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We study the possibility of generating nonzero reactor mixing angle θ13 and baryon asymmetry of the
Universe within the framework of an A4 flavor symmetric model. Using the conventional type I seesaw
mechanism we construct the Dirac and Majorana mass matrices that give rise to the correct light neutrino
mass matrix. Keeping the right-handed neutrino mass matrix structure trivial so that it gives rise to a (quasi)
degenerate spectrum of heavy neutrinos suitable for resonant leptogenesis at TeV scale, we generate the
nontrivial structure of Dirac neutrino mass matrix that can lead to the light neutrino mixing through the type
I seesaw formula. Interestingly, such a setup naturally leads to nonzero θ13 due to the existence of
antisymmetric contraction of the product of two triplet representations of A4. Such an antisymmetric part of
the triplet products usually vanishes for right-handed neutrino Majorana mass terms, leading to μ − τ
symmetric scenarios in the most economical setups. We constrain the model parameters from the
requirement of producing the correct neutrino data as well as baryon asymmetry of the Universe for right-
handed neutrino mass scale around TeV. The A4 symmetry is augmented by additional Z3 × Z2 symmetry
to make sure that the splitting between right-handed neutrinos required for resonant leptogenesis is
generated only by next to leading order terms, making it naturally small. We find that the inverted
hierarchical light neutrino masses give more allowed parameter space consistent with neutrino and baryon
asymmetry data.
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I. INTRODUCTION

Observations of tiny but nonzero neutrino mass and large
leptonic mixing [1–7] have been one of the most compel-
ling evidences suggesting the presence of beyond standard
model (BSM) physics. The present status of different
neutrino parameters can be found in the latest global fit
analysis [8,9], summarized in Table I. It can be seen that out
of the three leptonic mixing angles, the solar and atmos-
pheric angles are reasonably large while the reactor mixing
angle is relatively small. On the other hand, only two mass
squared differences are measured experimentally, keeping
the lightest neutrino mass still an unknown parameter.
Also the mass ordering is not settled yet, allowing both
normal hierarchy (NH) as well as inverted hierarchy (IH).
Cosmology experiments can however, put an upper bound

on the lightest neutrino mass from the measurement of the
sum of absolute neutrino masses

P
ijmij < 0.17 eV [10].

Although the solar and atmospheric mixing angles
ðθ12; θ23Þ were known to have large values, the discovery
of nonzero θ13 is somewhat recent [3–7]. The leptonic
Dirac CP phase δ is not yet measured experimentally,
though a recent measurement hinted at δ ≈ −π=2 [11]. If
neutrinos are Majorana fermions, then two other CP phases
appear, which do not affect neutrino oscillation probabil-
ities and hence remain undetermined in such experiments.
They can however be probed at experiments looking for
lepton number (L) violating processes like neutrinoless
double beta decay ð0νββÞ.
The standard model (SM) of particle physics, in spite of

its astonishing success as a low energy theory of funda-
mental particles and their interactions (except gravity),
cannot explain the origin of neutrino mass at renormaliz-
able level. Because of the absence of right-handed neu-
trinos, there is no coupling of the Higgs field responsible
for the origin of mass, with neutrinos. Even if right-handed
neutrinos are introduced, one requires a Yukawa coupling
with the Higgs boson of the order of 10−12 in order to
generate sub-eV neutrino masses. It also introduces a new
scale, equal to the bare mass term of the right-handed
neutrinos that can neither be explained nor prevented
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within the SM. In an effective field theory setup, one can
generate light neutrino masses through the dimension five
effective operator [12] so that neutrino masses are naturally
light due to the suppression by a cutoff scale Λ. Such an
operator can be realized within several BSM frameworks
after integrating out the heavy fields. Such renormalizable
BSM frameworks are popularly known as seesaw models
[13]. Apart from the tiny mass of neutrinos, another
puzzling observation is their large mixing angles, in sharp
contrast with small mixing angles in the quark sector. This
may also be a hint that the CP violation in the leptonic
sector is large compared to the quark sector. If this is true,
then it can have nontrivial implications for cosmology as
the quark sector CP violation is found to be too small to
generate the observed matter antimatter asymmetry of the
Universe, to be discussed in detail below. The observed
large mixing in the leptonic sector has motivated the study
of different flavor symmetry models that can predict such
mixing patterns. One of the very popular flavor symmetric
scenarios is the one that predicts a μ − τ symmetric light
neutrino mass matrix that predicts θ13 ¼ 0, θ23 ¼ π

4
whereas

the value of θ12 depends upon the particular realization of
this symmetry [14]. Among different possible realizations,
the tribimaximal (TBM) [15] mixing pattern which predicts
θ12 ¼ 35.3° has probably been the most studied one. In
fact, this mixing pattern was consistent with light neutrino
data, prior to the discovery of nonzero θ13. Such mixing
patterns can naturally be realized within several non-
Abelian discrete flavor symmetry models [16]. Among
them, the discrete group A4 which is the group of even
permutations of four objects, can reproduce the TBM
mixing in the most economical way [17,18]. Since the
latest neutrino oscillation data are not consistent with
θ13 ¼ 0 and hence TBM mixing, one has to go beyond
the minimal μ − τ symmetric framework. Since the mea-
sured value of θ13 is small compared to the other two, one
can still consider the validity of μ − τ symmetry at the
leading order and generate nonzero θ13 by adding small
μ − τ symmetry breaking perturbations. Such corrections
can originate from the charged lepton sector or the neutrino
sector itself like for example, in the form of a new
contribution to the neutrino mass matrix. This has led to
several works including [19–26] within different BSM
frameworks.

