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In the context of Standard Model (SM) extensions, the seesaw mechanism provides the most natural
explanation for the smallness of neutrino masses. In this work we consider the most economical type-I
seesaw realization in which two right-handed neutrinos are added to the SM field content. For the sake of
predictability, we impose the maximum number of texture zeros in the lepton Yukawa and mass matrices.
All possible patterns are analyzed in the light of the most recent neutrino oscillation data, and predictions
for leptonic CP violation are presented. We conclude that, in the charged-lepton mass basis, eight different
texture combinations are compatible with neutrino data at 1σ, all of them for an inverted-hierarchical
neutrino mass spectrum. Four of these cases predict a CP-violating Dirac phase close to 3π=2, which is
around the current best-fit value from the global analysis of neutrino oscillation data. If one further reduces
the number of free parameters by considering three equal elements in the Dirac neutrino Yukawa coupling
matrix, several texture combinations are still compatible with data but only at 3σ. For all viable textures, the
baryon asymmetry of the Universe is computed in the context of thermal leptogenesis, assuming (mildly)
hierarchical heavy Majorana neutrino masses M1;2. It is shown that the flavored regime is ruled out, while
the unflavored one requires M1 ∼ 1014 GeV.
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I. INTRODUCTION

The discovery of neutrino oscillations provided a solid
evidence for physics beyond the Standard Model (SM) by
confirming the existence of neutrino masses and mixing.
From the theory viewpoint, the most straightforward and
elegant way of accounting for them consists of adding
right-handed (RH) neutrinos to the SM field content. If
heavy enough, these states can mediate neutrino masses at
the classical level through the well-known seesaw mecha-
nism [1]. Besides supplying an explanation for small
neutrino masses, the addition of RH neutrinos to the SM
allows for the leptogenesis mechanism [2] to work through
the out-of-equilibrium decays of the heavy neutrinos in
the early Universe (for reviews see, e.g., Refs. [3–6]).
This offers an answer for another SM puzzle: the baryon
asymmetry of the Universe (BAU).
Although in principle the number of RH neutrinos is

arbitrary, at least two are necessary to explain the present
neutrino oscillation data, namely, three nonzero neutrino

mixing angles and two mass-squared differences.
Interestingly, at least two RH neutrinos are also required
for leptogenesis to be realized. Therefore, the two-RH-
neutrino seesaw model (2RHNSM) is a minimal model not
only for neutrino masses, but also for the generation of
the BAU in the context of leptogenesis. Still, even in this
scenario, the number of parameters describing the neutrino
Lagrangian at high energies is larger than the number of
low-energy observables currently (or potentially) measured
by experiments. One way of increasing predictability is
to consider texture zeros in the lepton Yukawa and mass
matrices, which can be motivated, for instance, by impos-
ing U(1) Abelian flavor symmetries [7–9]. In general,
texture zeros imply predictions not only for low-energy
neutrino parameters but also for the BAU, since leptogenesis
is sensitive to the couplings which control neutrino masses
and mixing. Therefore, a complete study of all possible
texture zeros in the light of the most recent neutrino data
is welcome. In particular, since neutrino experiments are
starting to deliver some information regarding leptonic CP
violation [10], predictions for low-energy CP phases are of
utmost importance. At the same time, a connection with
leptogenesis can also be established in this framework
[10,11]. These questions have already been partially covered
in the literature. For instance, the compatibility of the
texture-zero hypothesis in the 2RHNSM with neutrino data

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 97, 115016 (2018)

2470-0010=2018=97(11)=115016(17) 115016-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.115016&domain=pdf&date_stamp=2018-06-11
https://doi.org/10.1103/PhysRevD.97.115016
https://doi.org/10.1103/PhysRevD.97.115016
https://doi.org/10.1103/PhysRevD.97.115016
https://doi.org/10.1103/PhysRevD.97.115016
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


has been studied in Refs. [12–16] and, in the context of
leptogenesis, in Refs. [17–25].
In this work, we revisit the 2RHNSM in maximally

restricted texture-zero scenarios, i.e., when the maximum
number of texture zeros is imposed in the lepton Yukawa and
massmatrices.Moreover,we consider cases inwhich equality
relations among the Dirac neutrino Yukawa couplings exist.
For textures that reproduce the observed neutrino mass and
mixing patterns, we present the predictions for low-energy
CP violation, neutrinoless double-beta decay, and the BAU.
Special attention will be paid to the treatment of leptogenesis
in the 2RHNSM. Contrary to what is usually done in the
literature, where only the decay of the lightest heavy neutrino
is considered, we include decays of both heavy neutrinos in
our analysis. Moreover, flavor effects which arise from the
fact that lepton interactions become out of equilibrium at
different temperatures are taken into account.
This paper is organized as follows. In Sec. II we establish

the basics of the 2RHNSM by describing the model and
identifying the number of parameters at high and low
energies. Afterwards, in Sec. III the maximally restricted
texture-zero matrices are identified, and their compatibility
with neutrino data is analyzed. Furthermore, the predictions
for Dirac and Majorana CP phases are shown, together with
those for the effective neutrino mass parameter relevant for
neutrinoless double-beta decays.We also consider caseswith
three equal elements in the Dirac neutrino Yukawa coupling
matrix in Sec. III A.We then compute theBAU in the thermal
leptogenesis framework in Sec. IV, and determine under
which conditions its value is compatible with the observed
one. Our conclusions are drawn in Sec. V.

II. THE TWO RIGHT-HANDED NEUTRINO
SEESAW MODEL

Considering only Yukawa and mass terms, the lepton
Lagrangian density for the SM extended with RH neutrino
fields νR is L ¼ Ll þ Lν with

Lν ¼ −lLYνΦ̃νR −
1

2
ðνRÞcMRνR þ H:c:; ð1Þ

Ll ¼ −lLYlΦeR þ H:c: ð2Þ

Here, lL and Φ are the SM lepton and Higgs doublets,
respectively, Φ̃ ¼ iσ2Φ�, and eR denote the RH charged-
lepton fields. The Dirac neutrino Yukawa couplings and
RH neutrino mass matrices are described by Yν and MR.
For N RH neutrinos, Yν and MR are 3 × N and N × N
general complex matrices, where MR is symmetric. After
integrating out the νR’s, the effective Majorana neutrino
mass matrix Mν, obtained upon electroweak symmetry
breaking, is given by the seesaw formula [1]

Mν ¼ −v2YνM−1
R YνT; ð3Þ

which is valid for MR ≫ v, where v ¼ 174 GeV is the
vacuum expectation value of the neutral component of Φ.
This (symmetric) matrix is diagonalized by a unitary matrix
Uν as

UT
νMνUν ¼ diagðm1; m2; m3Þ≡ dm; ð4Þ

where mi are the (real and positive) effective neutrino
masses. Considering that Ul rotates the left-handed (LH)
charged-lepton fields to their diagonal mass basis, lepton
mixing in charged currents is encoded in the so-called
Pontecorvo-Maki-Nakagawa-Sakata unitary matrix U
given by

U ¼ U†
lUν: ð5Þ

Throughout this work we will use the standard para-
metrization [26]

U ¼

0
BBB@

c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

1
CCCA
0
BBB@

1 0 0

0 eiα21=2 0

0 0 eiα31=2

1
CCCA; ð6Þ

where cij ≡ cos θij, sij ≡ sin θij, and θijði < j ¼ 1; 2; 3Þ
are the three lepton mixing angles. The phases δ and
α21;31 are Dirac- and Majorana-type CP-violating phases,
respectively.
The present values for θij, δ, and Δm2

ij ¼ m2
i −m2

j ,
extracted from global analyses of all neutrino oscillation
data [27–29], are given in Table I for both normal-ordered
(NO) and inverted-ordered (IO) neutrino mass spectra
defined as

NO∶ m1 < m2 < m3 ðΔm2
31 > 0Þ; ð7Þ

IO∶ m3 < m1 < m2 ðΔm2
31 < 0Þ: ð8Þ

Notice that although neutrino mixing angles and mass-
squared differences are known with very good precision,
the experimental sensitivity to the value of δ is still limited,
and the statistical significance of the presented ranges for
that parameter is low.
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Let us now consider the simplest type-I seesaw model
which can account for the data presented in Table I, i.e., the
2RHNSM. In this case, Yν and MR are 3 × 2 and 2 × 2
matrices, respectively. In the mass-eigenstate basis of νR,
the free parameters in the Lagrangian (1) are the two RH
neutrino masses M1;2, and the 12 real parameters of Yν.
By rotating the LH charged-lepton fields, one is able to
eliminate three parameters from Yν, leaving a total of 11
parameters. Since for the 2RHNSM the effective neutrino
mass matrix Mν given in Eq. (3) is rank two, m1 ¼ 0
ðm3 ¼ 0Þ for NO (IO).1 Moreover, the diagonal phase
matrix in Eq. (6) must be replaced by diagð1; eiα=2; 1Þ since,
in the presence of a massless neutrino, only one Majorana
phase is physical. Thus, in the 2RHNSM, the low-energy
neutrino sector is described by seven parameters (two
masses, three mixing angles, and twoCP-violating phases),
to be compared with the 11 parameters at high energies.
One convenient way of parametrizing Yν relies on the

so-called Casas-Ibarra parametrization [30]. In the basis
where both MR and Yl are diagonal,

