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We analyze the scalar potential of the simplest little Higgs (SLH) model in an approach consistent with
the spirit of continuum effective field theory (CEFT). By requiring correct electroweak symmetry breaking
(EWSB) with the 125 GeV Higgs boson, we are able to derive a relation between the pseudoaxion massmη

and the heavy top mass mT , which serves as a crucial test of the SLH mechanism. By requiring m2
η > 0 an

upper bound onmT can be obtained for any fixed SLH global symmetry breaking scale f. We also point out
that an absolute upper bound on f can be obtained by imposing partial wave unitarity constraint, which in
turn leads to absolute upper bounds of mT ≲ 19 TeV, mη ≲ 1.5 TeV, and mZ0 ≲ 48 TeV. We present the
allowed region in the three-dimensional parameter space characterized by f; tβ; mT, taking into account the
requirement of valid EWSB and the constraint from perturbative unitarity. We also propose a strategy of
analyzing the fine-tuning problem consistent with the spirit of CEFT and apply it to the SLH. We suggest
that the scalar potential and fine-tuning analysis strategies adopted here should also be applicable to a wide
class of little Higgs and twin Higgs models, which may reveal interesting relations as crucial tests of the
related EWSB mechanism and provide a new perspective on assessing their degree of fine-tuning.
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I. INTRODUCTION

The discovery of the 125 GeV Higgs-like particle [1,2] is
undoubtedly a great success of the standard model (SM)
in which the electroweak symmetry breaking (EWSB) is
achieved via the nonzero vacuum expectation value
associated with a single SUð2ÞL doublet Higgs field.
Nevertheless, there is no a priori reason to believe that
the EWSB must be realized in the minimal manner dictated
by the SM. There are in fact compelling signs that physics
beyond the SM (BSM) should exist to account for issues
like dark matter, neutrino mass and oscillation, baryon

asymmetry of the universe, etc. In a general setting, the new
physics responsible for the explanation of these issues
would interact with the SM Higgs field such that the Higgs
mass becomes radiatively unstable.1 It is therefore prefer-
able that some mechanism should exist to stabilize the
Higgs mass. Very often these stabilizing mechanisms
would require modification of the minimal EWSB mecha-
nism realized by one single SUð2ÞL doublet Higgs field.
Also, such modification should be related to a scale not
much higher than the electroweak scale so that the
stabilizing mechanism itself does not introduce a severe
fine-tuning problem.
One popular candidate of such stabilizing mechanisms is

weak scale supersymmetry (SUSY), which is representa-
tive of weakly-coupled extensions of the SM. Compared to
scenarios which invoke strong dynamics, SUSYextensions
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1This is the Higgs mass naturalness or fine-tuning problem,
which we refer the reader to Refs. [3,4] and references therein for
representative discussion in literature. In this work we do not
distinguish semantically between “naturalness problem” and
“fine-tuning problem” of the Higgs mass.

PHYSICAL REVIEW D 97, 115001 (2018)

2470-0010=2018=97(11)=115001(18) 115001-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.115001&domain=pdf&date_stamp=2018-06-04
https://doi.org/10.1103/PhysRevD.97.115001
https://doi.org/10.1103/PhysRevD.97.115001
https://doi.org/10.1103/PhysRevD.97.115001
https://doi.org/10.1103/PhysRevD.97.115001
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


are more predictive in terms of calculability. On the other
hand, SUSY entails the introduction of superpartners for
every SM particle, and hence nearly a doubling of degrees
of freedom in the theory. None of these superpartners have
been observed so far. Also, a large number of new
parameters associated with these new degrees of freedom
are introduced, making the model quite complicated. It is
therefore very desirable if there are other weakly-coupled2

theories which could stabilize the Higgs mass and at the
same time require less degrees of freedom with simpler
theoretical construction.
One interesting model building option consistent with

this line of thinking is to use the little Higgs mechanism
[5–8].3 The essential ingredient of the little Higgs mecha-
nism is collective symmetry breaking (CSB). In CSB, the
Higgs boson is realized as a Nambu-Goldstone boson
(NGB) of some global symmetry breaking. However, the
global symmetry is also explicitly broken in such a manner
that at least two operators are needed at the same time to
break enough symmetry so that the Higgs ceases to be an
exact NGB. Because more operators are needed to renorm-
alize the Higgs mass, the radiative stability of the theory is
improved. Enlargement of gauge group is generally
required for the implementation of the little Higgs mecha-
nism. One of the simplest possibilities is the simplest little
Higgs (SLH) model [11,12], in which the electroweak
gauge group is enlarged to SUð3ÞL ×Uð1ÞX. Accordingly,
two scalar triplets are needed, the vacuum expectation
values of which leads to the following spontaneous global
symmetry breaking pattern:

½SUð3Þ1 ×Uð1Þ1� × ½SUð3Þ2 ×Uð1Þ2�
→ ½SUð2Þ1 ×Uð1Þ1� × ½SUð2Þ2 ×Uð1Þ2� ð1Þ

The global symmetry is also explicitly broken by gauge and
Yukawa interactions, but in a collective manner to improve
the radiative stability of the model. The 125 GeV Higgs
boson is supposed tobe one of thepseudo-Nambu-Goldstone
bosons of the global symmetry breaking in Eq. (1). The
particle content is quite economical. Especially, for the scalar
sector, with the radial modes integrated out, there is only one
physical degree of freedom left (usually referred to as the
“pseudo-axion” [13,14]) besides the 125 GeV Higgs boson.
When it comes to the extraction of EWSB predictions in

the SLH, there are two approaches adopted in the liter-
ature.4 The first approach is to calculate under the
assumption of “no large direct contribution to the scalar
potential from the physics at the cutoff” [12,15], which will

be abbreviated as the “NDCC assumption” in the rest of the
paper. In this approach, the tree-level scalar potential is
assumed to vanish (except for a technically natural μ term
which gives mass to the pseudoaxion). The one-loop scalar
effective potential is generated by Yukawa and gauge
interactions, triggering EWSB and making the Higgs boson
massive. The divergent loop momentum integral is
assumed to be cut off at the naive dimensional analysis
(NDA) [16] cutoff of the associated nonlinear sigma model.
The second approach is to simply abandon the NDCC
assumption and treat the associated model parameters as
effectively free parameters [17].
Both approaches mentioned above have significant

drawbacks if we attempt to derive quantitative predictions
from the SLH. In the first approach, the regularization
cutoff encountered in one-loop effective potential calcu-
lations is invested with a physical meaning, rather than
being treated via the standard renormalization procedure
discussed in quantum field theory (QFT) textbooks [18]
and the original Coleman-Weinberg paper [19].5 The
practice of imparting a physical meaning to the regulari-
zation cutoff could be somewhat misleading on certain
occasions [22]. Therefore it is always desirable that the
relevant problems be treated in a more rigorous and solid
manner with a clear conceptual foundation. Moreover, if we
stick to the first kind of approach (with its conceptual
foundation put aside for the moment),we would have
difficulty in determining the cutoff value to be used. In
the SLH literature like Ref. [12], a cutoff value of 4πf1 is
used where f1 denotes the smaller one of the vacuum
expectation values of the two scalar triplets. This value
comes from the NDAwhich only gives a qualitative rather
than quantitative estimate of the scale up to which the
nonlinear sigma model is expected to be valid. If we
consider the requirement of perturbative unitarity, then
usually the cutoff value is much smaller than the NDA
estimate [23]. Therefore the results obtained by plugging in
any specific cutoff value cannot be taken too seriously and
we would have no idea about the associated uncertainties.
A further objection is that there seems to be no a priori
reason to believe that there is no large direct contribution
from the physics at the cutoff, and explanations are needed
to clarify what is meant exactly by “large.”

2Here for an effective theory, being “weakly-coupled” is
supposed to hold in its range of validity.

3For early reviews, see Refs. [9,10].
4These two approaches are not peculiar to the study of the

SLH. They have been widely adopted for many little Higgs and
twin Higgs models as well.

