—represented by the meson field M—
decouples once we insist on the Pfaffian constraint in
Eq. (47) being satisfied exactly.

FIG. 1. Bounds on the gauge coupling g (left panel) and the Yukawa coupling λ (right panel). The upper bound on g ensures that the
IYIT singlets X and Y do not absorb ξ in their VEVs [see Eq. (72)]. Similarly, the lower bound on λ guarantees that the VEV of the
Polonyi field is located in the quadratic part of the effective potential [see Eq. (102)]. Both bounds need to be satisfied to sufficiently
stabilize the SUSY-breaking vacuum in the IYIT sector. In both plots, the solid red line indicates where in parameter space the
perturbativity constraint in Eq. (57) becomes violated.
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After spontaneous B − L breaking, the pseudoscalar φ
parametrizes the longitudinal polarization state of the
massive B − L vector boson Aμ. It is “eaten up” by Aμ

and does not cause any further problems. At the same time,
the real scalar c may become problematic, as it threatens
to destabilize the FI parameter ξ. This is the notorious
modulus problem in the presence of an effective FI term
[95]. In our model, this problem is, however, absent. The
scalar c and the fermion ã are automatically stabilized by
the F-term-induced mass mF in the superpotential [see
Eq. (53)]. To make this statement more precise, let us now
review the mass spectrum in the IYIT sector at low energies
(see also Refs. [99,155]).
The relevant superfields at low energies are the

Polonyi field X ¼ ðx; x̃Þ, the stabilizer field Y ¼ ðy; ỹÞ,
the Goldstone field A ¼ ða; ãÞ, and the vector field
V ¼ ðλ; AμÞ. Here, x, y, and a are complex scalars. The
complex scalar a contains the Goldstone boson and its
scalar partner, a ¼ 2−1=2ðcþ iφÞ. The fields x̃, ỹ, ã, and λ
are Weyl fermions, where λ denotes the B − L gaugino. Aμ

is the B − L vector boson. To determine the mass spectrum
for these fields, we work in the weakly gauged limit where
Δmxy in Eq. (69) is negligible. A standard calculation in
global supersymmetry then yields

m2
x ¼ m2

1l; m2
y ¼ m2

F; m2
c ¼ 2m2

F þm2
V; mφ ¼ 0;

m2
x̃ ¼ 0; m2

ỹ ¼ m2
F þm2

V; m2
ã ¼ m2

F þm2
V; mλ ¼ 0:

ð75Þ
Here, the indices refer to the respective mass eigenstates
which are not necessarily identical to the corresponding
“flavor” eigenstates (see, e.g., ỹ, ã, and λ). As expected, we
find that the Goldstone boson φ remains massless, mφ ¼ 0.
Similarly, the fermionic component of the Polonyi field X
also remains massless, mx̃ ¼ 0. This is because x̃ corre-
sponds to the Goldstino field of spontaneous supersym-
metry breaking. It is absorbed by the gravitino field in
supergravity. Finally, the B − L gaugino λ also remains
massless [however, see also Eq. (77)]. This is due to the
following reason. The original Weyl fermion λ shares a
Dirac mass with the axino, L ⊃ imVλã. One would, thus,
think that λ ends up forming a Dirac fermion with the axino,
i.e., the fermionic component of the B − L Goldstone
multiplet. The axino, however, also shares a Dirac mass
with the fermionic component of the stabilizer field,
L ⊃ mFã ỹ, that is parametrically larger, mF ≫ mV , in
the weakly gauged limit. ỹ therefore “steals” the axino from
the gaugino, so that the gaugino no longer has a mass
partner to form a Dirac fermion. In more technical terms,
this goes back to the fact that the diagonalization of two
Dirac masses for three Weyl fermions necessarily results in
one massive Dirac fermion and one massless Weyl fermion.
For our purposes, the most important lesson from Eq. (75)
is that the superpartners of the Goldstone boson, the saxion
c and the axino ã, are indeed stabilized. Both fields obtain

masses from the gauge sector7 as well as from the F-term-
induced mass in the superpotential. This solves the modu-
lus problem and assures us that ξ is a viable input for the
construction of our inflation model.
Up to now, our discussion only dealt with the properties

of the IYIT model in global supersymmetry. The next
important step is to embed the IYIT model into super-
gravity. As discussed in Sec. II B, we especially intend to
work in Jordan-frame supergravity with canonically nor-
malized kinetic terms. However, before going into any
details, let us briefly discuss the implications of super-
gravity for the low-energy mass spectrum. On general
grounds, we essentially expect two effects. (i) In super-
gravity, R symmetry is broken to ensure the vanishing of
the cosmological constant (CC) in the true vacuum. The
order parameter of R-symmetry breaking is the gravitino
mass m3=2. We therefore expect that supergravity leads to
corrections to the various mass eigenvalues of Oðm3=2Þ.
This should, in particular, also hold true if all other sectors
are sequestered from the hidden SUSY-breaking sector.
(ii) As a consequence of R-symmetry breaking, the
Polonyi field X acquires a nonzero VEV that is typically
parametrically larger than the gravitino mass, hXi ∝
m3=2=ðc21lλ3Þ (see Sec. II D). This induces an effective
Majorana mass for the Goldstone multiplet A in the
superpotential [see Eq. (53)],

mA ¼ λXhXi: ð76Þ

The Majorana mass mA breaks some of the mass
degeneracies in Eq. (75) and helps to make sure that the
B − L gaugino λ acquires a nonzero mass after all. To
illustrate the effect of nonzeromA, we compute the fermion
masses in the limit of vanishing gravitino mass, m3=2 → 0,
and small Majorana mass,mA ≪ mF. This exercise leads to
the following mass eigenvalues (in the Jordan frame):

mλ ≃
2mVmF

m2
F þm2

V
mV sin θ;

m2
ã;ỹ ≃m2

F þm2
V � ðmA −mλÞðm2

F þm2
VÞ1=2; ð77Þ

and again mx̃ ¼ 0. Now, the vector-boson mass mV also
receives contributions from the Polonyi VEV,

mV → mV ¼
ffiffiffi
2

p
gq0vA; vA ¼ ðf2A þ hX2iÞ1=2; ð78Þ

7This follows from the super-Higgs mechanism. In conse-
quence of spontaneous B − L breaking, the massless vector
multiplet V (one Weyl fermion, one massless vector boson)
absorbs an entire chiral multiplet (one complex scalar, one Weyl
fermion), so that it eventually contains the d.o.f. of a massive
vector multiplet (one real scalar, one Dirac fermion, one massive
vector boson). In the absence of supersymmetry breaking, all
these d.o.f. would have a common mass mV .
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where we parametrize the two contributions from fA and
hXi to vA in terms of a mixing angle θ,

cos θ ¼ fA
vA

; sin θ ¼ hXi
vA

: ð79Þ

Equation (77) demonstrates that, for hXi ≠ 0, the gaugino
λ indeed obtains a nonvanishing mass. Moreover, we
recognize that the Dirac fermion ðỹ; ãÞ splits into two
nondegenerate Majorana fermions. Making the same
assumptions as before, we also compute the scalar masses
for a nonvanishing Polonyi VEV,

m2
y− ¼ 1

2
ðA − B1=2Þ; m2

yþ ¼ m2
F þm2

A;

m2
c ¼

1

2
ðAþ B1=2Þ; ð80Þ

where

A¼ 3m2
F þm2

A þm2
V;

B¼m4
F þm4

A þm4
V þ 6m2

Am
2
F

þ 2m2
V ½ðm2

F þm2
AÞ cos ð2θÞ− 2mAmF sin ð2θÞ�; ð81Þ

and mx ¼ m1l and mφ ¼ 0. For a dominant F-term-
induced mass, mA, mV ≪ mF, this simplifies to

m2
y− ≃m2

F −m2
A; m2

yþ ¼ m2
F þm2

A;

m2
c ≃ 2m2

F þ 2m2
A þm2

V: ð82Þ

We, thus, find that the Majorana mass mA breaks the
degeneracy among the two real scalar components of Y and
shifts the saxion mass to even larger values. This concludes
our analysis of the IYIT mass spectrum. We will now
discuss the embedding into Jordan-frame supergravity in
more detail.

D. Effective Polonyi model and embedding
into supergravity

In global supersymmetry, the Polonyi field X is stabi-
lized at the origin in field space, hXi ¼ 0, by its one-loop
effective mass m1l [see Eq. (61)]. Gravitational corrections
in supergravity, however, threaten to destabilize this vac-
uum solution. We shall now explain why this is a serious
problem. At field values larger than some critical value,
jxj ≳ xc, the one-loop effective potential for the complex
Polonyi field x changes from a quadratic to a logarithmic
behavior (see, e.g., Ref. [42] for an explicit calculation),

V1lðxÞ≃
�
m2

1ljxj2; jxj≪xc;

V0
1l ln jx=xcj; jxj≫xc;

V0
1l∼

m4
F

16π2
: ð83Þ

Here, V0
1l denotes the height of the logarithmic plateau at

large field values. The critical field value xc is reached once
the Polonyi field induces effective masses for the quarks
in the IYIT sector of OðΛdynÞ. The Yukawa interactions
of the Polonyi field with the IYIT quarks follow from
Eqs. (39) and (50),

Whid ⊃
Xffiffiffi
2

p ðλþΨ1Ψ2 þ λ−Ψ3Ψ4Þ: ð84Þ

This allows us to estimate xc. For definiteness, we will
work with xc ¼

ffiffiffi
2

p
Λdyn=λ in the following. At jxj≳ xc, the

IYIT quarks decouple perturbatively, which gives rise to
the logarithmic corrections in Eq. (83). Dangerous SUGRA
corrections can shift the Polonyi VEV from the origin in
field space towards the logarithmic plateau at large field
values. Once this happens, the Polonyi field is no longer
stabilized and the system settles into a completely different
vacuum at field values of OðMPlÞ. In the following, we
will illustrate where in parameter space this unwanted
conclusion can be avoided. This will, in particular, provide
us with a useful lower bound on the Yukawa coupling λ
[see Eq. (102)].
For the purposes of this section, it will suffice if we

exclusively focus on the Polonyi field X and integrate out
the heavier fields A and Y. The low-energy superpotential
in Eq. (53) then turns into

Whid ¼ μ2X þ w: ð85Þ

Here, w denotes a constant contribution to the super-
potential that we added by hand. w is meaningless in
global supersymmetry. In supergravity, it accounts for the
fact that R symmetry must be broken to ensure a vanishing
CC in the true vacuum. In the presence of the constant w,
Eq. (85) is nothing but the superpotential of the standard
Polonyi model of spontaneous supersymmetry breaking
[156]. In this sense, the IYIT model can be regarded as a
UV completion of the Polonyi model that offers a dynami-
cal explanation for the origin of the SUSY-breaking scale μ.
This is expected as the IYIT model is, after all, just a
dynamical realization of spontaneous supersymmetry
breaking à la O’Raifeartaigh. The IYIT model does not
explain the UV origin of the constant w. In this paper, we
will not speculate about this issue any further. That is, we
do not have anything new to say about the CC problem.
Equation (85) needs to be supplemented by the following

Kähler potential [see Eqs. (16) and (28)]:

Ktot ⊃ −3M2
Pl ln

�
1 −

Fhid þ Finf

3M2
Pl

�
;

Fhid ¼ X†X; Finf ¼ F; ð86Þ
where we set all terms to zero that are irrelevant for the
present discussion. The functions in Eqs. (85) and (86)

INFLATION FROM HIGH-SCALE SUPERSYMMETRY BREAKING PHYS. REV. D 97, 115025 (2018)

115025-17



allow us to calculate the total SUGRA potential for the
Polonyi field in the Jordan frame,

VJ
hidðxÞ ¼ μ4 þ VJ

1lðxÞ −
j3wþ 2μ2xj2
ð1 − fÞ3M2

Pl

þm2
Rjxj2: ð87Þ

Here, the second term on the right-hand side, i.e., the
Jordan-frame one-loop effective potential VJ

1l, is equivalent
to the global-SUSY expression V1l in Eq. (83). The third
term on the right-hand side corresponds to a tree-level
SUGRA correction in the Jordan frame, while the last term
represents the gravity-induced mass discussed around
Eq. (25). The function f in Eq. (87) is defined as follows:

f ¼ 1

3M2
Pl

ðF − FSFS†Þ; ð88Þ

which may be regarded as a dimensionless measure for
the amount of superconformal symmetry breaking in the
kinetic function of the inflaton field. In the following, we
will refer to f as the reduced kinetic function of the inflaton
field. Given our choice for F in Eq. (28), the function f
evaluates to

f ¼ 1 − 2χ

3M2
Pl

½χσ2 − ð1 − χÞτ2�: ð89Þ

As expected, this expression vanishes for χ → χCSS ¼ 1=2.
The imaginary component of the complex inflaton field
will be stabilized during inflation, τ ¼ 0. During inflation,
we therefore have to deal with

f ¼ ð1 − 2χÞz; z ¼ χσ2

3M2
Pl

: ð90Þ

The constant w controls the value of the CC. To ensure
that inflation ends in a Minkowski vacuum with vanishing
CC, we need to impose the following two conditions after
inflation, i.e., for f ¼ 0:

VJ
hidðxÞ ¼ 0;

d
dx

VJ
hidðxÞ ¼ 0 for

f ¼ 0; x ¼ hXi; w ¼ w0: ð91Þ

These two conditions can be solved for the two unknowns
hXi and w0. Let us focus on w0 for now,8

w0 ¼
�
1 −

4

3k

�
1=2 μ2MPlffiffiffi

3
p : ð92Þ

Here, k is a convenient measure for the relative importance
of the SUGRA corrections in Eq. (87),

k ¼ m2
1l þm2

R

μ4=M2
Pl

: ð93Þ

The definition of k is chosen such that it mimics the effect
of a higher-dimensional operator in Fhid,

Fhid ⊃ X†X −
k

ð2!Þ2
ðX†XÞ2
M2

Pl

; ð94Þ

that induces a mass correction Δm2
k ¼ m2

1l þm2
R in the

SUGRA potential. Large values of k, thus, indicate that the
Polonyi field is strongly stabilized by its one-loop effective
mass, Δm2

k ≫ m2
3=2.

