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We study topological defects in the Georgi-Machacek model in a hierarchical symmetry breaking in
which extra triplets acquire vacuum expectation values before the doublet. We find a possibility of
topologically stable non-Abelian domain walls and non-Abelian flux tubes (vortices or cosmic strings) in
this model. In the limit of the vanishing Uð1ÞY gauge coupling in which the custodial symmetry becomes
exact, the presence of a vortex spontaneously breaks the custodial symmetry, giving rise to S2 Nambu-
Goldstone (NG) modes localized around the vortex corresponding to non-Abelian fluxes. Vortices are
continuously degenerated by these degrees of freedom, thereby called non-Abelian. By taking into account
the Uð1ÞY gauge coupling, the custodial symmetry is explicitly broken, the NG modes are lifted to become
pseudo-NG modes, and all non-Abelian vortices fall into a topologically stable Z string. This is in contrast
to the standard model in which Z strings are nontopological and are unstable in the realistic parameter
region. Non-Abelian domain walls also break the custodial symmetry and are accompanied by localized S2

NG modes. Finally, we discuss the existence of domain wall solutions bounded by flux tubes, where their
S2 NG modes match. The domain walls may quantum mechanically decay by creating a hole bounded by a
flux tube loop, and would be cosmologically safe. Gravitational waves produced from unstable domain
walls could be detected by future experiments.
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I. INTRODUCTION

The standard model (SM) had been established as a
reasonable low-energy effective description of the elemen-
tary particle physics, and its reliability has further improved
since the discovery of the Higgs boson at the LHC [1,2].
However, the SM itself has theoretical problems, including
a hierarchy problem, and it does not explain various things
such as the neutrino mass, baryon asymmetry, dark matter,
etc. These shortcomings of the SM might originate from its
Higgs sector. Since the Higgs sector of the SM is con-
structed in a minimal way to describe the electroweak
symmetry breaking, it might be too simple to deal with
those problems. This thought motivates us to study
extended models of the Higgs sector. The Georgi-
Machacek (GM) model [3,4] is one such model, in which
a field with ð3; 3̄Þ representation of SUð2ÞL × SUð2ÞR
global symmetry is introduced in addition to the Higgs

doublet. The model incorporates Majorana mass of neu-
trinos through the type-II seesaw mechanism. An interest-
ing feature of the GM model is that the vacuum expectation
value (VEV) of the bitriplet field can be arranged in such a
way to preserve the diagonal (custodial) SUð2Þ symmetry
of SUð2ÞL × SUð2ÞR at tree level; therefore, the magnitude
of the VEVof the bitriplet does not necessarily have to be
taken much smaller than the doublet VEV for the consis-
tency with electroweak ρ parameter measurement. It was
shown that even at loop level, the custodial symmetry
breaking effect coming from the hypercharge interaction is
under control [5]. Having additional scalars, including the
doubly charged particle, the phenomenology of the GM
model is quite rich, and studies for direct detection at hadron
colliders [6–8] and eþ − e− colliders [9–11] have been done
extensively. The model can be also distinguished from the
SM or other extended models by precision Higgs coupling
measurement at future experiments [12]. Various extensions
of the GM model have been studied including the super-
symmetric version [13], with fields higher than the triplet
representation [14], the one incorporating an extra singlet to
address the dark matter [15], etc. It was also shown that the
strong first order electroweak phase transition, which is
necessary for successful electroweak baryogenesis, could
be achieved depending on the parameter choice [16].
Since the Higgs sector is extended in a nontrivial way,

not only the mass spectrum, but also the vacuum structure,
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is quite different from that of the SM. In this paper we
discuss the possible existence of topological defects in the
Higgs sector of the GM model. Topological objects such as
monopoles, strings, and domain walls may appear when a
symmetry group is spontaneously broken and there exist
nontrivial topological numbers or homotopy groups of the
vacuum manifold of the symmetry breaking. That is,
πnðG=HÞ ≠ 0, when symmetry group G is spontaneously
broken down to its subgroupH. As is well known today, the
existence of such topological objects in the early Universe
may have cosmological consequences. Cosmic strings can
be thought of as a reconciliation between particle physics
and cosmology. In the very hot dense early Universe it is
assumed that electroweak symmetry or other symmetry is
restored. During the process of expansion and cooling
down, the Universe would have acquired domain structures
due to a phase transition. A variety of topological objects
may have been generated due to this phase transition
process due to the Kibble-Zurek mechanism [17,18], and
may have disappeared by recombination after subsequent
symmetry breakings or by other dynamical processes. The
presence of such objects sometimes gives constraints on
models of elementary particle physics.
The first example of topological vortices in field theory

was found in the Abelian-Higgs model [19] similar to
Abrikosov vortices in a superconductor [20]. Vortices exist
whenever the vacuum manifold G=H admits a nontrivial
first homotopy group, π1ðG=HÞ ≠ 0. There are plenty of
other examples of topological objects in grand unified
models such as an SOð10Þ model where Z2 vortices can
appear [21]. Vortices behave as cosmic strings in the
context of cosmology. For a review on cosmic strings,
see Refs. [22,23]. In the context of the SM there exist
electroweak strings [24–30]. However, these strings are not
topologically stable since the fundamental group of the
vacuum manifold

SUð2ÞL ×Uð1ÞY
Uð1Þem

≃ S3 ð1Þ

is trivial: π1ðS3Þ ¼ 0. When the non-Abelian gauge cou-
pling is turned off, they become so-called semilocal strings
which are stable in the type-I superconductor parameter
region [29,31]. Among all string solutions, Z strings,
containing a flux of Zμ particles, can have a parameter
region where they become stable [25,26,28]. If Z strings are
stable, they are suggested to contribute to electroweak
baryogenesis [32,33], but there is also an objection [34].
However, they are unstable in the realistic parameter region
of the SM. Fermion zero modes on Z strings were also
discussed in Refs. [35–43], in which it was argued that these
zero modes may destabilize Z strings. Moreover, end points
of strings are attached by a monopole or an antimonopole.
Therefore, theZ strings can quantummechanically decay by
a nucleation of a monopole-antimonopole pair and are

therefore at most metastable in this sense even in the stable
parameter region [44]. Z strings ending on monopoles were
suggested to generate primordial magnetic fields in cosmol-
ogy [45,46]. Saddle point solutions corresponding to the
monopole and antimonopole connected by a Z string are
known as sphalerons [47].
Other than monopoles and strings, there can exist domain

walls or kinks when a discrete symmetry is spontaneously
broken. Domain wall or kink configurations depend on one
spatial direction, appearing as a partition between two
different vacua during phase transitions. Particularly
common kinks appearing in various physical systems
are sine-Gordon kinks [48–50] discussed for a long time
starting from condensed matter physics, such as Josephson
junctions of two superconductors [51] to cosmology [52].
Stable domain wall solutions are cosmologically forbidden,
and so any model with stable domain wall solutions is ruled
out. However, we can have domain walls which are
separated from vacuum by the finite energy barrier. In this
case, domain walls can decay by nucleation of a hole,
typically bounded by a closed string [17,23,53–56]. For
instance, axion models have a cosmological domain wall
problem when an axion string is attached by multiple
domain walls, while they are free from that problem when
it is attached by one domain wall [57].
In this paper, we find out that there exist similar non-

trivial topological structures (domain walls and electro-
weak strings) in the GMmodel if we consider a hierarchical
symmetry breaking of the symmetry groupG in two stages;
namely, only the triplets obtain the VEV first; then the
doublet obtains its VEV later. The opposite ordering allows
only the same vacuum manifold with that of the SM in
Eq. (1) and is not new. This kind of hierarchy in symmetry
breaking scales may have occurred during expansion and
cooling periods of the early Universe. Similarly to the
SM we have an electroweak gauge symmetry group
SUð2ÞL ×Uð1ÞY which we denote by GY. The global
symmetry group of the potential is found to be a larger
group SUð2ÞL × SUð2ÞR than the SM, which is the same as
the symmetry group of the Lagrangian if we ignore the
Uð1ÞY gauge interaction. We denote this enlarged group by
G and then we have the full symmetry breaking of G as