Yν ¼ v−1U�d1=2
m Rd1=2

M ; ð9Þ

with dM ¼ diagðM1;M2Þ. The matrixR is a 3 × 2 complex
orthogonal matrix which can be parametrized by a single
complex angle z in the following way:

RNH ¼

0
B@

0 0

cosz −sinz

ξsinz ξcosz

1
CA; RIH ¼

0
B@

cosz −sinz

ξsinz ξcosz

0 0

1
CA;

ð10Þ

with ξ ¼ �1. Notice that, in the case of a nondiagonal
MR, the right-hand side of Eq. (9) must be multiplied on
the right by U†

R, where UR is the unitary matrix which
diagonalizes MR as UT

RMRUR ¼ dM.
Clearly, even in the simplest minimal type-I seesaw

model, there are more free independent parameters at
high energies than at low energies. In order to reduce
the degree of arbitrariness of the 2RHNSM, in the next
section we will introduce maximally restricted texture
zeros and study their phenomenological implications.

III. MAXIMALLYRESTRICTED TEXTUREZEROS

In this section we will study the implications of imposing
texture zeros in Yl, Yν, and MR. Our guiding principle is
to consider the maximum number of zeros such that the
charged-lepton masses and neutrino data can be accommo-
dated. In the former case, this corresponds to having six zeros
in Yl, which guarantees three nondegenerate masses. There
are six textures of this type related among each other by
permutations of rows and/or columns applied to Yl

diag ¼
diagðye; yμ; yτÞ, where ye;μ;τ ¼ me;μ;τ=v. Textures for Yν

with three ormore zeros lead to vanishingmixing angles and/
or two massless neutrinos, being therefore excluded exper-
imentally. In principle, with two texture zeros in Yν, all
neutrino data could be reproduced. There are 15 different
types of 3 × 2 matrices with two vanishing entries. Some of
them are automatically excluded by present neutrino data:

(i) Textureswith two zeros placed in the same line j ofYν

are excluded since these lead to the case in which the
two RH neutrino fields are decoupled from the lepton
flavor j. Therefore, all elements in line (and column) j
of the Majorana neutrino mass matrix Mν vanish,
implying the existence of two vanishing mixing
angles θij, which is excluded by the data. In practice,
this corresponds to the situation inwhich one neutrino
flavor state coincides with its mass eigenstate.

(ii) If both zeros are placed in lines ði; jÞ of the same
column in Yν, then lines (and columns) ði; jÞ of Mν

are linearly dependent. Thus, at least one mixing
angle θij is zero, leading to the unrealistic case in
which one flavor eigenstate is a superposition of
only two of the three mass eigenstates.

We therefore conclude that the maximally allowed number
of texture zeros in Yν is two. The Yν textures to be analyzed
are of the type

T1∶

0
B@

0 ×

× 0

× ×

1
CA; T2∶

0
B@

0 ×

× ×

× 0

1
CA; T3∶

0
B@
× ×

0 ×

× 0

1
CA;

T4∶

0
B@
× 0

0 ×

× ×

1
CA; T5∶

0
B@
× 0

× ×

0 ×

1
CA; T6∶

0
B@
× ×

× 0

0 ×

1
CA; ð11Þ

TABLE I. Neutrino oscillation parameters obtained from the
global analysis of Ref. [27] (see also Refs. [28,29]).

Parameter Best fit �1σ 3σ range

θ12ð°Þ 34.5þ1.1
−1.0 31.5 → 38.0

θ23ð°Þ [NO] 41.0� 1.1 38.3 → 52.8

θ23ð°Þ [IO] 50.5� 1.0 38.5 → 53.0

θ13ð°Þ [NO] 8.44þ0.18
−0.15 7.9 → 8.9

θ13ð°Þ [IO] 8.41þ0.16
−0.17 7.9 → 8.9

δð°Þ [NO] 252þ56
−36 0 → 360

δð°Þ [IO] 259þ41
þ47

0 → 31

142 → 360

Δm2
21ð×10−5 eV2Þ 7.56� 0.19 7.05 → 8.14

jΔm2
31jð×10−3 eV2Þ [NO] 2.55� 0.04 2.43 → 2.67

jΔm2
31jð×10−3 eV2Þ [IO] 2.49� 0.04 2.37 → 2.61

1From now on we will denote these two cases by normal (NH)
and inverted hierarchy (IH), respectively.
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where the symbol × denotes a generic nonvanishing
entry.
As for MR, with more than two texture zeros, at least

one of the RH neutrinos is massless. On the other hand,
with one texture zero, there are three different patterns
for MR:

R1∶
�
× 0

· ×

�
; R2∶

�
0 ×

· ×

�
; R3∶

�
× ×

· 0

�
; ð12Þ

with the dot ð·Þ indicating the symmetric nature of the
matrix. Combining them with the Yν textures (11) through
the seesaw formula (3), one obtains the textures for Mν

given in the third column of Table II. All cases A–F feature
the presence of one texture zero in Mν. Notice that sets of
ðYν;MRÞ textures related by simultaneous permutations of
the columns inYν, and lines and columns inMR, lead to the
sameMν due to the invariance of Eq. (3) under νR rotations.
Moreover, when MR is diagonal (texture R1), Mν is the
same for Yν textures related by a column permutation. For
instance, the sets ðT1;R1Þ and ðT4;R1Þ lead to the same
low-energy predictions since T1 and T4 are related by
column permutation.
The condition Mν

αβ ¼ 0 imposes relations among the
neutrino parameters. In particular, from Eq. (4) it is
straightforward to conclude that [31,32]

NH∶
m2

m3

¼ −
U�

α3U
�
β3

U�
α2U

�
β2

; ð13Þ

IH∶
m1

m2

¼ −
U�

α2U
�
β2

U�
α1U

�
β1

: ð14Þ

Taking into account that neutrino masses mi are real and
positive, m2

2 ¼ Δm2
21 (m2

2 ¼ Δm2
21 þ jΔm2

31j) and m2
3 ¼

Δm2
31 (m2

1 ¼ jΔm2
31j) for NH (IH). Thus, we have

NH∶ rν ¼
����U�

α3U
�
β3

U�
α2U

�
β2

����2; ð15Þ

IH∶
1

1þ rν
¼
����U�

α2U
�
β2

U�
α1U

�
β1

����2; rν ≡ Δm2
21

jΔm2
31j

: ð16Þ

Given the parametrization in Eq. (6), and the exper-
imentally allowed ranges for the mixing angles presented
in Table I, one can test which textures lead to viable values
of rν using the above relations. From all cases, the simplest
one to be analyzed is texture A, for which rν is simply
given by

NH∶ rν ¼
t413
s412

≃ 0.005; IH∶ rν ¼
1

t412
− 1 ≃ 3.5: ð17Þ

These numerical estimates, obtained using the best-fit
values given in Table I, indicate that texture A is disfavored
by data, independently of the value of δ.
By varying the mixing angles in their experimentally 1σ

and 3σ allowed regions,2 we plot rν as a function of δ in
Figs. 1 and 2 for NH and IH, respectively, using Eqs. (15)
and (16) together with Eq. (6). In light (dark) blue we show
the rν regions obtained when all mixing angles vary in their
3σ (1σ) experimental ranges. The horizontal pink bands
(red line) indicate the 3σ experimental range (best-fit value)
for rν. From these results, we conclude that all textures with
one zero inMν are incompatible with neutrino data at more
than the 3σ level for NH. In the context of the 2RHNSM
with texture zeros in Yν and MR, this means that all
combinations shown in Table II are excluded for that type
of neutrino mass spectrum. For IH (Fig. 2) and specific
ranges of δ, one obtains values for rν compatible with the
data at 1σ for textures B, C, and D, and only at 3σ for
texture F. Therefore, all combinations of textures forYν and
MR leading to textures B, C, D, and F for Mν are viable.
Notice that only textures B and C predict rν values in its 1σ
range, for δ around its best-fit value.