Given the result for the constant w0 in Eq. (92), we can
go one step back and determine the time-dependent Polonyi
VEV during inflation. To do so, we just need to solve one
equation,

d
dx

VJ
hidðxÞ ¼ 0 for f ≠ 0; x ¼ hXi; w ¼ w0: ð95Þ

Assuming that hXi is located in the quadratic part of the
potential, Eq. (95) has the following solution:

hXi ¼ ðk − 4=3Þ1=2
½ð1 − fÞk − 4=3�k1=2

2MPlffiffiffi
3

p : ð96Þ

Indeed, in the limit of a large one-loop effective mass,
k ≫ 1, the Polonyi field remains stabilized close to the
origin, hXi ≪ MPl. For f ¼ 0, Eq. (96) turns into the
solution of Eq. (91). Both the constant w0 and the Polonyi
VEVhXi break R symmetry. This is because both the
superpotential W as well as the IYIT singlets Z� carry R
charge 2. We can therefore use our results in Eqs. (92)
and (96) to determine the order parameter of R symmetry
breaking, i.e., the gravitino mass in the Jordan frame,

m3=2 ¼
hWi
M2

Pl

¼ μ2hXi þ w0

M2
Pl

¼
�
1 −

4

3k

�
1=2 ð1 − fÞkþ 2=3

ð1 − fÞk − 4=3
μ2ffiffiffi
3

p
MPl

: ð97Þ

This result allows us to write the total mass of the Polonyi
field in the Jordan frame, mJ

x, as follows:

ðmJ
xÞ2 ¼

�
1 −

4

3ð1 − fÞk
�
ðm2

1l þm2
RÞ

¼ 3k
ð1 − fÞðk − 4=3Þ

½ð1 − fÞk − 4=3�3
½ð1 − fÞkþ 2=3�2 m

2
3=2: ð98Þ

8The Kähler potential in Eq. (86) turns the usual eK=M2
Pl term in

the SUGRA potential into a simple rational function (see the
Appendix). Our Jordan-frame formulation of supergravity there-
fore allows us to solve the two conditions in Eq. (91) in a closed
form. Note that this is not possible for the Polonyi model in
standard Einstein-frame supergravity.
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In the following, we will restrict ourselves to the large-k
limit. This is justified because k is typically at least of
Oð10Þ in the part of parameter space that we are interested
in [see Eqs. (54) and (61)],

k ≈
m2

1l

μ4=M2
Pl

¼ 1

2

�
c1lλMPl

Λ

�
2

≃ 47

�
c1l
0.02

�
2
�
λ

1

�
2
�
5 × 1015 GeV

Λ

�
2

: ð99Þ

In the large-k limit, the Polonyi VEV in Eq. (96) can be
approximately written as follows:

hXi ≈ 2
ffiffiffi
3

p
m2

3=2

ð1 − fÞðmJ
xÞ2

MPl ≈
2

ffiffiffi
2

p

1 − f

m3=2

c21lλ
3
; ð100Þ

confirming that hXi is parametrically enhanced compared
to the gravitino mass, hXi ∝ m3=2=ðc21lλ3Þ. For large values
of k, the relations between w0, μ, and m3=2 also become
significantly simpler,

k ≫ 1 ⇒ w0 ≈
μ2MPlffiffiffi

3
p ≈m3=2M2

Pl: ð101Þ

In the remainder of this paper, we will restrict ourselves to
working with these approximate expressions.
We derived the result in Eq. (100) under the assumption

that the leading term in the one-loop effective potential is an
effective mass term, VJ

1l ¼ m2
1ljxj2 þOðx4Þ. The deriva-

tion of Eq. (100) is therefore only self-consistent and valid
as long as hXi ≲ xc [see Eq. (83)]. This implies a lower
bound on the Yukawa coupling λ that depends on the
energy scale Λ as well as on the hierarchy parameter ρ. We
plot this lower bound λmin as a function of Λ and ρ in the
right panel of Fig. 1. The exact numerical result shown in
this figure is well approximated by the following analytical
expression:

λmin ≃min

�
16π

ffiffiffi
2

p
ffiffiffi
3

p ð2 ln 2 − 1Þρ6
Λ
MPl

;

�
4π

ffiffiffi
2

p
λ20ffiffiffi

3
p ð2 ln 2 − 1Þ

Λ
MPl

�
1=3

�
: ð102Þ

λmin is sensitive to ρ at large values of ρ where neffM in
Eq. (62) is dominated by ρ rather than the neutral meson
contribution 4l0. At small ρ values, where neffM ≈ 4l0, the ρ
dependence disappears. In addition to the lower bound
λmin, we also require that λ must remain perturbative,
λ < λpert ¼ 4. In the following, we will eliminate λ from
our analysis and set it to the following value, for simplicity:

λ̄ ¼ ðλminλpertÞ1=2: ð103Þ

That is, we fix λ just at the central value of the allowed
range of values, λmin < λ < λpert. Together with our choice
for the hierarchy parameter, ρ ¼ ρ̄ ≃ 0.80, this removes
all dimensionless parameters from the IYIT sector, so that
the only remaining free parameter is the scale Λ. We then
obtain for λ̄,

λ̄ ≃ 1.78

�
Λ

5 × 1015 GeV

�
1=2

: ð104Þ

At the same time, λ must not be larger than λ ≃ 2.41, since
otherwise λþ or λ− will exceed λpert [see Eq. (59)]. This
results in an upper bound on the dynamical scale,
Λ≲ 1016 GeV. The relation in Eq. (104) enables us to
express all mass scales in the IYIT sector in terms of Λ. For
λ ¼ λ̄ and ρ ¼ ρ̄ and making use of Eqs. (54), (55), and
(97), we find [in addition to the relations in Eq. (67)]

μ ≃ 7.94 × 1015 GeV

�
Λ

5 × 1015 GeV

�
5=4

;

mF ≃ 7.15 × 1015 GeV

�
Λ

5 × 1015 GeV

�
3=2

;

m3=2 ≃ 1.51 × 1013 GeV

�
Λ

5 × 1015 GeV

�
5=2

: ð105Þ

The relations in Eqs. (67) and (105) are the main result of
this chapter. They demonstrate how the dynamical breaking
of supersymmetry in the IYIT sector generates all mass
scales relevant for our model via dimensional transmuta-
tion. Our model, thus, does not require any hard dimen-
sionful input parameters. Moreover, Eq. (105) illustrates
that supersymmetry breaking close to the GUT scale results
in a large gravitino mass. As expected, our model therefore
predicts a very heavy sparticle spectrum (see Sec. IVA).
Equations (67) and (105) now set the stage for our model of
D-term inflation.

E. Scalar potential in the inflaton sector

We now have all ingredients at our disposal to construct
our inflationary model. In a first step, we add the usual
superpotential of D-term inflation [see Eq. (2)] to the
Polonyi superpotential in Eq. (85),

Wtot ⊃ κSΦΦ̄þ μ2X þ w0: ð106Þ

The inflaton S as well as the waterfall fields Φ and Φ̄
belong to a separate sector that is sequestered from the IYIT
sector. The relevant Kähler potential is of the following
form [see Eqs. (16) and (28)]:

Ktot ⊃ −3M2
Pl ln

�
1 −

Fhid þ Finf

3M2
Pl

�
;

Fhid ¼ X†X; Finf ¼ F þΦ†Φþ Φ̄†Φ̄: ð107Þ
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The waterfall fields Φ and Φ̄ carry B − L charges þq and
−q, respectively. They, thus, appear in the D-term scalar
potential, together with the dynamically generated FI
parameter ξ [see Eq. (65)],

VJ
D ¼ g2

2
½q0ξ − qðjϕj2 − jϕ̄j2Þ�2: ð108Þ

VJ
D denotes the D-term scalar potential in the Jordan frame

which is identical to the D-term scalar potential in global
supersymmetry, V0

D. In addition, the total tree-level scalar
potential VJ

tree also receives an F-term contribution VJ
F

which can be computed by making use of Eqs. (106)
and (107),

VJ
F ¼ V0

F þ ΔVJ
F: ð109Þ

Here, the first contribution, V0
F, denotes the usual F-term

scalar potential in global supersymmetry,

V0
F ¼ μ4 þm2

effðjϕj2 þ jϕ̄j2Þ þ κ2jϕj2jϕ̄j2; ð110Þ

while the second term, ΔVJ
F, corresponds to the tree-level

SUGRA correction in the Jordan frame,

ΔVJ
F ¼ −

μ4

1 − f
þ ðδm2

effÞ�ϕϕ̄þ δm2
effϕ

�ϕ̄� þ δκ2jϕj2jϕ̄j2:

ð111Þ

For more details on the computation of ΔVJ
F, see the

Appendix. In Eqs. (110) and (111), we introduced the
masses squared m2

eff and δm2
eff as well as the quartic

coupling δκ2. These are defined as follows:

m2
eff ¼ κ2jsj2; δm2

eff ¼ −
1 − 2χ

1 − f
m3=2κs;

δκ2 ¼ −
ð1 − 2χÞ2
1 − f

κ2jsj2
3M2

Pl

: ð112Þ

Note that all three parameters are field dependent. The
real mass parameter m2

eff denotes the effective inflaton-
dependent mass that stabilizes the waterfall fields during
inflation. The complex mass parameter δm2

eff is a bilinear
mass that originates from the interference between the
supersymmetric mass of the waterfall fields in the super-
potential, κhSi, and the gravitino mass m3=2. This so-called
B term is, hence, a consequence of R symmetry breaking
in the superpotential. It is only generated for the scalar
waterfall fields and not for the corresponding fermions,
which is why it breaks supersymmetry. Just like the usual A
terms in models of broken supersymmetry, the B term
results in a soft breaking of supersymmetry. The coupling
δκ2 will be irrelevant for our purposes as it constitutes just a

small correction to κ2, i.e., the quartic coupling of the
waterfall fields in global supersymmetry.
During inflation, the waterfall fields are stabilized at their

origin, hϕi ¼ hϕ̄i ¼ 0. Along the inflationary trajectory,
the tree-level scalar potential in the Jordan frame therefore
reads as follows:

VJ
tree ¼

1

2
D2

0 −
f

1 − f
F2
0; D0 ¼ gq0ξ; F0 ¼ μ2: ð113Þ

Here, D2
0=2 denotes the contribution to the vacuum energy

density from the D-term scalar potential. The large F-term
contribution, V0

F ⊃ þF2
0, is canceled by the contribution

from R-symmetry breaking that is contained in the
SUGRA correction to the scalar potential, ΔVJ

F ⊃ −F2
0.

This explains why the vacuum energy density during
inflation is dominated by the D-term contribution in our
model. During the B − L phase transition at the end of
inflation, the D term is absorbed by the VEVof one of the
waterfall fields. In the true vacuum after inflation, all
contributions to the CC therefore approximately cancel. In
the next section, we will perform a standard slow-roll
analysis of our inflationary model. This is most easily
done in terms of the usual slow-roll parameters in the
Einstein frame. To compute these parameters, we need to
convert the potential in Eq. (113) from the Jordan frame to
the Einstein frame. This is achieved by rescaling VJ

tree by
the fourth power of the conformal factor C [see Eq. (13)],

V tree ¼ C4VJ
tree ¼

�
−
3M2

Pl

Ω

�
2
�
1

2
D2

0 −
f

1 − f
F2
0

�
: ð114Þ

On the inflationary trajectory, this can be rewritten as a
function of the parameter z [see Eq. (90)],

V tree ¼
1

ð1 − zÞ2
�
1

2
D2

0 −
ð1 − 2χÞz

1 − ð1 − 2χÞzF
2
0

�
: ð115Þ

The second derivative of V tree with respect to the field σ
provides us with the mass parameter m2

σ [see Eq. (29)],

m2
σ ¼ 2χ

�
D2

0

3M2
Pl

− ð1 − 2χÞ F2
0

3M2
Pl

�
;

D2
0

3M2
Pl

≈m2
R;

F2
0

3M2
Pl

≈m2
3=2: ð116Þ

As anticipated, mσ is suppressed by the shift-symmetry-
breaking parameter χ. By appropriately choosing χ, we will
therefore be able to adjust the scalar spectral index ns so
that it matches the observed best-fit value. We also note that
the mass parameter mσ is not a physical mass eigenvalue in
the actual sense. This is because the scalar inflaton field σ is
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not properly normalized. The mass of the canonically
normalized inflaton field σ̂ is instead given in terms of
the slow-roll parameter η in the Einstein frame, m2

σ̂ ¼
3ηH2 ∼m2

σ (see Sec. III B). Moreover, mσ is just a tree-
level parameter, whereas the scalar potential also receives
important contributions at the one-loop level.
The radiative corrections are encoded in the one-loop

effective Coleman-Weinberg potential [157],

VJ
1l ¼ Q4

J

64π2
STr

�
M4

J

Q4
J

�
ln
M2

J

Q2
J
− C

��
; C ¼ 3

2
: ð117Þ

Here, STr½·� stands for the supertrace over a (matrix-valued)
function of the total tree-level mass matrix squared M2

J in
the Jordan frame. We evaluate VJ

1l in the MS renormaliza-
tion scheme and only consider contributions from scalars
and fermions. This fixes the numerical constant C in
Eq. (117) to C ¼ 3=2 (see, e.g., Ref. [158]). The energy
scale QJ denotes the MS renormalization scale. To deter-
mine the radiative corrections to the inflaton potential, it is
sufficient to focus on the inflaton-dependent masses in the
waterfall sector. From Eqs. (24), (108), (110), and (111),
we find for the scalar fields,

VJ
tree ⊃

1

2

0
BBB@

ϕ�

ϕ̄�

ϕ

ϕ̄

1
CCCA

T
0
BBBBB@

m2
ϕ 0 0 δm2

eff

0 m2
ϕ̄

δm2
eff 0

0 ðδm2
effÞ� m2

ϕ 0

ðδm2
effÞ� 0 0 m2

ϕ̄

1
CCCCCA

0
BBB@

ϕ

ϕ̄

ϕ�

ϕ̄�

1
CCCA; m2

ϕ;ϕ̄
¼ m2

eff þm2
R ∓ qm2

D; ð118Þ

where the mass parameters m2
D, m

2
R, m

2
eff , and δm2

eff are
respectively defined below Eq. (8) as well in Eqs. (25) and
(112). In addition to these tree-level masses, the scalar
waterfall fields also obtain gauge-mediated masses at the
loop level. This is because supersymmetry breaking in the
IYIT sector results in a mass splitting among the compo-
nents of the massive B − L vector multiplet [see Eq. (75)]
[159]. Including these one-loop masses in Eq. (117) would
result in a two-loop contribution to the effective potential.
For this reason, we will ignore the effect of gauge-mediated
supersymmetry breaking for now. We will come back to
this issue in Sec. IVA. In the next step, we diagonalize the
mass matrix in Eq. (118). This results in two complex mass
eigenstates ϕ� with inflaton-dependent mass eigenvalues,

m2
�¼m2

effþm2
R�ð1þδ4Þ1=2qm2

D; δ
4¼jδmeff j4

q2m4
D

: ð119Þ

Here, δ is related to the rotation angle βϕϕ̄ that diagonalizes
the scalar mass matrix, δ2 ¼ tan ð2βϕϕ̄Þ. We note that the
parameter δ depends on the inflaton field value, which
makes it a time-dependent quantity. For this reason, the
mass eigenstates ϕ� do not coincide with the charge
eigenstates ϕ; ϕ̄ during inflation. The mass parameters
m2

R, m
2
D, and δm2

eff in Eq. (119) arise from various effects
in the scalar sector of our model: the conformal coupling to
the Ricci scalar in Eq. (24), the D-term scalar potential in
Eq. (108), and the soft B term in Eq. (111). None of these
effects are relevant for the fermions in the waterfall sector.
The two Weyl fermions in Φ and Φ̄ simply form a Dirac
fermion ϕ̃ with Jordan-frame mass mϕ̃ ¼ meff . No further
SUGRA corrections arise in the Jordan frame [115].