G ¼ SUð2ÞL × SUð2ÞR →
Φv

H3 ¼ Z2 × SUð2ÞV →
Ψv

H2 ¼ SUð2ÞV; ð2Þ

whereΦv andΨv are triplet and doublet fields which acquire
nonzero VEVs during each symmetry breaking stage. Here
SUð2ÞV is the diagonal subgroup of G, known as the
custodial symmetry which remains unbroken throughout.
Then we consider the case when Uð1ÞY½⊂SUð2ÞR� is
gauged. In this case, SUð2ÞR is explicitly broken by the
gauge field interaction. We find the symmetry breaking
structure as
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GY ¼ SUð2ÞL ×Uð1ÞY →
Φv

HY
3 ¼ Z2 ×Uð1Þem →

Ψv HY
2 ¼ Uð1Þem: ð3Þ

Here Uð1Þem is the electromagnetic gauge group. For both
the above cases we find nontrivial homotopy groups as

π0ðH3=H2Þ ¼ Z2; π1ðG=H3Þ ¼ Z2; ð4Þ

implying the existence of domain walls and vortices,
respectively, at each stage.
More precisely, if we consider the simplest case of the

symmetry breaking of H3=H2, we have a domain wall
solution due to π0ðH3=H2Þ ¼ Z2. We find that this system
has stable non-Abelian sine-Gordon kink solutions [58–
61]. These solutions spontaneously break the custodial
SUð2ÞV symmetry to a Uð1Þ subgroup, generating Nambu-
Goldstone (NG) modes known as orientational zero modes
[62–64]. These are collective coordinates giving an ori-
entation of the unbroken Uð1Þ group within SUð2ÞV on the
coset S2 ≃ SUð2ÞV=Uð1Þ. Stable domain wall solutions are
cosmologically forbidden, and so in this sense the GM
model (with the hierarchical symmetry breaking) could
have been ruled out. However, this is not the case because
of π1ðG=H3Þ ¼ Z2 supporting Z2 vortex solutions. It is
known that the existence of vortices which bound a domain
wall can make domain walls decay [44] as axion domain
walls, as mentioned above.
The Z2 string was originally discussed by Nielsen and

Olesen [19] in an SUð2Þ gauge theory coupled with two
adjoint scalars. The Z2 strings and more generally ZN
strings in non-Abelian gauge theories were discussed for
instance in Refs. [65–68]. In the GM model, the string
solution is similar to a Z2 string discussed there. However,
the Z2 string that we construct here is found to be non-
Abelian in the sense that it contains non-Abelian flux
directed along generic direction inside an internal space in
the absence of theUð1ÞY gauging.1 In the limit of vanishing
Uð1ÞY gauge coupling of the hypercharge, these vortices
spontaneously break the custodial SUð2ÞV symmetry to a
Uð1Þ subgroup inside the vortex. This generates a con-
tinuous degeneracy in the whole vortex solutions, described
by NG modes living on the S2 ≃ SUð2ÞV=Uð1Þ as the same
as the case of non-Abelian domain walls mentioned above.
So the flux can be directed along any generic direction on
S2 ≃ SUð2ÞV=Uð1Þ. These kinds of NG modes are known
as orientational moduli of a non-Abelian vortex.
Non-Abelian vortices and their non-Abelian orientational

moduli have been investigated extensively in the literature
in great detail in supersymmetric gauge theories [69–78]
and color-flavor locked phase in dense QCD [79–92]. They

may play a crucial role in understanding the confinement
mechanism and duality in non-Abelian gauge theories. The
dual confinement which is known as a monopole-vortex
complex where magnetic monopoles are confined by the
attachment of flux tubes in hierarchical symmetry breaking
is discussed in Refs. [71–73,78,93–99]. The dual confine-
ment in dense QCD was discussed in Ref. [100].
In our case, a non-Abelian vortex is attached by a non-

Abelian domain wall where both S2 moduli match, in the
presence of the VEVs of both the triplets and doublet. In the
limit of the vanishing interaction between the triplets and
doublet, these S2 modes can be different, and in this case,
actually the domain wall disappears and the total configu-
ration is reduced to a global vortex.
In the presence of Uð1ÞY gauging, the custodial SUð2ÞV

symmetry is explicitly broken, the NG modes become
pseudo-NG modes, and consequently the degeneracy of
vortex solutions on full S2 is lost and is reduced to the north
and south poles and the equator circle. The same mecha-
nism was studied in dense QCD [86,87] and supersym-
metric QCD [101]. In this case we find that there exist two
kinds of string solutions. First is a topologically stable Z
string corresponding to the poles on S2 for which SUð2ÞL
and Uð1ÞY gauge fields are parallel. We should emphasize
here that our Z strings are topologically stable, in contrast
to Z strings in the SM.2 Other than the Z strings, we also
find W strings in which the SUð2ÞL gauge fields are
orthogonal to the Uð1ÞY gauge field and naturally the flux
of the W strings consists of W bosons and no contribution
from Uð1ÞY. TheW strings have an S1 degeneracy and live
on the equator circle of the S2 ≃ SUð2ÞV=Uð1Þ. The W
strings have higher energy than the Z strings and are
unstable to decay to a Z string.
This paper is organized as follows. In Sec. II we briefly

introduce the GM model first and then discuss full two-
stage symmetry breakings in two subsequent subsections.
In Sec. III we derive domain wall solution and discuss its
orientational zero modes. In Sec. IV when the only triplets
develop VEVs, we find non-Abelian vortex solutions in the
limit of the vanishing Uð1ÞY gauge coupling by construct-
ing profile functions numerically. We also discuss orienta-
tional zero modes. We then switch on Uð1ÞY gauge
coupling and obtain Z strings and W strings. In Sec. V
we discuss the most general solutions in the presence of
VEVs of the doublet and triplets. In the decoupling limit of
the doublet and triplets, the flux tube of the triplet is
accompanied with a winding of the doublet component and
becomes a global vortex. In the presence of interaction
between the doublet and triplets, it becomes a domain wall-
vortex composite state where a domain wall is bounded by
a vortex flux tube. We then discuss the quantummechanical
decay of a domain wall by creating a hole bounded by a

1A non-Abelian Z2-string with non-Abelian moduli was
discussed in the case of N ¼ 1� supersymmetric gauge theories
in Ref. [68].

2There exist topologically stable global electroweak strings in
the two-Higgs doublet model [102–104].
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vortex loop and estimate the decay rate. Section VI is
devoted to a summary and discussion.

II. SYMMETRY OF THE
GEORGI-MACHACEK MODEL

Let us start by reviewing the GM model first; then we
discuss the hierarchical symmetry breaking in this section.

A. The Georgi-Machacek model

The scalar sector of the SM supports an G ¼
SUð2ÞL × SUð2ÞR accidental symmetry. Out of the full
symmetry group G, the SUð2ÞL and Uð1ÞY inside SUð2ÞR
is gauged to produce mass of the weak gauge bosons. It can
be shown that the diagonal generator of SUð2ÞR can be
defined as the hypercharge. In this case the doublet scalar
ψT ¼ ðψ1;ψ2Þ is written in ð2̄; 2Þ form as Ψ ¼ ð ψ�

2

−ψ�
1

ψ1

ψ2
Þ and

it breaks the symmetry group G generating mass to weak
gauge bosons. In this process, the VEVof the doublet keeps
the diagonal subgroup SUð2ÞV unbroken, which is known
as the custodial symmetry. This model can be generalized
by adding more scalars in different representations by
keeping the symmetry structure the same, at least locally.
The GM model [3] is one such extension. In this case the
extension can be done by using an extra complex triplet
ΦT¼ðϕþþ;ϕþ;ϕ0Þ, which can be written in ð3̄; 3Þ form
with the help of another real triplet scalar ζT¼ðζþ;ζ0;ζ−Þ as

ΦðxÞ ¼ ðϕc; ζ;ϕÞ ¼

0
B@

ϕ�
0 ζþ ϕþþ

−ϕ�þ ζ0 ϕþ
ϕ�þþ ζ− ϕ0

1
CA; ð5Þ

where ϕc ¼ C3ϕ
�.3

We start with the Lagrangian density as

L ¼ −
1

4
Wa

μν
2 −

1

4
B2
μν þ

1

2
TrðDμΦÞ†DμΦ

þ 1

2
TrðDμΨÞ†DμΨ − VðΦ;ΨÞ; ð7Þ

where Wa
μν ¼ ∂μWa

ν − ∂νWa
μ þ gWϵabcWb

μWc
ν, Bμν ¼∂μBν − ∂νBμ are the field strengths of the gauge fields

of SUð2ÞL and Uð1ÞY gauge symmetry, respectively, and
the covariant derivatives are defined by