TABLE II. Textures for the effective neutrino mass matrix Mν

(third column) obtained with the seesaw formula given in Eq. (3),
and considering the textures T1–T6 for Yν (first column) and
R1–R3 for MR (second column). The check (✓) and cross (✗)
marks indicate whether or not the texture combination is
compatible with data.

Yν MR Mν NH IH

T1, T2 R2
A:

 
0 × ×
· × ×
· · ×

!
✗ ✗

T4, T5 R3

T1, T4 R1 B:

 × 0 ×
· × ×
· · ×

!
✗ ✓(1σ)

T2, T5 R1 C:

 × × 0

· × ×
· · ×

!
✗ ✓(1σ)

T3, T4 R2
D:

 × × ×
· 0 ×
· · ×

!
✗ ✓(1σ)

T1, T6 R3

T3, T6 R1 E:

 × × ×
· × 0

· · ×

!
✗ ✗

T5, T6 R2
F:

 × × ×
· × ×
· · 0

!
✗ ✓(3σ)

T2, T3 R3

2We will perform our analysis considering a diagonal charged-
lepton Yukawa matrix Yl

diag. At the end of this section, we will
comment on how the results change when the remaining five Yl

textures with six zeros are considered.
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Having identified the compatible textures, we now obtain
expressions for δ in terms of the mixing angles and rν using
Eq. (16). By imposing that the right-hand side of Eq. (14) is
real, we can obtain analytical expressions for the Majorana
phase α as a function of θij, rν, and δ. In Table III, we present
the results for cδ ≡ cos δ and cα ≡ cos α for textures B, C, D,

and F when the neutrino mass spectrum is of IH type. It is
worth mentioning that, although of different nature, δ and α
are not independent phases in our case. This is due to the
presence of zeros in the effective neutrino mass matrix.
Taking θij, Δm2

21, and Δm2
31 in their 3σð1σÞ experimental

ranges, we show in Fig. 3 the light (dark) blue allowed

FIG. 1. Predictions for rν as a function of δ in the NH case, using the 3σ (light blue) and 1σ (dark blue) ranges given in Table I for the
mixing angles θij. The horizontal pink band (red line) denotes the 3σ range (best-fit value) for rν [see Eq. (16)], obtained using the data
of Table I.

FIG. 2. Predictions for rν as a function of δ in the IH case, using the 3σ (light blue) and 1σ (dark blue) ranges given in Table I for the
mixing angles θij. The horizontal pink band (red line) denotes the 3σ range (best-fit value) for rν [see Eq. (16)], obtained using the data
of Table I.
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regions in the ðα; δÞ parameter space for textures B, C,D, and
F of Mν. We conclude that, for textures B and C, values of
δ ≃ 3π=2 close to the best-fit value are allowed (cf. Table I).
For such values of δ, α ≃ 1.9πð0.08πÞ is predicted for texture
B (C). In fact, for these textures

B∶ cδ ≃
rν sinð2θ12Þ
4s13t23

−
s13t23

tanð2θ12Þ
; ð18Þ

C∶ cδ ≃ −
rνt23 sinð2θ12Þ

4s13
þ s13
t23 tanð2θ12Þ

; ð19Þ

from which we see that jcδj ≪ 1, implying δ ≃�π=2.
Instead, for textures D and F,

D∶ cδ ≃
1

2s13t23 tanð2θ12Þ
; ð20Þ

F∶ cδ ≃ −
t23

2s13 tanð2θ12Þ
; ð21Þ

one obtains jcδj ∼Oð1Þ meaning that δ is far from �π=2.
Therefore, as anticipated above, only textures B andC lead to
δ values within the 1σ range of Table I. For textures D and F,
the obtained values for δ are out of the 1σ range, but still
within the 3σ one.
Presently, attempts to probe the Majorana nature of

neutrinos are mainly based on neutrinoless double-beta
decay (0νββ) experiments. The observation of 0νββ decay
would also provide a measurement of the neutrino mass
scale, since the rate of this process is related to the square
of the neutrino mass. A relevant quantity for 0νββ decay is
the effective mass mββ, which, for an IH neutrino mass
spectrum, is given by

TABLE III. Expressions for cos δ≡ cδ and cos α≡ cα for
textures B, C, D, and F.

Mν CP-violating phases

B cδ ¼ 2
½s4
12
ð1þrνÞ−c412�s223s213þrνc223s

2
12
c2
12

½s2
12
ð1þrνÞþc2

12
� sinð2θ12Þ sinð2θ23Þs13

cα ¼ ð2þrνÞc223s212c212−½s412ð1þrνÞþc4
12
�s2
23
s2
13

2
ffiffiffiffiffiffiffiffi
1þrν

p
ðc2

23
þs2

23
s2
13
Þs2

12
c2
12

C cδ ¼ −2 ½s4
12
ð1þrνÞ−c412�c223s213þrνs223s

2
12
c2
12

½s2
12
ð1þrνÞþc2

12
� sinð2θ12Þ sinð2θ23Þs13

cα ¼ ð2þrνÞs223s212c212−½s412ð1þrνÞþc4
12
�c2

23
s2
13

2
ffiffiffiffiffiffiffiffi
1þrν

p
ðs2

23
þc2

23
s2
13
Þs2

12
c2
12

D
cδ ¼ 2

ðc2
12

ffiffiffiffiffiffiffiffi
1þrν

p
−s2

12
Þc2

23
þðs2

12

ffiffiffiffiffiffiffiffi
1þrν

p
−c2

12
Þs2

23
s2
13

ð
ffiffiffiffiffiffiffiffi
1þrν

p
þ1Þ sinð2θ12Þ sinð2θ23Þs13

cα ≃ − 3þcosð4θ12Þ−16s213t223
2 sin2ð2θ12Þ

F
cδ ¼ 2

ðs2
12
−c2

12

ffiffiffiffiffiffiffiffi
1þrν

p
Þs2

23
þðc2

12
−s2

12

ffiffiffiffiffiffiffiffi
1þrν

p
Þc2

23
s2
13

ð
ffiffiffiffiffiffiffiffi
1þrν

p
þ1Þ sinð2θ12Þ sinð2θ23Þs13

cα ≃ − 3t2
23
þt2

23
cosð4θ12Þþ16s2

13

2t2
23
sin2ð2θ12Þ

FIG. 3. Predictions for the low-energy phases δ and α for
textures B, C, D, and F, using the 3σ (light blue) and 1σ (dark
blue) ranges given in Table I for the mixing angles and neutrino
mass-squared differences. The black dot corresponds to the
predictions obtained with the best-fit values of θij, Δm2

21, and
jΔm2

31j.
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mββ ¼
����X3
i¼1

miU2
1i

����
¼ c213jΔm2

31j1=2jc212 þ ð1þ rνÞ1=2s212eiαj: ð22Þ

Given that α is a function of θij, δ, and rν, in Fig. 4 we show
the allowed regions in the ðmββ; δÞ plane, taking into
account the experimental ranges for the neutrino parame-
ters (the color codes are the same as in previous figures).
The results are presented for textures B, C, D, and F,
where one can see that the value of mββ is around 50 meV
(15 meV) for textures B and C (D and F). These values are
compatible with all constraints coming from 0νββ decay
and cosmological experiments [33] for IH, but lie out of
the sensitivity range of leading experiments like EXO-200
[34], KamLAND-Zen [35], GERDA [36], and CUORE-0
[37]. Nevertheless, next-generation experiments will be
able to test the IH spectrum (for a general discussion about
future prospects and sensitivities of 0νββ decay experi-
ments see, e.g., Ref. [38]).
In the above analysis, we have studied the cases with one

texture zero in MR. Notice, however, that the maximally
allowed number of zeros in this matrix is actually two,
leading to a single possible texture

R4∶
�
0 ×

· 0

�
; ð23Þ

which is characterized by a spectrum with two degenerate
RH neutrinos. Combining through the seesaw formula (3)
the matrix R4 with all Yν textures presented in Eq. (11), one
obtains the textures for Mν given in the third column of
Table IV. One can see that in all cases Mν contains two
zeros, which have been tested individually above.3

Moreover, additional relations among the elements of
Mν (see fourth column of Table IV) arise due to the
specific form ofMR, which contains a single parameter. For
NH, all cases with R4 are excluded, since all textures with
one zero inMν were already shown to be incompatible with
data (see Table II). For IH, combinations leading to textures
A1 and A2 for Mν are excluded due to the condition
Mν

11 ¼ 0 (see Table II). As for texture D1, although the
conditions Mν

22 ¼ 0 and Mν
33 ¼ 0 are individually com-

patible with the data at 3σ, they cannot be simultaneously
verified, as one can see in Fig. 2, comparing the results for
textures D and F. Indeed, from these plots one concludes
that there is no overlap between the regions allowed by the
data for the same values of δ. This seems to contradict
previous results obtained in the literature which state that
textures withMν

22 ¼ Mν
33 ¼ 0 are compatible with the data

(see, e.g., Ref. [9]). Notice, however, that the results in
those references were obtained for a general neutrino

FIG. 4. Predictions for δ and mββ for textures B, C, D,
and F, using the 3σ (light blue) and 1σ (dark blue) ranges
given in Table I for the mixing angles and neutrino mass-
squared differences. The black dots correspond to the
predictions obtained with the best-fit values of θij, Δm2

21, and
jΔm2

31j.
3Analyses ofMν with two texture zeros have been presented in

Refs. [9,39–46] for the general case m1;2;3 ≠ 0.