We are now ready to evaluate VJ
1l in Eq. (117). Our final

result can be written as follows:

VJ
1l ¼ Q4

J

16π2
Lðx; αÞ;

Lðx; αÞ ¼ 1

4
STr

�
M4

J

Q4
J

�
ln
M2

J

Q2
J
−
3

2

��
; ð120Þ

where L is a one-loop function that takes the same form in
the Jordan frame as in the Einstein frame,

Lðx; αÞ ¼ 1

2

X
�
ðx� 1Þ2

�
ln ðx� 1Þ − 3

2

�

− ðx − αÞ2
�
ln ðx − αÞ − 3

2

�
; ð121Þ

and where the variable x, the parameter α, and the
renormalization scale QJ are introduced such that

x ¼ m2
eff þm2

R

Q2
J

; α ¼ m2
R

Q2
J
; Q2

J ¼ ð1þ δ4Þ1=2qm2
D: ð122Þ

All of these quantities depend on the inflaton field value by
virtue of the parameters m2

eff , m
2
R, and δ. In the following,

we will, however, neglect the field dependence of m2
R

and approximate it instead by the constant expression in
Eq. (116). The fact that QJ is field dependent does not
pose any problem for our model. Recall that one usually
encounters a field-independent renormalization scale QJ in
the Jordan frame and a field-dependent renormalization
scale Q ¼ CQJ in the Einstein frame, or vice versa. In our
model, the renormalization scale is, by contrast, field-
dependent in both frames. This is a priori a perfectly valid
choice. Independent of whether QJ is field dependent or
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not, we merely have to make sure that our final results are
not overly sensitive to our particular choice for QJ. This is
a requirement that we will have to check a posteriori as
part of our slow-roll analysis (see Sec. III). The main field
dependence of Eq. (120) is encoded in x which may also be
written as follows:

x ¼ m2þ þm2
−

m2þ −m2
−
¼ 2m2

eff

m2þ −m2
−
þ α: ð123Þ

x ¼ 1 therefore corresponds to the critical point along the
inflationary trajectory at which m− vanishes,

x ¼ 1 ⇔ σ ¼ σc ⇔ m− ¼ 0: ð124Þ

At this point in field space, the mass eigenstate ϕ− becomes
tachyonically unstable which triggers the B − L waterfall
transition. We also note that Eq. (123) illustrates the
physical meaning of α. The parameter α represents a
shift in the field variable x compared to the situation in
global supersymmetry where one simply has x0 ¼ 2m2

eff=
ðm2þ −m2

−Þ. As evident from Eq. (122), this shift results
from the fact that the waterfall scalars obtain a gravity-
induced mass mR, while the waterfall fermion does not.
To convert Eq. (120) into the one-loop effective

Coleman-Weinberg potential in the Einstein frame, we
need to multiply again by C4, just like in the case of the
tree-level scalar potential [see Eq. (114)],

V1l ¼ C4VJ
1l ¼ Q4

16π2
Lðx; αÞ; Q ¼ CQJ: ð125Þ

The Weyl transformation from the Jordan frame to the
Einstein frame therefore corresponds to nothing but a
rescaling of the Q4

J factor in Eq. (120). The loop function
L remains unchanged. This is consistent with the fact
that the Weyl transformation in Eq. (13) only affects
dimensionful parameters. A mass scale mJ in the Jordan
frame is, e.g., mapped ontom ¼ CmJ in the Einstein frame.
Dimensionless ratios of mass parameters, thus, remain

invariant under the Weyl transformation [117,118]. In
passing, we also mention that the effective scalar potential
V1l in Eq. (125) cannot be derived from the effective
Kähler potential K1l in Eq. (30). The reason for this is that,
in D-term inflation, the effective Kähler potential K1l can
enter into the total scalar potential only via the D-term
scalar potential,

Ktot → Ktot þ K1l

⇒ VD ⊃ −gqD0

�
ϕ

∂
∂ϕK1l − ϕ̄

∂
∂ϕ̄K1l

�
: ð126Þ

This, however, only constitutes a contribution to the one-
loop effective potential for the waterfall fields which we are
not interested in. The one-loop effective potential for the
inflaton field in Eq. (125) has a different origin. This can be
explicitly seen in the superspace formulation of global
supersymmetry. There, Eq. (125) does not follow from the
effective potential for the chiral multiplets S, Φ, and Φ̄, i.e.,
from the effective Kähler potential K1l, but from the
effective potential for the auxiliary D component of the
vector field V [139]. This quantity is discussed less often in
the literature. Alternatively, Eq. (125) can also be derived in
a superspace language that applies to models of softly
broken global supersymmetry [142]. In this approach, one
first integrates out the heavy vector multiplet V such that
supersymmetry is softly (and explicitly) broken in the
effective theory at low energies. Then, one calculates the
radiative corrections to the soft SUSY-breaking terms in
the Lagrangian. This allows one to recover Eq. (125)
as the one-loop renormalization of the so-called soft
Kähler potential K̃. In an explicit calculation, we convince
ourselves that Eq. (125) indeed satisfies the relation V1l ¼
−K̃1l. It is interesting to note that this result differs
from the situation in F-term inflation. There, the effective
Kähler potential directly contributes to the effective inflaton
potential via the F-term scalar potential.
The total inflaton potential follows from the combination

of our results in Eqs. (114) and (125),

V ¼ VJ

ð1 − zÞ2 ; VJ ¼
�
1

2
þ ð1þ δ4Þ g

2q2

16π2
Lðx; αÞ

�
D2

0 −
ð1 − 2χÞz

1 − ð1 − 2χÞz F
2
0. ð127Þ

The individual parameters and functions appearing in this
potential can be found in the following equations: z in
Eq. (90), D0 and F0 in Eq. (113), δ in Eq. (119), and L in
Eq. (121). The potential in Eq. (127) is one of the main
results in this paper and the starting point of our phenom-
enological study of the inflationary dynamics (see Sec. III).
In conclusion, let us summarize the main differences
between Eq. (127) and the inflaton potential of ordinary
D-term inflation in global supersymmetry,

V0 ¼
�
1

2
þ g2q2

16π2
Lðx0; 0Þ

�
D2

0; x0 ¼
m2

eff

qm2
D
: ð128Þ

Compared to this potential, our total inflaton potential V
receives four different SUGRA corrections. (i) The total
potential is rescaled by C4 to account for the transition from
the Jordan frame to the Einstein frame. (ii) The approxi-
mate shift symmetry in the inflaton kinetic function in
combination with F-term SUSY breaking in the IYIT
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sector results in a small contribution from the F-term scalar
potential. (iii) The soft B-term mass δm2

eff modifies the
prefactor of the one-loop effective potential as well as the
definition of the field variable x. (iv) The gravity-induced
mass mR gives rise to the parameter α. All of these effects
vanish in the global-SUSY limit, such that V → V0. One of
our main claims is that the SUGRA corrections in Eq. (127)
are instrumental in realizing a viable scenario of D-term
inflation that is in agreement with all theoretical and
phenomenological constraints.

III. PHENOMENOLOGY: A VIABLE SCENARIO
OF D-TERM HYBRID INFLATION

In the previous section, we introduced a supergravity
embedding of the IYIT model of dynamical supersymmetry
breaking with the following properties. (i) By promoting a
Uð1Þ flavor symmetry of the DSB model to the gauged
Uð1ÞB−L symmetry, we connect the scales of supersym-
metry and B − L breaking and simultaneously generate an
effective FI term for the Uð1ÞB−L symmetry. We demon-
strated that all mass scales, including the FI term, the B − L
breaking scale and the supersymmetry breaking scale, are
set by the dynamical scale Λ; see Eqs. (67) and (105).
(ii) The effective FI term generates a D-term scalar
potential which can be used to implement DHI. Besides
the usual one-loop contribution from integrating out the
waterfall fields in the limit MPl → ∞, our construction
entails several (calculable) supergravity corrections. The
final result for the one-loop effective scalar potential is
given in Eq. (127). (iii) The requirement of perturbativity
and the necessity to stabilize the Polonyi field lead to
constraints on the parameters of the DSB model; see Fig. 1.
In this section we turn to the phenomenology of the

resulting DHI model, outlined in Sec. II A. This will
essentially fix the only remaining free parameter of our
DSB sector: the dynamical scale Λ. After briefly reviewing
the standard picture in global supersymmetry, we proceed
to an analytical study of the parameter space, highlighting
the most important effects of the different contributions to
the scalar potential calculated in the previous section. We
then present a full numerical study of the relevant parameter
space, supplemented by a discussion on the initial con-
ditions in different parts of the parameter space.

A. D-term inflation in global supersymmetry

The key ingredients of globally supersymmetric DHI are
the superpotential and D-term potential given in Eq. (2).
The waterfall fields Φ; Φ̄ obtain masses which depend on
the scalar component s of the chiral multiplet S, which
stabilize them for values of the inflaton field above the
critical value jsglobc j2 ¼ g2qq0ξ=κ2. These field-dependent
masses result in a Coleman-Weinberg one-loop contribu-
tion to the effective potential of the inflaton, so that the
scalar potential for the inflaton above the critical field value

is given by Eq. (128). At the critical field value (corre-
sponding to x0 ¼ 1) one of the waterfall fields acquires a
nonvanishing vacuum expectation value, absorbing the FI
term ξ.
Identifying the inflaton field as the radial component

of s, ρ ¼ ffiffiffi
2

p jsj, its classical evolution during inflation is
described by the slow-roll equation,

VðρÞρ0ðNÞ ¼ M2
PlV

0ðρÞ; ð129Þ

where N ¼ −
R
Hdt counts the number of remaining

e-folds until the end of inflation (with N¼ 0 at the end of
inflation). At field values much larger than the critical field
value ρc, the scalar potential (128) can be approximated as

V0 ≃
�
1

2
þ g2q2

16π2
ln x0

�
D2

0: ð130Þ

Equation (129) is an accurate description of the inflationary
dynamics as long as the slow-roll parameters,

εðρÞ ¼ M2
Pl

2

�
V 0ðρÞ
VðρÞ

�
2

≃
g4q4

32π4

�
MPl

ρ

�
2

;

ηðρÞ ¼ M2
Pl
V 00ðρÞ
VðρÞ ≃ −

g2q2

4π2

�
MPl

ρ

�
2

; ð131Þ

are much smaller than one. The CMB observables, describ-
ing the statistical properties of quantum vacuum fluctuations
during inflation, can be expressed in terms of these variables
as

As ¼
V

24π2εM4
Pl

; ns ¼ 1 − 6εþ 2η; r ¼ 16ε; ð132Þ

evaluated at N� ≃ 55 e-folds before the end of inflation.
DHI ends at the critical field value ρc or even earlier,

when the second slow-roll parameter η becomes large,
ρη ¼ gqMPl=ð2πÞ, depending on the size of ρη=ρc. For
ρη=ρc ≫ 1, i.e., if the slow-roll condition is violated before
the critical point, the value of ρ at N� e-folds before the
end of inflation is given by ρ2� ≃ ðg2q2N�M2

PlÞ=ð2π2Þ. The
amplitude of the scalar spectrum is mainly controlled by
the FI parameter,

A0
s ≃

N�q20
3q2

�
ξ

M2
Pl

�
2

ðlarge-κ regimeÞ; ð133Þ

and its spectral index, governed by the second slow-roll
parameter η, is obtained as ns ≃ 1 − 1=N� ≃ 0.98 in the
limit of gq ≪ 4π. For values of ξ around the GUT scale,
this yields the correct scalar amplitude, albeit with a
somewhat too large spectral index, disfavored by about
2σ by the current data [76].
On the other hand, if the slow-roll conditions are satisfied

all the way down to the critical field value, we find ρ� ≃ ρc.
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The small value of the inflaton coupling κ in this region
of parameter space implies that the field excursion during
N� ≃ 55 e-folds of inflation is typically small compared to
the field value at the end point of inflation ρc. The observed
value of the scalar amplitude fixes

A0
s ¼

4π2q30
3q3κ2

�
ξ

M2
Pl

�
3

ðsmall-κ regimeÞ; ð134Þ

enabling lower values of ξ for smaller values of κ. The
spectral index in this region is found to be ns ≃ 1, excluded
at more than 5σ by the Planck data [76].
Despite its simplicity and obvious connection to particle

physics, this model has several major shortcomings, as
discussed in Sec. II B. These are connected to the origin of
the FI mass scale in supergravity, the stability of scalar
fields during inflation, gravitational corrections to the
inflaton trajectory in supergravity, and phenomenological
constraints from CMB observations. In the following, we
demonstrate how all these shortcomings can simultane-
ously be overcome in our setup.

B. Analytical description of the inflationary phase

1. Inflationary dynamics in SUGRA

In the following we implement DHI with the dynami-
cally generated FI term of Sec. II C, supplemented by the
assumption of an approximate shift symmetry in the
direction of the inflaton field. As discussed in Sec. II B,
this shift symmetry is broken by one-loop effects in the
scalar potential and Kähler potential. The interplay of these
two small contributions will enable us to identify regions
in parameter space which comply with all experimental
constraints.9

The dynamics of inflation is determined by the scalar
potential (127), which contains all relevant supergravity
and one-loop contributions. Our choice of kinetic function
F [see Eq. (28)] with χ ≪ 1 ensures that σ, the real part of
the complex scalar s, plays the role of the inflaton. The
supergravity version of Eq. (129) in the Einstein frame
reads

Kss� ðσÞVðσÞσ0ðNÞ ¼ M2
PlV

0ðσÞ; ð135Þ

where V ¼ C4VJ is the Einstein-frame scalar potential and
Kss� ¼ ∂2K=ð∂s∂s�Þ is the prefactor of the kinetic term for
the inflaton. The initial condition (i.e., the end of inflation)
is given by σðN ¼ 0Þ ¼ maxðσc; σηÞ. This enables us to
evaluate the (Einstein-frame) slow-roll parameters εðσ̂Þ and
ηðσ̂Þ and hence the CMB observables at N� ¼ 55 e-folds
before the end of inflation. Evaluating the slow-roll
parameters requires derivatives of the scalar potential with

respect to the canonically normalized field σ̂, which we
perform by exploiting ∂σ̂=∂σ ¼ ffiffiffiffiffiffiffiffiffi

Kss�
p

, as follows from the
canonical normalization of the kinetic terms in the Einstein
frame,

1

2
Kss�∂μσ∂μσ ≃

1

2
C4ð1 − fÞ∂μσ∂μσ ¼ 1

2
∂μσ̂∂μσ̂: ð136Þ

For convenience, we recall here a few key quantities
(evaluated along the inflationary trajectory) introduced
earlier [see Eqs. (13), (15), (28), and (90)]

C2 ¼ −
3M2

Pl

Ω
; Ω ¼ −3M2

Pl þ F; F ¼ χσ2;

f ¼ ð1 − 2χÞz; z ¼ χσ2

3M2
Pl

: ð137Þ

For more details on translating between the Einstein and
Jordan frames, see the Appendix.
The results of the numerical analysis are shown in Fig. 2.

Before discussing them in detail, we will give an analytical
analysis of the parameter space in the vicinity of the
globally supersymmetric limit. This will prove instructive
for interpreting the numerical results.