Apart from the issue of tiny neutrino mass and large
leptonic mixing, another serious drawback of the SM is its
inability to explain the observed baryon asymmetry of the
Universe. The observed baryon asymmetry is often quoted
as the baryon to photon ratio [10],

ηB ¼ nB − nB̄
nγ

¼ 6.04� 0.08 × 10−10: ð1Þ

If the Universe started in a baryon symmetric manner then
one has to satisfy the Sakharov’s conditions [27]: baryon
number (B) violation, C and CP violation, and departure
from thermal equilibrium. One popular BSM scenario that
can generate a net baryon asymmetry is leptogenesis. For a
review, one may refer to [28]. As outlined in the original
proposal by Fukugita and Yanagida thirty years back [29],
this mechanism can satisfy all Sakharov’s conditions [27]
required to be fulfilled in order to produce a net baryon
asymmetry. Here, a net leptonic asymmetry is generated
first that gets converted into baryon asymmetry through
Bþ L violating electroweak sphaleron transitions [30].
The interesting feature of this scenario is that the required
lepton asymmetry can be generated through out of equi-
librium decay of the same heavy fields that take part in the
seesawmechanism. Although the BSM framework explain-
ing the baryon asymmetry could be completely decoupled
from the one explaining leptonic mass and mixing, it is
more economical and predictive if the same model can
account for both the observed phenomena. In the conven-
tional type I seesaw mechanism for example, the heavy
right-handed neutrino decay generates the required lepton
asymmetry that not only depends upon the scale of right-
handed neutrino mass, but also on the leptonicCP violation,
which can be probed at ongoing oscillation experiments.
For a hierarchical spectrum of right-handed neutrinos, there
exists a lower bound on the right-handed neutrino mass
MR > 109 GeV, popularly known as the Davidson-Ibarra
bound [31], from the requirement of successful leptogenesis.
One can however bring down the scale of right-handed
neutrinomass within the framework of resonant leptogenesis
[32–35].
Motivated by this, we study an A4 flavor symmetric

model that can simultaneously explain the correct neutrino
data as well as the baryon asymmetry through TeV scale

TABLE I. Global fit 3σ values of neutrino oscillation parameters [8,9].

Parameters NH [8] IH [8] NH [9] IH [9]

Δm2
21

10−5 eV2
7.03–8.09 7.02–8.09 7.05–8.14 7.05–8.14

jΔm2
31
j

10−3 eV2
2.407–2.643 2.399–2.635 2.43–2.67 2.37–2.61

sin2 θ12 0.271–0.345 0.271–0.345 0.273–0.379 0.273–0.379
sin2 θ23 0.385–0.635 0.393–0.640 0.384–0.635 0.388–0.638
sin2 θ13 0.0193–0.0239 0.0195–0.0240 0.0189–0.0239 0.0189–0.0239
δ 0°−360° 145°−391° 0°−360° 0°−31°; 142°−360°
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resonant leptogenesis. Keeping the right-handed neutrino
mass matrix trivial, giving rise to a degenerate spectrum, we
first try to obtain the nontrivial Dirac neutrino mass matrix
responsible for nontrivial structure of the light neutrino
mass matrix, to be obtained using the type I seesaw
formula. We generate this nontrivial structure of Dirac
neutrino mass matrix using a flavon field that, along with
the lepton doublets and right-handed neutrinos transform as
A4 triplets. We find that this choice automatically gives rise
to nonzero θ13 as the resulting light neutrino mass matrix
does not possess any μ − τ symmetry. This is due to the
antisymmetric term arising out of the products of two A4

triplets. If we generate the nontrivial leptonic mixing from
a nontrivial right-handed neutrino mixing, like in the
Altarelli-Feruglio-type models [18], such an antisymmetric
term vanishes due to Majorana nature of this mass term.
This is however not true in the case of the Dirac mass term,
resulting in a nontrivial μ − τ symmetry breaking structure
in the most general case. We compare the light neutrino
mass matrix derived from the model with the one from data
and evaluate the model parameters for a particular choice
of right-handed neutrino mass scale. The minimal such
scenario is found to be rather constrained with only a
handful of allowed points that satisfy all the criteria from
the neutrino data point of view. We then feed these allowed
points into the calculation of resonant leptogenesis and find
agreement with the observed baryon asymmetry of the
Universe. In the end we also briefly comment on the μ − τ
symmetric limit of these scenarios where the antisymmetric
coupling term is turned off by hand.
This paper is organized as follows. In Sec. II, we discuss

our A4 flavor symmetric model with the details of different
mass matrices in the lepton sector. In Sec. III, we briefly
outline the mechanism of resonant leptogenesis followed
by the details of numerical analysis in Sec. IV. We discuss
our numerical results in Sec. V and then briefly outline the
μ − τ symmetric limit of the model in Sec. VI. We finally
conclude in Sec. VII.

II. THE MODEL

The discrete group A4 is the group of even permutations
of four objects or the symmetry group of a tetrahedron. It
has twelve elements and four irreducible representations
with dimensions ni such that

P
in

2
i ¼ 12. These four

representations are denoted by 1, 10, 100 and 3, respectively.
The product rules for these representations are given

in Appendix. We consider a flavor symmetric model
based on the discrete non-Abelian group A4 augmented
by Z3 × Z2 that predicts the specific structures of different
3 × 3matrices involved in the type I seesaw in a natural and
minimal way. The particle content of the model is shown in
Table II. The Yukawa Lagrangian for the leptons can be
written as

LY ⊃ YeL̄H
ϕE

Λ
eR þ YμL̄H

ϕE

Λ
μR þ YτL̄Hd

ϕE

Λ
τR

þ Ys

Λ
ðϕνL̄Þ3s H̃N þ Ya

Λ
ðϕνL̄Þ3aH̃N

þ YNðNNÞ1ξþ Y 0
NðNNÞ100ξ

ζζ

Λ2
þ H:c: ð2Þ

Using the A4 product rules given in Appendix, we can write
down the relevant leptonic mass matrices from the above
Lagrangian. We denote the vacuum expectation value (vev)
of the Higgs boson to be vH and choose a specific flavon
vev alignment hϕEi ¼ ðvE; 0; 0Þ, hϕνi ¼ ðvν; vν; vνÞ. The
resulting charged lepton mass matrix is