MINIMAL TYPE-I SEESAW MODEL WITH MAXIMALLY … PHYS. REV. D 97, 115016 (2018)

115016-7



spectrum with m1;2;3 ≠ 0. One can understand why texture
D1 in our case (m3 ¼ 0) is not valid by inspecting the
relations between neutrino masses and U when the con-
ditions Mν

22 ¼ Mν
33 ¼ 0 are imposed, namely [41],

m3

m1

¼
����U2

22U
2
31 − U2

21U
2
32

U2
23U

2
32 − U2

22U
2
33

����; ð24Þ

m3

m2

¼
����U2

22U
2
31 − U2

21U
2
32

U2
21U

2
33 − U2

23U
2
31

����: ð25Þ

Therefore, if m3 ¼ 0 the condition

jU2
22U

2
31 − U2

21U
2
32j ¼ 0 ð26Þ

must be verified for texture D1. The above relation can be
approximately written as

cδ ≃
2 cosð2θ12Þ cosð2θ23Þ �

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosð4θ12Þ þ cosð4θ23Þ

p
4 sinð2θ12Þ sinð2θ23Þs13

;

ð27Þ

which, taking into account the current mixing angle data,
always leads to a complex cδ.
In conclusion, we have analyzed all possible textures

with six zeros in Yl, two zeros in Yν, and one or two zeros
in MR. The compatibility of all textures is summarized in
the last two columns of Tables II and IV, for NH and IH. We
remark that no restriction has been imposed on the nonzero
elements of those matrices.
The results presented above are valid in the basis where

Yl ¼ diagðye; yμ; yτÞ≡ Yl
diag so that the charged-lepton

mass matrix is Ml ¼ diagðme;mμ; mτÞ. One may wonder
whether these conclusions hold for any other Yl with six
zeros and only three nonzero elements. First, it is straight-
forward to see that any two nonzero elements in the same
line/column lead to a massless charged lepton. This leaves
us with six viable textures for Yl with six zeros, which can

be obtained from Yl
diag by applying permutations of lines

and/or columns:

L1∶

0
B@
× 0 0

0 × 0

0 0 ×

1
CA; L2∶

0
B@

0 × 0

× 0 0

0 0 ×

1
CA; L3∶

0
B@

0 0 ×

0 × 0

× 0 0

1
CA;

L4∶

0
B@
× 0 0

0 0 ×

0 × 0

1
CA; L5∶

0
B@

0 0 ×

× 0 0

0 × 0

1
CA; L6∶

0
B@

0 × 0

0 0 ×

× 0 0

1
CA:

ð28Þ
Obviously, if only column permutations (rotation of RH
charged-lepton fields) are performed, then the results for
a specific set of Yν and MR textures remain unchanged.
However, if a permutation of the lines i and j in Yl is
involved (rotation of LH charged-lepton fields by the
permutation matrix Pij), then the same line permutation
has to be performed in Yν. At the effective level, this
corresponds to permuting the lines and columns i and j in
the effective neutrino mass matrix Mν. Under these
rotations, textures T1–T6 of Yν and, consequently, A–F
of Mν, are transformed among themselves. Thus, even if a
given texture pair (Yν,MR) is not compatible with data in
the Yl

diag basis, this may not be the case in another Yl basis
obtained from a line permutation Pij.
To check the viability of a given set of textures

ðYl;Yν;MR;MνÞ ¼ ðLi;Ti;Ri;A − FÞ one has to identify
the permutation Pij which brings Li to Yl

diag, and find the
transformed Mν texture. For instance, consider the case
ðYl

diag;T3;R1;EÞ, shown in Table II to be incompatible

with data. Under P13, Yl
diag is transformed into L3, while

texture E becomes texture B, which is compatible with data
at 1σ. Therefore, although the set ðYl

diag;T3;R1;EÞ is not
viable, the set ðL3;T3;R1;EÞ is, since it corresponds to
ðYl

diag;T4;R1;BÞ under P13. In Table V we summarize the
transformation properties of each Mν texture under line
permutations Pij, identifying in each case the compatibility

TABLE IV. Textures for the effective neutrino mass matrix Mν

obtained with the seesaw formula given in Eq. (3), and consid-
ering the textures for Yν andMR presented in Eqs. (11) and (23).

Yν Mν Relation in Mν NH IH

T1, T4 A1:

 
0 × ×
· 0 ×
· · ×

!
Mν

33

2Mν
23

¼ Mν
13

Mν
12

✗ ✗

T2, T5 A2:

 
0 × ×
· × ×
· · 0

!
Mν

22

2Mν
23

¼ Mν
12

Mν
13

✗ ✗

T3, T6 D1:

 × × ×
· 0 ×
· · 0

!
Mν

11

2Mν
12

¼ Mν
13

Mν
23

✗ ✗

TABLE V. Transformation properties of Mν (textures A–F)
under Pij, which correspond to permutations of the charged-
lepton flavors i and j. The compatibility of each texture with data
is also indicated considering the results shown in Table II for the
case Yl ¼ Yl

diag.

Texture P12 P13 P23

A ✗ D ✓(1σ) F ✓(3σ) A ✗
B ✓(1σ) B ✓(1σ) E ✗ C ✓(1σ)

C ✓(1σ) E ✗ C ✓(1σ) B ✓(1σ)

D ✓(1σ) A ✗ D ✓(1σ) F ✓(3σ)

E ✗ C ✓(1σ) B ✓(1σ) E ✗

F ✓(3σ) F ✓(3σ) A ✗ D ✓(1σ)
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TABLE VI. Parameter relations (third and forth column) and low-energy predictions (sixth column) for each set of textures (Yν,MR,
Mν) with three equal elements in Yν (second column). The predicted values for the heavy neutrino mass ratio rN are also shown (last
column). The results correspond to the case Yl ¼ Yl

diag.

(Yν, MR, Mν)
Equal elements

in Yν Relations in Mν rN ≡M2=M1 IH

Low-energy predictions
ðθ12; θ23; θ13Þ°

ðΔm2
31;Δm2

21Þ × 10−3 eV2

ðδ; αÞ° mββðmeVÞ rN

(T1, R1, B)

(21,31,12) Mν
22 ¼ Mν

23 rN ¼
���Mν

22

Mν
11

���
✓(3σ)

(34.5,45.0,8.41)
ð2.49; 7.56 × 10−2Þ
(269.7,342.2),47.8

1.91

(21,31,32)
Mν

11
ðMν

33
−Mν

22
Þ

ðMν
13
Þ2 ¼ 1 rN ¼

���Mν
11
Mν

22

ðMν
13
Þ2
��� 12.00

(21,12,32) Mν
11 ¼ Mν

13 rN ¼
���Mν

22

Mν
11

���
✗ � � � � � �

(31,12,32)
Mν

22
ðMν

33
−Mν

11
Þ

ðMν
23
Þ2 ¼ 1 rN ¼

��� ðMν
23
Þ2

Mν
11
Mν

22

���

(T2, R1, C)

(21,31,12) Mν
23 ¼ Mν

33, rN ¼
���Mν

33

Mν
11

���
✓(3σ)

(34.5,45.0,8.40)
ð2.49; 7.56 × 10−2Þ
(270.3,17.8),47.8

1.91

(21,31,22)
Mν

11
ðMν

22
−Mν

33
Þ

ðMν
12
Þ2 ¼ 1 rN ¼

���Mν
11
Mν

33

ðMν
12
Þ2
��� 12.00

(21,12,22) Mν
11 ¼ Mν

12, rN ¼
��� ðMν

23
Þ2

Mν
11
Mν

33

���
✗ � � � � � �

(31,12,22)
Mν

33
ðMν

22
−Mν

11
Þ

ðMν
23
Þ2 ¼ 1 rN ¼

���Mν
33

Mν
11

���

(T3, R2, D)