DμΦ ¼ ð∂μ − igWWa
μTaÞΦþ igYΦBμT3;

DμΨ ¼ ð∂μ − igWWa
μτ

aÞΨþ igYΨBμτ
3: ð8Þ

Here gW and gY are the coupling constants of SUð2ÞL and
Uð1ÞY gauge interactions, respectively, and Ta and τa are
the triplet and doublet representations, respectively, of the
generators of the SUð2Þ algebra (see footnote 3). The
potential that serves our purpose can be expressed as

VðΦ;ΨÞ ¼ λ1ðTrΦ†Φ − 3v23Þ2
þ λ2½3TrΦ†ΦΦ†Φ − TrðΦ†ΦÞ2�
þ λ3ðTrΨ†Ψ − v22Þ2
þ λ4ðTrΨ†ΨTrΦ†Φ

− 2TrðΨ†τaΨτbÞTrðΦ†TaΦTbÞÞ: ð9Þ

Here we consider the parameter region λ1 þ λ3 > 0;
λ2 > 0; λ4 > 0. We have written a minimum number of
terms in the potential required to fulfil our purposes [4,14].
Now let us discuss symmetry of the Lagrangian defined

in Eq. (7). We first discuss symmetry of the potential, which
is the same as that of the case in which the gauge coupling
of Uð1ÞY (hypercharge) is turned off, i.e., gY ¼ 0. Later we
discuss the effect of Uð1ÞY gauging. The potential in
Eq. (9) is invariant under an enlarged symmetry group,

G0 ¼
SUð2ÞL × SUð2ÞR

ðZ2ÞV
: ð10Þ

To understand the action of G0 over the fields, let us define
any element in the pair as g ¼ ðgL; gRÞ in the universal
covering group

G ¼ SUð2ÞL × SUð2ÞR: ð11Þ

The action of the group elements on the triplets and doublet
can be defined as

Φ0ðxÞ¼gLðTaÞΦðxÞg†RðTaÞ; gL=RðTaÞ¼eiα
a
L=RT

a

; ð12Þ

Ψ0ðxÞ¼gLðτaÞΨðxÞg†RðτaÞ; gL=RðτaÞ¼eiα
a
L=Rτ

a

; ð13Þ

respectively. Then, ðZ2ÞV in the denominator in Eq. (10) is
given by ðZ2ÞV ¼ fð1; 1Þ; ð−1;−1Þg, since this group does
not act on these fields. The full center Z2 × Z2 of the
symmetry group G is fully unseen by the triplet field Φ,
while ðZ2ÞA ¼ fð1; 1Þ; ð1;−1Þg acts on the doublet field Ψ
although it does not act on the triplet fields Φ (and it is

3The notation of the matrices is as follows:

T1 ¼ 1ffiffiffi
2

p

0
B@

0 1 0

1 0 1

0 1 0

1
CA; T2 ¼ 1ffiffiffi

2
p

0
B@

0 −i 0

i 0 −i

0 i 0

1
CA;

T3 ¼

0
B@

1 0 0

0 0 0

0 0 −1

1
CA; TrTaTb ¼ 2δab;

C3 ¼

0
B@

0 0 1

0 −1 0

1 0 0

1
CA; τa ¼ 1

2
σa: ð6Þ
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spontaneously broken when the doublet acquires a VEV).4

Hereafter, we work with the universal covering group.

B. Symmetry breaking

In this paper our purpose is to introduce a hierarchical
symmetry breaking of the full symmetry group G. So our
intension is to break the symmetry in two stages, first by the
triplet field ΦðxÞ and then by the doublet field ΨðxÞ.5 The
details of the symmetry breaking process, temperature
dependence, and fine-tuning of parameters can be dis-
cussed elsewhere. In this paper we just assume the
possibility of two-stage symmetry breaking and for this
purpose we assume v3 > v2. For technical reasons we keep
v3 ≫ v2; however, for practical purposes this constraint
may not be very strict.
Let us now understand the symmetry breaking in detail.

SUð2ÞL and SUð2ÞR groups act on the triplet field Φ from
left and right accordingly as described in Eq. (12). Now we
introduce the triplet VEV as

Φv ¼ v3

0
B@

1 0 0

0 1 0

0 0 1

1
CA: ð14Þ

As it can be understood easily from Eq. (12), the diagonal
group elements ðg; gÞ of SUð2ÞL and SUð2ÞR do not act on
the VEV. So Φv breaks the symmetry group SUð2ÞL ×
SUð2ÞR and keeps the diagonal subgroup SUð2ÞV unbro-
ken. Including a discrete group, the unbroken group H3

inside the universal covering group G is found to be

H3¼SUð2ÞV× ðZ2ÞA; ðZ2ÞA¼fð1;1Þ;ð1;−1Þg: ð15Þ

The Z2 in Eq. (15) is one of the normal subgroups of the
center.4. The existence of this Z2 in H3 can be understood
easily if we consider the action of elements on the doublets
and triplets separately.

The vacuum manifold is found to be

G
H3

¼ SUð2ÞL × SUð2ÞR
ðZ2ÞA × SUð2ÞV

≃
SUð2Þ
Z2

≃ SOð3Þ ≃RP3: ð16Þ

Since G is simply connected we may express the funda-
mental group as

π1

�
G
H3

�
≃ π0ðH3Þ ¼ Z2; ð17Þ

implying the existence of a Z2 string.
The Z2 inH3 in Eq. (15) nontrivially acts on the doublet,

and so it is broken when the doublet acquires a VEV during
the second symmetry breaking. The invariance of the
potential under the group H3 can be understood clearly
once we insert the value of Φv into the potential. After
setting the triplet field Φ in its vacuum value Φ ¼ v313×3
the potential for the Ψ field is found to be

Vðv313×3;ΨÞ ¼ λ3ðTrΨ†Ψ − v22Þ2
þ 2λ4v23ð2TrΨ†Ψ − jTrΨj2Þ: ð18Þ

We then find that the doublet field takes the form

Ψv ¼ � v2ffiffiffi
2

p
�
1 0

0 1

�
ð19Þ

in the vacua. This confirms the existence of Z2 and its
breaking.

C. The effect of Uð1ÞY symmetry

So far we discussed the symmetry of the potential and its
breaking. However, when we introduce the Uð1ÞY ∈
SUð2ÞR as local symmetry, the structure of the symmetry
breaking changes a little. In this case SUð2ÞR is explicitly
broken and we may write the full symmetry group GY of
the Lagrangian as

GY ¼ SUð2ÞL × Uð1ÞY: ð20Þ

The VEV of the triplet fields Φv in Eq. (14) breaks GY to
HY

3 ¼ Z2 ×Uð1Þem. Here Uð1Þem is the gauge group of
electromagnetic theory and is defined as a subgroup of the
custodial symmetry group SUð2ÞV. The VEVof the doublet
Ψv in Eq. (19) breaks HY

3 to Uð1Þem. The full symmetry
breaking in two stages is expressed in Eq. (3). In this case
the vacuum manifold of the first symmetry breaking is
different from what we found previously; however the
fundamental group remains the same,

GY

HY
3

¼ SUð2ÞL ×Uð1ÞY
Z2 × Uð1Þem

; π1

�
GY

HY
3

�
¼ Z2: ð21Þ

4The center of the symmetry group G can be written as the
Klein-4 group V4 ¼ Z2 × Z2. Elements of the center can be
expressed in pairs as V4¼fe¼ð1;1Þ;a¼ð−1;−1Þ;b¼ð1;−1Þ;
c¼ð−1;1Þg. This group has three normal subgroups and can be
written as Mv ¼ fe; ag;M1 ¼ fe; bg;M2 ¼ fe; cg. Any two of
them are permutable complements to each other. So V4 can also
be written as an internal direct product of any two of the above
subgroups. One of them, namely,Mv, is the center of SUð2ÞV, the
diagonal subgroup of G.