Ml ¼
vHvE
Λ

0
B@

Ye 0 0

0 Yμ 0

0 0 Yτ

1
CA: ð3Þ

The Dirac neutrino mass matrix is given by

MD ¼ vHvν
Λ

0
BB@

2
3
Ys −ðYs

3
þ Ya

2
Þ −ðYs

3
− Ya

2
Þ

−ðYs
3
− Ya

2
Þ 2

3
Ys −ðYs

3
þ Ya

2
Þ

−ðYs
3
þ Ya

2
Þ −ðYs

3
− Ya

2
Þ 2

3
Ys

1
CCA:

ð4Þ

Considering only up to dimension five terms, the right-
handed neutrino mass matrix can be written as

MR ¼ 2YNvξ

0
B@

1 0 0

0 0 1

0 1 0

1
CA; ð5Þ

where vξ is the vev of the flavon ξ. The light neutrino mass
matrix can be generated using type I seesaw

TABLE II. Fields and their transformation properties under SUð2ÞL gauge symmetry as well as the A4 symmetry.

L̄ eR μR τR N H ϕE ϕν ξ ζ

SUð2ÞL 2 1 1 1 1 2 1 1 1 1
A4 3 1 10 100 3 1 3 3 1 100
Z3 ω ω2 ω2 ω2 ω 1 1 ω ω 1
Z2 1 1 1 1 −1 1 1 −1 1 −1
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−Mν ¼ MDM−1
R MT

D ¼ 1

c

0
BB@

−2ða2 − 3b2Þ ða2 þ 6ab − 3b2Þ ða2 − 6ab − 3b2Þ
ða2 þ 6ab − 3b2Þ ða2 − 6ab − 3b2Þ −2ða2 − 3b2Þ
ða2 − 6ab − 3b2Þ −2ða2 − 3b2Þ ða2 þ 6ab − 3b2Þ

1
CCA; ð6Þ

where a ¼ 1
ΛYavHvν, b ¼ 2

3ΛYsvHvν, c ¼ 2YNvξ. Diago-
nalization of this mass matrix gives the eigenvalues as

m1 ¼ 0; m2 ¼ −
3

c
ða2 þ 3b2Þ; m3 ¼

3

c
ða2 þ 3b2Þ;

ð7Þ

which clearly disagrees with the neutrino mass data that
give Δm2

21 ≠ 0. Even if we lift the degeneracy of the right-
handed neutrino mass matrix as

MR ¼

0
B@

c 0 0

0 0 c

0 c 0

1
CAþ

0
B@

0 0 d

0 d 0

d 0 0

1
CA ð8Þ

we still have degenerate light neutrino mass eigenvalues

m1 ¼ 0; m2 ¼ −
3ða2 þ 3b2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − cdþ d2

p ;

m3 ¼
3ða2 þ 3b2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − cdþ d2

p ; ð9Þ

which is disallowed by neutrino data.
Choosing a more general vacuum alignment hϕνi ¼

ðvν1; vν2; vν3Þ, the Dirac neutrino mass matrix can be
written as

MD ¼ vH
Λ

0
BBB@

2
3
Ysvν1 −ðYs

3
þ Ya

2
Þvν3 −ðYs

3
− Ya

2
Þvν2

−ðYs
3
− Ya

2
Þvν3 2

3
Ysvν2 −ðYs

3
þ Ya

2
Þvν1

−ðYs
3
þ Ya

2
Þvν2 −ðYs

3
− Ya

2
Þvν1 2

3
Ysvν3

1
CCCA:

ð10Þ

Denoting a¼vH
Λ

1
3
Ysvν1, b ¼ vH

Λ
1
3
Yavν1, c ¼ vH

Λ
1
3
Ysvν2, d ¼

vH
Λ

1
3
Ysvν3 we can write the Dirac neutrino mass matrix as

MD ¼

0
BB@

2a −d − bd
a −cþ bc

a

−dþ bd
a 2c −a − b

−c − bc
a −aþ b 2d

1
CCA: ð11Þ

In this notation, the light neutrino mass matrix elements are
given by

ð−MνÞ11 ¼
4a4 þ 2a2cd − 2b2cd

a2f
;

ð−MνÞ12 ¼
a2ð−dÞ þ 4abd − 2ac2 þ b2dþ 2bc2

af
;

ð−MνÞ13 ¼ −
a2cþ 4abcþ 2ad2 − b2cþ 2bd2

af
;

ð−MνÞ22 ¼
ðd − bd

a Þ2 − 4cðaþ bÞ
f

;

ð−MνÞ23 ¼
a4 − a2ðb2 − 5cdÞ − b2cd

a2f
;

ð−MνÞ33 ¼
c2ðaþbÞ2

a2 þ 4dðb − aÞ
f

; ð12Þ

where f ¼ 2YNvξ is the nonzero entry in the right-handed
neutrino mass matrix given by (5). In this case, the resulting
light neutrino mass matrix can give rise to the correct mass
squared differences as well as mixing angles including
nonzero θ13. At the dimension five level however, the right-
handed neutrinos remain degenerate. As we discuss below,
for successful resonant leptogenesis, the right-handed
neutrinos must have tiny splittings that can be generated
at dimension six level in the model. This higher order
contribution to the right-handed neutrino mass matrix can
be written as

δM ¼

0
B@

0 0 r1
0 r1 0

r1 0 0

1
CA; ð13Þ

where r1 ¼ Y 0
Nvξ

v2ζ
Λ2 with vζ being the vev of the flavon ζ.