(11,31,12)
Mν

12 ¼ Mν
23

rN−1
rN−

ffiffiffiffi
rN

p −1 ¼
���Mν

33

Mν
13

���
✗ � � � � � �

(11,31,22)
ffiffiffiffi
rN

p
rN−1

¼
���Mν

23

Mν
33

���
(11,12,22) Mν

33
ðMν

11
−2Mν

12
Þ

ðMν
13
−Mν

23
Þ2 ¼ 1

ffiffiffiffi
rN

p
rN−1

¼
��� ðMν

23
Þ2

Mν
12
Mν

33

���
✗ � � � � � �

(31,12,22)
ffiffiffiffi
rN

p
rN−1

¼
���Mν

23

Mν
33

���

(T6, R2, F)

(11,21,12)
Mν

13 ¼ Mν
23

rN−1
rN−

ffiffiffiffi
rN

p −1 ¼
���Mν

22

Mν
12

���
✗ � � � � � �

(11,21,32)
ffiffiffiffi
rN

p
rN−1

¼
���Mν

23

Mν
22

���
(11,12,32) Mν

22
ðMν

11
−2Mν

13
Þ

ðMν
12
−Mν

23
Þ2 ¼ 1

ffiffiffiffi
rN

p
rN−1

¼
��� ðMν

23
Þ2

Mν
13
Mν

22

���
✗ � � � � � �

(21,12,32)
ffiffiffiffi
rN

p
rN−1

¼
���Mν

23

Mν
22

���

(T1, R3, D)

(21,31,12) Mν
11
ðMν

33
−2Mν

23
Þ

ðMν
13
−Mν

12
Þ2 ¼ 1

ffiffiffiffi
rN

p
rN−1

¼
���Mν

12

Mν
11

���
✓(3σ)

(37.1,45.0,8.46)
ð2.49; 7.56 × 10−2Þ
(347.1,172.7),13.2

1.46

(21,31,32)
ffiffiffiffi
rN

p
rN−1

¼
��� ðMν

12
Þ2

Mν
11
Mν

23

��� 1.08

(21,12,32)
Mν

12 ¼ Mν
23

ffiffiffiffi
rN

p
rN−1

¼
���Mν

12

Mν
11

���
✗ � � � � � �

(31,12,32) rN−1
rN−

ffiffiffiffi
rN

p −1 ¼
���Mν

11

Mν
13

���

(T2, R3, F)

(21,31,12) Mν
11
ðMν

22
−2Mν

23
Þ

ðMν
13
−Mν

12
Þ2 ¼ 1

ffiffiffiffi
rN

p
rN−1

¼
���Mν

13

Mν
11

���
✓(3σ)

(36.9,45.0,8.46)
ð2.49; 7.56 × 10−2Þ
(188.5,184.8),13.2

1.46

(21,31,22)
ffiffiffiffi
rN

p
rN−1

¼
��� ðMν

13
Þ2

Mν
11
Mν

23

��� 1.08

(21,12,22)
Mν

13 ¼ Mν
23

rN−1
rN−

ffiffiffiffi
rN

p −1 ¼
���Mν

11

Mν
12

���
✗ � � � � � �

(31,12,22)
ffiffiffiffi
rN

p
rN−1

¼
���Mν

13

Mν
11

���
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with data taking into account the results obtained for Yl
diag

given in Table II.
Notice that when MR is of type R4, the results presented

in Table IV are valid for any Yl texture of type Li. This is
due to the fact that, under any permutation of lines and/or
columns in Yl, textures A1;2 and D1 (which are all
excluded by data) transform among themselves.

A. Imposing relations among the elements of Yν

We now intend to further restrict the two texture-zero
patterns analyzed above by imposing equality relations
among the elements of Yν. The first obvious choice would
be to consider all elements in Yν to be equal. However, one
can show that the eigenvector associated to m3 ¼ 0 is
always v3 ¼ ð∓ 1;−1; 1Þ= ffiffiffi

3
p

, leading to s13 ¼ �1=
ffiffiffi
3

p
,

which is excluded by the data. Thus, we move to the
analysis of textures with two zeros in Yν and three equal
elements. Each case will be denoted by the labels of Yν,
MR, and corresponding Mν (see first column of Table VI),
and indices of the Yν equal elements (see second column of
Table VI). For instance, the cases with Yν

21 ¼ Yν
31 ¼ Yν

12

are denoted by (21,31,12). Due to the highly constrained
form of the involved matrices, extra relations among the
elements of Mν arise. These are shown in the third column
of Table VI for all possible combinations. Compatibility
with neutrino data is determined by checking whether these
relations are verified when taking the allowed ranges for the
neutrino parameters given in Table I. Also notice that the
heavy Majorana neutrino masses and the elements of Mν

are related. In particular, defining the ratio

rN ¼ M2

M1

; ð29Þ

where M2;1 are the eigenvalues of MR, we obtain the
relations shown in the fourth column of Table VI. Our
analysis shows that only eight combinations are compatible
with neutrino data at the 3σ level (see fifth and sixth
columns of Table VI). The low-energy predictions for the
neutrino parameters correspond to the case in which the
data is best fitted. It is possible to show analytically that,
for all compatible sets of matrices, θ23 ¼ π=4, which is
confirmed by the numerical result. It is worth mentioning
that any texture combination obtained from those presented
in Table VI by permuting the columns of Yν will remain
valid. For instance, the first case shown in Table VI
becomes (T4, R1, B) with equal elements (11,22,32),
leading to the same predictions. Therefore, there are
actually 16 different cases that are compatible with the
data. As mentioned above, the equality among elements of
Yν fixes the value of rN , which is indicated in the last
column of Table VI. From inspection of the same table, one
can also conclude that none of the texture configurations
are compatible with the data at 1σ.
As in the analysis presented in the previous section, the

results obtained with equal Yν elements correspond to
Yl ¼ Yl

diag. For a different Yl texture related to Yl
diag by

permutations of lines (and columns), the Yν textures trans-
form among themselves, and the equal elements of Yν

change position. Thus, combinations which are incompat-
iblewith data (seeTableVI) in the charged-leptonmass basis
may become compatible for a nondiagonal Yl, related to
Yl

diag by a permutation of lines. In Table VII we summarize
the transformation properties of each combination
ðTi;Ri;A–FÞ with equal Yν elements under line permuta-
tions Pij (and up to a possible column permutation). In each
case, we identify the compatibility with data taking into
account the results given in Table VI for Yl ¼ Yl

diag.

TABLE VII. Transformation properties under the permutation
matrix Pij (permutations of the charged-lepton flavors i and j)
for the texture combination (Yν,MR,Mν)with three equal elements
in Yν. The compatibility of each texture with data is also indicated
considering the results shown in Table VI for Yl ¼ Yl

diag. The
check marks (✓) indicate compatibility with data at 3σ.

Texture P12 P13 P23

(T1, R1, B) (T1, R1, B) (T6, R1, E) (T2, R1, C)

(21,31,12) ✓ (21,12,32) ✗

✗

(21,31,12) ✓
(21,31,32) ✓ (31,12,32) ✗ (21,31,22) ✓
(21,12,32) ✗ (21,31,12) ✓ (31,12,22) ✗
(31,12,32) ✗ (21,31,32) ✓ (21,12,22) ✗

(T2, R1, C) (T3, R1, E) (T2, R1, C) (T1, R1, B)

(21,31,12) ✓

✗

(31,12,22) ✗ (21,31,12) ✓
(21,31,22) ✓ (21,12,22) ✗ (21,31,32) ✓
(21,12,22) ✗ (21,31,22) ✓ (31,12,32) ✗
(31,12,22) ✗ (21,31,12) ✓ (21,12,32) ✗

(T3, R2, D) (T2, R2, A) (T1, R3, D) (T6, R2, F)

(11,31,12) ✗

✗

(31,12,32) ✗ (11,21,12) ✗
(11,31,22) ✗ (21,12,32) ✗ (11,21,32) ✗
(11,12,22) ✗ (21,31,32) ✓ (11,12,32) ✗
(31,12,22) ✗ (21,31,12) ✓ (21,12,32) ✗

(T6, R2, F) (T2, R3, F) (T1, R2, A) (T3, R2, D)

(11,21,12) ✗ (21,12,22) ✗

✗

(11,31,12) ✗
(11,21,32) ✗ (31,12,22) ✗ (11,31,22) ✗
(11,12,32) ✗ (21,31,22) ✓ (11,12,22) ✗
(21,12,32) ✗ (21,31,12) ✓ (31,12,22) ✗

(T1, R3, D) (T4, R3, A) (T3, R2, D) (T2, R3, F)

(21,31,12) ✓

✗

(31,12,22) ✗ (21,31,12) ✓
(21,31,32) ✓ (11,12,22) ✗ (21,31,22) ✓
(21,12,32) ✗ (11,31,22) ✗ (31,12,22) ✗
(31,12,32) ✗ (11,31,12) ✗ (21,12,22) ✗