2. Slow-roll parameters

The slow-roll parameters in the Einstein frame can be
expressed in terms of derivatives of the scalar potential
and of the kinetic function in the Jordan frame as (see
Appendix A 4),

ε ¼ 1

N 2
ðε1=2J − 2ξ1=2J Þ2; ð138Þ

η ¼ 1

N 2
ðηJ þ 12ξJ − 8ðεJξJÞ1=2 − 2ζJ

− 2ν1=2ðε1=2J − 2ξ1=2J ÞÞ; ð139Þ

with N ≡K1=2
ss� ¼ C2ð1 − fÞ1=2 and

εJ ≡M2
Pl

2

�
VJ
σ

VJ

�
2

; ηJ ≡M2
Pl
VJ
σσ

VJ ; ξ1=2J ≡MPlffiffiffi
2

p Ωσ

Ω
;

ζJ ≡M2
Pl
Ωσσ

Ω
; ν≡M2

Pl

2

�
N σ

N

�
2

: ð140Þ

These expressions are equivalent to those found in
Appendix A of Ref. [160]. In the following, we will use
Eqs. (138) and (139) to analyze the inflationary predictions,
since this format enables us to nicely disentangle the
different contributions in various parts of the parameter
space.
With the definitions above, simplified expressions for

the Jordan-frame slow-roll parameters εJ and ηJ can be
obtained by approximating the Coleman-Weinberg one-
loop potential for x ≫ 1 and α ≪ 1 as

9This includes the nonobservation of cosmic strings, as will be
demonstrated in Sec. IV D.
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VJ
1l ¼ Q4

J

16π2
½ln xþOðαxÞ�; ð141Þ

with x, α and QJ given in Eq. (122). As in the globally
supersymmetric case, x ¼ 1 denotes the critical point.
Equation (141) is a good approximation as long as
1 ≪ x ≪ 1=α, which will hold in most of the parameter
regime of interest. We then find

εJ≃
�

MPl

σ=
ffiffiffi
2

p
�

2
�
ð1þδ4εÞ

q2g2

16π2
D2

0

VJ −
f

ð1−fÞ2
F2
0

VJ

�
2

; ð142Þ

ηJ ≃ −
�

MPl

σ=
ffiffiffi
2

p
�

2
�
ð1 − δ4ηÞ

q2g2

16π2
D2

0

VJ þ
fð1þ 3fÞ
ð1 − fÞ3

F2
0

VJ

�
;

ð143Þ

with f given in Eq. (90) and

δε≡
�
lnxþ 1

2

�
1=4

δ; δη≡
�
lnxþ 1

2
þ 2þ δ4

1þ δ4

�
1=4

δ; ð144Þ

where δ was introduced in Eq. (119) and F0 and D0 denote
the F- and D-term contributions from global supersym-
metry, respectively. For both εJ and ηJ, the term propor-
tional to D2

0 stems from the Coleman-Weinberg one-loop
potential whereas the term proportional to F2

0 is a super-
gravity effect, induced by the noncanonical terms in the
Kähler potential. Moreover, we note that the Coleman-
Weinberg term splits into the expression familiar from
global supersymmetry (indicated by the “1” in the paren-
theses) and the supergravity contribution to the waterfall
field sector, parametrized by δ4ε;η. Note that, as in global
supersymmetry, εJ is suppressed compared to ηJ.
Equations (142) and (143) illustrate the main effect of

the F-term SUGRA corrections in our model. For f ≪ 1

and VJ ≃D2
0=2, the second term in Eq. (143) yields

ΔηJ ≃ −
4

3
ð1 − 2χÞχ F

2
0

D2
0

; ð145Þ

indicating that the supergravity contributions from the tree-
level F-term scalar potential can induce the desired low-
ering of the spectral index (Δη ∼ −0.01) compared to the
result of global supersymmetry if χ ≃ 7.5 × 10−3D2

0=F
2
0.
10

This small value of χ indicates the presence of an
approximate shift symmetry.

Turning to the effects of a small, positive value for χ on
the first slow-roll parameter [see Eq. (142)], we note that a
positive χ will lead to a decrease in ε. The one-loop and
SUGRA contributions may even cancel each other, indicat-
ing the presence of a hilltop or a saddle point in the scalar
potential. We will come back to the consequences of such a
scenario below.
The explicit expressions for the remaining auxiliary

Jordan-frame slow-roll parameters are

ξ1=2J ¼ −
�

MPl

σ=
ffiffiffi
2

p
�

z
1 − z

; ζJ ¼ −
�

MPl

σ=
ffiffiffi
2

p
�

2 z
1 − z

;

ν1=2 ¼
�

MPl

σ=
ffiffiffi
2

p
� ð1þ 2χ − fÞz
2ð1 − zÞð1 − fÞ : ð146Þ

Here, ζJ captures the gravity-induced mass of the inflaton
and emphasizes once more the need for an approximate
shift symmetry (χ ≪ 1) for the inflaton field: for χ ≃ 1=2,
the inflaton picks up a gravity-induced mass just as all the
other scalars do,

χ ≃
1

2
⇒ m2

σ ≃m2
R; ð147Þ

with m2
R ≃D2

0=ð3M2
PlÞ. This implies a contribution to the

slow-roll parameter η of Δηζ ≃ 2=3 [see Eq. (26)] and,
hence, leads to an η problem. A purely canonical term in the
inflaton kinetic function, F ≃ S†S, is therefore not viable in
our model. The approximate shift symmetry resolves the
problem, suppressing this contribution as Δηζ ≃ 4χ=3. Of
course, Eqs. (145) and (147) directly correspond to the
second and first terms of Eq. (116), respectively. Due to
F0 > D0, the contribution from Eq. (145) will always
dominate for χ ≪ 1.
Inserting these results into Eqs. (138) and (139), we find

to leading order (z ≪ 1, D0=F0 ≪ 1)

ε ≃
�

MPl

σ=
ffiffiffi
2

p
�

2
�
ð1þ δ4εÞ

q2g2

16π2
D2

0

VJ − f
F2
0

VJ

�
2

; ð148Þ

η ≃ −
�

MPl

σ=
ffiffiffi
2

p
�

2
�
ð1 − δ4ηÞ

q2g2

16π2
D2

0

VJ þ f
F2
0

VJ

�
: ð149Þ

3. Viable parameter space

Starting from Eqs. (148) and (149) and the results of
D-term hybrid inflation in global supersymmetry, we can
analytically assess the viable parameter space in the vicinity
of the globally supersymmetric results. Comparing the
global-SUSY DHI results with the observed value for ns,
we conclude that the supergravity contributions must
enhance jηj by (at least) an Oð1Þ factor. At the same time,
requiring V 0ðσ̂Þ > 0 implies an upper bound on these
contributions [see Eq. (148)]:

10For χ ¼ 1=2, we have ΔηJ ¼ 0, which corresponds to the
absence of a m2

3=2 term for the inflaton field due to the
sequestering Kähler potential. One might thus expect a second
solution, χ ¼ 1=2 − jδχj with jδχj ≪ 1, to produce Δη ∼ −0.01.
However in this case the corresponding gravity-induced mass for
the inflaton [see Eq. (147)] is too large.
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ð1 − δ4ηÞ
q2g2

16π2
D2

0

VJ ≲ f
F2
0

VJ < ð1þ δ4εÞ
q2g2

16π2
D2

0

VJ ; ð150Þ

for σ ¼ σ�. This implies a lower bound on δ (governing the
sizes of both δε and δη). At the same time, δη yields a
positive contribution to η and a too large value will lead
to an enhancement of the spectral index ns. Together
this implies δ ∼Oð0.1 � � � 1Þ, where to leading order
δ4 ≃ κ2σ2m2

3=2=ð2q20q2g4ξ2Þ. We can estimate δ by exploit-
ing the analytical results for σ� in globally supersymmetric
D-term hybrid inflation; see Sec. III A. In addition, we note
that the requirement that the tree-level supergravity term
contributes Δη ∼ −0.01 implies

−Δη ≃
2χ

3

�
m3=2

HJ

�
2

≃ 0.01

→ χ ≃ 10−4
�

g
0.1

�
2
�
1015 GeVffiffiffi

ξ
p

�
; ð151Þ

where we have inserted the relations (67) and (105).
In the regime of large κ (and taking for simplicity

jqj ∼ jq0j ∼ 1), the constraints on δ thus roughly fix the
parameter combination κ2

ffiffiffi
ξ

p
=g2. Using Eq. (151) we

immediately see that the correct spectral index can be
obtained for

χ ≃ 3.5 × 10−4
�
0.1
δ4

��
κ

0.1

�
2
�
N�
55

�
: ð152Þ

The amplitude of the scalar power spectrum As is mainly
dependent on ξ; see Sec. III A. This essentially fixes
ξ ≃ 10−5M2

Pl, and determines the preferred range of the
gauge coupling, e.g., g ∼ 0.1 for κ ¼ 0.1. Note that this
constraint can be circumvented if one allows inflation to
begin very close to the hilltop of the scalar potential, ε� ≃ 0,
which can be obtained by tuning the contributions in
Eq. (148). From Eq. (132) we see that in this case, we
can in principle arbitrarily lower ξ. However, this corre-
sponds to a very tuned situation and we will not focus on
this regime of the parameter space.
In the regime of small κ we note from the expressions of

the globally supersymmetric limit that σ� ≃ σc and ns ≃ 1.
This indicates that (i) the leading-order term in the
expansion of VCW in 1=x becomes a poor approximation
and (ii) to obtain the correct spectral index, we must rely
nearly exclusively on the supergravity terms in η. As a
result of the first point, the lower bound on δ in fact
becomes irrelevant when using the full expression for
the one-loop potential. We are thus left with ξ3=2=g2 ≲
8.5 × 10−3M3

Pl=2δ
4. Imposing the observed value for As

and approximating σ� by the corresponding expression in
globally supersymmetric DHI, this yields

ξ ≃ 5.5 × 10−6M2
Pl

�
κ

10−3

�
2=3

: ð153Þ

Inserting this into Eq. (151), we find

FIG. 2. CMB observables and viable parameter space for two representative, fixed values of the superpotential coupling: κ ¼ 0.1 and
κ ¼ 0.001. The red boundaries show constraints enforcing perturbativity [ρ > ρpert; see Eq. (57)], the stabilization of the Polonyi field
[g < gmax; see Eq. (72)] and limiting the amount of fine-tuning in the model parameters (we disregard parameter values for which
∂ lnAs=∂ lnΛ≳ 30; see the discussion below Eq. (152)]. Blue lines indicate contour lines for the dynamical scale Λ that reproduce the
observed amplitude of the scalar spectrum. The green band indicates values of the spectral index in agreement at 95% C.L. with the
current best-fit value, ns ¼ 0.9677� 0.006 [76].
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χ ≃ 0.1g2
�

κ

10−3

�
−1=3

: ð154Þ

Both Eqs. (152) and (154) point to small values of χ, i.e., an
approximate shift symmetry. For κ ¼ 0.1, Eq. (152) indi-
cates a value of χ that is larger than that obtained by only
integrating out the waterfall fields, χ1l ≃ κ2=ð16π2Þ ¼
6 × 10−5ðκ=0.1Þ2 [see Eq. (30)]. On the other hand, for
smaller values of κ, the symmetry breaking induced by the
waterfall fields can be sufficient to generate the correct
spectral index for accordingly small values of the gauge
coupling g [see Eq. (154)]. We will confirm these results
with a dedicated numerical analysis below.

C. Scan of parameter space and numerical results

In this section we present our results for a numerical scan
of parameter space, focusing on the regions identified
analytically in the previous section. Starting from the full
scalar potential (127) and the equation of motion (135), we
determine the slow-roll parameters (131) and consequently
the inflationary observables (132) at N� ¼ 55 e-folds
before the end of inflation. Fixing the charges jq0j ¼ 1
and jqj ¼ 2, for each parameter point in the ðκ; g; χ; ξÞ
plane we (i) determine the end point of inflation, (ii) solve
the slow-roll equation of motion and (iii) determine for
fixed ðκ; g; χÞ the value of ξ that reproduces the observed
amplitude of the scalar power spectrum. We also explicitly
check that our results are not sensitive to the precise choice
of the renormalization scale QJ.
Our results are depicted in Fig. 2, for κ ¼ 0.1 (left panel)

and κ ¼ 10−3 (right panel), as well as in Fig. 3 where we
have imposed the additional relation χ ¼ χ1l ¼ κ2=ð16π2Þ
[see Eq. (30)]. In all figures, the green band indicates the
region of parameter space in accordance with all con-
straints. In the parameter space of interest, we find values
for the tensor-to-scalar ratio r of Oð10−6 � � � 10−4Þ, far
below the current bounds. The numerical results for the
inflationary observables excellently agree with the results
obtained from our analytical expressions for the slow-roll
parameters [Eqs. (148) and (149)], as well as with our
estimates for the shift-symmetry-breaking parameter χ in
Eqs. (152) and (154). This underlines that although our
numerical analysis takes into account all contributions to
the scalar potential, the most relevant contribution to lower
the spectral index is the shift-symmetry-suppressed soft
mass for the inflaton, leading to Eq. (145).
Our choices for the coupling κ are designed to cover the

relevant aspects of the parameter space, while focusing
on particularly interesting benchmark points. As it is
responsible for explicit shift-symmetry breaking in the
superpotential, we expect κ ≲ 1. In the left panel of Fig. 2,
we consider κ ¼ 0.1. This enables us to reproduce the
observed CMB observables (in particular ns) with loop
and SUGRA contributions of comparable size, leading to

χ ∼ 10−4. In global-SUSY DHI the parameter space splits
into two regimes, characterized by the size of jση=σcj and
consequently by different parameter dependencies of s�;
see Sec. III A. The value of κ ¼ 0.1 falls into the regime
of ση ≫ σc. In the right panel of Fig. 2 we turn to the
opposite regime, ση ≪ σc. To reproduce the observed
spectral index, we here need to require the SUGRA
contributions to clearly dominate over the one-loop con-
tributions. Note that for even smaller values of κ, the critical
value σc can take super-Planckian values, enabling a phase
of “subcritical hybrid inflation” after the inflation field has
passed σc [161,162].
In Fig. 3 we impose χ ¼ χ1l ¼ κ2=ð16π2Þ [Eq. (30)],

thus reducing the parameter space of our model by one
dimension. Interestingly and nontrivially, we find solutions
which obey all constraints if κ ∼ g ¼ Oð10−3Þ. Hence the
minimal model setup with shift-symmetry breaking only
through the coupling of the waterfall fields in the super-
potential can reproduce the observed CMB observables,
thereby essentially determining all model parameters: the
superpotential coupling κ, the gauge coupling g and the
mass scale Λ. The value of the gauge coupling g is small
compared to the expectation in GUTs, but interestingly,
the relation κ ¼ ffiffiffi

2
p

g is precisely the relation predicted in
N ¼ 2 supersymmetric hybrid inflation [163].

D. Initial conditions

In the viable parameter space, inflation occurs either near
a hilltop (i.e., a local maximum in the scalar potential) or
near an inflection point, depending on the exact values of χ

FIG. 3. CMB observables and viable parameter space for shift-
symmetry breaking exclusively through the superpotential cou-
pling of the waterfall fields, χ ¼ χ1l ¼ κ2=ð16π2Þ. The color
code is the same as in Fig. 2.
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and g. In Fig. 4 we depict these two possibilities (for
κ ¼ 0.1), together with the decomposition of the total scalar
potential into its dominant components. The solid line
shows the full scalar potential, while the labeled dashed
lines indicate the following components: (1) leading-order
term in the Coleman-Weinberg potential in the global-
SUSY limit, (2) supplemented with the leading super-
gravity terms to the inflaton F-term potential and to the
waterfall mass spectrum and (3) in addition supplemented
with the next-to-leading-order term in the expansion of the
Coleman-Weinberg potential [see Eq. (141)], VJ;NLO

1l ¼
Q4

J=ð8π2Þαx lnðxÞ. The latter term becomes relevant as
xðσÞ increases to x ∼ 1=α. The remaining discrepancy
compared to the full scalar potential (in the left panel) is
mainly due to the σ dependence of the D-term potential in
the Einstein frame, induced by the conformal factor.
Implementing inflation in the left panel of Fig. 4 requires

some fine-tuning in the initial conditions, to ensure the
correct vacuum is reached. However, we point out two
further observations. (i) In the entire parameter space of
interest, we find H�=ð2πÞ ⋘ ðσmax − σ�Þ, i.e., if (by
accepting some tuning), the initial conditions are in the
desired regime, they are at least stable against quantum
fluctuations. (ii) By lowering the B − L gauge coupling g,
the energy level of the false minimum is raised compared to
Vðσ�Þ. An interesting (albeit fine-tuned) situation arises if
the vacuum energy density of the false minimum lies just
a tiny bit above Vðσ�Þ, allowing for a phase of eternal
inflation, followed by N� e-folds of inflation arising once
the inflaton field tunnels through the potential barrier.
On the other hand, in the right panel of Fig. 4 inflation

can start at large field values, avoiding an initial conditions
problem. There is however some degree of tuning required
in the model parameters to ensure this shape of the
potential. For κ ¼ 0.1, this becomes particularly relevant
for small values of g, when large SUGRA contributions to

the slow-roll parameters need to be carefully balanced. This
results in the “fine-tuning” constraint on the parameter
space in Fig. 2. An overview of these different regions in
parameter space is given in Fig. 5 for the cases of κ ¼ 0.1
and χ ¼ κ2=ð16π2Þ, in both cases focusing on the region
of parameter space which reproduces the correct CMB
observables.
Note that for very large field values, σ2 ∼ 3M2

Pl=χ ∼
104M2

Pl, both the conformal factor C and the F-term
potential exhibit a pole [see Eqs. (152) and (114)]:

Ω ¼ 0 → ðσ∞C Þ2 ≃
1

χ
ð3M2

PlÞ;

f ¼ 1 → ðσ∞F Þ2 ¼
3M2

Pl

χð1 − 2χÞ : ð155Þ

After canonical normalization of the inflaton field, the pole
in the conformal factor will be pushed to infinity. The pole
in the F-term potential is always at larger field values and is
hence never reached.11 However, for χ ≪ 1, σ∞F approaches
σ∞C and the F-term potential begins to dominate the tree-
level potential already for σ < σ∞C . This can generate a
false, negative-valued vacuum at large field values. In the
regions of parameter space where the inflaton field reaches
values of order MPl, this can impact the vacuum structure.
However at these large field values, σ ≫ MPl, higher-order
operators may significantly modify the scalar potential.
For κ ¼ 10−3, we find that inflation typically occurs in a

small field region in the vicinity of a hilltop, accompanied
by a false, often negative-valued vacuum at large field
values. The amplitude of this vacuum is lifted as g and χ are

FIG. 4. Contributions to the scalar potential (for κ ¼ 0.1). The total scalar potential is shown in solid black, while the dashed curves
mark the following contributions: (1) global-SUSYone-loop potential, (2) þleading SUGRA effects, and (3) þgravity-induced effects
in the one-loop potential. For details see text. The parameter values are chosen as g ¼ 0.13, χ ¼ 3.5 × 10−4, ξ ¼ 10−5M2

Pl (left panel)
and g ¼ 0.05, χ ¼ 2.8 × 10−4, ξ ¼ 6.3 × 10−6M2

Pl (right panel).