Such a small higher order term does not affect light
neutrino masses and mixings considerably.
It should be noted that we have used the A4 product rules

in theT diagonal basis, as given inAppendix. This is justified
in the diagonal charged lepton and Majorana light neutrino
mass limit. In the S diagonal basis, the charged lepton mass
matrix is nondiagonal and the light neutrino mass matrix
also has a different structure due to the difference in the triple
product rules. For details, one may refer to [16].

III. RESONANT LEPTOGENESIS

As pointed out by Fukugita and Yanagida [29], the out of
equilibrium and CP violating decay of heavy Majorana
neutrinos provides a natural way to create the required
lepton asymmetry, as shown in Fig. 1. The asymmetry
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generated by the decay of the lightest right-handed neutrino
into the lepton and Higgs boson is given by

ϵNk
¼−

XΓðNk →LiþH�Þ−ΓðNk →LiþHÞ
ΓðNk →LiþH�ÞþΓðNk →LiþHÞ : ð14Þ

This lepton asymmetry is converted to the baryon asym-
metry through electroweak sphaleron transitions allowing
us to reproduce the observed baryon asymmetry of the
Universe. As mentioned before, resonant leptogenesis is a
viable alternative to high scale or vanilla leptogenesis
scenarios [32–35] within the context of TeV scale minimal
seesaw scenarios. Since a hierarchical spectrum of right-
handed neutrinos cannot give rise to the required asym-
metry at TeV scale, this mechanism gives a resonance
enhancement to the lepton asymmetry by considering a
very small mass splitting between the two heavy neutrinos,
of the order of their average decay width.
The lepton asymmetry can be found from the following

formula [36,37],

ϵil ¼
X
j≠i

Im½YνilY
�
νjlðYνY

†
νÞij� þ Mi

Mj
Im½YνilY

�
νjlðYνY

†
νÞji�

ðYνY
†
νÞiiðYνY

†
νÞjj

fij;

ð15Þ

with the regulator fij being given as

fij ¼
ðM2

i −M2
jÞMiΓj

ðM2
i −M2

jÞ2 þM2
iΓ2

j
:

Here, Γi ¼ Mi
8π ðYνY

†
νÞii as the tree level heavy-neutrino

decay width and Yν is the effective coupling between
heavy and light neutrinos. Now, there is a similar con-
tribution ϵ0il to the CP asymmetry from Right Handed
neutrino oscillation [36,38,39]. Its form is given by (15)
with the replacement fij by f0ij, where

f0ij ¼
ðM2

i −M2
jÞMiΓj

ðM2
i −M2

jÞ2 þ ðMiΓi þMjΓjÞ2 det½ReðYνY
†
νÞ�

ðYνY
†
νÞiiðYνY

†
νÞii

:

The total CP asymmetry is therefore the summation of
these two ϵTil ¼ ϵil þ ϵ0il. Taking into account the appro-
priate efficiency and dilution factors [36,40], one can write
the final baryon asymmetry as

ηB ¼ nB − nB̄
nγ

≃ −
28

51

1

27

3

2

X
l;i

ϵil
Keff

l minðzc; zlÞ
; ð16Þ

where zc ¼ MN
Tc
, Tc ∼ 149 GeV being the critical temper-

ature, zl ≃ 1.25 logð25Keff
l Þ [40] and Keff

l ¼ κl
P

iKiBil,
with Ki ¼ Γi=HN being the washout factor. The Hubble
parameter for the radiation dominated universe is HN ¼
1.66

ffiffiffiffiffi
g�

p
M2

N=MPl at T ¼ MN and g� ≃ 106.75 is the
relativistic degrees of freedom at high temperatures. Bil’s
are the branching ratios of the Ni decay to leptons of lth

flavor: Bil ¼ jYνil
j2

ðYνY
†
νÞii
. The factor κ is given by

κl ¼ 2
X

i;jðj≠iÞ

Re½YνilY�
νjlðYY†Þij� þ Im½ðYνilY�

νjlÞ2�
Re½ðY†YÞllfðYY†Þii þ ðYY†Þjjg�

×

�
1 − 2i

Mi −Mj

Γi þ Γj

�
−1
: ð17Þ

As seen from the expression (15), the lepton asymmetry is
dependent on the elements of the Dirac Yukawa coupling
matrix. Therefore it can be said that the same sets of
model parameters that are supposed to yield correct
neutrino phenomenology are also responsible for yielding
an enhanced lepton asymmetry, later on generating the
observed Baryon asymmetry of the universe.

IV. NUMERICAL ANALYSIS

As discussed before, the most general form of Dirac
neutrino mass matrix (assuming a degenerate right-handed
neutrino mass spectrum) can give rise to a light neutrino
mass matrix from type I seesaw formula, which is con-
sistent with θ13 ≠ 0. This is due to the presence of the
antisymmetric part of the A4 triple product that explicitly
breaks μ − τ symmetry leading to the generation of θ13 ≠ 0.
Within the minimal setup, the light neutrino mass matrix is
given by (24), which contains five parameters a, b, c, d, f
that can in general be complex. Since this corresponds to
degenerate heavy neutrino masses that cannot give rise to
successful leptogenesis, we can break the degeneracy by
including a higher order contribution to the right-handed
neutrino mass matrix as discussed above. Taking this
correction into account, we can write the right-handed
neutrino mass matrix as

FIG. 1. Decay modes of right-handed neutrino in type I seesaw.
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M ¼ M0
R þ δMR ¼