5The VEVs of the fields are temperature dependent in reality
and the mass term in the potential can be expressed as
C1½ð T

Tc1
Þ2−1�TrðΦ†ΦÞþC2½ð T

Tc2
Þ2−1�TrðΨ†ΨÞ. As the Universe

cools down, the temperature (T) may have reached a value
Tc1 > T > Tc2 where only first transition could occur.
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We see that vortices and domain walls can be constructed in
this case also. The only difference is the existence of
electromagnetism and consequences are discussed later.
The kinetic term of the scalar field is given as

DμΦ ¼ ð∂μ − igWWa
μTaÞΦþ igYΦBμT3. In this case we

define the well-known Zμ boson and Aμ electromagnetic
gauge field as

Aμ ¼ sin θWW3
μ þ cos θWBμ;

Zμ ¼ cos θWW3
μ − sin θWBμ; ð22Þ

where cos θW ¼ gWffiffiffiffiffiffiffiffiffiffiffi
g2Wþg2Y

p and sin θW ¼ gYffiffiffiffiffiffiffiffiffiffiffi
g2Wþg2Y

p . Using this

Eq. (8) can be expressed as

DμΦ ¼
�
∂μ − igW

X
�
W�

μ T�
�
Φ

− iZμðgW cos θWT3Φþ gY sin θWΦT3Þ
− igW sin θWAμðT3Φ −ΦT3Þ: ð23Þ

So naturally we can define electric charge e ¼ gWgYffiffiffiffiffiffiffiffiffiffiffi
g2Wþg2Y

p . At

the vacuum when first symmetry breaking occursΦ ¼ v31,
the Aμ interaction vanishes. A similar situation occurs for
the doublet also. After full symmetry breaking the masses
of gauge fields are given by

m2
Z ¼

�
2v23 þ

1

4
v22

�
g2Z; m2

W ¼
�
2v23 þ

1

4
v22

�
g2W;

gZ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2W þ g2Y

q
: ð24Þ

We are assuming the v3 > v2 case so the masses are
dominated by the VEV v3 of the triplets.

III. NON-ABELIAN DOMAIN WALLS

The domain wall solution occurs whenever the discrete
symmetries of a field theory are spontaneously broken in
the ground state. In the case of the situation described
above we saw that after the first phase transition which is
triggered by the triplet VEV, our potential is invariant under
a symmetry group H3 which contains a discrete subgroup
of the original symmetry group SUð2ÞL × SUð2ÞR and
described as Z2 × SUð2ÞV. Now if we observe the second
phase transition as in Eq. (2), we may notice that it breaks
Z2, implying the existence of a domain wall.
Let us first start with gY ¼ 0, that is, without Bμ

interaction. Since in this case all the existing gauge fields
become massive after the first phase transition, we may
ignore them while constructing domain walls. Hence, let us
consider the following reduced Lagrangian constructed by
inserting the vacuum expectation value of the triplet as
Φ ¼ v313×3 into Eqs. (7) and (9) and also by setting all the
gauge fields equal to 0,

L2 ¼
1

2
Trð∂μΨÞ†∂μΨ − λ3ðTrΨ†Ψ − v22Þ2

− 2λ4v23ð2TrΨ†Ψ − TrΨ†TrΨÞ: ð25Þ

Now we define our domain wall static ansatz as

ΨðxÞdw ¼ v2ffiffiffi
2

p ψðxÞ exp ½iϕðxÞτ3�: ð26Þ

Here the fields ψðxÞ and ϕðxÞ are functions of a single
spacial coordinate assuming that the center of the wall is on
the orthogonal plane at x ¼ 0. After inserting the ansatz
into the Lagrangian we find

−
L2

v22
¼ 1

2
ð∂iψÞ2 þ

1

8
ψ2ð∂iϕÞ2 þ λ3v22ðψ2 − 1Þ2

þ 2λ4v23ψ
2ð1 − cosϕÞ: ð27Þ

Now, to make the point clearer, let us consider the extreme

situation when λ3
λ4
≫ v2

3

v2
2

. In this case we may assume ψðxÞ
can be set at one of the vacua, say, ψðxÞ ¼ 1; then we may
have a domain wall in ϕ with the boundary conditions

ϕðx ¼ ∞Þ ¼ 2π; ϕðx ¼ −∞Þ ¼ 0; ð28Þ

and this corresponds to Z2 transformation at the boundary
as Ψð−∞Þ⃗ϕ −Ψð∞Þ. In this case the Lagrangian reduces to

−
Lϕ

v22
¼ 1

8
½ð∂iϕÞ2þ8μ2ð1− cosϕÞ�; μ2¼ 2λ4v23: ð29Þ

This is identical to the sine-Gordon model and a domain
wall solution interpolating between the two vacua can be
written as

ϕðxÞ ¼ 4tan−1e�2μx; ð30Þ

where the width of the domain wall is given by δdw ∼ μ−1

and the energy per unit area can be written as

Tdw ¼ 4μv22: ð31Þ

The shape of the solution is shown in Fig. 1.
Here we may say a few words on the solution ansatz in

Eq. (26). As is discussed before, the vacuum after the
second symmetry breaking preserves the SUð2ÞV custodial
symmetry. The presence of a domain wall configuration
spontaneously breaks the SUð2ÞV custodial symmetry into
a Uð1Þ subgroup in the vicinity of the wall. It can be
checked easily that at the boundary where ϕ ¼ ð0; 2πÞ the
custodial symmetry is recovered. This spontaneous break-
ing of the custodial symmetry generates NG modes. These
are orientational zero modes on the domain wall surface
parametrizing the coset space S2 ≃ SUð2ÞV=Uð1Þ. The
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existence of these modes allows us to define the ansatz in
generic direction on S2 by a global transformation as

Ψðξα; xÞ ¼ GðξαÞ v2ffiffiffi
2

p ψ exp ½iϕτ3�G†ðξαÞ

¼ v2ffiffiffi
2

p ψðxÞ exp ½iϕðxÞn̂�; ð32Þ

where n̂ ¼ GðξαÞτ3G†ðξαÞ;

GðξαÞ ¼
�

cos ξ
1

2
− sin ξ1

2
e−iξ

2

sin ξ1

2
eiξ

2

cos ξ
1

2

�
; ð33Þ

where ξα are the coordinate angles defined on S2 and
trðn̂2Þ ¼ 1. The effective theory of the NGmodes should be
a Oð3Þ sigma model on the 2þ 1-dimensional world
volume.
Now we should talk about the case when gY ≠ 0. Since

domain wall construction depends only on scalar fields but
not on gauge field interactions, the introduction of Uð1ÞY
would not effect the construction at tree level. The radiative
correction breaks SUð2Þ custodial symmetry explicitly, and
hence S2 moduli are lifted. Also, the presence of electro-
magnetic field generates interaction with S2 zero modes. So
the effective action of the static domain wall is described by
an SOð2Þ gauged Oð3Þ sigma model living in a 2þ 1-
dimensional hyperplane interacting with an electromag-
netic gauge field living in 3þ 1-dimensional space.

IV. NON-ABELIAN VORTICES AND
TOPOLOGICAL Z STRINGS

In this section, we discuss vortices in the first symmetry
breaking in which only the triplets acquire VEVs. In the
first subsection, we discuss a non-Abelian vortex in
the limit of the absence of the Uð1ÞY gauge interaction.
In the second subsection, we discuss that non-Abelian
vortices reduce to a Z string or W string when we turn on
the Uð1ÞY gauge interaction.

A. Non-Abelian vortices in the absence
of the Uð1ÞY gauge interaction

Here we assume gY ¼ 0 at the start and the effect of
gY ≠ 0 is discussed in the next subsection. To construct
vortices we only concentrate on the first phase transition as
discussed in Eq. (2). Since π1ðG=H3Þ ¼ Z2, we may have a
vortex solution. In this section, to avoid complication, we
set the doublet field to 0. The consequences of interaction
with the doublet field are discussed in the next section.
So we start with the Lagrangian density

L ¼ −
1

4
Wa

μν
2 þ 1

2
TrðDμΦÞ†DμΦ − VðΦÞ ð34Þ

VðΦÞ¼ λ1ðTrΦ†Φ−3v23Þ2þλ2½3TrΦ†ΦΦ†Φ−TrðΦ†ΦÞ2�;
ð35Þ

where Wa
μν ¼ ∂μWa

ν − ∂νWa
μ þ gWϵabcWb

μWc
ν and DμΦ ¼

ð∂μ − igWWa
μTaÞΦ. Here gW is the coupling constant of

SUð2ÞL gauge interactions.
For simplification we construct an infinitely long vortex

along the z axis with a cylindrical symmetry. To derive a
vortex solution let us start with the ansatz of Φ and Wμ as