11The pole in the conformal factor implies that in the field
space of the canonically normalized field σ̂, the scalar potential
asymptotes to limσ̂→∞Vðσ̂Þ ¼ Vðσ∞C Þ and is thus always bounded
from below.
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decreased, until at values of g≲ 5 × 10−4 inflation occurs
close to an inflection point. The shape of the potential is
well described by the D-term potential, C4D2

0=2, supple-
mented by the full globally supersymmetric one-loop
potential [not truncated at Oð1=xÞ] and the leading-order
SUGRA contribution from the F-term potential.

IV. DISCUSSION: PARTICLE SPECTRUM AND
COSMOLOGY AFTER INFLATION

During inflation, supersymmetry is broken through F-
and D-term contributions. After inflation, when the D term
is absorbed into the VEVof the waterfall field, only F-term
supersymmetry breaking remains. This is communicated to
the particles of the MSSM through (i) higher-dimensional
terms in the Kähler potential [Planck-scale-mediated super-
symmetry breaking (PMSB)] (ii) anomaly-mediated super-
symmetry breaking (AMSB) and (iii) couplings to the
B − L multiplet which receives a supersymmetry-breaking
mass splitting at tree level (gauge-mediated supersymmetry
breaking); see e.g., Ref. [164] for an overview. While
PMSB will play a crucial role for the SM squarks and
sleptons and for the mass parameters of the Higgs sector,
the standard model gauginos will only receive a loop-
suppressed AMSB contribution. At low energies, the
particle spectrum thus resembles the results obtained in
pure gravity mediation (PGM) [19,22–24],12 with the

overall scale of the spectrum determined by the inflationary
observables (which determine the value of the FI parameter
ξ) [see Eqs. (67) and (105)]. In this section, we discuss
the mass spectrum of our model during and after inflation,
and discuss consequences for early-Universe cosmology,
including reheating, leptogenesis, dark matter and the
production of topological defects.

A. Particle spectrum

1. Stabilization of squarks and sleptons during
and after inflation

The total scalar mass of an MSSM matter field Qi with
gauge charge qi is given by

m2
0;i ¼ C2½−qim2

D − aiiΔm2
0 þ q2i m

2
gm þm2

R�; ð156Þ

where the first term denotes the D-term-induced mass
present only during inflation, the second term is a tree-level
supergravity contribution induced by higher-dimensional
operators in the Kähler potential, the third term is the
gauge-mediated SUSY-breaking contribution and the fourth
term is the gravity-induced mass (present only during
inflation). Assuming that the MSSM sector couples to the
supersymmetry-breaking sector via higher-dimensional
operators in the Jordan frame [see Eq. (18)],

Ω ⊃ X†X þQ†
i Qi þ

aii
M2�

Q†
i QiX†X þOðM−4� Þ; ð157Þ

FIG. 5. Initial conditions for κ ¼ 0.1 (left panel) and χ ¼ κ2=ð16π2Þ (right panel). The three different possibilities for the structure of
the scalar potential are (i) inflection point inflation (black “þ” symbol, same situation as in the right panel of Fig. 4), (ii) hilltop inflation
with a local minimum at σ ≫ σ� (white “x” symbol, same situation as in the left panel of Fig. 4) and (iii) hilltop inflation without a local
minimum (red “o” symbol). This last situation arises due to the effect described below Eq. (155), and requires tuning the initial
conditions. As in Figs. 2 and 3, the green band indicates that the scalar spectral index lies within the 2σ band.

12See also Ref. [113] for a related discussion.
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yields

VJ
F ⊃ −aii

μ4

M2�
jq̃ij2 ¼ −3aii

m2
3=2M

2
Pl

M2�
jq̃ij2; ð158Þ

and hence Δm2
0 ¼ 3m2

3=2M
2
Pl=M

2�. The quantities mD and
mR have been introduced in Eqs. (8) and (25), respectively.
mgm denotes the mass contribution obtained through
gauge mediation, with the dominant (one-loop) effect
arising due to the mass splitting within the B − L gauge
multiplet [159]

m2
gm ≃

g2

32π2
m2

V ln

�
m2

cm6
V

m8
ã

�
; ð159Þ

with mV , mc and mã given in Sec. II C. This contribution
is clearly subdominant compared to the tree-level D-term
contribution during inflation. The stabilization of the
MSSM scalars during inflation (m2

0;i ≫ H2) requires
aii < 0 and

jaiijΔm2
0 ≫ qim2

D − q2i m
2
gm −H2

J ≃ qim2
D; ð160Þ

which for jqij ≃ jq0j ≃ jaiij ≃ 1 implies

M� ≪
m3=2MPl

mD
∼ 1016 GeV

�
0.1
g

�
; ð161Þ

a value relatively close to the dynamical scale Λ.
After the end of inflation, only the second and third terms

in Eq. (156) remain, leading to very heavy MSSM squarks
and sleptons,

m0;i ≃ ð−aiiÞ1=2Δm0 > 1014 GeV

�
g
0.1

�� ffiffiffi
ξ

p
1015 GeV

�
:

ð162Þ

2. MSSM gauginos

Similar to the squarks and sleptons of the previous
subsection, the μ and B parameters of the MSSM receive
tree-level supergravity contributions. Consequently, the
heavy Higgs scalars and the Higgsinos obtain masses of
Oðm3=2Þ. For the MSSM gauginos on the other hand tree-
level supergravity contributions are strongly suppressed
(since our supersymmetry-breaking field X is not a total
SM singlet) [19,22–24]. The dominant contributions are
thus obtained at one loop trough anomaly mediation and
(in the case of binos and winos) through Higgsino
threshold effects. As detailed in Ref. [24] in the context
of PGM, these are generically both of the same order
ð∼g2am3=2=ð16π2ÞÞ, where ga is the respective SM gauge
coupling. Depending on the size of the Higgsino threshold
effects, either the wino or the bino can take the place of the

lightest neutral MSSM particle13—and hence of the dark
matter candidate. In the following we will focus on the
case where the Higgsino threshold contributions do not
dominate over the AMSB contribution, rendering the wino
the lightest supersymmetric particle (LSP). The motivation
for this is twofold. First, this is the more likely scenario in
PGM [24]. Second, due to its smaller annihilation cross
section, a thermal bino LSP population with mb̃ ≳
300 GeV leads to the overproduction of dark matter
[165,166]. In combination with the bounds set by
ATLAS [1] and CMS [2], this excludes a thermal bino
as a viable dark matter candidate.
A particularly interesting situation arises if the two

contributions to the wino mass are tuned to very similar
values, leading to a cancellation of these two terms and
hence to a wino mass which can be arranged to be much
lighter than its generic mass scale m3=2=ð16π2Þ. For exam-
ple, in the notation of Ref. [24] this is achieved for −μH ≃
−2B ≃m3=2 (for tan β ¼ vu=vd ≃ 1). Such a fine-tuning
might be justified from the anthropological requirement of
dark matter; see Sec. IV C. Additional contributions to the
gaugino masses may arise from threshold and anomaly-
mediated corrections from heavy vector matter multiplets
charged under SUð2ÞL and/or threshold corrections from
the F terms of flat directions in Kim-Shifman-Vainstein-
Zakharov-type axion models [167]. In this case, these
contributions would also play a role in tuning the wino mass.

3. Particles beyond the MSSM

The masses of all remaining degrees of freedom are set
by the dynamical scale Λ, effectively decoupling these
particles from low-energy physics.
In the supersymmetry-breaking sector, the only degree of

freedom which is present in the low-energy effective theory
of the IYIT model is the pseudomodulus X, which acts
as the Polonyi field of SUSY breaking; see Sec. II D.
The dominant mass contribution after the end of inflation
arises from its one-loop effective potential,

mX ≃ 0.02λ2Λ ∼ 1014 GeV: ð163Þ
The masses of the scalar fields of the inflation sector can

be obtained from the scalar potential in Eq. (127). For
q=ðq0ξÞ > 0, the field ϕ obtains a VEVof hjϕj2i ¼ q0=qξ
after the end of inflation.14 In this vacuum, the masses of
the scalar degrees of freedom are given as

mϕ̄ ¼ ms ¼ 1014 GeV

�
q0
q

�
1=2

�
κ

0.1

�� ffiffiffi
ξ

p
1015 GeV

�
;

ð164Þ

13Due to their larger gauge coupling at low energy scales, the
gluinos are typically significantly heavier.

14If q or q0ξ has opposite sign, the roles of ϕ and ϕ̄ are
inverted.
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mjϕj ¼ 1014 GeVðq0qÞ1=2
�

g
0.1

�� ffiffiffi
ξ

p
1015 GeV

�
; ð165Þ

wheremjϕj denotes the mass of the radial degree of freedom
of ϕ in the true vacuum. The fermionic d.o.f. contained in S
and Φ̄ form a Dirac fermion with a mass termWϕ̄s ¼ κhϕi.
Similarly, the fermionic d.o.f. of Φ pairs up with the
fermionic d.o.f. λ from the B − L gauge multiplet to form a
Dirac gaugino of mass

ffiffiffi
2

p
qghϕi. Hence, after inflation, all

components of the B − L gauge multiplet obtain large
masses of order mF or mV ; see also the discussion towards
the end of Sec. II C.
If the IYIT sector is fully sequestered from the inflaton

sector, the angular degree of freedom arg(ϕ) remains
massless. The reason for this is that although B − L is
spontaneously broken by hM�i ≠ 0, there is a remaining
accidental global Uð1Þ symmetry in the superpotential,
associated with ϕ ↦ expðiαÞϕ, ϕ̄ ↦ expð−iαÞϕ̄. This
global symmetry is spontaneously broken at the end of
inflation when ϕ acquires a VEV. We then have two
spontaneously broken Uð1Þ symmetries: this global Uð1Þ
symmetry and the gauged Uð1ÞB−L. The angular degree of
freedom arg(ϕ) and the field φ in the IYIT sector [see
discussion around Eq. (73)] form two massless scalar
modes. One linear combination of these couples to Aμ.
This is the B − L Goldstone boson which is eaten by the
B − L gauge multiplet and is gauged away in unitary
gauge. The orthogonal linear combination is the Goldstone
boson of the global Uð1Þ symmetry. Assuming a full
sequestering between the IYIT sector and the inflation
sector, the B − L breaking contained in the IYIT sector is
not communicated to the inflaton sector and this Goldstone
boson remains massless. The spontaneous breaking of
the global Uð1Þ symmetry at the end of inflation would
lead to the formation of cosmic strings (see Sec. IV D), in
contradiction with observations. The discussion above,
however, immediately reveals how to resolve this issue.
If we drop the assumption of a complete sequestering
between the IYIT and the inflaton sector, B − L breaking
can be communicated to the Φ multiplet, rendering the
Goldstone boson of the global Uð1Þ symmetry massive. In
Sec. IV D we will achieve this by introducing higher-
dimensional operators in the Kähler potential coupling Φ
to Z− and/or M−. These operators will come with small
coefficients (respecting the level of sequestering necessary
to prevent the waterfall fields from obtaining too large
masses) and will explicitly break the globalUð1Þ symmetry
(in agreement with general arguments that no exact global
symmetries should exist in any theory of quantum gravity
[89]). As we will see below, this leads to a mass for the
Goldstone boson of the order of the Hubble scale during
inflation.
Note that this situation is crucially different than in

standard DHI, where the VEV of the waterfall field ϕ

spontaneously breaks a local Uð1Þ symmetry at the end of
inflation, triggering the super-Higgs mechanism: there,
the complex phase is “eaten” by the Uð1Þ gauge boson,
providing the longitudinal degree of freedom for the
massive vector field. In our case, however, the Uð1ÞB−L
vector boson is already massive, having absorbed the
corresponding degree of freedom from the meson
multiplets.

B. The cosmology of a B−L phase transition

D-term hybrid inflation ends in a phase transition in
which the waterfall field ϕ, charged under B − L, obtains
a vacuum expectation value. Assigning B − L charge
q ¼ −2 to Φ, it can couple to the right-handed neutrinos
Ni (which carry B − L charge þ1) in the seesaw extension
of the MSSM, W ⊃ 1

2
hijΦNiNj. In fact, when gauging

B − L, the introduction of three right-handed neutrinos
is the simplest way to ensure anomaly cancellation. Once
the waterfall field ϕ obtains a VEV, this generates the
Majorana mass matrix for the right-handed neutri-
nos, Mij ¼ hijhϕi.
A very similar cosmological phase transition was studied

in the case of F-term hybrid inflation in Refs. [62–64,68].
It was shown that this phase transition can set the initial
conditions for the hot early Universe: with the energy
initially stored in oscillations of the waterfall field (as well
as in degrees of freedom created in tachyonic preheating),
this energy is transferred to the thermal bath through the
decay into right-handed neutrinos (which obtain their mass
from the coupling to the B − L breaking waterfall field). In
the course of this process, both thermal and nonthermal
processes generate a lepton asymmetry, which, after con-
version into a baryon asymmetry through sphaleron proc-
esses, can explain the baryon asymmetry observed today.
Using a coupled set of Boltzmann equations, the authors of
Refs. [62–64,68] provided a time-resolved picture of the
entire reheating and leptogenesis process.
We expect this overall picture to also hold in our model.

There are, however, a few differences in the details of the
phase transition. Contrary to Refs. [62–64,68], in the DHI
model presented here (i) B − L is broken already during
inflation, (ii) there is a tree-level mass splitting in the B − L
multiplet, (iii) supersymmetry is broken in the true vacuum
with m3=2 ∼ 1012 � � � 1013 GeV (iv) there is an additional
pseudoscalar degree of freedom in the waterfall sector,15

which in the analysis of Ref. [64] plays the role of the
B − L Goldstone boson and (v) we allow here for smaller
values of the B − L gauge coupling. Consequently, no
(local) cosmic strings are formed at the end of inflation, the

15This relatively light degree of freedom in the waterfall sector
has a decay rate into right-handed neutrinos of Γ ≃ h2=ð4πÞH2 ¼
OðGeVÞ for typical values of the Yukawa coupling of h ≃ 10−5. It
thus decays into the SM thermal bath before the onset of BBN
and does not create any cosmological problems.