0
B@

f 0 g

0 g f

g f 0

1
CA: ð18Þ

This has eigenvalues f þ g, −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 − fgþ g2

p
,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f2 − fgþ g2
p

where f is the leading order right-handed
neutrino mass and g is the parameter creating tiny mass
splitting. As mentioned earlier, these parameters are related
to the Lagrangian parameters as

a ¼ vH
Λ

1

3
Ysvν1; b ¼ vH

Λ
1

3
Yavν1; c ¼ vH

Λ
1

3
Ysvν2;

d ¼ vH
Λ

1

3
Ysvν3; f ¼ 2YNvξ; g ¼ Y 0

Nvξ
v2ζ
Λ2

:

For the numerical analysis part we first fix the scale of
leptogenesis by fixing the leading right-handed neutrino
mass or the parameter f to be 5 TeV, say. The range of g has
been chosen in such a way that we can have a tinyMajorana
mass splitting required for successful leptogenesis without
affecting the neutrino parameters being from their correct
3σ bound. For satisfying neutrino phenomenology and
explaining leptogenesis, g has been varied randomly from
10−6 to 10−5 GeV, which gives lepton asymmetry of an

order around 10−7 or more. Since g is very small compared
to f, its effects on light neutrino masses and mixing is
not substantial. Yet, we include it while discussing the
compatibility of the model with neutrino data. Thus, after
making the choice of f and the range of g, we are left with
four model parameters a, b, c, d that can be calculated by
comparing the mass matrix predicted by the model with the
one we can construct in terms of light neutrino parameters.
The leptonic mixing matrix can be written in terms of the

charged lepton diagonalizing matrix ðUlÞ and light neutrino
diagonalizing matrix Uν as

UPMNS ¼ U†
l Uν: ð19Þ

In the simple case where the charged lepton mass matrix is
diagonal, which is true in our model, we can have Ul ¼ ⊮.
Therefore we can writeUPMNS ¼ Uν. Now we can write the
complete light neutrino mass matrix as

mν ¼ UPMNSm
diag
ν UT

PMNS; ð20Þ

where the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
leptonic mixing matrix can be parametrized as

UPMNS ¼

0
B@

c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

1
CAUMaj ð21Þ

where cij ¼ cos θij, sij ¼ sin θij, and δ is the leptonic Dirac
CP phase. The diagonal matrix UMaj ¼ diagð1; eiα; eiðζþδÞÞ
contains the undetermined Majorana CP phases α, ζ. The
diagonal mass matrix of the light neutrinos can be written

as mdiag
ν ¼ diagðm1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ Δm2
21

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ Δm2
31

p
Þ for NH

and mdiag
ν ¼diagð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

3þΔm2
23−Δm2

21

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

3þΔm2
23

p
;m3Þ

for IH.
For a fixed value of right-handed neutrino mass, we can

now compare the light neutrino mass matrix predicted by
the model and the one calculated from the light neutrino
parameters. Since there are four undetermined complex
parameters of the model, we need to compare four
elements. Without any loss of generality, we equate (12),
(13), (22), and (33) elements of both the mass matrices.
We vary the light neutrino parameters in their allowed
3σ ranges, vary the lightest neutrino mass mlightest ∈
ð10−6; 0.1Þ eV, and calculate the model parameters a, b,
c, d for each set of values of neutrino parameters. However,
the light neutrino mass matrix has two more independent
elements as any general 3 × 3 complex symmetric mass
matrix has six independent complex elements. On the other

hand, once a, b, c, d are calculated from the equations
ðMνÞ12 ¼ ðmνÞ12, ðMνÞ13 ¼ ðmνÞ13, ðMνÞ22 ¼ ðmνÞ22,
ðMνÞ33 ¼ ðmνÞ33, the other two elements ðMνÞ11, ðMνÞ23
are automatically determined. Since every set of values of
a, b, c, d corresponds to a particular set of light neutrino
parameters, we can calculate the other two light neutrino
mass matrix elements ðmνÞ11, ðmνÞ23 for the same set of
neutrino parameters. For consistency, one needs to make
sure that these two elements calculated for the neutrino
mass matrix predicted by the model Mν and the ones from
light neutrino parametersmν are equal to each other. It turns
out that these two constraints tightly restrict the light
neutrino parameters to a set of very specific values,
resulting in a very predictive scenario. We randomly
generate ten million light neutrino parameters to calculate
the four model parameters a, b, c, d and restrict the
parameters to only those ones that satisfy jðmνÞ11−
ðMνÞ11j < 10−5, jðmνÞ23−ðMνÞ23j<10−5. Here a tolerance
of 10−5 is chosen to decide the equality between the two
elements.
After finding the model parameters a, b, c, d as well as the

light neutrino parameters satisfying the constraints relating

BORAH, DAS, and MUKHERJEE PHYS. REV. D 97, 115009 (2018)

115009-6



the two elements of the mass matrices constructed from the
model and neutrino data, respectively,we calculate the lepton
asymmetry for the same set of allowed parameters. The
effective Dirac Yukawa coupling matrix (Yν) relating heavy
neutrinos to the light ones appearing in the lepton asymmetry
formula is considered to have the same structure as the Dirac
neutrino mass matrix given in (10). Since the corrected form
of the heavy neutrino mass matrix is nondiagonal [given by
(18)], we first diagonalize it and find the corresponding
diagonalizing matrix UR. To keep the analysis in this basis
we transform the Dirac Yukawa coupling matrices as Yν→
YνUR with U�

RMRU
†
R¼diagðM1;M2;M3Þ. We then calcu-

late the baryon asymmetry for the light neutrino parameters
that are consistent with neutrino data as well as the model
restrictions discussed above.