5We note that there might be an interpretational ambiguity
about the first approach. One could choose not to interpret this
approach as imparting physical meaning to the regularization
cutoff without renormalization. Instead, one might interpret the
cutoff (usually denoted as Λ) as the renormalization scale [20].
However, many papers (e.g., [8,12,21]) retain a Λ2 term in the
Coleman-Weinberg potential, and demonstrate the cancellation of
quadratic divergence by showing its coefficient vanishes in the
considered model. This is at least formally in conflict with the
interpretation of Λ as a renormalization scale in a mass-inde-
pendent renormalization scheme. We will discuss this alternative
interpretation further in Secs. III and IV.
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In the second approach, as adopted in Ref. [17], although
the ad hoc assumption used in the first approach is
abandoned, the parameters related to the EWSB in the
SLH are all treated free parameters which can vary
independently. Therefore, the predictivity of the SLH in
terms of its EWSB is lost to a large extent. As we will show
in the following sections, even if we allow direct contri-
bution to the scalar potential from the physics at the cutoff,
there is still an important mass relation which connects
various parameters of the model dictated by the require-
ment of correct EWSB with the 125 GeV Higgs boson.
In this paper we would argue that it is both possible and

preferable to adopt an approach consistent with the spirit of
continuum effective field theory (CEFT) [24], which leads
to clear and calculable predictions regarding the EWSB in
the SLH. In the CEFTapproach, the UV cutoff only appears
in the regularization and should be removed after renorm-
alization. This is in contrast with the Wilsonian effective
field theory in which there is indeed an intrinsic UV cutoff
associated with the theory, and is awkward to be employed
for ordinary phenomenological studies.
With the above in mind, we perform an analysis of the

SLH scalar potential in the CEFT approach. We explicitly
write down the scalar quartic term required by the renorm-
alization procedure without any assumption on the con-
tribution from the physics at the cutoff. This does not make
the EWSB prediction in the SLH completely arbitrary
because the renormalization is constrained by the symmetry
of theory. Minimization of the scalar effective potential up
to one-loop level is supposed to yield an electroweak
vacuum expectation value and a Higgs mass consistent with
experiments. As we will show, these requirements lead to
an interesting mass relation between the pseudoaxion mass
mη and the heavy top mass mT , which serves as a crucial
test of the SLH mechanism. Due to the anticorrelation
between mη and mT , requiring m2

η > 0 leads to an upper
bound onmT for any given SLH global symmetry breaking
scale f ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f21 þ f22
p

, where f1, f2 denote the vacuum
expectation values of the two scalar triplets before EWSB,
respectively. Another prediction of the EWSB in the SLH is
that the minimal value of the ratio between the two scalar
triplets tβ ≡ f2

f1
(assuming f2 ≥ f1 for the moment) is

expected to increase with the increase of f. We note that
the heavy gauge boson masses in the SLH is mainly
determined by the overall scale f while the NDA/unitarity
cutoff is supposed to be determined by the smaller one of
the two scalar vacuum expectation values. This implies that
a too large f will push the heavy gauge boson masses into a
region where perturbation theory might not be reliable. In
this work we require all particle masses in the low
energy theory do not exceed the perturbative unitarity
bound derived for the SLH nonlinear sigma fields.
Consequently, we are able to obtain absolute upper bounds
on the scale f and all the relevant particle masses in the

theory with which a self-contained EFT for SLH below its
unitarity cutoff can be established.
A further advantage of the CEFT approach is that it

automatically offers a clear and convenient framework for a
quantitative investigation of the naturalness problem. The
physical content of a quantum field theory can be formu-
lated independent of the regularization cutoff and the
naturalness problem should be formulated using only
physical, renormalized quantities. The real issue of the
naturalness problem is radiative stability. We note that in
CEFT, the radiative structure of the theory is embodied in
its renormalization group equations (RGE) in a mass-
independent renormalization scheme, keeping in mind that
when going below heavy particle thresholds, we need to put
in by hand the Appelquist-Carazzone decoupling [25] by
integrating out heavy degrees of freedom and shifting to a
low energy EFT suitable for the description of the low
energy phenomena [24]. Within this picture, two sources of
fine-tuning can be easily identified: one is related to the
RGE evolution between thresholds, and the other is related
to the matching onto a low energy EFT when crossing
thresholds. Based on these considerations, we explicitly
calculate these two kinds of fine-tuning for the case of the
SLH, using results obtained from our scalar potential
analysis. Furthermore, it is possible to combine the two
fine-tuning measures and obtain a total fine-tuning for the
SLH which is a measure of how sensitive the electroweak
scale parameters are to the variation of the parameters
defined at the unitarity cutoff of the theory. We also clarify
the connection between our fine-tuning definition and some
conventionally adopted fine-tuning definitions used for the
SLH in the literature.
The paper is organized as follows. In Sec. II, we

introduce the basic setup of the SLH model, including
the field content and the Lagrangian. Section III analyzes
the SLH scalar potential in an approach consistent with the
spirit of CEFT with the deriviation of the mη −mT mass
relation and characterization of the allowed parameter
space consistent with valid EWSB and unitarity.
Section IV presents a quantitative analysis of the degree
of fine-tuning in the SLH based on the CEFT picture. In
Sec. V we present our discussion and conclusion.

II. THE SIMPLEST LITTLE HIGGS

In the SLH, the electroweak gauge group is enlarged to
SUð3ÞL ×Uð1ÞX. Two scalar tripletsΦ1,Φ2 are introduced
as nonlinear sigma fields and parametrized in the following
manner to realize the spontaneous global symmetry break-
ing pattern in Eq. (1)

Φ1 ¼ exp

�
iΘ0

f

�
exp

�
itβΘ
f

�0B@
0

0

fcβ

1
CA ð2Þ
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Φ2 ¼ exp

�
iΘ0

f

�
exp

 
−
iΘ
ftβ

!0B@
0

0

fsβ

1
CA: ð3Þ

Here we have introduced the shorthand notation
sβ ≡ sin β; cβ ≡ cos β; tβ ≡ tan β. The Goldstone decay
constant f is supposed to be at least a few TeV. Θ and
Θ0 are 3 × 3 matrix fields, parametrized as

Θ¼ ηffiffiffi
2

p þ
�
02×2 h

h† 0

�
; Θ0 ¼ ζffiffiffi

2
p þ

�
02×2 k

k† 0

�
ð4Þ

where η is the physical pseudoaxion discussed in literature
[13,14], and h and k are parametrized as (v denotes the
vacuum expectation value of the Higgs doublet)

h ¼
�
h0

h−

�
; h0 ¼ 1ffiffiffi

2
p ðvþH − iχÞ ð5Þ

k ¼
�
k0

k−

�
; k0 ¼ 1ffiffiffi

2
p ðσ − iωÞ: ð6Þ

For future convenience, we introduce the notation

ĥ≡ ðh†hÞ1=2: ð7Þ
Some remarks about the above parametrization are in order.
First, there is considerable freedom in parametrizing the
scalar triplets Φ1 and Φ2. For instance, in Eqs. (2) and (3)
we have adopted a double exponential parametrization.
Also, in Eq. (4) we use the identity matrix as the generator
for the η, ζ fields. It is certainly legitimate to use instead
a single exponential parametrization, and/or some other
appropriate matrix like T8 ≡ λ8

2
(λ8 denotes the eighth Gell-

Mann matrix) for the η, ζ generator. These different
parametrizations are mathematically related by field redefi-
nition and are thus physically equivalent. Nevertheless,
using the identity matrix as the generator for η, ζ fields
simplifies the calculation, and as pointed out in Ref. [26],
the double exponential parametrization does not induce
mixing of η with unphysical Goldstones in the term
responsible for η mass. Second, we have assumed that
among various Goldstone components, only the real part of
h0 may acquire a nonzero vacuum expectation value.
Especially, the η field has zero vacuum expectation value
and therefore CP is not spontaneously broken.(We refer
the reader to Ref. [27] for a previous paper on the
phenomenology of the spontaneous CP-violating SLH.)
Such a vacuum configuration can be obtained by mini-
mization of the scalar effective potential, as will be
demonstrated in Sec. III.
In the SLH, under the full gauge group SUð3ÞC×