INFLATION FROM HIGH-SCALE SUPERSYMMETRY BREAKING PHYS. REV. D 97, 115025 (2018)

115025-31



B − L multiplet is not produced in tachyonic preheating
and the gravitino is too heavy to be a dark matter candidate
as in Ref. [64]. Hence, while we expect the same sequence
of events as in Refs. [62–64,68], leading to successful
leptogenesis for a mass of the lightest right-handed neutrino
above about 1010 GeV and a reheating temperature of
about TRH ≳ 108 GeV, the above-mentioned differences
require a detailed study to verify these expectations. This is
beyond the scope of the current paper.

C. Particle candidates for dark matter

The high reheating temperature expected in our model
(see above) implies an abundant production of gravitinos
[168]. Since these gravitinos are very heavy, their decay
temperature

T3=2 ≃ 1.5 × 108 GeV

�
g�ðTRHÞ

80

�
−1=4

�
m3=2

1012 GeV

�
3=2

;

ð166Þ

is much larger than the temperature of BBN (∼MeV).
The gravitinos will thus decay into MSSM gauginos (the
lightest particles in our MSSM spectrum) before the onset
of BBN, a well-known solution to the classical gravitino
problem [27,169,170]. If one of the gauginos (in our setup
the wino; see Sec. IVA) is sufficiently light, so that its
freeze-out temperature, Tf ∼mw̃=28, is lower than the
gravitino decay temperature T3=2, then its relic abundance
will be set by the usual thermal freeze-out contribution.16

This occurs for mw̃ ≲ 4 × 109 GeVðm3=2=ð1012 GeVÞÞ3=2,
with the correct relic density obtained for mw̃ ≃ 2.7 TeV
[173,174]. This value is much smaller than the generic
gaugino mass scale m3=2=ð16π2Þ, but may be achieved by
fine-tuning the anomaly mediation and Higgsino threshold
corrections (see Sec. IVA). Without such fine-tuning, the
strongly enhanced LSP abundance would lead to an over-
closure of the Universe. Such a fine-tuning may therefore
be justified by anthropological arguments. Alternatively,
one can take the gauginos to be at their natural scale
m3=2=ð16π2Þ and invoke R-parity breaking to ensure a
sufficiently fast decay of the LSP into the SM degrees of
freedom [175]. In this case, the question of the nature of
dark matter remains open and may, e.g., be addressed by
the QCD axion.

D. Topological defects

In standard DHI, the angular degree of freedom of the
waterfall field ϕ is massless, protected by the Uð1Þ gauge
symmetry of DHI. Consequently, cosmic strings are formed
at the end of standard DHI. This is known as the cosmic
string problem of DHI, since the nonobservation of cosmic
strings in the CMB [104], together with constraints on the
spectral index, essentially exclude the entire parameter
space. The setup we propose here is crucially different.
The Uð1ÞB−L symmetry is already broken during inflation
by the meson VEVs hM�i ≠ 0, and no local cosmic strings
are formed at the end of inflation. There is instead an
accidental global symmetry which is not expected to be
exact; see Sec. IVA. We can express this by adding higher-
dimensional operators17 in the Kähler potential of the
type MPlK ⊃ ϵKZZZ

2
−Φ, ϵKMMM

2
−Φ, ϵKMZM−Z−Φ, all supple-

mented by their complex conjugate. Here the parameters
ϵKIJ are expected to be exponentially small, respecting the
sequestering between the inflation and the IYIT sector.
By means of a Kähler transformation these holomorphic
terms can be equivalently considered as terms in the
superpotential, W ⊃ W0ϵ

K
ZZZ

2
−Φ=M3

Pl, etc. Taking into
account the vacuum expectation values for the scalar and
auxiliary (F-term) components in Z�,M�, Φ̄;Φ and S, this
leads to linear terms in the scalar potential for the waterfall
fields. Schematically,

V ¼ V0 − cðϕþ ϕ�Þ þ m̃2jϕj2 þ λ̃

4
jϕj4; ð167Þ

where λ̃ ¼ 2g2q2 denotes the self-coupling of the waterfall
field, m̃2 is its (inflaton-dependent) mass and c ∼
ϵKIJΛ3m3=2=MPl is determined by the higher-dimensional
operators mentioned above.
To study cosmic string formation,18 we consider the

system close to the end of inflation, just when Eq. (167)
develops a local maximum. At this point, the local mini-
mum of the potential is given by jϕj ¼ 2ðc=λ̃Þ1=3. The
phase of the local minimum is set by the phase of c and we
will take it to be zero in the following. The mass of the
canonically normalized radial degree of freedom α in this
local minimum is given by m2

α ¼ 1
2
ðc2λ̃Þ1=3.

To avoid the production of cosmic strings, we require
that quantum fluctuations of the angular degree of freedom
(see e.g., Ref. [176]) cannot overcome the barrier at
α=ð ffiffiffi

2
p hϕiÞ ¼ π, i.e.,

hδa2i ¼ H
3mα

�
H
2π

�
2

≪ 2hϕi2π2: ð168Þ

16On the other hand, if Tf > T3=2 the LSP abundance will be
dominated by the nonthermal contribution from gravitino decay.
The gravitino abundance in turn receives contributions from
thermal production, production from the decay of the Polonyi
field and production through oscillations of a field in the inflaton
sector [168]. In particular the thermal production [171] and the
decay of ϕ to two gravitinos through a supergravity coupling
present when hKϕi ≃ hϕi ≠ 0 [172] yield large gravitino abun-
dances and thus overclose the Universe for the large LSP masses
consistent with Tf > T3=2.

17Here, we assumed q0 ¼ −1. Similar terms (also involving
the inflaton field) can be written down for q0 ¼ −2.

18We thank the authors of Ref. [56] for very helpful dis-
cussions on this point.
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This leads to

c1=3 ≫ 0.05λ̃1=6Hinf ; ð169Þ
with Hinf denoting the Hubble scale at the end of inflation.
In this paper, we will consider

c̃≡ c=H3
inf ≳ 1; ð170Þ

safely satisfying Eq. (169) but also ensuring that the
fluctuations in the radial direction are small compared to
the position of the local minimum and that the decay rate
of the angular component α in the true vacuum is not
significantly smaller than the decay rate of the radial
component. For the couplings in the Kähler and/or super-
potential, this implies

ϵKIJ ≳
�
H
Λ

�
3

∼
�
gΛ
MPl

�
3

∼ g310−9;

W0ϵ
K
IJ=M

3
Pl ∼ ϵKIJ

�
m3=2

MPl

�
∼ g310−16; ð171Þ

in good agreement with our sequestering ansatz.
However, scenarios with a richer phenomenology are

possible. For example, imagine that a term such as K ⊃
ΦZ−Z−=MPl is forbidden by an additional discrete sym-
metry, which in turn is explicitly broken by Planck-
suppressed operators of even higher dimension. If this
explicit breaking is of a suitable size, unstable domain walls
will form [177–179]. A similar situation has been discussed
for the QCD axion [180,181]; see also Refs. [182–184].
The decaying domain walls will emit energy in the form of
gravitational waves. The resulting gravitational-wave spec-
trum depends mainly on two parameters: the tension σ of
the domain walls and their annihilation temperature Tann.
For the high energy scales present in our model, the
resulting stochastic gravitational-wave background might
be within the sensitivity reach of upcoming advanced LIGO
runs [185,186], depending on the details of the discrete
symmetry (breaking).

V. CONCLUSIONS: A UNIFIED MODEL
OF THE EARLY UNIVERSE

In this paper, we constructed a phenomenologically
viable SUGRA model of hybrid inflation in which reheat-
ing proceeds via the B − L phase transition. We focused
on the case of D-term inflation to avoid the notorious
complications associated with the inflaton tadpole term in
F-term inflation [see Eq. (3)]. This tadpole term turns
F-term inflation into a two-field model, potentially spoils
the slow-roll motion of the inflaton field, and creates a false
vacuum at large field values. D-term inflation does not, by
contrast, involve any inflaton tadpole term, which prevents
one from running into these problems.
The first part of our paper contains the details of our

model-building effort (see Sec. II). To meet all theoretical

and phenomenological constraints, our model combines the
following three features:

(i) The vacuum energy driving D-term inflation is
provided by a FI D term. We assumed that this D
term is dynamically generated in the hidden SUSY-
breaking sector [99]. Our construction involved two
steps. First, we supposed that SUSY breaking in the
hidden sector is accomplished by the dynamics of a
strongly coupled supersymmetric gauge theory. To
be specific, we employed the IYIT model [147,148],
which represents the simplest vector-like model of
dynamical SUSY breaking. Thanks to the strong
interactions in the IYIT sector, our model does not
require any hard dimensionful input scales. All mass
scales (including the SUSY breaking scale itself)
turn out to be related to the dynamical scale in the
IYIT sector, Λdyn. The dynamical scale Λdyn is in
turn generated via the quantum effect of dimensional
transmutation, just like the confinement scale of
QCD. The second step in our construction consisted
in promoting a global axial Uð1ÞA flavor symmetry
in the IYIT sector to a weakly gauged local Uð1ÞB−L
symmetry. The SUSY-breaking dynamics in the
IYIT sector then result in an effective FI parameter
ξ that is determined by the vacuum expectation
values of certain moduli in the effective theory at
low energies.

Our dynamically generated FI term has a number
of interesting properties. 1) Being an effective field-
dependent FI parameter, it can be consistently
coupled to supergravity. In this sense, it differs from
genuinely constant FI parameters whose coupling
to supergravity always requires an exact global
continuous symmetry. 2) The generation of field-
dependent FI parameters typically results in danger-
ous flat directions in the scalar potential. In our case,
all moduli are, however, automatically stabilized
by a large mass term in the superpotential that is
induced by the SUSY-breaking F term. 3) The
generation of effective FI parameters is always
accompanied by the spontaneous breaking of the
underlying Abelian gauge symmetry. This is also
the case in our model where the generation of ξ
spontaneously breaks B − L in the IYIT sector. We
used this fact to our advantage and communicated
the breaking of B − L to the visible sector via
marginal couplings in the Kähler potential. This
allowed us to prevent the formation of dangerous
cosmic strings during the B − L phase transition at
the end of inflation. 4) The magnitude of the
FI parameter and, hence, the energy scale of infla-
tion are related to the SUSY-breaking scale. This
unifies the dynamics of inflation and SUSY break-
ing. The energy scales of both phenomena derive
from the dynamical scale, Λdyn ¼ e−Sinst=bhidMPl,
which is generated via nonperturbative dynamics
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in the infrared.19 This explains the exponential
hierarchy between the energy scales of inflation
and SUSY breaking on the one hand and the Planck
scale on the other hand.

(ii) We assumed that the natural SUGRA description of
our model corresponds to an embedding into the
standard Jordan frame with canonically normalized
kinetic terms for all complex scalar fields. From the
Einstein-frame perspective, this corresponds to a
noncanonical Kähler geometry based on a Kähler
potential of the sequestering type. This sequestering
structure allowed us to control the soft masses in the
visible MSSM sector independently of the corre-
sponding soft masses in the inflation sector. In fact,
thanks to our choice of the Kähler potential, the
inflation sector sequesters from the IYIT sector such
that none of the fields in the inflation sector obtain a
large soft mass. This is a crucial requirement for a
successful B − L phase transition. Otherwise, i.e.,
without sequestering, large soft masses in the infla-
tion sector would keep the waterfall fields stabilized
at the origin and, thus, remove the tachyonic insta-
bility in the scalar potential. At the same time, we
introduced a higher-dimensional coupling between
the visible MSSM sector and the IYIT sector in the
Kähler potential to stabilize all MSSM sfermions
during and after inflation. Again, this is an important
ingredient of our model. Without any extra stabiliza-
tion mechanism, the MSSM sfermions would desta-
bilize the FI term in the D-term scalar potential and
inflation would prematurely end in the wrong vac-
uum. For the purposes of this paper, we did not
specify the high-energy origin of the additional
coupling between the visible MSSM sector and the
IYIT sector in the Kähler potential. However, it would
be interesting to study different scenarios for the
possible origin of these operators in future work.
We caution that one should not attribute too much

meaning to our choice to work in Jordan-frame
supergravity. The formulation of our model in the
language of Jordan-frame supergravity should rather
be regarded as a placeholder for a hypothetical
completion of our model at high energies. Possible
candidates for an ultraviolet completion of our model
that feature an appropriate Kähler geometry include
models of extra dimensions, strongly coupled con-
formal field theories, no-scale supergravity, and string
theory. Again, any further speculations into this
direction are left for future work.

(iii) Our third and final assumption consisted in an
approximate shift symmetry in the direction of the

inflaton field in the Kähler potential. Such an
approximate shift symmetry is a popular tool in
many SUGRA models of inflation. As usual, it
helped us to suppress dangerously large SUGRA
corrections to the inflaton mass and, hence, solve the
SUGRA eta problem. In our case, the most danger-
ous such correction, m2

R ¼ RJ=6, stems from the
nonminimal coupling between the inflaton field to
the Ricci scalar in the Jordan frame, RJ. This effect
can be completely suppressed by an exact shift
symmetry—which is, however, not feasible in our
model, since the superpotential of D-term inflation
inherently breaks any shift symmetry. But this is not
a problem. As we were able to show, an approximate
shift symmetry also manages to adequately suppress
all dangerous SUGRA corrections. On top of that,
we used the fact that the inflaton shift symmetry
must be slightly broken to adjust our prediction for
the scalar spectral index ns. The amount of shift-
symmetry breaking in the Kähler potential is quan-
tified by a parameter χ. By choosing this additional
parameter appropriately, we reached agreement be-
tween our prediction for ns and the current best-fit
value reported by Planck. Here, an interesting
special case arises if χ is zero at tree level and only
radiatively generated because of the shift-symmetry-
breaking Yukawa coupling in the superpotential,
χ ¼ χ1l ¼ κ2=ð16π2Þ. We were able to demonstrate
that even this minimal scenario allows to success-
fully reproduce the CMB data. In this case, the
constraints As ≃ Aobs

s and ns ≃ nobss fix all free
parameters of our model (see Fig. 3),

Λ ∼ 3 × 1015 GeV; κ ∼ 10−3;

g ∼ 10−3; χ1l ∼ 10−8: ð172Þ

In summary, we conclude that the above three assump-
tions allowed us to solve five problems of B − L D-term
inflation: (i) our FI term can be consistently coupled to
supergravity; (ii) we avoided the formation of cosmic
strings at the end of inflation; (iii) all MSSM sfermions
are sufficiently stabilized during and after inflation; (iv) we
did not encounter any SUGRA eta problem; and (v) our
prediction for ns is in agreement with the Planck data. This
is a highly nontrivial success of our model.
A further outcome of our model is a unified picture of the

early Universe (see Secs. III and IV). Provided that we
include the right couplings in the superpotential, the B − L
phase transition at the end of inflation generates large
Majorana masses for a number of right-handed neutrinos.
This sets the stage for baryogenesis via leptogenesis as well
as for the generation of small standard model neutrino
masses via the seesaw mechanism. In the end, our model
therefore unifies the scales of dynamical SUSY breaking,
inflation, and spontaneous B − L breaking. All of these

19Here, Sinst ¼ 8π2=g2hid denotes the nonperturbative instanton
action in the IYIT sector [see Eq. (6)]. ghid and bhid stand for the
gauge coupling constant and the beta function coefficient of the
IYIT gauge group, respectively.
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scales derive from the dynamical scale Λdyn ¼ 4πΛ in the
IYIT sector. We also found that, in order to reproduce the
amplitude of the scalar power spectrum, the reduced
dynamical scale Λ must take a value close to the GUT
scale,