V. RESULTS AND DISCUSSION

Following the procedures outlined in the previous
section, we first randomly generate the light neutrino

parameters in their 3σ range [8] and for each set of values,
we calculate the model parameters a, b, c, d using four
equations. We then apply the constraints relating another
two elements of the neutrino mass matrix and find the
constrained parameter space obeying them. For normal
hierarchy, we show the correlation between these model
parameters in Fig. 2. Since a, b, c, d denote the strength of
the Dirac neutrino mass, we can see that they lie near or
below the MeV scale so that the correct light neutrino mass
is generated from the type I seesaw formula where the right-
handed neutrino scale is fixed at 5 TeV. We also show the
variation of the same model parameters with the lightest
neutrino mass m1 for normal hierarchy in Fig. 3. It can be
seen that the allowed lightest neutrino mass can have values
in the range 0.01–0.1 eV, which can be sensitive to 0νββ
experiments. In fact, the region of parameter space nearm1 ∼
0.1 eV is ruled out by the latest bounds from 0νββ experi-
ments as well as the cosmology upper bound on the sum of
absolute neutrino masses [10]. We show similar correlations
for inverted hierarchy in Figs. 4 and 5. The overfall features

FIG. 2. Correlation between different model parameters for normal hierarchy. The label Gen refers to the most general structure of the
mass matrix discussed in the text.

FIG. 3. Model parameters as a function of the lightest neutrino mass for normal hierarchy. The label Gen refers to the most general
structure of the mass matrix discussed in the text.
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FIG. 4. Correlation between different model parameters for inverted hierarchy. The label Gen refers to the most general structure of the
mass matrix discussed in the text.

FIG. 5. Model parameters as a function of the lightest neutrino mass for inverted hierarchy. The label Gen refers to the most general
structure of the mass matrix discussed in the text.

FIG. 6. Model parameters as a function of one of the Majorana phases α for inverted hierarchy. The label Gen refers to the most general
structure of the mass matrix discussed in the text.
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of these correlation plots are similar the ones for normal
hierarchy, shown in Figs. 2 and 3. However, for inverted
hierarchy, we see a preference for smaller values of lightest
neutrino mass, close to 0.01 eV, away from the upper bounds
set by 0νββ and cosmology data. We then show some
interesting correlations between the model parameters for

inverted hierarchy with one of the Majorana CP phases in
Fig. 6. This figure also shows that the requirement of
satisfying correct neutrino data constrains this CP phase
to a range j sinαj < 0.5.
We also check if there are any correlations among the

known neutrino parameters in this analysis. This could

FIG. 7. Real and imaginary parts of the model parameters for normal hierarchy with the most general structure of the mass matrix
discussed in the text.

FIG. 8. Real and imaginary parts of the model parameters for inverted hierarchy with the most general structure of the mass matrix
discussed in the text.
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arise due to the fact that there are only four parameters a, b,
c, d that we are solving for by using more numbers of
input parameters, leading to an overconstrained system.
However, we did not find any such correlations between the
known neutrino parameters. This is primarily due to the fact
that the model parameters a, b, c, d are in general complex
and hence they represent a set of eight real parameters.
We show their real and imaginary parts separately in Figs. 7

and 8 for normal and inverted hierarchies, respectively. The
imaginary parts of the model parameters are the source of
CP phases in this model and hence play a crucial role in
generating the leptonic asymmetries.
After finding the allowed neutrino as well as model

parameters from the requirement of satisfying the latest
neutrino oscillation data, we feed them to the calculation
of the baryon asymmetry through resonant leptogenesis.

FIG. 9. Baryon asymmetry as a function of model parameters for normal hierarchy. The horizontal pink line corresponds to the Planck
bound ηB ¼ 6.04� 0.08 × 10−10 [10].

FIG. 10. Baryon asymmetry as a function of model parameters for inverted hierarchy. The horizontal pink line corresponds to the
Planck bound ηB ¼ 6.04� 0.08 × 10−10 [10].
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The resulting values of ηB are shown for normal
hierarchy as a function of the model parameters in
Fig. 9. We can see that there are several points that
satisfy the Planck 2015 bound on baryon asymmetry
ηB ¼ 6.04� 0.08 × 10−10 [10]. We find more allowed
parameters that satisfy the Planck bound for inverted
hierarchy, as can be seen from the plots shown in Fig. 10.
We also show the baryon asymmetry versus Dirac CP
phase δ in Fig. 11. It can be seen from this plot that we
do not see preference for any particular value of Dirac
CP phase. To show the variation of ηB with Majorana
CP phases, we show the plots in Fig. 12 for both normal
and inverted hierarchy.
Herewe note that there is a difference of around 9 orders of

magnitudes between the mass splitting between the right-
handed neutrinos (of keV order) and their masses (of TeV
order). Although in this model we have generated such tiny
mass splitting naturally, by forbidding it at leading order and

generating it only at higher orders (mass splitting term is
suppressed byΛ2 compared to the dimension four mass term
without any suppression, as discussed above),we still need to
make sure that these splittings are stable under quantum
corrections. That is, if we generate this tiny splitting naturally
at the scale of the flavor symmetry breaking ∼Λ, such
splittings should not be disturbed significantlywhile running
them down to the scale at which the lepton asymmetry is
being generated, T ∼MR ∼OðTeVÞ. Several earlier works
discussed such radiative origin of mass splittings [41]
by considering a degenerate spectrum at high energy scale
[39,42]. Such splittings at the scale of leptogenesis (T ∼MR)
originating from renormalization group (RG) effects from a
scale Λ to MR can be estimated as

ΔMRG
R ≈ −

MR

8π2
ln

�
Λ
MR

�
Re½Y†

νðΛÞYνðΛÞ�: ð22Þ

FIG. 11. Baryon asymmetry as a function of Dirac CP phase for normal and inverted hierarchy. The horizontal pink line corresponds
to the Planck bound ηB ¼ 6.04� 0.08 × 10−10 [10].