SUð3ÞL ×Uð1ÞX, Φ1 and Φ2 have quantum number
ð1; 3Þ−1

3
. The gauge kinetic term of Φ1 and Φ2 can thus

be written as

Lgk ¼ ðDμΦ1Þ†ðDμΦ1Þ þ ðDμΦ2Þ†ðDμΦ2Þ ð8Þ

in which the covariant derivative can be expressed as

Dμ ¼ ∂μ − igAa
μTa þ igxQxBx

μ; gx ¼
gtWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− t2W=3
p ð9Þ

In the above equation, Aa
μ and Bx

μ denote SUð3ÞL andUð1ÞX
gauge fields, respectively. g and gx denote the coupling
constants of SUð3ÞL andUð1ÞX gauge groups, respectively.
It is convenient to trade gx for tW ≡ tan θW for future
derivation. Ta ¼ λa

2
where λa, a ¼ 1;…; 8 denote the Gell-

Mann matrices. ForΦ1,Φ2,Qx ¼ − 1
3
. Following Ref. [28],

we parametrize the SUð3ÞL gauge bosons as

Aa
μTa ¼ A3

μ

2

0
B@

1 0 0

0 −1 0

0 0 0

1
CAþ A8

μ

2
ffiffiffi
3

p

0
B@

1 0 0

0 1 0

0 0 −2

1
CA

þ 1ffiffiffi
2

p

0
B@

0 Wþ
μ Y0

μ

W−
μ 0 X−

μ

Y0†
μ Xþ

μ 0

1
CA ð10Þ

with the first-order neutral gauge boson mixing relation
(cW ≡ cos θW; sW ≡ sin θW)

0
B@

A3

A8

Bx

1
CA¼

0
BBB@

0 cW −sWffiffiffiffiffiffiffiffiffiffiffi
1− t2W

3

q
sWtWffiffi

3
p sWffiffi

3
p

− tWffiffi
3

p sW

ffiffiffiffiffiffiffiffiffiffiffi
1− t2W

3

q
cW

ffiffiffiffiffiffiffiffiffiffiffi
1− t2W

3

q
1
CCCA
0
B@

Z0

Z

A

1
CA:

ð11Þ

We note in passing that in the presence of vacuum
misalignment (i.e., v ≠ 0), generally speaking η, ζ, χ, ω
will not be canonically normalized. Also, there could exist
“unexpected” vector-scalar mixing terms such as Zμ∂μη at
tree level. This kind of situation is not uncommon for
models which invoke gauged nonlinear sigma fields. Even
if ζ, χ, ω can be rotated away by gauge transformations,
terms like Zμ∂μη certainly cannot be eliminated by a naive
gauge rotation. A systematic procedure for diagonalizing
such a vector-scalar system in gauge theories, including the
elimination of “unexpected” vector-scalar two-point mix-
ing via an appropriate gauge-fixing, is outlined in Ref. [26]
and applied to the SLH. The implication is that a further
transformation among the η, ζ, χ, ω has to be made to
derive the correct masses and couplings related to these
particles. For the main purpose of the present paper, this
subtlety will only lead to aOðv2=f2Þ-suppressed correction
to the derived η mass.
We now turn to the Yukawa Lagrangian. Since the

electroweak gauge group is now SUð3ÞL ×Uð1ÞX, new
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fermions need to be introduced to furnish complete
representations of the gauge group. This can be done
elegantly in an anomaly-free manner [12,29,30] which
we adopt here. In the lepton Yukawa sector, the SM left-
handed lepton doublets are enlarged to SUð3ÞL triplets
Lm ¼ ðνL;lL; iNLÞTm with Qx ¼ − 1

3
(m ¼ 1, 2, 3 is the

family index). There are also right-handed singlet lepton
fields lRm withQx ¼ −1 andNRm withQx ¼ 0. The lepton
Yukawa Lagrangian can be written as [28]

LLY ¼ iλmNN̄RmΦ†
2Lm þ iλmn

l

Λ
l̄RmϵijkΦi

1Φ
j
2L

k
n þ H:c: ð12Þ

The charged leptons e, μ, τ pick up their masses through the
dimension-five operators in LLY , in which an energy
scale Λ is introduced to make the 3 × 3 mass matrix λl
dimensionless. The dimension-four operators inLLY makes
the new leptons NR’s massive. It should be noted that light
neutrinos νL’s remain massless with LLY , although their
masses can be straightforwardly included by adding
ðΦ†

2LÞ2 operators.
The anomaly-free requirement leads to the following

quark-field content

Q1 ¼ ðdL;−uL; iDLÞT; dR; uR; DR ð13Þ

Q2 ¼ ðsL;−cL; iSLÞT; sR; cR; SR ð14Þ

Q3 ¼ ðtL; bL; iTLÞT; tR; bR; TR ð15Þ

Here Q1, Q2 transform under 3̄ representation of SUð3ÞL
with Qx ¼ 0. Q3 transforms under 3 representation of
SUð3ÞL with Qx ¼ 1

3
. The right-handed quark fields are all

SUð3ÞL singlets with various Uð1ÞX charges. More spe-
cifically, uR, cR, tR, TR carry Qx ¼ 2

3
while dR, sR, bR, DR,

SR carry Qx ¼ − 1
3
. The quark Yukawa Lagrangian can be

written as [28]

LQY ¼ iλt1ū
1
R3Φ

†
1Q3 þ iλt2ū

2
R3Φ

†
2Q3 þ i

λmb
Λ

d̄RmϵijkΦi
1Φ

j
2Q

k
3

þ iλdn1 d̄1RnQ
T
nΦ1 þ iλdn2 d̄2RnQ

T
nΦ2

þ i
λmn
u

Λ
ūRmϵijkΦ�i

1 Φ
�j
2 Q

k
n þ H:c: ð16Þ

In the above equation, n ¼ 1, 2 is the family index for the
first two generations of quark triplets. dRm runs over
ðdR; sR; bR;DR; SRÞ and uRm runs over ðuR; cR; tR; TRÞ.
u1R3; u

2
R3 are linear combinations of tR and TR. d1Rn; d

2
Rn are

linear combinations of dR and DR for n ¼ 1 and of sR and
SR for n ¼ 2.
The CSB mechanism in the SLH deserves comment. In

the bosonic sector,Lgk automatically realizes CSB, while in
the fermionic sector, we have deliberately chosen the
dimension-four operators in LLY;LQY to ensure CSB.

Especially, in Eq. (12) we do not write down a N̄RΦ†
1L

term which is allowed by gauge symmetry but formally
violates CSB when N̄RΦ†

2L is also present. In Eq. (16), the
crucial ingredient for scalar potential analysis is the top
sector Lagrangian

LtY ¼ iλt1ū
1
R3Φ

†
1Q3 þ iλt2ū

2
R3Φ

†
2Q3 ⊂ LQY ð17Þ

in which the CSB is manifest. The dimension-five operators
in Eqs. (12) and (16) actually violate CSB. Nevertheless,
these sources of violation are proportional to light fermion
Yukawa and their effect on scalar potential analysis can be
safely neglected.
If in Eq. (12) the iλmNN̄RmΦ

†
2Lm term is neglected at the

moment, then we could restrict the range of tβ to be tβ ≥ 1

without loss of generality. This is because in this case we
are always free to label the scalar triplet with smaller
vacuum expectation value as Φ1. However, when we
require the very presence of iλmNN̄RmΦ†

2Lm term in
Eq. (12), this labeling redundancy does not hold any more,
and we need to consider both tβ ≥ 1 and tβ < 1.
Nevertheless, for the analysis in the present paper, it is
found that the labeling redundancy tβ ↔ 1

tβ
still holds to a

good approximation since the correction only comes in at
Oðv2=f2Þ in the input parameter. Therefore, in the rest of
this paper we will still present the results by focusing on the
tβ ≥ 1 case.