(T2, R3, F) (T6, R2, F) (T5, R3, A) (T1, R3, D)

(21,31,12) ✓ (21,12,32) ✗

✗

(21,31,12) ✓
(21,31,22) ✓ (11,12,32) ✗ (21,31,32) ✓
(21,12,22) ✗ (11,21,12) ✗ (31,12,32) ✗
(31,12,22) ✗ (11,21,32) ✗ (21,12,32) ✗
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IV. LEPTOGENESIS IN THE 2RHNSM WITH
TEXTURE ZEROS

In the previous sections, several mass matrix patterns
were found to be compatible with current neutrino oscil-
lation data at 1σ and 3σ C.L., in the framework of the
minimal type-I seesaw model with maximally restricted
texture zeros. Here, we further analyze these patterns by
requiring their compatibility with successful leptogenesis
[2]. We recall that the baryon asymmetry of the Universe is
parametrized through the baryon-to-photon ratio

ηB ≡ nB − nB̄
nγ

; ð30Þ

where nB, nB̄, and nγ are the number densities of baryons,
antibaryons, and photons, respectively. From cosmic
microwave background measurements provided by the
Planck Collaboration [47], the present value of ηB is

η0B ¼ ð6.11� 0.04Þ × 10−10: ð31Þ
In a minimal type-I seesaw context with two right-

handed neutrinos, the leptogenesis mechanism may pro-
ceed via the out-of-equilibrium decays of the heavy
neutrinos N1 and N2 in the early Universe. The generated
lepton asymmetry in such decays is partially converted into
a baryon asymmetry by (Bþ L)-violating sphaleron proc-
esses, leading to [48]

ηB ¼ asph
NB−L

Nrec
γ

≃ 9.58 × 10−3NB−L; ð32Þ

where asph ≡ B=ðB − LÞ ¼ 28=79 is the conversion factor,
NB−L is the final asymmetry calculated in a comoving
volume, and Nrec

γ is the number of photons in the same
volume (Nrec

γ ≃ 37.01) at the recombination temperature.

A. Flavored and unflavored CP asymmetries

An important ingredient in the generation of the BAU is
the CP asymmetry produced in the decays of the heavy
neutrinos into the lepton flavors α ¼ e, μ, τ. Working in the
mass eigenbasis of the heavy neutrinos Ni and the charged
leptons lα, the CP asymmetries ϵαi are computed as [49]

ϵαi ¼
ΓðNi → ΦlαÞ − ΓðNi → Φ†l̄αÞP
β½ΓðNi → ΦlβÞ þ ΓðNi → Φ†l̄βÞ�

; ð33Þ

where ΓðNi → ΦlαÞ≡ Γα
i and ΓðNi → Φ†l̄αÞ≡ Γ̄α

i are
theNi decay rates into leptons and antileptons, respectively.
At tree level,

Γα
i ¼ Γ̄α

i ¼ Mi
jYν

αij2
16π

; ð34Þ

with the sum in the denominator of Eq. (33) running over
the three lepton flavors. The leading nonzero contributions

to the asymmetry ϵαi arise from interference of the tree-level
process with its one-loop corrections. For the two-RH-
neutrino case, the result is [10]

ϵαi ¼
1

8π

1

Hν
ii
fIm½Yν�

αiH
ν
ijY

ν
αj�½fðxjÞ þ gðxjÞ�

þ Im½Yν�
αiH

ν
jiY

ν
αj�g0ðxjÞg; ð35Þ

where j ≠ i ¼ 1, 2, xj ¼ M2
j=M

2
i , and Hν ¼ Yν†Yν.

The loop functions fðxÞ, gðxÞ, and g0ðxÞ correspond to
the one-loop vertex and self-energy corrections, given by

fðxÞ ¼ ffiffiffi
x

p �
1 − ð1 − xÞ ln

�
1þ 1

x

��
; ð36Þ

gðxÞ ¼ ffiffiffi
x

p
g0ðxÞ ¼ −

ffiffiffi
x

p
ðx − 1Þ : ð37Þ

Summing over the lepton flavors in Eq. (35), the unflavored
CP asymmetry is recovered,

ϵi ¼
1

8π

1

Hν
ii
Im½ðHν

ijÞ2�½fðxjÞ þ gðxjÞ�: ð38Þ

In our study, two temperature regimes will be of
interest [20,50–52]. For temperatures above 1012 GeV
in the early Universe, the charged-lepton Yukawa inter-
actions are out of equilibrium. Hence, for this temperature
range, the three lepton flavors are indistinguishable
(unflavored regime), and the lepton asymmetry may be
represented rigorously by a single flavor eigenstate.
In this case, the relevant CP asymmetry for leptogenesis
is given by Eq. (38). In the temperature interval
109 ≲ T ≲ 1012 GeV, the τ Yukawa interactions enter
thermal equilibrium and processes involving leptons
are able to distinguish between two different flavors:
the τ and a coherent superposition of e and μ (two-
flavored regime). The corresponding CP asymmetries, ϵτi
and ϵγi ≡ ϵei þ ϵμi , are then obtained from Eq. (35).
The CP asymmetries given in Eq. (35) depend on the

Yukawa coupling matrix Yν, which can be written in terms
of the Casas-Ibarra parametrization presented in Eq. (9).
This allows to rewrite the asymmetry in a more convenient
form for leptogenesis analysis,

ϵαi ¼ −
1

8πv2
MjP

kmkjRkij2
X
k;k0

ffiffiffiffiffiffi
mk

p
mk0

×

� ffiffiffiffiffiffiffi
mk0

p
Im½U�

αkUαk0RkiRk0i�½fðxjÞ þ gðxjÞ�

þ
X
k00

ffiffiffiffiffiffiffiffi
mk00

p
Im½U�

αkUαk00RkiR�
k0iRk0jR�

k00j�g0ðxjÞ
	
;

ð39Þ
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where the orthogonal matrix R is parametrized by a
single complex parameter z, as shown in Eq. (10).
For an inverted-hierarchical neutrino mass spectrum,4

the flavored asymmetries generated by N1 and N2 decays
are written in terms of z as

ϵα1 ¼ −
M2

8πv2
Aα
1½fðx2Þ þ gðx2Þ� þ Bα

1g
0ðx2Þ

m1jczj2 þm2jszj2
; ð40Þ

ϵα2 ¼ −
M1

8πv2
Aα
2½fðx1Þ þ gðx1Þ� þ Bα

2g
0ðx1Þ

m1jszj2 þm2jczj2
; ð41Þ

where cz ≡ cos z, sz ≡ sin z, and

Aα
1 ¼ ðm2

2jUα2j2 −m2
1jUα1j2ÞIm½s2z � þ ξ

ffiffiffiffiffiffiffiffiffiffiffiffi
m1m2

p

× fðm2 −m1ÞIm½U�
α1Uα2�Re½czsz�

þ ðm2 þm1ÞRe½U�
α1Uα2�Im½czsz�g; ð42Þ

Bα
1 ¼ m1m2ðjUα2j2 − jUα1j2ÞIm½c2zðs2zÞ�� þ ξ

ffiffiffiffiffiffiffiffiffiffiffiffi
m1m2

p

× fðjczj2 þ jszj2Þðm2 −m1ÞIm½U�
α1Uα2�Re½czs�z �

þ ðjczj2 − jszj2Þðm2 þm1ÞRe½U�
α1Uα2�Im½czs�z �g:

ð43Þ

The factors Aα
2 and Bα

2 are obtained by replacing sz → cz,
cz → sz, and ξ → −ξ in Eqs. (42) and (43), respectively.
These factors have the following properties:X

α

Aα
1 ¼ Δm2

21Im½s2z �;X
α

Aα
2 ¼ Δm2

21Im½c2z �;X
α

Bα
i ¼ 0: ð44Þ

Using these relations, the unflavored CP asymmetries (38)
are easily obtained,

ϵ1 ¼ −
M2

8πv2
Δm2

21Im½s2z �
m1jczj2 þm2jszj2

½fðx2Þ þ gðx2Þ�; ð45Þ

ϵ2 ¼ −
M1

8πv2
Δm2

21Im½c2z �
m1jszj2 þm2jczj2

½fðx1Þ þ gðx1Þ�: ð46Þ

The presence of a texture zero in Yν allows for the
determination of z in terms of low-energy parameters and
M1;2, as one may see from Eq. (9). For instance, in the basis
where the charged-lepton and RH neutrino mass matrices
are diagonal, the condition Yν