FIG. 12. Baryon asymmetry as a function of Majorana CP phases for normal and inverted hierarchy. The horizontal pink line
corresponds to the Planck bound ηB ¼ 6.04� 0.08 × 10−10 [10].
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The effective Yukawa couplings Yν here can be derived from
the model parameters a, b, c, d by taking their ratio with the
Higgs vev vH ∼ 100 GeV. As seen from Figs. 7 and 8, the
parametersa,b, c,d can be as large as of order10−4 GeVand
hence the effective Yukawa couplings Yν are of the order of
10−6. Thus, the mass splitting from RG effects can be
estimated to be approximately

ΔMRG
R ≈ ðx − 3Þ × 3 × 10−11 GeV

whereΛ ¼ 10x GeV,MR ∼OðTeVÞ is used. Therefore, the
splitting from RG effects is usually small for TeV scale MR
and the values of Yukawa couplings we have in our model.
In fact, as pointed out by [43], the pure radiative splitting
scenario gives rise to vanishing lepton asymmetry at order
OðY4

νÞ, showingmore preference to the nonminimal scenario
where splitting is generated by an extra term in the
Lagrangian, like the one we have in our model.

VI. μ− τ SYMMETRIC LIMIT OF THE MODEL

In the most general case discussed above, the light
neutrino mass matrix derived from the type I seesaw
formula turns out to break μ − τ symmetry resulting in
nonzero θ13. The antisymmetric part of the triplet multi-
plications Ya

Λ ðϕνL̄Þ3aH̃N in the Dirac mass term is respon-
sible for breaking the μ − τ symmetry and in the limit of
Ya → 0, the μ − τ symmetry in the light neutrino mass
matrix can be recovered. In this limit, for the simple flavon
vev alignment hϕEi ¼ ðvE; 0; 0Þ, hϕνi ¼ ðvν; vν; vνÞ, the
charged lepton mass matrix is diagonal as before whereas the
Dirac neutrino mass matrix takes a simpler form given by

MD ¼

0
B@

2a −a −a
−a 2a −a
−a −a 2a

1
CA; ð23Þ

where a ¼ vH
Λ

1
3
Ysvν. Using the right-handed neutrino mass

matrix given by (5), the light neutrino mass matrix from the
type I seesaw formula can be written as

−Mν ¼ MDM−1
R MT

D ¼ 3a2

b

0
B@

2 −1 −1
−1 −1 2

−1 2 −1

1
CA; ð24Þ

where b ¼ 2YNvξ. This light neutrino mass matrix is clearly
μ − τ symmetric but it predicts two degenerate massive

neutrinos and one massless neutrino, inconsistent with the
observed mass squared differences.
We suitably modify the field content to arrive at a more

realistic μ − τ symmetric light neutrino mass matrix, as
shown inTable III. In the limit of thevanishingantisymmetric
part of theA4 triplet products, theYukawa Lagrangian for the
Dirac neutrino mass terms can be written as

LY ⊃
Ys

Λ
ðϕνL̄Þ3s H̃N þ Y 0

Λ
ðL̄NÞ1H̃ηþ H:c: ð25Þ

In this case, the Dirac neutrino mass matrix can bewritten as

MD ¼

0
B@

aþ 2b −b −b
−b 2b a − b

−b a − b 2b

1
CA; ð26Þ

where b ¼ vH
Λ

1
3
Ysvν, a ¼ vH

Λ
1
3
Y 0vη, with vη being the vev of

the flavon field η. Using the same leading order right-handed
neutrino mass matrix given by (5), we can derive a μ − τ
symmetric light neutrino mass matrix using the type I seesaw
formula. In fact, this gives rise to TBM-type mixing, one of
the widely studied neutrino mixing frameworks that was
consistentwith neutrino data prior to the discovery of nonzero
θ13. Since the TBM can still be considered as a leading order
approximation due to the smallness of θ13 compared to other
mixing angles, such a scenario can be realistic provided a
small deviation to it can be realized in order to generate
nonzero θ13. This can be done simply by incorporating
another flavon field ψ that has the following transformation:

ψðSUð2ÞL∶1; A4∶10; Z3∶ω; Z2∶ − 1Þ:
This allows onemore contribution to the Dirac neutrino mass
term in the form of

LY ⊃
Y 00

Λ
ðL̄NÞ100H̃ψ þ H:c: ð27Þ

After the flavon field ψ gets a vev vψ, this introduces a
μ − τ symmetry breaking correction to the Dirac mass term
given by

δMD ¼

0
B@

0 0 f

0 f 0

f 0 0

1
CA; ð28Þ

TABLE III. Fields and their transformation properties under SUð2ÞL gauge symmetry as well as the A4 symmetry
in the μ − τ symmetric limit.

L̄ eR μR τR N H ϕE ϕν ξ ζ η

SUð2ÞL 2 1 1 1 1 2 1 1 1 1 1
A4 3 1 10 100 3 1 3 3 1 100 1
Z3 ω ω2 ω2 ω2 ω 1 1 ω ω 1 ω
Z2 1 1 1 1 −1 1 1 −1 1 −1 −1
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where f ¼ vH
Λ

1
3
Y 00vψ . Since this is a limiting case of the most

general case based on an assumption of vanishing antisym-
metric terms, we do not perform any numerical calculations
for this scenario. The calculations are similar to generic A4

models where nonzero θ13 is generated by considering
corrections to a leading order μ − τ symmetric light neutrino
mass matrix. For example, the work [24] considered such a
scenario.