III. HIDDEN MASS RELATION FROM
SCALAR POTENTIAL ANALYSIS

A. Scalar potential in the SLH

Up to now, we have not described the scalar potential in
the SLH yet. In Sec. I, we mentioned two approaches
commonly adopted in the literature. In one of them, the
relevant model parameters are treated effectively as
free parameters and the predictivity is lost to a large
extent. Therefore, let us scrutinize the other approach
(used in Refs. [12,15]) to see whether there is room
for improvement.
In the approach adopted by Refs. [12,15], the tree-level

scalar potential is assumed to vanish except for the μ term

Lμ ¼ μ2ðΦ†
1Φ2 þ H:c:Þ: ð18Þ

The Yukawa and gauge interactions then generate a
potential at one-loop level, triggering EWSB. At one-loop,
the effective-potential calculation contains logarithmic UV
divergence due to fermion and gauge boson loops. In
Refs. [12,15], this logarithmic divergence is treated by
imposing a momentum cutoff Λ, which is taken to be 4πf1
in Ref. [12] and 4πf in Ref. [15].
From a CEFT point of view, the appearance of

UV divergence in the calculation signals the need for
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renormalization. A similar but simpler example is scalar
quantum electrodynamics (QED). If we do not write down
a scalar quartic term at tree level, then when doing one-loop
calculation of scalar scattering processes we will still
encounter UV divergence which needs to be absorbed
by adding counterterms. From the viewpoint of renormal-
ization theory, a consistent approach is to introduce in the
bare Lagrangian a scalar quartic term. Calculation at one-
loop order can then be done via renormalized perturbation
theory, in which the bare Lagrangian is split into the
renormalized part and the counterterm part. The UV
divergences encountered in loop calculations can then be
absorbed by counterterms in appropriate renormalization
schemes. The renormalization procedure will usually
introduce an unphysical scale (renormalization scale) into
calculation. Requiring physical quantities to be indepen-
dent of this unphysical scale leads to the notion of running
couplings as a consequence of solving the relevant Callan-
Symanzik equation.
Nevertheless, in the literature, a crude momentum cutoff

Λ is imposed, and there is an ambiguity concerning the
interpretation of Λ. In the Appendix of Ref. [12], as can be
inferred from the constants appearing in the expression of
Coleman-Weinberg (CW) potential and the text, the CW
potential expression corresponds to DR scheme [31,32]
rather than a sharp momentum cutoff regularization without
renormalization. In Ref. [20], MS scheme is used and Λ ¼
4πf1 is interpreted as the renormalization scale. However,
if Λ is regarded as the renormalization scale, then the
choice of its value should be arbitrary in principle since
physical predictions should be renormalization group
invariant. This seems to contradict the fact that the
EWSB predictions in the previous literature indeed rely
on say, setting Λ ¼ 4πf1. As will be discussed in Sec. IV,
the contradiction disappears only if we are forced to accept
the assumption of vanishing contribution to the scalar
potential from the physics at the cutoff. In spite of this,
interpreting Λ as a renormalization scale is still in conflict
with the fact that in Refs. [12,20] (and many other papers) a
Λ2 term is sometimes retained to discuss cancellation of
quadratic divergence or related issues.
In the present paper we opt for an approach consistent

with the spirit of CEFT. We first write down the bare scalar
potential VB as follows

VB ¼ −μ2BðΦ†
1BΦ2B þΦ†

2BΦ1BÞ þ λBjΦ†
1BΦ2Bj2: ð19Þ

The subscript “B” denotes bare quantities. In VB we retain
operators up to dimension-four and assume the effects of
higher-dimensional operators can be neglected (which is
not an inconsistent power-counting assumption). We note
that both operators in Eq. (19) violate CSB. However, this
violation is not really harmful. For the μ term, if we neglect
the small light fermion Yukawa, it softly breaks the global
Uð1Þ symmetry in which two scalar triplets undergo

opposite phase rotations. [The pseudoaxion η actually
corresponds to the pseudo-Goldstone of this spontaneously
broken Uð1Þ.] The scalar quartic coupling λB is a dimen-
sionless parameter and will not induce a serious fine-tuning
problem unless its renormalized counterpart takes some
extreme value (this issue will be discussed in more detail in
Sec. IV). We emphasize that the inclusion of the scalar
quartic operator jΦ†

1BΦ2Bj2 is required by renormalization.
It provides the necessary counterterm to absorb the UV
divergence encountered in the calculation of radiative
correction to the scalar effective potential. A dimension-
four operator ðΦ†

1BΦ2BÞ2 þ H:c: is also allowed by gauge
symmetry, however it would formally cause a hard break-
ing of the global Uð1Þ symmetry that protects the μ term.
Therefore we do not include it in VB.
We now move on to the calculation of scalar effective

potential via renormalized perturbation theory. The tree-
level effective potential is now written as

Vtree ¼ −μ2ðΦ†
1Φ2 þΦ†

2Φ1Þ þ λRjΦ†
1Φ2j2: ð20Þ

In the above equation all quantities (couplings, fields) are
renormalized ones, with Φ1, Φ2 assuming the parametriza-
tion used in Eqs. (2) and (3). At one-loop level, we take into
account the contribution from gauge interaction and top
sector Yukawa, and express the scalar potential at small
field value (i.e., ĥ ≪ f) as

V1−loop ¼ Vs
1-loop þ Vns

1-loop ð21Þ

in which the SUð3Þ-symmetric part Vs
1−loop and SUð3Þ-

nonsymmetric part Vns
1−loop are respectively given by

Vs
1-loop ¼ λ̄jΦ†

1Φ2j2 ð22Þ

Vns
1-loop ¼ ΔðĥÞĥ4: ð23Þ

Here the coefficient of the ĥ4 term is written as ΔðĥÞ,
indicating that it is field-dependent. We therefore call ΔðĥÞ
a field form factor, emphasizing it is not a field-independent
constant. Combining the tree-level and one-loop contribu-
tions, the scalar effective potential V (defined as the sum of
V tree and V1-loop) is given by

V ¼ −μ2ðΦ†
1Φ2 þΦ†

2Φ1Þ þ λjΦ†
1Φ2j2 þ ΔðĥÞĥ4 ð24Þ

in which

λ≡ λR þ λ̄ ð25Þ

In our treatment the counterterm contribution is included in
V1−loop, therefore μ2, λ;ΔðĥÞ in Eq. (24) are all finite
quantities with no dependence on the regularization cutoff.
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Taking into account gauge boson and top sector Yukawa
contributions, λ̄ and ΔðĥÞ are computed to be (Landau
gauge and MS scheme are adopted)

λ̄ ¼ −
3

8π2

�
λ2t

M2
T

f2

�
ln
M2

T

μ2R
− 1

�
−
1

4
g2

M2
X

f2

�
ln
M2

X

μ2R
−
1

3

�

−
1

8
g2ð1þ t2WÞ

M2
Z0

f2

�
ln
M2

Z0

μ2R
−
1

3

��
ð26Þ

ΔðĥÞ ¼ 3

16π2

�
λ4t

�
ln

M2
T

m2
t ðĥÞ

−
1

2

�
−
1

8
g4
�
ln

M2
X

m2
WðĥÞ

−
1

2

�

−
1

16
g4ð1þ t2WÞ2

�
ln

M2
Z0

m2
ZðĥÞ

−
1

2

��
: ð27Þ

In the above equations, μR is the renormalization scale in
the MS scheme. We deliberately avoid the use of Λ here to
prevent any interpretational ambiguity. λt is defined as

λt ≡ λt1λ
t
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λt21 c
2
β þ λt22 s