Φvortex ¼ v3

0
B@

fðrÞeiθ 0 0

0 gðrÞ 0

0 0 fðrÞe−iθ

1
CA;

Wa
i ¼ −

ϵijxj

gWr2
ð1þ hðrÞÞδa3; ð36Þ

where i ¼ 1, 2 andWa
0 andW

a
3 are taken to be 0. Boundary

conditions for profile functions are taken to be

fð0Þ ¼ 0; fð∞Þ ¼ 1; g0ð0Þ ¼ 0;

gð∞Þ ¼ 1; hð0Þ ¼ −1; hð∞Þ ¼ 0: ð37Þ

Here ðr; θÞ are the radius and azimuthal angle of the
cylindrical coordinates. Let us first consider a large distance
behavior of the vortex ansatz. From the above solution
ansatz we may write

Φvortexðθ;∞Þ ¼ v3

0
B@

eiθ 0 0

0 1 0

0 0 e−iθ

1
CA ¼ ΩðθÞΦv;

where Ω ¼ eiθT3 ∈
G
H3

: ð38Þ

To find the behavior of the profile functions, let us just put
the above ansatz in the potential in Eq. (35) to yield

5 10 15 20 25
x

1

2

3

4

5

6

FIG. 1. A plot of the Sine-Gordon kink.
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VðΦÞ ¼ λ1v43ð2fðrÞ2 þ gðrÞ2 − 3Þ2
þ 2λ2v43½fðrÞ2 − gðrÞ2�2: ð39Þ

The static Hamiltonian density

H ¼
Z

d2x

�
1

4
Wa

ij
2 þ 1

2
TrðDiΦÞ†DiΦþ VðΦÞ

�
ð40Þ

can be expressed in terms of profile functions as

H¼ 2π

Z
rdr

�
1

2

ð∂rhðrÞÞ2
g2Wr

2

þ v23

�
ð∂rfðrÞÞ2 þ

hðrÞ2fðrÞ2
r2

þ 1

2
ð∂rgðrÞÞ2

�

þ λ1v43½2fðrÞ2 þ gðrÞ2 − 3�2 þ 2λ2v43½fðrÞ2 − gðrÞ2�2
�
:

ð41Þ

This is actually the Hamiltonian density along the z axis.
Since all our fields are independent of the z coordinate we
omit the z integral. Let us rewrite the above Hamiltonian by
defining l ¼ λ2

λ1
, λρ ¼ λ1

g2W
, and ρ2 ¼ 2g2Wv

2
3r

2 as

H¼ 2πv23×ϵðλρ; lÞ;

ϵðλρ; lÞ¼
Z

ρdρ

�ð∂ρhðρÞÞ2
ρ2

þ
�
ð∂ρfðρÞÞ2þ

hðρÞ2fðρÞ2
ρ2

þ1

2
ð∂ρgðρÞÞ2

�

þ λρ
2
½f2fðρÞ2þgðρÞ2−3g2þ2l½fðρÞ2−gðρÞ2�2�

�
:

ð42Þ

The equations of motion can be read off as

−ρ∂ρ

�∂ρhðρÞ
ρ

�
þfðρÞ2hðρÞ¼ 0;

−
1

ρ
∂ρ½ρ∂ρfðρÞ�þ

hðρÞ2fðρÞ
ρ2

þ2λρ½ð2þ lÞfðρÞ2

þð1− lÞgðρÞ2−3�fðρÞ¼ 0;

−
1

ρ
∂ρ½ρ∂ρgðρÞ�þ2λρ½2ð1− lÞfðρÞ2

þð1þ2lÞgðρÞ2−3�gðρÞ¼ 0: ð43Þ

The tension of the vortex can be computed by inserting
the profile function into Eq. (42) and integrating over the
ðx; yÞ plane. For the values of λ1 ¼ 0.2; gW ¼ 0.63 we find
ϵðλρÞ ≃ 2. In Fig. 2, we show the profile functions for the
cases of l ¼ 0.5, 1, 5. In the figure, we also plot the energy
density as a function of ρ for the case of l ¼ 5.

As we know, the VEV of Φv ¼ v313×3 preserves the
SUð2ÞV custodial symmetry. However the vortex ansatz in
Eq. (36) breaks spontaneously the custodial SUð2ÞV
symmetry to a Uð1Þ subgroup inside the vortex due to
the existence of two different profile behaviors, fðrÞ and
gðrÞ, inside the vortex core. This generates infinite degen-
erate solutions which can be parametrized by an element on
S2 ≃ SUð2ÞV=Uð1Þ. We may write a generic solution by a
global SUð2ÞV transformation as

Φvortexðr;θ;ξαÞ¼v3GðξαÞ

0
B@
eiθfðrÞ 0 0

0 gðrÞ 0

0 0 e−iθfðrÞ

1
CAG†ðξaÞ;

Wiðr;ξαÞ¼−
ϵijxj

r2
ð1þhðrÞÞn̂ðξαÞ; ð44Þ

where n̂ðζÞ is a unit vector oriented along a generic point
on SUð2ÞV=Uð1Þ ≃ S2 defined as

n̂ðξαÞ ¼ GðξαÞT3G†ðξαÞ ¼ n̂αTα: ð45Þ

Here GðξαÞ is an element in the coset S2 ≃ SUð2ÞV=Uð1Þ,
and ξα are the moduli parametrizing S2.
These degenerated solutions can be varied slowly along

the z axis with time without changing the profile functions.
So if we integrate the profile functions we end up with an
effective action which is a nonlinear sigma model defined
on a two-dimensional world sheet (here t − z plane) where
fields are parametrized by the moduli parameters ξα.

B. Topological Z strings and W strings in the
presence of the Uð1ÞY gauge interaction

In the above discussion, we have discussed the sym-
metries of potential, which is the same as the case where
there is no Bμ interaction or gY ¼ 0. In this case all gauge
fields are massive so we neglected their interactions. So we
find massless NG modes on the vortex. However, in reality
gY ≠ 0 and this breaks custodial symmetry explicitly; the
NG modes are lifted to become pseudo-NG modes, and
consequently most of the non-Abelian vortices become
unstable. The same phenomenon was first found for non-
Abelian vortices in dense QCD [86,87] and later applied to
supersymmetric QCD [101].
In this subsection we discuss the construction of

vortices in the presence of the Bμ gauge field. The
kinetic term of the scalar field is given as DμΦ ¼
ð∂μ − igWWa

μTaÞΦþ igYΦBμT3. So naturally there is a
chance for the vortex flux to share the Bμ fields. As we
know from Eq. (44) the general vortex solution in
the absence of the Bμ field can be written with the flux
directed along the unit vector n̂ living on a sphere
S2 ≃ SUð2ÞV=Uð1Þ. However, as it can be seen from the
expression of covariant derivative in Eq. (8), the covariant
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derivative does not transform covariantly under the global
transformation along generic direction on S2 since the last
term breaks the degeneracy. However, there exist degen-
erate solutions on a subspace which consist of the north and
south pole of the sphere. The equator circle also gives
degenerate W-string solutions, but their tension is a little
higher than the Z strings (north and south pole). We discuss
the different configurations as follows.

1. The Z strings

The Z strings are defined on the north and south poles of
the moduli space S2. At the north pole the scalar field ansatz
is given as

Φvortex ¼ v3

0
B@

fðrÞeiθ 0 0

0 gðrÞ 0

0 0 fðrÞe−iθ

1
CA; ð46Þ

with the boundary condition fð0Þ ¼ 0; fð∞Þ ¼ 1;
g0ð0Þ ¼ 0; gð∞Þ ¼ 1. Now by solving large distance con-

dition DiΦ!r→∞
0, We may find the gauge field ansatz as

Zi ¼ cos θWW3
i − sin θWBi ¼ −

ϵijxj

gZr2
ð1þ hðrÞÞ;

hð0Þ ¼ −1; hð∞Þ ¼ 0; ð47Þ

where cos θW ¼ gWffiffiffiffiffiffiffiffiffiffiffi
g2Wþg2Y

p and sin θW ¼ gYffiffiffiffiffiffiffiffiffiffiffi
g2Wþg2Y

p . The differ-

ence with Eq. (36) in the expression of the ansatz is that
in Eq. (47) the coupling const gW is replaced by gZ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2W þ g2Y

p
.