ΛSUSY∼Λinf∼ΛB−L∼Λ∼5×1015GeV∼ΛGUT: ð173Þ

This is another highly nontrivial result of our analysis.
Before confronting our model with the experimental CMB
data, we did not need to make any assumption about the
numerical value of Λ. All of the above scales only become
fixed once we require that our model yields the correct
value for the scalar spectral amplitude. This leads to the
interesting physical question of which scale in Eq. (173)
actually corresponds to a fundamental scale and which
scale is only a derived quantity. Is there, e.g., an anthropic
reason for the observed scalar spectral amplitude which
then determines the SUSY breaking scale? Or is the
SUSY-breaking scale rather determined by the scale of
R-symmetry breaking in the superpotential and the require-
ment of a nearly vanishing cosmological constant? Or
should one instead regard the GUT scale as the most
fundamental scale which then fixes all other scales? All of
these questions are beyond the scope of this work. But we
feel that our model provides an interesting starting point for
further studies in this direction. An important task would be
to embed our model into a full-fledged GUT scenario that
explains the occurrence of the GUT scale in Eq. (173).
A central prediction of our model is that supersymmetry

is broken at a high energy scale. The naturalness of the
electroweak scale is therefore lost. This sacrifice is, however,
compensated for by the unification of the dynamics of SUSY
breaking and inflation. One of our key messages therefore is
that pushing the SUSY-breaking scale to very high values is
not necessarily just a loss. A high SUSY-breaking scale also
represents an opportunity for novel ideas such as those
presented in this paper. In the end, supersymmetry might
play a different role in nature than previously expected.
Following the arguments presented this paper, it is conceiv-
able that supersymmetry’s actual purpose is not to ensure the
stability of the electroweak scale, but to provide the right
conditions for successful inflation!
In this paper, we only touched upon the implications of a

high SUSY-breaking scale for the particle spectrum of the
MSSM and more work in this direction is certainly needed.
In particular, one should reevaluate in more detail how the
running of the standard model coupling constants can be
matched with the coupling constants in the MSSM pro-
vided that supersymmetry is broken at energies close to the
GUT scale. This matching of the low-energy parameters
with their counterparts at high energies is sensitive to
important experimental input data, such as the top quark
mass mt and the strong coupling constant αs. Given the
current experimental uncertainty in these observables, we

expect that it should actually not pose any problem to
successfully match the standard model to our high-scale
scenario. On top of that, large threshold corrections due to
nonuniversal soft masses at high energies may help us to
achieve a successful matching (see Ref. [187] for a recent
analysis). In fact, given our treatment of the MSSM soft
masses [see Eq. (156)], large nondegeneracies in the
sparticle mass spectrum at high energies are quite likely.
Moreover, one should reevaluate in more detail under
which conditions our high-scale scenario is compatible
with the idea of gauge coupling unification. Again, such an
analysis would be sensitive to the experimental input data
at low energies. In addition, it would also depend on the
details of the anticipated unification scenario. We are,
however, confident on general grounds that it should be
feasible to realize gauge coupling unification in our model.
After all, unification is also possible in entirely non-
supersymmetric scenarios. We therefore expect that super-
symmetry, despite the large value of its breaking scale, will
only help in achieving gauge coupling unification [188].
In conclusion, we found that our model provides a

consistent cosmological scenario that unifies five different
phenomena: (i) dynamical supersymmetry breaking at a
high energy scale, (ii) viable D-term hybrid inflation in
supergravity, (iii) spontaneous B − L breaking at the GUT
scale, (iv) baryogenesis via leptogenesis, and (v) standard
model neutrino masses due to the type-I seesaw mecha-
nism. Our model is built around a strongly coupled hidden
sector, which puts it on a sound theoretical footing. We did
not need to make any ad hoc assumptions about the
dimensionful parameters in our model. Instead, all impor-
tant mass scales are related to the dynamical scale of the
strong interactions in the hidden sector. Thanks to its
precise parameter relations, our model is therefore well
suited to be used as a basis for further explicit calculations.
It would, e.g., be worthwhile to study the reheating process
after inflation in greater detail and determine the corre-
sponding implications for the spectrum of gravitational
waves. Similarly, a more comprehensive study of the
MSSM particle spectrum and its consequences for dark
matter would be desirable. The analysis in the present paper
should only be regarded as a first step. It served the purpose
to illustrate our main point: SUSY breaking close to the
GUT scale might be the key to a unified picture of particle
physics and cosmology. This is a fascinating observation
and we are excited to see where it will lead us in the future.
One possibility is that it will eventually cause a paradigm
shift in our understanding of SUSY’s role in the physics of
the early Universe. High-scale SUSY breaking might be the
driving force behind inflation!
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APPENDIX: TECHNICALITIES: SUPERGRAVITY
IN THE EINSTEIN/JORDAN FRAME

Our model is based on a particular embedding into
supergravity. We assume that the coupling to gravity is
most naturally described in a Jordan frame where all scalar
kinetic terms are canonically normalized (see Sec. II). At
the same time, we wish to perform a standard slow-roll
analysis of the inflationary dynamics (see Sec. III), which
requires a reformulation of our model in the Einstein frame.
To facilitate the transition between these two different
frames, this appendix provides a dictionary that allows one
to translate back and forth between the two different
formulations of our model.

1. Bosonic action

In the usual Einstein frame, the purely bosonic action of
our model takes the following form20:

Sbos ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
M2

PlR −K{̄jgμνDμϕ
�̄
{ Dνϕj

−
1

4
FμνFμν − V

�
: ðA1Þ

Here, MPl denotes the reduced Planck Mass, MPl ≃ 2.44×
1018 GeV; g is the determinant of the Einstein-frame
spacetime metric gμν; R is the Ricci scalar constructed
from gμν; gμν stands for the inverse of the metric gμν; the
fields ϕi represent the complex scalar fields in our model;
Dμ denotes the usual gauge-covariant derivative; Fμν is the
field-strength tensor of the Abelian B − L vector field; and
V represents the total scalar potential in the Einstein frame.
As evident from Eq. (A1), the scalar fields ϕi couple to
gravity only via the inverse spacetime metric gμν. This
corresponds to the case of minimal coupling. At the same
time, the scalar fields exhibit a nontrivial (Kähler) geometry
in field space. This is accounted for by the Kähler metric K
which multiplies the scalar kinetic terms in Eq. (A1). The
Kähler metricK is defined as the Hessian of the real-valued
Kähler potential K,

K{̄j ¼
∂2K

∂ϕ�̄
{ ∂ϕj

: ðA2Þ

In our model, the Kähler potential K is not canonical, such
that K{̄j ≠ δ{̄j. The scalar kinetic terms (and, hence, the
scalar fields themselves) are, thus, not canonically normal-
ized in the Einstein frame.
To obtain the equivalent of Eq. (A1) in the Jordan frame,

we need to perform a Weyl rescaling,

gJμν ¼ C2gμν; gμνJ ¼ C−2gμν;
ffiffiffiffiffiffiffiffi
−gJ

p ¼ C4
ffiffiffiffiffiffi
−g

p
;

C ¼
�
−
3M2

Pl

Ω

�
1=2

; ðA3Þ

where C is known as the conformal factor. The frame
function Ω is an arbitrary real negative function of the
complex scalars, Ω ¼ Ωðϕi;ϕ�̄

{ Þ < 0. Each choice for Ω
defines a separate Jordan frame. In Sec. II, we make a
particular choice for Ω, demanding the following relation
to the Kähler potential:

Ω ¼ −3M2
Pl exp

�
−

K
3M2

Pl

�
⇔ K ¼ −3M2

Pl ln

�
−

Ω
3M2

Pl

�
:

ðA4Þ

This results in what may be regarded as the standard
Jordan frame. In light of the relation in Eq. (A4), the
frame function Ω has two possible interpretations. In the
curved superspace approach to old minimal supergravity
[119,120], Ω can be identified as the generalized kinetic
energy on curved superspace, while in the superconformal
approach to old minimal supergravity [121,122], Ω can be
identified as the prefactor of the kinetic term of the chiral
compensator superfield. Equation (A4) allows to relate the
partial derivatives of the Kähler potential to the partial
derivatives of the frame function,

Ki ¼
∂K
∂ϕi

¼ C2
∂Ω
∂ϕi

¼ C2Ωi;

K{̄ ¼
∂K
∂ϕ�̄

{
¼ C2

∂Ω
∂ϕ�̄

{
¼ C2Ω{̄: ðA5Þ

Similarly, we are able to express the Kähler metric K in
terms of derivatives of the frame function,

K{̄j ¼ C2ω{̄j; ω{̄j ¼ Ω{̄j −
Ω{̄Ωj

Ω
; Ω{̄j ¼

∂2Ω
∂ϕ�̄

{ ∂ϕj
: ðA6Þ

Here, we introduced ω as a rescaled field-space metric that
is determined by the derivatives of the frame function and
that is equivalent to the Kähler metric up to the rescaling
factor C2. Equation (A6) automatically implies a similar

20Some authors in the literature distinguish between Einstein-
frame and Jordan-frame quantities by labeling them with indices
E and J, respectively. We will, by contrast, not use any particular
label for quantities in the Einstein frame and merely label
quantities in the Jordan frame with an index J. This will slightly
simplify our notation.
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relation between the respective inverse metrics, K−1

and ω−1,

ðK−1Þi|̄ ¼ C−2ðω−1Þi|̄: ðA7Þ

We now apply the Weyl transformation in Eq. (A3) to the
Einstein-frame action in Eq. (A1). This yields the purely
bosonic action of our model in the Jordan frame (see
Ref. [115] for more details),

SJbos ¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gJ

p �
1

2

�
−
Ω
3

�
RJ −Ω{̄jg

μν
J Dμϕ

�̄
{ Dνϕj

þ ΩAμAμ −
1

4
FμνFμν − VJ

�
: ðA8Þ

In view of this action, several comments are in order:
(i) The frame functionΩ depends on the scalar fields of

our model. The Einstein-Hilbert term (i.e., the
kinetic term for the metric that is proportional to
the Ricci scalar RJ) therefore becomes field depen-
dent. Or in other words, the scalar fields are now
nonminimally coupled to gravity.

(ii) The Planck mass squared in Eq. (A1) is now
replaced by −Ω=3. This indicates that the square
root of −Ω=3 should be interpreted as the effective
field-dependent Planck mass in the Jordan frame,

MJ
Pl ¼

�
−
Ω
3

�
1=2

⇔ MPl ¼ CMJ
Pl; ðA9Þ

which is consistent with the fact that all Jordan-
frame mass scales mJ pick a factor C when trans-
forming from the Jordan frame to the Einstein frame,
m ¼ CmJ. From this perspective, the conformal
factor C turns out to be nothing but the ratio of
the two respective Planck masses, C ¼ MPl=MJ

Pl.
(iii) The Kähler metric K in Eq. (A1) is now replaced

by the Hessian of Ω. In our model, we choose Ω
such that it only contains canonical as well as purely
holomorphic/antiholomorphic terms,

Ω ¼ −3M2
Pl þ δ{̄jϕ

�̄
{ ϕj þ ½JðϕiÞ þ H:c:�; ðA10Þ

where J is an arbitrary holomorphic function. The
canonical terms, Ω ⊃ δ{̄jϕ

�̄
{ ϕj, lead to nonminimal

couplings between the complex scalars and the Ricci
scalar RJ that are invariant under a classical con-
formal symmetry. These conformal couplings can be
disturbed by a nonzero function J which explicitly
breaks the conformal symmetry. Irrespective of
whether J ¼ 0 or J ≠ 0, Eq. (A10) leads to

Ω{̄j ¼ δ{̄j: ðA11Þ
In this case, we obtain the following expressions for
the rescaled field-space metric ω and its inverse:

ω{̄j ¼ δ{̄j −
Ω{̄Ωj

Ω
; ðω−1Þi|̄ ¼ δi|̄ þ

1

ϱ

Ω{̄Ωj

Ω
;

ϱ ¼ 1 −
Ωk̄Ωk

Ω
: ðA12Þ

Here, the dimensionless parameter ϱ functions as a
measure for the amount of conformal symmetry
breaking in the frame function Ω. In the conformal
limit, J → 0, it simply reduces to the conformal
factor squared, ρ → C2. In this sense, ϱ plays a
similar role as the reduced kinetic function of the
inflation field, f, defined in Eq. (89). In fact, in our
concrete model, one can show that ϱ ¼ C2ð1 − fÞ.

(iv) In the Jordan frame, the scalar kinetic terms receive
additional contributions from the bosonic part of the
auxiliary SUGRA gauge field Aμ. This is accounted
for by the third term on the right-hand side of
Eq. (A8). The auxiliary field Aμ can be eliminated
after solving its equation of motion,

Aμ ¼
1

Ω
ImfΩiDμϕig: ðA13Þ

This solution illustrates that the A2 term in Eq. (A8)
is only relevant as long as we are interested in the
dynamics of angular degrees of freedom, i.e., the
complex phases of the complex scalars ϕi. This is,
however, not the case. In our model, inflation occurs
along the real direction of the complex inflation
field s. The auxiliary fieldAμ therefore vanishes and
the A2 term in Eq. (A8) can be ignored. Together
with Eq. (A11), Aμ ¼ 0 leads to canonically nor-
malized kinetic terms for all complex scalar fields in
our model. This is an important result and the main
motivation for our ansatz in Eq. (A10).

Combining our above results, the action in Eq. (A8) can
be simplified to the following expression:

SJbos ¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gJ

p �
1

2
ðMJ

PlÞ2RJ − δ{̄jg
μν
J Dμϕ

�̄
{ Dνϕj

−
1

4
FμνFμν − VJ

�
: ðA14Þ

This is the starting point for the analysis of our model in the
Jordan frame. Thus far, we have not commented on the
relation between the potentials V and VJ. We will do this
now in the next section.