11 ¼ 0 implies, for IH,

ffiffiffiffiffiffi
m1

p
U�

11cz þ ξ
ffiffiffiffiffiffi
m2

p
U�

12sz ¼ 0; ð47Þ

leading to

tan z ¼ −ξ
ffiffiffiffiffiffi
m1

m2

r
U�

11

U�
12

: ð48Þ

In Table VIII, we present the expressions for tan z accord-
ing to the position of the texture zero in Yν and considering
the matrix forms R1;2;3 for MR. From this table it is
straightforward to see that requiring the presence of two
simultaneous zeros in Yν leads to relations among the
mixing angles, neutrino masses, and the low-energy phases,
as expected from Eq. (14). Replacing in Eqs. (40) and (41)
the expressions for tan z given in Table VIII, and using the
low-energy relations of Table III, we obtain predictions for
the flavored CP asymmetries ϵτi and ϵ

γ
i , for each of the valid

texture-zero cases identified in Sec. III.
It turns out that, even if one considers a single texture

zero in Yν, the CP asymmetries are highly suppressed in
the flavored regime. As an illustration, in Fig. 5 we show
the asymmetries jϵγi j and jϵτi j, i ¼ 1, 2 for the case R1 and
Yν

11 ¼ 0 in the plane (α,δ) of the low-energy CP-violating
phases. The maximum value for the CP asymmetries
(grayscale) is presented for the 3σ range of the mixing
angles and the neutrino mass-squared differences. Notice
that we have imposed M2 ≳ 3M1 to ensure a nonresonant
regime, and 109 ≲M1;2 ≲ 1012 GeV since μ and e inter-
actions are in equilibrium. In the same plot, the jϵαi j values
calculated for the minimum of χ2 (varying the mixing
angles and mass-squared differences) are presented as
colored lines. The points marked by triangles and squares
correspond to (α, δ) fixed by the two-zero conditionsYν

11 ¼
Yν

22 ¼ 0 and Yν
11 ¼ Yν

32 ¼ 0, respectively, i.e., textures B
and C for Mν (see Table II). We may also see that for the
whole δ and α ranges, the obtained CP asymmetries are
highly suppressed, as the maximum values are below 10−6.
Moreover, jϵαi j ≲ 10−7 for (α, δ) fixed by textures B and C.
Thus, for the case with Yν

11 ¼ 0 and R1, the CP asymme-
tries are too small to ensure efficient leptogenesis. One can
show that all other combinations of textures with zeros in
Yν and MR allowed by neutrino data yield similar results.

TABLE VIII. Expressions for tan z as a function of the low-
energy parameters and the heavy-neutrino massesM1 andM2, for
each texture in the IH case.

MR tan z for Yν
α1 ¼ 0 tan z for Yν

α2 ¼ 0

R1 −ξ
ffiffiffiffiffi
m1

m2

q
U�

α1
U�

α2 ξ
ffiffiffiffiffi
m2

m1

q
U�

α2
U�

α1

R2 i −i ffiffiffiffiffim1
p

M1U�
α1þξ

ffiffiffiffiffi
m2

p
M2U�

α2ffiffiffiffiffi
m1

p
M2U�

α1þiξ
ffiffiffiffiffi
m2

p
M1U�

α2

R3
i
ffiffiffiffiffi
m1

p
M1U�

α1þξ
ffiffiffiffiffi
m2

p
M2U�

α2ffiffiffiffiffi
m1

p
M2U�

α1−iξ
ffiffiffiffiffi
m2

p
M1U�

α2

i

4Hereafter, we consider only the IH case since, as shown in
Sec. III, this is the only type of spectrum compatible with low-
energy neutrino data.
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We conclude that thermal leptogenesis in the flavored
regime with 109 ≲ T ≲ 1012 GeV cannot successfully
reproduce the observed baryon asymmetry given in
Eq. (31). This conclusion will be corroborated in the next
section when the final baryon asymmetry is computed.
Let us consider now the unflavored regime. In this case,

the CP asymmetries (38) are enhanced. For each of
the valid two-zero textures, the CP asymmetries ϵ1 and
ϵ2 given in Eqs. (45) and (46) are computed using the
expressions of Tables VIII and III. In Fig. 6, we present
jϵ1j (blue contour regions) and jϵ2j (grayscale contour
lines) in the ðrN;M1Þ plane, for the low-energy neutrino
parameters that best fit the 2RHNSM with Yν and MR
textures (T,R). We only show the results for the six
combinations (T1;5, R1), (T3;4, R2), and (T1;6, R3) that
lead to ηB > 0. From the same plot we see that the
maximum values for jϵij can now reach 10−4, which is
2 orders of magnitude higher than the ones in the flavored
regime (cf. Fig. 5). Furthermore, as the ratio rN increases,
the CP asymmetry jϵ2j gets slightly suppressed with
respect to jϵ1j.

B. Baryon asymmetry production

In the calculation of the final lepton asymmetry we will
consider the contributions of bothN1 andN2. In the flavored
and unflavored regimes, the leptonic CP asymmetries

generated in the Ni decays are most likely washed out by
the out-of-equilibrium inverse decays and scattering proc-
esses in which the heavy neutrinos participate. In general, a
measure of the washout strength is given by the so-called
decay parameter Ki, which for a lepton flavor channel α
reads

Kα
i ¼

m̃α
i

m�
; ð49Þ

where m̃α
i is the flavored effective neutrino mass,

m̃α
i ¼

v2jYν
αij2

Mi
; ð50Þ

and m� ≃ 1.09 × 10−3 eV is the equilibrium neutrino mass.
Summing over flavors in Eq. (49), one obtains the total
decay parameter,

Ki ¼
X
α

Kα
i ¼

m̃i

m�
; ð51Þ

with

m̃i ¼
X
α

m̃α
i ¼

v2Hν
ii

Mi
: ð52Þ

FIG. 6. Unflavored CP asymmetries jϵij, i ¼ 1, 2 in the plane
(rN , M1), rN ¼ M2=M1, for the low-energy neutrino parameters
that best fit the texture pairs (T,R). The blue contour regions
(grayscale contour lines) show jϵ1j (jϵ2j).

FIG. 5. Flavored CP asymmetries jϵγ1;2j and jϵτ1;2j as functions
of the low-energy CP-violating phases α and δ, for the texture-
zero case Yν

11 ¼ 0 and R1. The grayscale contour regions show
the maximum values of jϵαi j, taking θij, Δm2

21, and jΔm2
31j in the

3σ experimental range (see Table I) and for 109 ≲M1;2 ≲
1012 GeV with M2 ≳ 3M1. The colored contour lines are the
results obtained for the minimum value of χ2. In the plot, the
triangles and squares correspond to the (α, δ) pairs fixed by
the conditions Yν

11 ¼ Yν
22 ¼ 0 and Yν

11 ¼ Yν
32 ¼ 0, respectively

(cf. textures B and C in Table II).
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The relation between m̃i and m� gives a measure of thermal
equilibrium for the decays, namely, if m̃i ≫ m� (m̃i ≪ m�)
the asymmetry is strongly (weakly) washed out by inverse
decays.
The fraction of surviving lepton asymmetry can be

expressed in terms of efficiency factors κ ∈ ½0; 1�, which
are obtained by solving the relevant Boltzmann equations.
In our study, we will use instead the simple and accurate
analytical approximations for καi ðKα

i Þ and κiðKiÞ from
Refs. [3,48], respectively. The imposed hierarchy M2 ≳
3M1 implies NN1

ðT ∼M2Þ ≃ NN2
ðT ∼M1Þ ≃ 0, so that the

computation of the final asymmetry may be split into the
N1 andN2 leptogenesis phases. Furthermore, we consider a
strong-coupling N1 scenario, where part of the lepton
asymmetry generated by N2 decays is projected onto a
flavor direction protected against the washout from N1

interactions [48].
The final (B − L) asymmetry for the flavored temper-

ature regime can be written as [48]

NB−L ¼ NΔγ1
þ NΔγ⊥

1

þ NΔτ
; ð53Þ

where the Δα ≡ B=3 − Lα number densities in each flavor
state read

NΔγ1
≃ −Pγ2γ1ϵ

γ
2κ

γ
2e

−3π
8
Kγ

1 − ϵγ1κ
γ
1; ð54Þ

NΔτ
≃ −ϵτ2κτ2e−

3π
8
Kτ

1 − ϵτ1κ
τ
1; ð55Þ

NΔ
γ⊥
1

≃ −ð1 − Pγ2γ1Þϵγ2κγ2; ð56Þ

in which γ1 and γ⊥1 are the parallel and orthogonal flavor
components to the interaction channels of N1, respectively.
Here, καi are the efficiency factors defined in Ref. [48],
and Pγ2γ1 is the probability of flavor γ2, generated in the
N2 decay, to be transformed into γ1 under the N1 decay
process,