Similarly, at the south pole the scalar field configuration
is given as

Φvortex ¼ v3

0
B@

fðrÞe−iθ 0 0

0 gðrÞ 0

0 0 fðrÞeiθ

1
CA: ð48Þ

The gauge field solution is the same as Eq. (47) with a
negative sign in front.
Since the vortex flux is completely determined by the

flux of the Zμ field, these vortices can be called topological
Z strings. The tension of the Z string can be computed the
same way as we did in Sec. IVA with gW replaced by gZ.
We find that the tension of the Z string is smaller than the
case of gY ¼ 0 by about 5%.

(a) (b)

(c) (d) 
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FIG. 2. This figure represents the plots of non-Abelian vortices discussed in Sec. IV. In this computation we used λ1 ¼ 0.2; gW ¼ 0.63.
We choose l ¼ 0.5 for Fig. (a), l ¼ 5 for Fig. (b), and l ¼ 1 for Fig. (c). In Fig. (d) the energy density is plotted for the l ¼ 5 case.

TOPOLOGICAL DEFECTS IN THE GEORGI-MACHACEK MODEL PHYS. REV. D 97, 115010 (2018)

115010-9



2. The W strings

The W strings are defined on the equator circle on S2. In
this case, there is no flux sharing with the Bμ field. The
scalar field configurations are defined as

ΦWðr; θ; ξWÞ ¼ GðξWÞΦðr; θ; 0ÞG†ðξWÞ;

GðξWÞ ¼

0
B@

e−iξWffiffi
2

p 1 e−iξWffiffi
2

p

1 0 −1
eiξWffiffi

2
p −1 eiξWffiffi

2
p

1
CA; ð49Þ

where Φðr; θ; 0Þ ¼ diagðfðrÞeiθ; gðrÞ; fðrÞe−iθÞ. The Wμ

gauge field configurations are given in the orthogonal
direction to the Z strings as

�
W1

i

W2
i

�
¼ −

2ϵijxj

gWr2
ð1þ hðrÞÞ

�
cos ξW
sin ξW

�
;

W3
i ¼ 0: ð50Þ

Here ξW is parametrizing the degenerate solutions along the
equator circle. The W-string solutions are constructed by
global transformation of the solution written in Eq. (36).
Therefore, the energy is same as the vortex constructed in
the case of gY ¼ 0, which means their tension is little
higher (about 5%) than the Z strings (north and south pole).
Therefore, the W strings are energetically unstable. In
Fig. 3, we show the schematic picture of Z andW strings on
the moduli space of S2.

V. NON-ABELIAN DOMAIN WALLS BOUNDED
BY NON-ABELIAN VORTICES

In Sec. III we have constructed a stable domain wall in
the GM model in the second symmetry breaking H3 → H2

with a hierarchical symmetry breaking G → H3 → H2. In
the last section, we have constructed a vortex configuration

in the first symmetry breaking G → H3, as described in
Eq. (2). In this section, we consider the most general case,
the coexistence of domain walls and vortices in the full
symmetry breaking. In the first subsection, we observe a
behavior of a doublet around a vortex for preparation of the
subsequent subsections. In the second subsection, we show
that the general configuration is a partly global and partly
local vortex in the vanishing limit of the interaction
between the doublet and triplets. In the third subsection,
we show that it is a non-Abelian domain wall bounded by a
non-Abelian vortex where S2 moduli match at the junction
line if we turn off the Uð1ÞY gauge coupling, while it is a Z
wall bounded by a Z string if we turn on the Uð1ÞY gauge
coupling. Finally, in the fourth subsection, we calculate the
quantum decay rate of a domain wall by quantum tunneling
by creating a hole bounded by a closed vortex line.

A. Behavior of a doublet encircling around a vortex

We show in this subsection that when the doublet field
acquires a VEV a pathology happens. To this end, we first
investigate what happens when a doublet field encircles a
vortex. We note that the large distance behavior of a vortex
configuration along the z axis can be written as

Φvortexðr ¼ ∞; θÞ ¼ Ω3ðθÞΦvortexðr ¼ ∞; θ ¼ 0Þ; ð51Þ

whereΩ3 is a holonomy acting on the triplet fields around a
vortex, given by

Ω3ðθÞ ¼ Pei
R

θ

0
W·dl ¼ eiθT

3

: ð52Þ

Here, we note that Ω3 is single valued as usual,
Ω3ð2πÞ ¼ 13×3.
On the other hand, when a field ηðxÞ in a doublet

representation encircles a vortex, it receives a gauge
transformation

ηðr ¼ ∞; θÞ ¼ Ω2ðθÞηðr ¼ ∞; θ ¼ 0Þ; ð53Þ

where Ω2 is a holonomy acting on the doublet, given by

Ω2ðθÞ ¼ Pei
R

θ

0
W·dl ¼ eiθτ

3

: ð54Þ

In this case, it has a nontrivial holonomy when it encircles a
vortex

Ωð2πÞ ¼ −12×2; ð55Þ

and consequently

ηðθ ¼ 2πÞ ¼ −ηðθ ¼ 0Þ: ð56Þ

Therefore, the doublet field cannot become single valued
around a vortex, and so it has a nontrivial Aharanov-
Bohm phase.

FIG. 3. A schematic view of Z and W strings on the moduli
space S2.
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This brings us a pathology; the doublet field may not be
allowed to acquire a VEV, and consequently the SM
symmetry breaking could not occur in the presence of a
vortex. This puzzle can be solved in two ways. One can
make a vortex to a global vortex or one can create a domain
wall. The former happens when the interaction between the
doublet and triplet is negligible, namely, when λ4 is small in
Eq. (9). The latter happens when the interaction term with
λ4 is relevant. In the following subsections, we discuss
these two cases separately.

B. A composite of the global-local
vortex configuration

Here we discuss a vortex configuration which
develops after the second symmetry breaking in a special
circumstance. We switch off the interaction term between
the doublet and triplets, i.e., λ4 ¼ 0 and also hypercharge
gY ¼ 0. In this case, the triplets and doublet fields interact
via the SUð2ÞL gauge interaction only. Since they are
in the absence of the λ4 term, the right actions on the
doublet and triplets are independent, which we denote
SUð2ÞR1

and SUð2ÞR2
, respectively. So in this case, we

start with full symmetry breaking group as GðR1; R2Þ ¼
SUð2ÞL × SUð2ÞR1

× SUð2ÞR2
. Now we set our vacuum

expectation values of the fields as before as Φv ¼ v313×3
and Ψv ¼ v212×2; this breaks GðR1; R2Þ to the diagonal
group H2ðR1; R2Þ ¼ Z2 × SUð2ÞLþR1þR2

. The full sym-
metry breaking is discussed in Appendix in detail. The
existence of a new vortex solution can be understood, if we
note that the vacuum manifold

GðR1; R2Þ
H2ðR1; R2Þ

¼ SUð2ÞL × SUð2ÞR1
× SUð2ÞR2

Z2 × SUð2ÞLþR1þR2

ð57Þ

allows the first homotopy group

π1

�
GðR1; R2Þ
H2ðR1; R2Þ

�
¼ Z2: ð58Þ

TheZ2 factor ofH2 contains the element ð−1; 1;−1Þwhich
would be responsible for our new vortex solution and this
would keep the doublet field single valued. This is because
rotation around an existing flux tube generates a negative
sign where the existence of a global rotation in SUð2ÞR2

generates another negative sign to compensate the other. In
order to construct a vortex solution, let us define our
doublet ansatz as

Ψvortexðr; θÞ ¼ v2ψðrÞ expðiθσ3Þ; ð59Þ

with the boundary conditions for the profile function ψ
given by

ψð0Þ ¼ 0; ψð∞Þ ¼ 1: ð60Þ

With this ansatz for the doublet field, we use the ansatz for
the triplet fields and gauge field given in Eq. (36). The large
distance behavior of the doublet field can be expressed as

Ψvortexð∞; θÞ ¼ Pei
R

θ

0
W·dlΨveiθ

σ3

2 : ð61Þ

From this expression it is now clear that the full loop of
π1ðG=H2Þ has two contributions. One is from an SUð2ÞL
gauge transformation accompanied with a gauge flux and
the other is a global transformation of SUð2ÞR2