2
β

q ð28Þ

where λt1; λ
t
2 are the two Yukawa couplings in the top sector,

introduced in Eq. (16). M2
T;M

2
X;M

2
Z0 are defined as

M2
T ≡ ðλt21 c2β þ λt22 s

2
βÞf2 ð29Þ

M2
X ≡ 1

2
g2f2 ð30Þ

M2
Z0 ≡ 2

3 − t2W
g2f2: ð31Þ

They are related to physical mass squared of the relevant
particles as follows

M2
T ¼ m2

T þm2
t ð32Þ

M2
X ¼ m2

X þm2
W ð33Þ

M2
Z0 ¼ m2

Z0 þm2
Z ð34Þ

in which mT , mt denote the physical mass of the heavy top
T and the top quark t, mX, mW denote the physical mass of
the X boson and W boson, mZ0 ; mZ denote the physical
mass of the Z0 boson and Z boson, respectively. We
distinguish between MT and mT , MX and mX, MZ0 and
mZ0 , although the numerical differences are very small.
m2

t ðĥÞ; m2
WðĥÞ; m2

ZðĥÞ are field-dependent mass squared,
which we use the following leading order expression in the
field form factor

m2
t ðĥÞ ¼ λ2t ĥ

2 ð35Þ

m2
WðĥÞ ¼

1

2
g2ĥ2 ð36Þ

m2
ZðĥÞ ¼

1

2
g2ð1þ t2WÞĥ2: ð37Þ

We will see that retaining the field-dependence in these
expressions is important for the quantitative study of
mη −mT correlation.
We note that in our calculation of V, the gauge boson and

fermionic contributions are considered at one-loop order,
while the contribution from the scalar sector itself is only
considered to tree level. This is consistent since the leading
contribution of gauge boson and fermion fields to the scalar
effective potential arise at one-loop order while the leading
contribution of scalar fields to the scalar effective potential
arises already at tree level in our treatment. As long as
perturbation theory is valid, the scalar one-loop contribu-
tion should always be small compared to the scalar tree
level contribution which we already take into account.

B. Analysis of the scalar effective potential

Having obtained the scalar effective potential, Eq. (24),
with the expression of λ̄ and ΔðĥÞ given in Eqs. (26)
and (27), we now begin to analyze its physical implications.
It is helpful to first pin down the dimension of parameter
space that we are dealing with. For the purpose of scalar
potential analysis, if we considermt, g and tW as known and
fixed, then before fixing v and the CP-even Higgs mass
(denoted as mh), we have five adjustable parameters that
enter into V. For instance, we may choose the five
parameters to be f; tβ;MT; μ; λ. Once these five parameters
are given, other quantities like v;mh, and η mass mη can be
derived. Alternatively, we can utilize the measured value of
electroweak vacuum expectation value and CP-even Higgs
mass to eliminate two of the five initial parameters (say, μ
and λ), leaving the remaining three f; tβ;MT as indepen-
dent parameters to characterize the parameter space. The η
mass, which is associated with a second derivative of V at
its local minimum, can be determined from f; tβ;MT . This
is exactly the hidden mass relation that we wish to point out
in the present paper (MT is related to mT via Eq. (32). This
relation can be viewed as a mη −mT mass relation given f
and tβ, and serve as a crucial test of the SLH mechanism.
This relation can also be viewed as a mη −mh mass
relation. When we consider only tree-level scalar effective
potential, an mη −mh mass relation can be obtained which
is valid for any value of the Lagrangian parameters. When
one-loop gauge boson and fermion contributions are taken
into account, the correction to mη −mh mass relation is
then automatically finite and becomes a calculable pre-
diction of the symmetry structure of the theory. In this
sense, this hidden mass relation is a zeroth-order natural
relation [18], which we now begin to derive.
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A convenient starting point is the scalar effective
potential V in Eq. (24) at small field value. With the
parametrization Eqs. (2) and (3), Φ†

1Φ2 can be expressed in
terms of ĥ and η exactly as follows [33]

Φ†
1Φ2¼f2sβcβ exp

�
−

iffiffiffi
2

p
fsβcβ

η

�
cos

�
1

fsβcβ
ĥ

�
: ð38Þ

Making use of this expression we may express V in
Eq. (24) as a function of two real variables ĥ and η

V ¼ −2μ2f2sβcβ cos
�

1ffiffiffi
2

p
fsβcβ

η

�
cos

�
1

fsβcβ
ĥ

�

þ λf4s2βc
2
β cos

2

�
1

fsβcβ
ĥ

�
þ Δĥ4: ð39Þ

Here and in the following, we simply use Δ to represent the
field form factor ΔðĥÞ, keeping in mind its field-depend-
ence. The electroweak vacuum should correspond to a
stationary point of V, satisfying ∂V

∂η ¼ ∂V
∂ĥ ¼ 0, i.e.,

ffiffiffi
2

p
μ2f sin

�
1ffiffiffi

2
p

fsβcβ
η

�
cos

�
1

fsβcβ
ĥ

�
¼ 0 ð40Þ

2μ2f cos
�

1ffiffiffi
2

p
fsβcβ

η

�
sin
�

1

fsβcβ
ĥ
�

− λf3sβcβ sin

�
2

fsβcβ
ĥ

�
þ 4Δĥ3 þ Δ0ĥ4 ¼ 0 ð41Þ

in which

Δ0 ≡ dΔ
dĥ

: ð42Þ

We are concerned with the case of no spontaneous CP-
violation, i.e., η ¼ 0. In this case, Eq. (40) is automatically
satisfied, and Eq. (41) becomes

2μ2f sin

�
1

fsβcβ
ĥ

�
− λf3sβcβ sin

�
2

fsβcβ
ĥ

�

þ 4Δĥ3 þ Δ0ĥ4 ¼ 0: ð43Þ

Suppose P0 ¼ ð0; ĥ0Þ corresponds to the ðη; ĥÞ field
configuration of the electroweak vacuum and therefore
ĥ0 is a solution of Eq. (43). According to Eq. (4) ĥ0 is
related to v by

ĥ0 ¼
vffiffiffi
2

p : ð44Þ

The elements of the Hessian matrix of V at point P0 are
computed to be

∂2V
∂η2
				
P0

¼ μ2

sβcβ
cos

�
1

fsβcβ
ĥ0

�
ð45Þ

∂2V

∂η∂ĥ
				
P0

¼ 0 ð46Þ

∂2V

∂ĥ2
				
P0

¼ 2μ2

sβcβ
cos

�
1

fsβcβ
ĥ0

�
− 2λf2 cos

�
2

fsβcβ
ĥ0

�

þ 12Δ0ĥ
2
0 þ 8Δ0

0ĥ
3
0 þ Δ00

0ĥ
4
0 ð47Þ

in which

Δ0 ≡ Δðĥ0Þ; Δ0
0 ≡ dΔ

dĥ

				
ĥ0

; Δ00
0 ≡ d2Δ

dĥ2

				
ĥ0

: ð48Þ

Since the off-diagonal entry of the Hessian matrix is zero,
we could read out the pseudoaxion mass mη and Higgs
mass mh directly from the above equations. The only
subtlety is that the η field introduced in Eq. (4) is not
canonically normalized. It is related to the canonically
normalized mass eigenstate field ηm by a simple rescaling
relation [26]

η ¼ ηm sec

�
ĥ0

fsβcβ

�
ð49Þ

With this in mind, the pseudoaxion and Higgs mass squared
are found to be

m2
η ¼

μ2

sβcβ
sec

�
ĥ0

fsβcβ

�
ð50Þ

m2
h ¼

μ2

sβcβ
cos

�
1

fsβcβ
ĥ0

�
− λf2 cos

�
2

fsβcβ
ĥ0

�

þ 6Δ0ĥ
2
0 þ 4Δ0

0ĥ
3
0 þ

1

2
Δ00

0ĥ
4
0: ð51Þ

We could obtain an mη −mh mass relation by eliminating
the λ in Eq. (51) using the stationary point condition
Eq. (43), and the result is (using v ¼ ffiffiffi