VII. CONCLUSION

We have studied an extension of the standard model by
discrete flavor symmetry A4 × Z3 × Z2 that can simulta-
neously explain the correct neutrino oscillation data and the
observed baryon asymmetry of the Universe. Considering a
TeV scale type I seesaw we adopt the mechanism of resonant
leptogenesis to generate a lepton asymmetry through out of
equilibrium CP violating decay of right-handed neutrinos,
which later gets converted into the required baryon asym-
metry through electroweak sphalerons. The field content and
its transformation under the flavor symmetry are chosen in
such a way that the leading order right-handed neutrino mass
matrix has a trivial structure giving a degenerate spectrum.
The tiny splitting between the right-handed neutrino masses
(required for resonant leptogenesis) arises through higher
dimension mass terms, naturally suppressing the splitting.
Because of the trivial structure of the right-handed neutrino
mass matrix, the leptonic mixing arises through the non-
trivial structure of the Dirac neutrino mass matrix within a
type I seesaw framework. This automatically leads to a μ − τ
symmetry breaking light neutrino mass matrix due to the
existence of antisymmetric terms arising from the product
of two triplet representations of A4. Although such terms
vanish for the right-handed neutrino mass matrix due to the
Majorana nature, they do not vanish in general for the Dirac
neutrino mass matrix. Within a minimal setup, we then
compare the μ − τ symmetry breaking light neutrino mass
matrix with the one constructed from light neutrino param-
eters and find the model parameters, while fixing the right-
handed neutrino mass at 5 TeV. Since there are only four
independent complex parameters of the model that can be
evaluated comparing four mass matrix elements, it gives rise
to two constraints due to the existence of six independent
complex elements of a light neutrino mass matrix that is
complex symmetric if the light neutrinos are of Majorana
type. These two constraints severely restrict the allowed
parameter space to a narrow range, which we evaluate
numerically by doing a random scan of ten million neutrino
data points in the allowed 3σ range, for both normal and
inverted hierarchical patterns of light neutrino masses.
Among the unknown light neutrino parameters namely,
the lightest neutrino mass, one Dirac and two Majorana
CP phases, we get some interesting restrictions on some of
these parameters from the requirement of satisfying the
correct neutrino data within the model framework.

After finding the model and neutrino parameters consistent
with the basic setup, we then feed the allowed parameters to
the resonant leptogenesis formulas and calculate the baryon
asymmetry of the Universe. We find that both the normal and
inverted hierarchical scenarios can satisfy the Planck 2015
bound on baryon asymmetry ηB ¼ 6.04� 0.08 × 10−10

[10]. We however get more allowed points for the inverted
hierarchical scenario compared to the normal one. Finally, we
also briefly outline the μ − τ symmetric limit of the model
taking the approximation of vanishing antisymmetric triplet
product term and a possible way to generate nonzero θ13
in that scenario. We however, do not perform any separate
numerical calculation in this limiting scenario. We find it
interesting that just trying to generate leptonic mixing
through a nontrivial Dirac neutrino mass term automatically
leads to broken μ − τ symmetry, automatically generating
nonzero θ13. This is in fact a more economical way to
generate the correct neutrino oscillation data than taking the
usual route of generating the μ − τ symmetric mass matrix at
leading order followed by some next to leading order
corrections responsible for generating θ13 ≠ 0, which was
the usual procedure adopted after the discovery of nonzero
θ13 in 2012. It is also interesting that the model can naturally
generate the tiny mass splitting between right-handed neu-
trinos and generate the required baryon asymmetry through
the mechanism of resonant leptogenesis. Such a TeV scale
seesaw scenario can also have some other interesting
implications in collider as well as rare decay experiments
like lepton flavor violation, details of which can be found
elsewhere. Also, such a TeV scale seesaw scenario can play a
nontrivial role in restoring the electroweak vacuum stability
as discussed recently by the authors of [37].

APPENDIX: DETAILS OF THE A4 GROUP

A4, the symmetry group of a tetrahedron, is a discrete non-
Abelian group of even permutations of four objects. It has
four irreducible representations: three one dimensional and
one three dimensional, which are denoted by 1; 10; 100, and 3
respectively, being consistent with the sum of the square of
the dimensions

P
in

2
i ¼ 12. We denote a generic permuta-

tion ð1; 2; 3; 4Þ → ðn1; n2; n3; n4Þ simply by ðn1n2n3n4Þ.
The group A4 can be generated by two basic permutations S
and T given by S ¼ ð4321Þ; T ¼ ð2314Þ. This satisfies

S2 ¼ T3 ¼ ðSTÞ3 ¼ 1;

which is called a presentation of the group. Their product
rules of the irreducible representations are given as

1 ⊗ 1 ¼ 1;

10 ⊗ 10 ¼ 100;

10 ⊗ 100 ¼ 1;

100 ⊗ 100 ¼ 10;

3 ⊗ 3 ¼ 1 ⊗ 10 ⊗ 100 ⊗ 3a ⊗ 3s;

COMMON ORIGIN OF NONZERO θ13 AND BARYON … PHYS. REV. D 97, 115009 (2018)

115009-13



where a and s in the subscript corresponds to antisymmetric
and symmetric parts, respectively. Denoting two triplets as
ða1; b1; c1Þ and ða2; b2; c2Þ, respectively, their direct product
can be decomposed into the direct sum mentioned above.
In the S diagonal basis, the products are given as

1 ∽ a1a2 þ b1b2 þ c1c2

10 ∽ a1a2 þ ω2b1b2 þ ωc1c2

100 ∽ a1a2 þ ωb1b2 þ ω2c1c2

3s ∽ ðb1c2 þ c1b2; c1a2 þ a1c2; a1b2 þ b1a2Þ
3a ∽ ðb1c2 − c1b2; c1a2 − a1c2; a1b2 − b1a2Þ:

In the T diagonal basis on the other hand, they can be
written as

1 ∽ a1a2 þ b1c2 þ c1b2

10 ∽ c1c2 þ a1b2 þ b1a2

100 ∽ b1b2 þ c1a2 þ a1c2

3s ∽
1

3
ð2a1a2 − b1c2 − c1b2; 2c1c2 − a1b2 − b1a2; 2b1b2

− a1c2 − c1a2Þ

3a ∽
1

2
ðb1c2 − c1b2; a1b2 − b1a2; c1a2 − a1c2Þ:
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