. Therefore,
our vortex is a half local and half global vortex with a
magnetic flux.
By using the vortex ansatz in Eqs. (36) and (61), we may

rewrite the Hamiltonian, by defining l ¼ λ2
λ1
, λρ ¼ λ1

g2W
,

λ̃3 ¼ λ3
g2W
, and ρ2 ¼ 2g2Wv

2
3r

2, v ¼ v2
v3
, as

H ¼ 2πv23

Z
ρdρ

�ð∂ρhðρÞÞ2
ρ2

þ
�
ð∂ρfðρÞÞ2 þ

h2fðρÞ2
ρ2

þ 1

2
ð∂ρgðρÞÞ2

�
þ λρ

2
½f2fðρÞ2 þ gðρÞ2 − 3g2 þ 2l½fðρÞ2 − gðρÞ2�2�

�

þ πv22

Z
ρdρ

�
ð∂ρψðρÞÞ2 þ

ð1− hÞ2ψðρÞ2
4ρ2

þ λ̃3v2½ψðρÞ2 − 1�2
�
: ð62Þ

The equations of motion can be read off as

−ρ∂ρ

�∂ρhðρÞ
ρ

�
þ fðρÞ2hðρÞ þ v2

8
ðhðρÞ − 1ÞψðρÞ2 ¼ 0;

−
1

ρ
∂ρ½ρ∂ρfðρÞ� þ

hðρÞ2fðρÞ
ρ2

þ 2λρ½ð2þ lÞfðρÞ2 þ ð1 − lÞgðρÞ2 − 3�fðρÞ ¼ 0;

−
1

ρ
∂ρ½ρ∂ρgðρÞ� þ 2λρ½2ð1 − lÞfðρÞ2 þ ð1þ 2lÞgðρÞ2 − 3�gðρÞ ¼ 0;

−
1

ρ
∂ρ½ρ∂ρψðρÞ� þ

ð1 − hðρÞÞ2ψðρÞ
4ρ2

þ 2λ̃3v2½ψ2 − 1�ψ ¼ 0: ð63Þ

A numerical solution is shown in Fig. 4.
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C. Domain wall bounded by a vortex

In the last subsection we have discussed the case in
which the λ4 interaction term between the doublet and
triplets is negligible so that the global symmetries acting on
the doublet and triplets become independent and so the
global symmetry is enhanced. In this subsection we
consider the case in which the λ4 term is relevant so that
the global symmetries acting on the doublet and triplets are
locked: SUð2ÞR1

¼ SUð2ÞR2
. We show that in this case the

global vortex in the last subsection transforms to be a
vortex-domain wall composite. We start with gY ¼ 0 just to
understand the orientational zero modes. The effect of
hypercharge, i.e., gY ≠ 0, is discussed later.
In Sec. VAwe have discussed the puzzle that the VEVof

Ψ might become multivalued around the vortex. Now we
show that this problem can be cured by a creation of a
domain wall in the doublet so that the total configuration
becomes a vortex attached by a domain wall. As we
discussed in Sec. III, at the second symmetry breaking
H3 ¼ Z2 × SUð2ÞV is broken down to SUð2ÞV. This gives
π0ðH3=H2Þ ¼ Z2, which confirms the existence of the
domain wall solution. To find a domain wall attached to the
vortex, we start with the ansatz

ΨðxÞdw-vortex ¼
v2ffiffiffi
2

p ψðrÞ
�
ei½

ϕðθÞþξðθÞ
2

� 0

0 e−i½
ϕðθÞþξðθÞ

2
�

�
; ð64Þ

where ξðθÞ and ϕðθÞ, both of which change from 0 to 2π
when one goes around a vortex, are contributions from the
gauge transformation and the global SUð2ÞR transforma-
tion, respectively. In this subsection, we study a large
distance behavior of the system. The vortex solution at
large distance behaves as

Φvortex ∼ v3 exp½iξðθÞT3�; Wi ∼
∂iξðθÞ
gW

T3: ð65Þ

We insert the field configurations in Eqs. (64) and (65) into
each term of the potential term in Eq. (9),

VðΦ;ΨÞ ¼ λ3ðTrΨ†Ψ − v22Þ2
þ λ4ðTrΨ†ΨTrΦ†Φ

− 2TrðΨ†τaΨτbÞTrðΦ†TaΦTbÞÞ; ð66Þ

to yield
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FIG. 4. The plots of the profile functions of a global vortex described in Sec. V B. In this calculation, we have used
λ1 ¼ 0.2; λ3 ¼ 0.2; gW ¼ 0.63. We choose l ¼ 5 for panel (a), l ¼ 0.5 for panel (b), and l ¼ 1 for panel (c). In panel (d), the energy
density is plotted for l ¼ 5.
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TrðΨ†τaΨτbÞ ¼ v22
4
ψ2RðτÞab;

RðτÞ ¼

0
B@
cosðϕþ ξÞ −sinðϕþ ξÞ 0

sinðϕþ ξÞ cosðϕþ ξÞ 0

0 0 1

1
CA; ð67Þ

TrðΦ†TaΦTbÞ ¼ 2v23RðTÞab;

RðTÞ ¼

0
B@

cos ξ − sin ξ 0

sin ξ cos ξ 0

0 0 1

1
CA: ð68Þ

We thus obtain

Vðψ ;ϕÞ ¼ v22½λ3v22ðψðθÞ2 − 1Þ2 þ μ2ψ2ð1 − cosϕðθÞÞ�;
ð69Þ

where we have defined μ2 ¼ 2λ4v23 as before in Eq. (29).
This potential is the same as what was found in Eq. (29),
although the argument here is the angle θ around the vortex
while it was one spatial direction x in Eq. (29). The ground
state is given by ψ ¼ 1;ϕ ¼ 2nπ. As we have found in
Sec. III this potential gives a sine-Gordon domain wall
solution. This domain wall is attached to the infinitely long
vortex along the z axis centered at the origin, as schemati-
cally shown in Fig. 5(a). When encircling around the
vortex, the doublet field changes sign while passing
through the domain wall placed at θ ¼ θc. Therefore,
the existence of the domain wall solves the problem that
the doublet might become multivalued.
In our hierarchy symmetry breaking, the width of the

vortex δvortex ∼ ðv3
ffiffiffiffiffi
λ1

p Þ−1 is much smaller than the wall
width δdw ∼ μ−1.
We have shown that domain walls are bounded by Z2

strings described in Sec. IV. One thing one should point out
here is that our strings are not global strings but are flux
tubes. This construction is in contrast to the axionic string-
domain wall composite, in which strings are global strings.
Let us discuss here the orientational zero modes and

effect of hypercharge, i.e., gY ≠ 0. The computations done
above do not depend on the orientation of the vortex and
domain wall. They can be oriented together in generic

directions on S2 ≃ SUð2ÞV=Uð1Þ since the λ4 term keeps
the triplet and the doublet in the same direction.
Oscillations of the zero modes would supposedly flow
from the vortex world sheet to the domain wall surface and
vice versa. Actual dynamics would be described by
effective action of the NG modes, which is the Oð3Þ model
with a boundary.
When gY ≠ 0 the NG modes are lifted. So at lowest

energy, we have only a Z-string-domain wall.

D. Quantum decay of a domain wall

The domain wall construction discussed in this paper is
not stable after full symmetry breaking π0ðG=H2Þ ¼ 0. So
according to Kibble [105], a hole would be created locally
due to local thermal or quantum fluctuations. This hole is
bounded by a closed vortex string as schematically shown
in Fig. 5(b). A hole smaller than some critical scale Rc will
be destroyed. However, there can be some hole creation
with length scale more than Rc. Then this hole would start
growing and the wall would become unstable. The decay
rate can be computed using the method described in
Refs. [23,105]. The decay probability at zero temperature
is given as Γ ∼ e−S where S is the Euclidean action of the
bounce solution corresponding to the tunneling process. In
this case S is given as

S ¼ 4πR2Tvortex −
4

3
πR3Tdw: ð70Þ

Here Tvortex ¼ 2πv23ϵðϵ ∼ 2Þ is the vortex energy per unit
length as defined in Eq. (42) and Tdw ¼ 4μv22 is the energy
of the domain wall per unit area, defined in Eq. (29). So
Rc ¼ 2Tvorex

Tdw
, and

Sc ¼
16π

3

�
T3
vortex

T2
dw

�
¼ 4π4

3λ4

�
v3
v2

�
4

ϵ3: ð71Þ

In the case of v3 ≫ v2 and λ4 < 1, Γ must be a small
number. So domain walls can be locally stable at zero
temperature. However, this is a minimal estimation of the
decay rate because this computation is valid when S is very
large so that other interactions can be neglected [106]. So
when v3 is close to v2 this analysis may not be very

(a) (b)

FIG. 5. The schematic diagrams of the (a) domain wall bounded by flux tube (b) hole creation in the domain wall.