2
p

ĥ0)

m2
η ¼

�
m2

h − v2Δ0

�
3 −

ffiffiffi
2

p
v

fsβcβ
cot

� ffiffiffi
2

p
v

fsβcβ

��

−
1

4
v3Δ0

0

�
4
ffiffiffi
2

p
−

v
fsβcβ

cot

� ffiffiffi
2

p
v

fsβcβ

��
−
1

8
v4Δ00

0

�

× csc2
�

vffiffiffi
2

p
fsβcβ

�
: ð52Þ

From Eq. (27) we may easily obtain the following
expressions for Δ0;Δ0

0;Δ00
0
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Δ0 ¼
3

16π2

�
λ4t

�
ln
M2

T

m2
t
−
1

2

�
−
g4

8

�
ln
M2

X

m2
W
−
1

2

�

−
g4

16
ð1þ t2WÞ2

�
ln
M2

Z0

m2
Z
−
1

2

��
ð53Þ

Δ0
0 ¼ −

3
ffiffiffi
2

p

8π2v

�
λ4t −

g4

8
−
g4

16
ð1þ t2WÞ2

�
ð54Þ

Δ00
0 ¼

3

4π2v2

�
λ4t −

g4

8
−
g4

16
ð1þ t2WÞ2

�
: ð55Þ

The m2
t ; m2

W;m
2
Z in the expression of Δ0 are field-inde-

pendent and correspond to the physical mass squared of the
top quark, W, and Z bosons, respectively. In the mass
relation Eq. (52), the field-dependent effects of the field
form factor ΔðĥÞ are encoded in Δ0

0;Δ00
0 .

If we define

θ≡ vffiffiffi
2

p
fsβcβ

ð56Þ

A≡ 3

16π2

�
λ4t −

g4

8
−
g4

16
ð1þ t2WÞ2

�
ð57Þ

ΔA ≡ 3

16π2

�
λ4t ln

M2
T

m2
t
−
g4

8
ln
M2

X

m2
W
−
g4

16
ð1þ t2WÞ2 ln

M2
Z0

m2
Z

�
ð58Þ

then the mη −mh mass relation can be written as

m2
η¼½m2

h−v2ΔAð3−2θt−12θ Þþv2Að5−2θt−12θ Þ�s−2θ : ð59Þ

Here t−12θ ≡ 1
tanð2θÞ ; s

−2
θ ≡ 1

sin2 θ. Equation (59) is the central

result of this paper. If we set ΔA ¼ A ¼ 0, then Eq. (59)
would yield the corresponding prediction from considering
only tree-level scalar potential. The correction to the tree
level prediction as exhibited by Eq. (59), is obviously finite
and does not depend on the renormalization scale mani-
festly, consistent with the expectation for a zeroth-order
natural relation.
From Eq. (59) we may deduce that mη can be predicted

once f; tβ, and mT are known. This prediction can be
obtained as long as the SLH can be treated as a self-
contained EFT in its domain of validity. It can be tested in a
quantitative manner without ad hoc assumptions about UV
physics contribution. We see that mη and mT are anticorre-
lated, i.e., with a heavier mT we will obtain a lighter mη.
The electroweak vacuum is supposed to be a local mini-
mum of the scalar effective potential, and therefore we
require m2

η ≥ 0, which is equivalent to

m2
h − v2ΔAð3 − 2θt−12θ Þ þ v2Að5 − 2θt−12θ Þ ≥ 0: ð60Þ

This condition sets an upper bound on mT when f; tβ are
given. The parameter MT also has a lower bound for fixed
f; tβ [34]

MT ≥
ffiffiffi
2

p mt

v
fs2β ≈ fs2β ð61Þ

where s2β ≡ sinð2βÞ. This bound comes from the definition
ofMT in Eq. (32) and the requirement of the top Yukawa λt
in Eq. (28) to yield the correct top quark mass.

C. Unitarity constraint

Due to the nonlinearly realized scalar sector, the SLH
can at best be seen as an EFT valid up to some cutoff scale.
Apart from NDA consideration which yields a cutoff of
4πfcβ, we may also consider the bound from perturbative
unitarity, which is usually expected to yield a more
stringent constraint compared to NDA [23].
To derive the perturbative unitarity constraint for the

SLH, we adopt the methodology of Ref. [23]. To simplify
the problem, we only consider the kinetic terms of the
nonlinear sigma fields, in the limit of vanishing EWSB. In
the SLH we have two copies of SUð3Þ → SUð2Þ global
symmetry breaking, realized by Φ1 and Φ2 respectively,
and the only relevant difference between them is the
symmetry breaking scale, fcβ for Φ1 and fsβ for Φ2. In
our setting Φ1 is chosen to be the one with a lower
symmetry breaking scale (i.e., tβ ≥ 1), and therefore we
only consider the perturbative unitarity constraint from
analysis of kinetic terms of Φ1.
For the perturbative unitarity analysis, it is convenient to

parametrize Φ1 as (f1 ≡ fcβ)

Φ1 ¼ exp

�
iΘ1

f1

�0B@
0

0

f1

1
CA ð62Þ

in which

Θ1 ¼
1ffiffiffi
2

p

0
B@

1
2
π8 0 π4 − iπ5

0 1
2
π8 π6 − iπ7

π4 þ iπ5 π6 þ iπ7 −π8

1
CA ð63Þ

The kinetic Lagrangian of Φ1 can now be written as
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Lk1 ¼ ð∂μΦ1Þ†∂μΦ1

¼ 1

2

X
a

∂μπa∂μπa þ
1

4
ffiffiffi
2

p
f1

ðπ4∂μπ5 − π5∂μπ4 þ π6∂μπ7 − π7∂μπ6Þ∂μπ8

þ
X
i<j

�
−

1

12f21
½π2i ð∂μπjÞ2 þ π2jð∂μπiÞ2� þ

1

6f21
ðπi∂μπiÞðπj∂μπjÞ

�

þ
X
i

�
−

3

64f21
π28ð∂μπiÞ2 −

7

64f21
ð∂μπ8Þ2π2i þ

5

32f21
ðπ8∂μπ8Þðπi∂μπiÞ

�
: ð64Þ

In the above equation, the ranges of summation are a ¼ 4,
5, 6, 7, 8 and i, j ¼ 4, 5, 6, 7. Considering πaπa → πbπb
scattering (with a, b ¼ 4, 5, 6, 7, 8), the 0th partial wave
amplitude matrix is then computed to be

A0 ¼
s

64πf21

0
BBBBBB@

0 1 1 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

1
CCCCCCA
: ð65Þ

The eigenvalues of A0 are

a0j ¼
s

64πf21
ð4;−1;−1;−1;−1Þ: ð66Þ

Requiring jReða0jÞj ≤ 1
2
, we are able to obtain the pertur-

bative unitarity constraint

ffiffiffi
s

p
≤

ffiffiffiffiffiffi
8π

p
f1: ð67Þ

As expected, this turns out to be more stringent than the
NDA bound of

ffiffiffi
s

p
≤ 4πf1. In the following analysis, we

require the particle masses that are relevant to our scalar
potential analysis be smaller than the unitarity cutoffffiffiffiffiffiffi
8π

p
f1. Specifically, we require (recall f1 ≡ fcβ)

MZ0 ≤
ffiffiffiffiffiffi
8π

p
fcβ ð68Þ

MT ≤
ffiffiffiffiffiffi
8π

p
fcβ: ð69Þ

In the SLH, Z0 is heavier than X, Y bosons, therefore we
impose the constraint on MZ0 . The difference between MZ0

and mZ0 and the difference between MT and mT are both
small, and in the unitarity constraint we useMZ0 andMT for
simplicity. We can use Eq. (31) to find a constraint on tβ
from Eq. (68). This constraint when combined with the
assumption of tβ ≥ 1, implies the following allowed region
of tβ which we assume hereafter

1 ≤ tβ ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð3 − t2WÞ

g2
− 1

s
ð70Þ

The unitarity constraint yields an upper bound on tβ, which
is not difficult to understand. tβ can be viewed as a measure
of the asymmetry between the vacuum expectation values
of Φ1 and Φ2. The unitarity constraint depends on the
smaller of the two vacuum expectation values, while the Z0
boson mass depends on their quadrature. Therefore the
asymmetry between the two vacuum expectation values
cannot be too large.