2. Scalar potential

The total scalar potential in the Einstein frame, V, has
mass dimension four. On general grounds, this implies the
following universal relation to the total scalar potential in
the Jordan frame, VJ:
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V ¼ C4VJ; VJ ¼ C−4V; ðA15Þ

which holds at tree level as well as at the loop level. Equation (A15) implies the following useful relations:

Vi ¼
∂V
∂ϕi

¼ C4
�
VJ
i −

2

Ω
ΩiVJ

�
; VJ

i ¼
∂VJ

∂ϕi
¼ C−4

�
Vi þ

2

Ω
ΩiV

�
;

V{̄j ¼
∂2V

∂ϕ�̄
{ ∂ϕj

¼ C4
�
VJ
{̄j −

2

Ω
ðΩ{̄VJ

j þ ΩjVJ
{̄ Þ −

2

Ω

�
ω{̄j − 2

Ω{̄Ωj

Ω

�
VJ

�
;

VJ
{̄j ¼

∂2VJ

∂ϕ�̄
{ ∂ϕj

¼ C−4
�
V{̄j þ

2

Ω
ðΩ{̄Vj þΩjV{̄Þ þ

2

Ω

�
ω{̄j þ 2

Ω{̄Ωj

Ω

�
V

�
: ðA16Þ

Together, Eqs. (A15) and (A16) illustrate that a Minkowski
vacuum in the Einstein frame (V ¼ Vi ¼ 0) also corre-
sponds to a Minkowski vacuum in the Jordan frame
(VJ ¼ VJ

i ¼ 0), and vice versa.
In the next step, we shall become more specific and

discuss the individual contributions to V and VJ, respec-
tively. The Einstein-frame potential consists of the usual
F-term and D-term contributions,

V ¼ VF þ VD: ðA17Þ

To begin with, let us focus on the F-term scalar potential
(see Ref. [189] for more details),

VF ¼ F�̄
{K{̄jFj − 3 exp

�
K
M2

Pl

� jWj2
M2

Pl

: ðA18Þ

Here, the Fi and F�̄
{ stand for the generalized F terms in

supergravity and their complex conjugates,

Fi ¼ − exp
�

K
2M2

Pl

�
ðK−1Þi|̄ðDWÞ�̄| ;

F�̄
{ ¼ − exp

�
K

2M2
Pl

�
ðK−1Þ�{̄jðDWÞj; ðA19Þ

where DW denotes the Kähler-covariant derivative of the
superpotential on the Kähler manifold,

ðDWÞi ¼
∂W
∂ϕi

þ ∂K
∂ϕi

W
M2

Pl

: ðA20Þ

The F-term potential in the Jordan frame is given as
VJ
F ¼ C−4VF. This can be rewritten as follows:

VJ
F ¼

�
Wi − 3W

Ωi

Ω

�
ðω−1Þi|̄

�
W �̄

| − 3W�Ω|̄

Ω

�
þ 9

Ω
jWj2:

ðA21Þ

which underlines the similarity between the role of the
inverse metric ω−1 in the Jordan frame and the role of the

inverse Kähler metric K−1 in the Einstein frame. With our
ansatz for the frame function Ω in Eq. (A10), VJ

F can be
further simplified to the following compact expression (see,
e.g., Ref. [123]):

VJ
F ¼ V0

F þ ΔVJ
F; V0

F ¼ WiW �̄
{ ;

ΔVJ
F ¼ 1

ϱΩ
jWiΩ{̄ − 3Wj2: ðA22Þ

Equation (A22) illustrates a remarkable effect. Provided
that the scalar kinetic terms in the Jordan frame are
canonically normalized, VJ

F splits into two separate con-
tributions, where the first contribution, V0

F, is nothing but
the ordinary F-term scalar potential in global supersym-
metry and the second contribution, ΔVJ

F, represents an
additive SUGRA correction. Equation (A22) provides the
basis for the calculation of the F-term scalar potential in our
model [see Eqs. (110) and (111)]. We first calculate the
F-term scalar potential in the Jordan frame according to
Eq. (A22). Then, we convert our result from the Jordan
frame to the Einstein frame making use of the general
relation in Eq. (A15),

VF ¼ C4
�
WiW �̄

{ þ
1

ϱΩ
jWiΩ{̄ − 3Wj2

�
: ðA23Þ

Computing VF via this detour is considerably easier than a
direct calculation starting with Eq. (A18).
The SUGRA correction ΔVJ

F in Eq. (A22) is directly
proportional to the mass scales that appear in the super-
potential. In our model, these mass scales correspond to
the F-term SUSY-breaking scale μ, the effective inflaton-
dependent mass of the waterfall fields, κhSi, and the
R-symmetry-breaking constant w0 [see Eq. (106)]. All of
these mass scales are responsible for the explicit breaking
of superconformal symmetry. Conversely, this means that,
if the superpotential does not exhibit any explicit mass
scales, the SUGRA correction ΔVJ

F must vanish. This is
exactly what happens in the class of CSS models studied in
Ref. [116]. These models are based on the frame function
in Eq. (A10) with the holomorphic function J set to zero.
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Moreover, they exhibit a purely cubic superpotential, such
that ΔVJ

F ¼ 0. One generic feature of CSS models there-
fore is that their Jordan-frame scalar potential coincides
with the scalar potential in global supersymmetry,

CSS models∶ W ¼ 1

3
λijkΦiΦjΦk; VJ

F ¼ V0
F;

VJ
D ¼ V0

D; ΔVJ
F ¼ 0: ðA24Þ

Note that this statement applies to the total scalar potential,
including the D-term scalar potential.
In our model, the D-term scalar potential in the Einstein

frame, VD, is given by [189]

VD ¼ 1

2
D2; ðA25Þ

where D denotes the auxiliary component of the B − L
vector multiplet V. In writing down Eq. (A25), we assumed
a canonical gauge-kinetic function for the B − L vector
field, fV ¼ 1, and absorbed the gauge coupling constant g
into the definition of D. On-shell, the auxiliary D field can
be replaced by

D ¼ −gqiKiϕi: ðA26Þ

In the language of Kähler geometry, this is equivalent to the
Killing potential of the Uð1ÞB−L isometry of our Kähler
manifold. Together, Eqs. (A25) and (A26) result in the
following expression for VD:

VD ¼ g2

2
ðqiKiϕiÞ2: ðA27Þ

This result can be easily translated into the Jordan frame by
making use of Eqs. (A5) and (A15),

VJ
D ¼ C−4VD ¼ g2

2
ðqiΩiϕiÞ2: ðA28Þ

In our model, all complex scalars with nonzero gauge
charge qi appear with a canonical term in Ω. Just like in the
class of CSS models, VJ

D therefore obtains the same form as
in global supersymmetry,

qiΩi ¼ qiϕ�̄
{ ⇒ VJ

D ¼ g2

2
ðqijϕij2Þ2 ¼ V0

D: ðA29Þ

This means in turn that the D-term scalar potential in the
Einstein frame can be written as

VD ¼ g2

2
C4ðqijϕij2Þ2: ðA30Þ

Combining all of our above results, we conclude that V
and VJ are given as follows in our model:

V ¼ C4VJ;

VJ ¼ WiW �̄
{ þ

g2

2
ðqijϕij2Þ2 þ

1

ϱΩ
jWiΩ{̄ − 3Wj2: ðA31Þ

This result is the starting point for our calculation of the
inflaton potential in Sec. II E.

3. Scalar mass parameters

Equation (A31) allows us to derive useful expressions
for the scalar mass parameters mJ

ab in the Jordan frame.21

The scalar mass matrix is given by the Hessian of the scalar
potential, ðmJ

abÞ2 ¼ VJ
ab. As a consequence of the simple

structure of VJ, the scalar masses, thus, split into two
contributions: the ordinary masses in global supersym-
metry, m0

ab, as well as additive corrections in supergravity,
Δmab,

ðmJ
abÞ2 ¼ ðm0

abÞ2 þ Δm2
ab; ðm0

abÞ2 ¼
∂2

∂za∂zb ðV
0
F þ V0

DÞ;

Δm2
ab ¼

∂2

∂za∂zbΔV
J
F: ðA32Þ

In the case of scalar fields that only appear with a canonical
term in the frame function,Ω ⊃ jϕij2, the corrections Δm2

ab
take a particularly simple form. Based on our result in
Eq. (A22), we find

Δm2
{̄j ¼

ðWjkΩk̄ − 2WjÞðW�
{̄ l̄Ωl − 2W �̄

{ Þ
ϱΩ

;

Δm2
ij ¼

ðWijkΩk̄ −WijÞðW �̄
lΩl − 3W�Þ

ϱΩ
; ðA33Þ

and similarly for the respective conjugate parameters,
Δm2

i|̄¼ðΔm2
{̄jÞ� andΔm2

{̄ |̄ ¼ ðΔm2
ijÞ�. The diagonal entries

of the scalar mass matrix therefore obtain the following
compact form:

Δm2
{̄i ¼

jWikΩk̄ − 2Wij2
ϱΩ

: ðA34Þ

In addition to the masses encoded in the scalar potential,
the complex scalar fields acquire further, effective masses
from their nonminimal coupling to RJ in the Jordan-frame
action [see Eq. (A8)],

ðmR
abÞ2 ¼ ζRJ

∂2Ω
∂za∂zb ; ζ ¼ 1

6
: ðA35Þ

21Here, a and b represent collective indices that encompass all
scalar fields ϕi as well as their complex conjugates ϕ�̄

{ . In the
following, the symbol za will therefore either denote the field ϕi
for some index i or the field ϕ�̄

{ for some index {̄.
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All scalar fields with a canonical kinetic function, thus,
receive a universal gravity-induced mass mR,

m2
R ¼ ζRJ: ðA36Þ

In summary, the entries of the total effective mass matrix
in the Jordan frame, M2

J, read as follows:

ðM2
JÞab ¼ ðm0

abÞ2 þ Δm2
ab þ ðmR

abÞ2: ðA37Þ

In our model, all scalar fields are canonically normalized by
construction. The eigenvalues of the matrix M2

J therefore
directly correspond to the physical scalar mass eigenvalues
in the Jordan frame. The situation is more complicated in
the Einstein frame, where the scalar fields parametrize the
target space of a nonlinear sigma model [see Eq. (A1)].
There, the scalar fields are a priori not canonically nor-
malized which makes it more difficult to find the physical
mass eigenvalues. Without reference to the Jordan frame,
the computation of the scalar mass spectrum in the Einstein
frame requires two steps. First, one has to perform a field
transformation that renders all fields canonically normal-
ized. Then, one has to calculate the mass eigenvalues of
these canonically normalized fields as usual. Our result in
Eq. (A37), however, allows us to bypass this complicated
procedure. Instead, we can simply make use of the
universal scaling behavior of physical mass scales when
transforming back and forth between the Jordan frame and
the Einstein frame. According to this scaling behavior,
we know that the total effective scalar mass matrix in the
Einstein frame, M2, must obtain the following form:

M2
ab¼C2ðM2

JÞab¼C2
�
ðm0

abÞ2þΔm2
abþðmR

abÞ2
�
: ðA38Þ

It would be interesting to check the validity of this result by
means of an explicit calculation in the Einstein frame. Such
a task is, however, beyond the scope of this paper and left
for future work.
More details on the mass parameters for all fields with

nonzero spin (i.e., the fermions, vector boson, and gravitino
in our model) can be found in the literature. The relevant
expressions in the Jordan frame are spelled out in
Ref. [115], while the standard Einstein-frame results are
listed, e.g., in Ref. [189].

4. Slow-roll parameters

Finally, let us discuss the relation between the infla-
tionary slow-roll parameters in the Einstein frame, ε and η,
and their counterparts in the Jordan frame, εJ and ηJ. The
results derived in this section will enable us to use our
results for the scalar potential in the Jordan frame (see
Sec. II) as input for a standard slow-roll analysis of the
inflationary dynamics in the Einstein frame (see Sec. III).

Let us consider the action of the complex inflaton field s
in the Einstein frame [see Eq. (A1)],

Sinf ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p ½N 2∂μs�∂μsþ VðsÞ�; N ¼ K1=2
s�s :

ðA39Þ

As can be seen from this action, the inflaton field is not
canonically normalized in the Einstein frame. This is made
explicit by the noncanonical normalization factor of the
inflaton kinetic term, N ≠ 1. However, in our slow-roll
analysis, we will have to work with the canonically
normalized field ŝ. The field ŝ can be constructed as a
function of the field s by solving the following differential
equations:

∂σ̂
∂σ ¼ N ðσ; τÞ; ∂ τ̂

∂τ ¼ N ðσ; τÞ;

s ¼ 1ffiffiffi
2

p ðσ þ iτÞ; ŝ ¼ 1ffiffiffi
2

p ðσ̂ þ iτ̂Þ: ðA40Þ

In terms of the canonically normalized field ŝ, the action
in Eq. (A39) obtains its standard form,

Sinf ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p ½∂μŝ�∂μŝþ VðŝÞ�;

VðŝÞ≡ VðsðŝÞÞ: ðA41Þ

This action is the starting point of our standard slow-roll
analysis. The slow-roll parameters in the Einstein frame, ε
and η, are defined in terms of the usual partial derivatives of
the scalar potential,

ε ¼ M2
Pl

2

�
V 0

V

�
2

; η ¼ M2
Pl
V 00

V
;

V 0 ¼ ∂V
∂σ̂ ; V 00 ¼ ∂2V

∂σ̂2 : ðA42Þ

Here, we assumed that inflaton occurs along the real
component σ̂ of the complex inflaton field ŝ. In the next
step, we rewrite these expressions making use of the chain
rule and the relations in Eq. (A40),

V 0 ¼ ∂σ
∂σ̂

∂V
∂σ ¼ Vσ

N
;

V 00 ¼ ∂σ
∂σ̂

∂V 0

∂σ ¼ 1

N

�
Vσσ

N
−
N σ

N
Vσ

N

�
; ðA43Þ

where Vσ ¼ ∂V=∂σ, Vσσ ¼ ∂2V=∂σ2, and N σ ¼ ∂N =∂σ.
With these definitions and relations, we find

ε ¼ ε̃

N 2
; η ¼ η̃ − 2ðνε̃Þ1=2

N 2
; ðA44Þ
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where we assumed that Vσ > 0 and N σ > 0. The param-
eters ε̃ and η̃ represent what can be referred to as the naive
slow-roll parameters in the Einstein frame, i.e., the slow-
roll parameters that one would obtain if one ignored the
noncanonical normalization factor N in Eq. (A39).
Meanwhile, the factor ν is an auxiliary slow-roll parameter
that accounts for the field dependence of the factor N ,

ε̃¼M2
Pl

2

�
Vσ

V

�
2

; η̃¼M2
Pl
Vσσ

V
; ν¼M2

Pl

2

�
N σ

N

�
2

: ðA45Þ

The expressions in Eq. (A44) are now well suited to
establish a connection to the Jordan frame. The naive slow-
roll parameters ε̃ and η̃ can be readily related to the Jordan-
frame slow-roll parameters εJ and ηJ by employing the
relations for the partial derivatives of the scalar potential in
Eq. (A16),

ε̃ ¼ ðε1=2J − 2ξ1=2J Þ2;
η̃ ¼ ηJ þ 12ξJ − 8ðεJξJÞ1=2 − 2ζJ; ðA46Þ

where we assumed again a positive potential gradient,
VJ
σ > 0. The Jordan-frame slow-roll parameters εJ and ηJ

are defined in terms of the usual partial derivatives of the
Jordan-frame scalar potential,

εJ ¼
M2

Pl

2

�
VJ
σ

VJ

�
2

; ηJ ¼ M2
Pl
VJ
σσ

VJ with

VJ
σ ¼

∂VJ

∂σ ; VJ
σσ ¼

∂2VJ

∂σ2 : ðA47Þ

In Eq. (A46), we also introduced the auxiliary slow-roll
parameters ξJ and ζJ which account for the field depend-
ence of the frame function Ω. These slow-roll parameters
are defined as follows:

ξ1=2J ¼ MPlffiffiffi
2

p Ωσ

Ω
; ζJ ¼ M2

Pl
Ωσσ

Ω
with

Ωσ ¼
∂Ω
∂σ ; Ωσσ ¼

∂2Ω
∂σ2 : ðA48Þ

Unlike in the Einstein frame, we do not have to distinguish
between naive and actual slow-roll parameters in the Jordan
frame. This is because, in our model, all scalar fields are
canonically normalized in the Jordan frame by construc-
tion. In the language of Eq. (A44), this can be rephrased by
saying that the normalization factor of the inflaton kinetic
term in the Jordan frame is simply trivial, N J ¼ 1.
Combining our results in Eqs. (A44) and (A46), we

finally obtain the following relations:

ε ¼ 1

N 2
ðε1=2J − 2ξ1=2J Þ2;

η ¼ 1

N 2
½ηJ þ 12ξJ − 8ðεJξJÞ1=2 − 2ζJ

− 2ν1=2ðε1=2J − 2ξ1=2J Þ�: ðA49Þ

This is an important result that holds in any model with an
Einstein-frame action as in Eq. (A39). Equation (A49) is
the starting point for our computation of the Einstein-frame
slow-roll parameters in Sec. III. We emphasize that
computing ε and η according to Eq. (A49) is considerably
easier than a brute-force calculation in the Einstein frame.
In the Einstein frame, we would have to deal with a
complicated Kähler potential, a more complicated scalar
potential, and a noncanonically normalized inflaton field.
Equation (A49) allows us to circumvent these complica-
tions and determine the parameters ε and η simply based on
the derivatives of the Jordan-frame scalar potential VJ and
the frame function Ω.
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