TOPOLOGICAL DEFECTS IN THE GEORGI-MACHACEK MODEL PHYS. REV. D 97, 115010 (2018)

115010-13



practical. We also did not take into account the finite
temperature effect. The interaction with other fields and
finite temperature effects may change this probability and
would be discussed elsewhere.

VI. SUMMARY AND DISCUSSIONS

In this paper, we have discussed topological defects in
the GM model. This model contains three Higgs triplets in
addition to the usual Higgs doublet. We studied the
spontaneous breaking of G ¼ SUð2ÞL × SUð2ÞR in two
stages, namely a hierarchical symmetry breaking G →
H3 → H2 first triggered by the triplets followed by the
doublet subsequently. The order parameter manifold
has nontrivial homotopy groups π1ðG=H3Þ ¼ Z2 and
π0ðH3=H2Þ ¼ Z2 supporting a Z2 vortex and a domain
wall, respectively. We have first solved the vortex profile
functions numerically for the case of an axially symmetric
infinitely long vortex in the decoupling limit of the Uð1ÞY
gauge field. In this case, the custodial SUð2ÞV is sponta-
neously broken inside the vortex core generating the S2 NG
modes localized around the vortex core. These modes
correspond to a non-Abelian magnetic flux confined inside
the vortex core. When the Uð1ÞY gauge coupling is taken
into account, the SUð2ÞV custodial symmetry is explicitly
broken, the NG modes become pseudo-NG modes, and the
S2 moduli space is lifted, leaving a stable Z string and an
unstableW string as solutions. We find that a Z string has a
5% lower tension than that of a W string or a non-Abelian
string [of zeroUð1Þ gauge coupling]. All vortices including
W strings fall into a topologically stable Z string, in
contrast to the SM in which Z strings are nontopological
and are unstable in the realistic parameter region. We then
have discussed the vortex-domain wall complex, in which
the S2 moduli of both the vortex and domain wall match at
the junction line. The vortex stable in the first symmetry
breaking is attached by a domain wall appearing in the
second symmetry breaking, and consequently domain walls
can decay through quantum tunneling by creating a hole
bounded by a closed vortex line. We have calculated the
decay rate at zero temperature, which is found to be small.
Several discussions are addressed here. In this paper, we

have discussed only the Higgs sector. If we include the
fermion sector, there are several interesting physics. First,
vortices [107] and domain walls [108] would have fermion
zero modes around their cores, as an electroweak Z string in
the SM [35–43] and a non-Abelian vortex in dense QCD
[109,110]. For the former, it was argued that fermion zero
modes may destabilize Z strings, but in our case strings are
stable (at the first symmetry breaking) because they are
topological. For the latter, these fermion zero modes
interact with NG modes [91], and so a similar thing
happens in our case.
Second, fermions scattering off a non-Abelian vortex

may receive an Aharanov-Bohm phase, as the cases of an
electroweak Z string [111,112] and a non-Abelian vortex in

dense QCD [90] (see also Ref. [113] for the same situation
in supersymmetric QCD). All together, the exchange of
multiple vortices with fermion zero modes may have
nontrivial non-Abelian statistics like the case of dense
QCD [114–117].
The interaction of the electromagnetic waves and topo-

logical defects found in this paper may be important for a
possibility of searches for these objects, such as cosmic
microwave backgrounds. The interaction of the electro-
magnetic waves and a non-Abelian vortex through charged
zero modes localized around the vortex was studied in
dense QCD, in which case a vortex lattice is shown to
behave as a polarizer [118]. In our case, the interaction with
a domain wall through the charged zero modes localized
around it must be the most important possibility. The Z
string (or Z-string-domain wall composite) does not inter-
act with electromagnetic gauge field Aμ at low energies.
Since NG modes are massive the high-energy electromag-
netic waves can excite NG modes, which interact with Aμ.
So in this sense the Z string (-domain wall composite)
could be considered as a “gray-matter” element.
Electroweak baryogenesis by electroweak strings [32]

does not work in the SM [34]. This problemmay be rescued
since our Z strings are topologically stable in the first
symmetry breaking. If there is a long enough period
between the first and second symmetry breakings there
could be enough baryogenesis.
Gravitational waves from the decay of domain walls and

vortices give important signature of this scenario [119].
Depending on the tension of domain walls and the temper-
ature when they annihilate, the amount of gravitational
waves emitted from those could be significant enough to be
detected by ongoing and future experimental searches.
A detailed study of the spectrum of gravitational waves in
the GM model is made elsewhere.
Other than vortices and domain walls, there may exist

stable monopoles (instantons) and skyrmions as composite
states, in contrast to the SM. Stable monopoles may exist as
a kink on a Z string since S2 moduli are lifted due to the
Uð1ÞY gauge coupling, leaving two points, the north and
south poles, corresponding to two Z strings. In this case,
a monopole is attached by two Z strings on both sides and
so is stable, different from electroweak Nambu monopoles.
Instantons may exist as lumps inside a vortex [120], but
they may be unstable because of the potential induced from
the Uð1ÞY gauge coupling. On the other hand, skyrmions
may exist as lumps inside a domain wall (called domain
wall skyrmions) [63,64,121,122] (see also [59]) whose
effective theory should be an Oð3Þ sigma model.
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APPENDIX: SYMMETRY
OF GLOBAL VORTICES

Here we discuss the symmetry and symmetry breaking in
the absence of the interaction between the doublet and
triplets, i.e., λ4 ¼ 0 and gY ¼ 0. In this case the triplets and
doublet fields interact only through the SUð2ÞL gauge
interaction, since in this case the right symmetries act
independently on the triplets and doublet. We denote the
right action groups on the triplets and doublet by SUð2ÞR1

and SUð2ÞR2
, respectively. So in this case the full symmetry

group is given as

GðR1; R2Þ ¼ SUð2ÞL × SUð2ÞR1
× SUð2ÞR2

: ðA1Þ

Now the VEV of the triplet fields Φv ¼ v313×3 breaks
GðR1; R2Þ to (see footnote 4)

H3ðR1; R2Þ ¼ ðZ2Þ−LþR1
× SUð2ÞLþR1

× SUð2ÞR2
;

ðZ2Þ−LþR1
¼ fð1; 1; 1Þ; ð−1; 1; 1Þg: ðA2Þ

The first two entries in the elements of Z2 are arising from
the center of SUð2ÞL and SUð2ÞR1

. This Z2 is unbroken
because the center is identified in the triplet representation.

Now let us discuss the second symmetry breaking by
Ψv ¼ v212×2, which breaks H3 further into

H2 ¼ ðZ2Þ−LþR1−R2
× SUð2ÞLþR1þR2

;

ðZ2Þ−LþR1−R2
¼ fð1; 1; 1Þ; ð−1; 1;−1Þg: ðA3Þ

Note that ðZ2Þ−LþR1−R2
is different from ðZ2Þ−LþR1

in H3.
To understand this let us write down the unbroken

elements of the full center of GðR1; R2Þ, which is
Z2 × Z2 × Z2, as

fð1; 1; 1Þ; ð−1;−1;−1Þ; ð1;−1; 1Þ; ð−1; 1;−1Þg: ðA4Þ

All the nontrivial elements of this group have order 2. We
may rewrite these elements as an internal direct product of
two Z2 subgroups as

Z2×Z2¼fð1;1;1Þ;ð−1;−1;−1Þg×fð1;1;1Þ;ð−1;1;−1Þg:
ðA5Þ

This is an internal direct product in which the identity
element is shared. The first Z2 factor is the center of the
diagonal subgroup SUð2ÞLþR1þR2

, while the second factor
is ðZ2Þ−LþR1−R2

in Eq. (A3).
The existence of the new vortex solution can be under-

stood if we see the fundamental group of the full symmetry
breaking as

π1

�
GðR1; R2Þ
H2ðR1; R2Þ

�
¼ π1

�
SUð2ÞL × SUð2ÞR1

× SUð2ÞR2

Z2 × SUð2ÞLþR1þR2

�

¼ Z2: ðA6Þ
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