D. Allowed region of parameter space

With the results from the scalar potential analysis and
unitarity constraints obtained in this section, we are ready
to make plots characterizing the allowed region of param-
eter space with an understanding of its basic features.
However, before that we note there are some technicalities
related to input parameter corrections. More specifically,
the parameters g; v; tW; λt that appear in our parametrization
of the SLH should not be directly identified with the
corresponding quantities in the SM, which we denote as
gSM, vSM, tW;SM; λt;SM, respectively. Their relations should
be established by producing a common set of well-
measured physical observables. In this paper, we are
concerned with correction due to the SLH, rather than
higher order radiative corrections. Thus we opt to work at
tree level but retain the leading Oðv2f2Þ corrections. The

correspondence turns out to be

g ¼ gSM

�
1þ 1

4t2β

v2SM
f2

�
ð71Þ

v ¼ vSM

�
1þ t4β − t2β − 2

12t2β

v2SM
f2

�
ð72Þ

tW ¼ tW;SM

�
1 −

1þ t2W;SM

4t2β

v2SM
f2

�
ð73Þ

λt ¼ λt;SM

�
1þ

�
1

4s2β
−
λ2t;SM
4

f2

M2
T

�
v2SM
f2

�
ð74Þ
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in which we use the following values for SM quantities

gSM ¼ 0.653; vSM ¼ 246.2 GeV;

tW;SM ¼ 0.536; λt;SM ¼ 0.995: ð75Þ

The Z0 boson in the SLH is subject to the stringent
constraint from the LHC search of a high-mass resonance
decaying into dilepton. Using ATLAS results [35] we set a
crude lower bound on f as [27]

f > 7.5 TeV: ð76Þ

With such a stringent constraint the effect of Oðv2f2Þ
corrections is in fact very small. Nevertheless we take
them into account in our numerical analysis to validate the
stability of our results against these corrections.
In Fig. 1 we plot the maximum and minimum allowed tβ

and mT values as a function of f. Constraints from
Eqs. (60), (61), (70), and (69) are taken into account.
From the left panel of Fig. 1 we see a constant tmax

β value
(tmax
β ≈ 9) for all f. This follows from Eq. (70) which

requires Z0 mass should not exceed the unitarity constraint.

Since tβ is bounded from above, Eq. (61) then imposes a
lower bound on top partner mass for fixed f. This explains
themmin

T curve shown in the right panel of Fig. 1. Themmax
T

curve in the right panel of Fig. 1 is determined by Eq. (60),
reflecting the fact that a too heavy top partner could lead to
a negative pseudoaxion mass squared. The upper bound on
heavy top partner mass should be larger than its lower
bound, which leads to the increasing of tmin

β for larger f as
shown in the left panel of Fig. 1. Therefore, with the
increase of f, the allowed range of variation for tβ shrinks,
and eventually hit a point at f ≈ 85 TeV, above which a
perturbative treatment of the SLH as an EFT might not be
reliable. We remark here that it is important to retain the
field dependence in the field form factor ΔðĥÞ in order to
obtain reliable estimates of mmax

T and mη −mT mass

relation. Although the difference in treating ΔðĥÞ as
field-independent and field-dependent is proportional to
a small quantity A ≈ 0.018, the MT parameter enters as the

FIG. 1. Left: Maximum and minimum tβ value as a function of f. Right: Maximum and minimum mT value as a function of f.
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FIG. 3. tβ density plot in the allowed region in the mη −mT
plane for f ¼ 10 TeV.
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argument of a logarithmic function and is therefore
very sensitive to such corrections. If we treated ΔðĥÞ as
field-independent, we would have obtained a maximum
mmax

T value of about half of the value obtained by retaining
field-dependence.
In Fig. 2 we plot the maximum allowed mη value as a

function of f. The minimum allowed mη value, before
any experimental or observational constraint is taken
into account, is zero. The maximum allowed mη for
fixed f reaches a maximum at about f ≈ 51 TeV;
mη ¼ 1.5 TeV.
Figure 3 exhibits the tβ value in the allowed region in the

mη −mT plane for f ¼ 10 TeV. One easy way to under-
stand this figure is to follow the contour of constant tβ,
which can be identified by the color code. If we start from a
high value of tβ at some point with lighter color, then we
can move along two opposite directions by keeping tβ
fixed. We may move along the direction which increases
mT and eventually reach a point that saturates the unitarity
bound Eq. (69), which is responsible for the dent in the
lower part of the figure. On the other hand, we may move
along the direction which decreases mT and eventually
reach a point that saturates the bound in Eq. (61), which
determines the northwest boundary of the allowed region.
For f ¼ 10 TeV, the northeast and southwest boundary of
the allowed region are cut off by tβ ¼ 1 and tβ ¼ tmax

β ≈ 9,
respectively.
In Fig. 4 we present the tβ density plot in the

allowed region in the mη −mT plane for f ¼ 20;
40; 60 TeV. Because of the increased tmin

β value, the
boundary of the upper half allowed region will always
be determined by Eq. (61) and it will not be cut off by
tβ ¼ 1. This explains the absence of a sharp turning point in
the upper boundary of the allowed region in Fig. 4.
Moreover, the effect of unitarity constraint on mT becomes
milder, and vanishes for f ¼ 40; 60 TeV cases, explaining
the shrinking and disappearance of the dent in the
lower part.

IV. NATURALNESS IN THE SIMPLEST
LITTLE HIGGS

A. Anatomy of naturalness in continuum
effective field theory

We are now prepared to analyze the fine-tuning pro-
blem in a general manner within the CEFT framework.6 A
global physical picture suggested by CEFT is that between
thresholds, the renormalization structure of a QFT is
encoded in its RGE in a mass-independent renormalization
scheme, while when going below a mass threshold, heavy
degrees of freedom should be integrated out and the switch
to a low energy effective QFT should be made in order to
facilitate an easy grasp of the main feature of the theory.
Accordingly, two sources of physical fine-tuning in this
global picture can be identified. First, there can be fine-
tuning associated with the RG running between thresholds
(referred to as “RG tuning”). This happens if the value of a
running parameter is very small at a particular renormal-
ization scale for observation while its running is very fast
(i.e., β function is large). In such a case when we consider a
finite range of RG flow then it is obvious that there can be
a high sensitivity of the IR parameter to the UV parameter.
A simple example is scalar QED, in which if a scalar
quartic interaction is not written down, it can still be
generated via RG running, and therefore requiring the
quartic to vanish at a particular point would be a type of
fine-tuning. We note that such kind of fine-tuning in the
context of Little Higgs models has been pointed out before
[37]. Second, there can be fine-tuning associated with the
transition from the EFT above the threshold to the EFT
below the threshold (referred to as “threshold tuning”).
Generally speaking, the degrees of freedom and the
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FIG. 4. tβ density plot in the allowed region in the mη −mT plane for f ¼ 20; 40; 60 TeV.

6In this work, we quantify the degree of fine-tuning as the
sensitivity of IR physical parameters to UV physical parameters.
Sensitivity to unphysical parameters such as the regularization
cutoff is not considered as fine-tuning and is thus excluded from
discussion. This is in accordance with the discussion in, e.g.,
Ref. [36].
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description of the theory change due to crossing the
threshold. This change of description could induce addi-
tional sensitivity of IR parameters to UV parameters. We
will see at below how the threshold tuning in the SLH can
be identified.