Pγ2γ1 ¼
jPαY

ν�
α1Y

ν
α2j2

ðPαjYν
α1j2Þð

P
αjYν

α2j2Þ
; ð57Þ

where α ¼ e, μ.
In the unflavored regime, the lepton flavors are indis-

tinguishable in the primordial plasma and the final (B − L)
asymmetry reads [53]

NB−L ≃ −ϵ1κ1 − ð1 − P21 þ P21e−
3πK1
8 Þϵ2κ2; ð58Þ

where κi was defined in Ref. [3]. Here, P21 is the
probability of the lepton asymmetry produced in N2

leptogenesis being projected onto the flavor direction of
the asymmetry due to N1 interactions,

FIG. 7. Baryon-to-photon ratio ηB as a function of the low-
energyCP-violating phases α and δ in the flavored regime, for the
texture-zero case Yν

11 ¼ 0 and R1. The grayscale contour regions
show the maximum value of ηB, taking θij, Δm2

21, and jΔm2
31j in

the 3σ experimental range (see Table I) and for 109 ≲M1;2 ≲
1012 GeV with M2 ≳ 3M1. The colored contour lines are the
results obtained for the minimum value of χ2. In the plot,
the triangles and squares correspond to the (α,δ) pairs fixed by
the conditions Yν

11 ¼ Yν
22 ¼ 0 and Yν

11 ¼ Yν
32 ¼ 0, respectively

(cf. textures B and C in Table II). FIG. 8. The baryon-to-photon ratio ηB in the plane (rN , M1),
rN ¼ M2=M1, for the unflavored regime and taking the low-
energy neutrino parameters that best fit the texture pairs (T,R).
The grayscale contour regions represent the final value of ηB,
while the red contour line corresponds to the observed value η0B
given in Eq. (31).
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P21 ¼
jHν

12j2
Hν

11H
ν
22

: ð59Þ

After computing the densities NB−L, for both flavored and
unflavored regimes, using Eqs. (53) and (58), the final
baryon-to-photon ratio ηB is obtained from Eq. (32).
In Fig. 7, we present ηB computed for the illustrative

case of Yν
11 ¼ 0 with R1, for which the flavored CP

asymmetries were already analyzed in Sec. IVA. In that
figure, the grayscale contour regions correspond to the
maximum of ηB in the 3σ experimental range of the
mixing angles and the neutrino mass-squared differences,
taking 109 ≲M1;2 ≲ 1012 GeV. As expected from the
small values of jϵαi j (see Fig. 5), the final baryon
asymmetry is suppressed in the whole allowed parameter
region. Indeed, the final ηB lies between 1 to 2 orders of
magnitude below the observed value η0B. Moreover, for the
Mν textures B and C, marked in the figure by a triangle
and a square, respectively, ηB ≲ 10−12 is verified. For all
of the other combinations of textures T and R that are
compatible with neutrino oscillation data, similar results
are obtained for the flavored regime, corroborating the
fact that thermal leptogenesis in the two-flavor case is not
viable.
For the unflavored regime, sufficiently large (and positive)

values for ηB are obtained for 6 of the 12 pairs (T,R) of
textures compatible with neutrino data (see Table II). This is
shown inFig. 8,wherewe present the predicted ηB (grayscale
contour regions) as a function of M1 and the mass ratio rN ,
considering the low-energy neutrino data that best fit the
six textures. In fact, for all of these cases, the observed
baryon-to-photon ratio η0B (red contour line in Fig. 8) is
achieved for M1 ∼ 1014 GeV, where κi ∼Oð10−3Þ (strong
washout regime). Hence, one concludes that the texture

combinations (T1;5, R1), (T3;4, R2), and (T1;6, R3) lead to
successful thermal leptogenesis in the unflavored regime.
One may wonder whether the above conclusion remains

valid if one considers the more restricted cases discussed in
Sec. III A, in which three elements of Yν are equal. We will
only consider the cases that were proved to be compatible
with neutrino data and, additionally, verify the condition
rN ≳ 3, for which our leptogenesis assumptions hold. From
Table VI and Fig. 8, one can see that only the cases
(T1, R1, B) with Yν

21 ¼ Yν
31 ¼ Yν

32 and (T5, R1, C) with
Yν

21 ¼ Yν
22 ¼ Yν

32 meet those requirements (rN ∼ 12) and,
simultaneously, yield ηB > 0. In Fig. 9, we present the ηB
region allowed by the 3σ experimental interval for the low-
energy neutrino parameters (blue region) as a function of
the mass M1. Here we also show the results obtained when
the contribution of the second neutrino N2 is not taken into
account for leptogenesis (gray region). One concludes that
for temperatures below 1014 GeV the effect of the second
neutrino N2 is negligible, while for higher temperatures the
N2 contribution tends to lower ηB. The value of η0B (red
horizontal line) is achieved for masses M1 ∼ 1014 GeV.

V. CONCLUSIONS

In this paper, we have revisited the 2RHNSM consid-
ering maximally restricted texture-zero patterns for the
lepton Yukawa and mass matrices. Our results are sum-
marized in Table II. We conclude that textures B, C, and D
for the effective neutrino mass matrix Mν are compatible
with current neutrino data (mixing angles and mass-
squared differences) at 1σ, while texture F is compatible
at 3σ. In all cases, only an inverted-hierarchical neutrino
mass spectrum is allowed. A remarkable prediction of
textures B and C is that one of the viable solutions for the

FIG. 9. Baryon-to-photon ratio ηB as a function ofM1 for the cases (T1, R1, B) with Yν
21 ¼ Yν

31 ¼ Yν
32 on the left, and (T5, R1, C) with

Yν
21 ¼ Yν

22 ¼ Yν
32 on the right, using the 3σ range for θij, Δm2

21, and jΔm2
31j given in Table I. The blue (gray) region corresponds to the

case where the contribution of N2 to the final asymmetry is (not) accounted for. The solid blue and gray lines are the ηB predictions
obtained using the low-energy parameters that best fit the considered textures (see Table VI). The horizontal red line represents the
present baryon-to-photon ratio η0B.
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low-energy CP-violating Dirac phase is δ ∼ 3π=2, which is
very close to the best-fit value obtained from the combined
fit of neutrino oscillation data.
Aiming at reducing the number of free parameters in the

model, we have also explored scenarios in which additional
relations (equality) among the Dirac neutrino Yukawa
couplings are imposed. The caseswith themaximumnumber
of equal elements in Yν which are compatible with neutrino
data are presented in Table VI. As can be seen from the table,
compatibility is only verified at the 3σ confidence level.
For the phenomenologically viable textures, we have

studied their implications for the BAU in the frame-
work of type-I seesaw thermal leptogenesis. We paid
special attention to the treatment of leptogenesis in the
2RHNSM. Contrary to what is customary in the literature,
where only the decay of the lightest heavy neutrino is
considered, we included the decays of both heavy
neutrinos in our analysis. Moreover, flavor effects that
arise from the fact that lepton interactions exit thermal
equilibrium at different temperatures in the early
Universe were taken into account. We considered two
temperature regimes for leptogenesis: the two-flavored
regime (109 ≲ T ≲ 1012 GeV) and the unflavored regime
(T ≳ 1012 GeV). Within our assumptions (M2 ≳ 3M1),
we showed that the CP asymmetries in the flavored
regime are too small to generate the required lepton
asymmetry for successful leptogenesis. On the other
hand, for the unflavored case the CP asymmetries are
enhanced, and the observed baryon-to-photon ratio is
achieved in the 2RHNSM for the texture combinations

(T1;5, R1), (T3;4, R2), and (T1;6, R3) for M1 ∼ 1014 GeV.
Furthermore, the cases (T1, R1) and (T5, R1), with three
equal elements in Yν in the positions (21,31,32) and
(21,22,32), respectively, were shown to also be compat-
ible with the present value of the baryon asymmetry for
the same leptogenesis temperature T ∼ 1014 GeV.
The nature of the flavor structure of the fermion sector in

the standard model and theories beyond it remains puzzling.
A common approach to address this problem is to assume
certain constraints on the coupling and/or mass matrices
in order to reduce the number of free parameters. The lepton
textures considered in this work were taken as the simplest
and most economical patterns that can be implemented in
the framework of the 2RHNSM. We have shown that the
maximally constrained 2RHNSM is compatible with current
neutrino oscillation data and can also explain the matter-
antimatter asymmetry in the Universe via the leptogenesis
mechanism. This conclusion holds for several mass matrix
textures with the maximal number of allowed zeros and, in a
more restricted set, having equal elements in the Dirac
Yukawa coupling matrix. It would be interesting to see if
such predictive textures could arise from a flavor symmetry
principle. This is a subject that certainly deserves to be further
explored [54].
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