B. Fine-tuning in the SLH

The SLH can be considered an EFT valid up to its
unitarity cutoff ΛU ≡ ffiffiffiffiffiffi

8π
p

fcβ. Roughly speaking, there is
a scale separation in the validity range of the SLH. Two
characteristic scales can be identified, one is associated
with the scales of heavy sector particles, such as mT , mZ0 ,
the other is the electroweak scale which can be represented
by v or mh. The fine-tuning in the SLH, from the CEFT
point of view, is about how the electroweak scale param-
eters, such as v ormh, are sensitive to high scale parameters
in the model. Here the “high scale” is naturally chosen to be
the highest scale at which the SLH claims to be valid as an
EFT. In our analysis this is unsurprisingly chosen to be the
unitarity cutoff ΛU. For simplicity we ignore small input
parameter corrections in the fine-tuning analysis.
The values of v and mh can be calculated once the

following set of parameters are given at ΛU: f; tβ;
MT; λR; μ2. In our analysis we neglect field strength
renormalization effects and the only running parameter
in this set is λR. The procedure to calculate v andmh is then
straightforward: we first follow the RG flow to a scale ML

which satisfies λ̄ ¼ 0 at μR ¼ ML [λ̄ is defined by Eq. (22)].
At μR ¼ ML we have the parameter λ introduced in Eq. (24)
just given by λR. Next we may use the analysis in the
previous section to obtain v and mh, which can be viewed
as transition to a low energy EFT for the electroweak scale.
The RG tuning and threshold tuning can be obtained
respectively from the above two steps.
Let us first investigate the threshold tuning. This requires

us to express v andmh in terms of λ; μ2 and f; tβ;MT . From
the stationary point condition Eq. (43) we could obtain the
following expression of v2 by expanding the sines to ĥ30

v2 ¼
4ðλf2 − μ2

sβcβ
Þ

1
3f2s2βc

2
β
ð4λf2 − μ2

sβcβ
Þ þ 4Δ0 − 2A

ð77Þ

in which Δ0 and A are given by Eqs. (53) and (57),
respectively. Then we may expand the cosines in Eq. (51) to
ĥ20 and plug in Eq. (77) to obtain

m2
h ¼ 2

�
λf2 −

μ2

sβcβ

�
− 2Av2 ð78Þ

in which v2 is given by Eq. (77). Let us define threshold

tuning Δλ
TH;Δ

μ2

TH for λ and μ2 as follows (with inspiration
from Ref. [38])

Δλ
TH ≡

				 λ

m2
h

∂m2
h

∂λ
				 ð79Þ

Δμ2

TH ≡
				 μ2m2

h

∂m2
h

∂μ2
				: ð80Þ

These definitions obviously reflect how the relative varia-
tion of m2

h is sensitive to the relative variation of λ and μ2.
From Eq. (78) the threshold tuning values are calculated
to be

Δλ
TH ¼ 1þ 2m2

η

m2
h

ð81Þ

Δμ2

TH ¼ 2m2
η

m2
h

: ð82Þ

In obtaining the above threshold tuning values we have
neglected terms proportional to A or relatively suppressed
by v2

f2. Also, we checked that if we use v2 instead of m2
h to

quantify the threshold tuning, the results do not change.
The above results suggest that the threshold tuning is
determined bymη: with largermη we get larger tuning. This
is easy to understand since from Eq. (78) we see thatm2

h can
be approximately viewed as the result of cancellation

between 2λf2 and 2μ2

sβcβ
∼ 2m2

η.

To calculate the RG tuning we need the β function of λR,
denoted as βλ. In this work we neglect the contribution to βλ
from field strength renormalization and scalar loop. From
Eq. (26) the following expression for βλ can be derived

βλ ¼ −
3λ2t
4π2

M2
T

f2
þ 3g4

32π2
5þ t2W
3 − t2W

: ð83Þ

We use λU to denote the value of λR defined at the unitarity
cutoff ΛU. Then the relation between λ and λU can be
expressed as

λ ¼ λU − βλ ln
ΛU

ML
: ð84Þ

The RG tuning of λ is then defined through

Δλ
RG ≡

				 λUλ ∂λ
∂λU

				 ¼
				1þ 1

λ
βλ ln

ΛU

ML

				: ð85Þ

The special scale ML is defined by making λ̄ vanish. From
this requirement we find the following useful relation for
analysis of the RG tuning

�
λ2t M2

T −
5þ t2W

8ð3 − t2WÞ
g4f2

�
ln
MT

ML
¼ 1

2
B ð86Þ
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where B is defined as

B≡ λ2t M2
T þ 1

4
g2M2

X

�
ln
M2

X

M2
T
−
1

3

�

þ 1

8
g2ð1þ t2WÞM2

Z0

�
ln
M2

Z0

M2
T
−
1

3

�
: ð87Þ

Δλ
RG is then calculated to be (ΛU ¼ ffiffiffiffiffiffi

8π
p

fcβ)

Δλ
RG¼

				1− 3

2π2

λ2t M2
T −

g4f2

8

5þt2W
3−t2W

m2
hþ2m2

η
ln

ffiffiffiffiffiffi
8π

p
fcβ

MT
−

3

4π2
B

m2
hþ2m2

η

				:
ð88Þ

To obtain this expression we have made use of Eq. (78)
to find the λ expressed by mh and mη and again neglected
corrections suppressed by v2

f2 or A.

Figure 5 presents the density plot of LogΔλ
RG in the

mη −mT plane for f ¼ 10 TeV. We note that in the left
region where mT is light, Δλ

RG can drop below 1, but not
reach 0. We have checked that for f ¼ 10 TeV, λU is
always negative. Figure 5 can be regarded alternatively as
an indication of how negative λU is. For large Δλ

RG it is
therefore natural to question the vacuum stability of the
corresponding parameter point. Because there still exists
parameter region of relatively small Δλ

RG we do not expect
in any case that vacuum stability consideration should
exclude all the allowed parameter space in Fig. 5, although
a detailed study is beyond the scope of the present paper.
The RG tuning of μ2 parameter denoted as Δμ2

RG can also
be discussed, but this turns out to be trivial, i.e.,

Δμ2

RG ¼ 1 ð89Þ

since the μ2R does not run (when wave-function renormal-
ization and small contribution from light Yukawa are
neglected).
The threshold tuning and RG tuning derived above

can be combined to define a total tuning of a given
parameter (e.g., λ or μ2). For example, the total tuning
of λ is defined as

Δλ
TOT ≡ Δλ

TH × Δλ
RG ð90Þ

The use of multiplication in the above definition is easy to
understand: the total tuning defined in this way just reflects
how the relative change of m2

h is sensitive to the relative
change of λU. For μ2, we have

Δμ2

TOT ≡ Δμ2

TH × Δμ2

RG ¼ Δμ2

TH ð91Þ

where the second step is due to Eq. (89). Finally, to quantify
the overall degree of fine-tuning in the SLH, we define

ΔTOT ¼ maxfΔμ2

TOT;Δλ
TOTg: ð92Þ

For simplicity we do not attempt a more sophisticated
statistical combination.
Let us take a closer look at Δλ

TOT, which is easily
calculated to be

Δλ
TOT¼

				1þ2m2
η

m2
h

−
3

2π2

λ2t M2
T−

g4f2

8

5þt2W
3−t2W

m2
h

ln

ffiffiffiffiffiffi
8π

p
fcβ

MT
−

3

4π2
B
m2

h

				:
ð93Þ

It is worth noticing that part of the above equation (the

term containing ln
ffiffiffiffi
8π

p
fcβ

MT
) is very similar to the fine-tuning

definition employed in Ref. [15], which we copy here for
convenience7 (see Eqs. (4.2) and (4.3) in Ref. [15])

Δ¼ jδμ2j
μ2obs

; μ2obs ¼
m2

h

2
; δμ2 ¼−

3λ2t m2
T

8π2
log

Λ2

m2
T

ð94Þ

In the above equation the notations are in accord
with Ref. [15]. Furthermore, Ref. [15] uses Λ ¼ 4πf to
cut off the divergent one-loop integral. We see that if
in our expression of Δλ

TOT, we only retain the term

containing ln
ffiffiffiffi
8π

p
fcβ

MT
, neglect the g4f2

8

5þt2W
3−t2W

part, and let

ΛU ¼ ffiffiffiffiffiffi
8π

p
fcβ → Λ ¼ 4πf, then we recover the fine-tun-

ing definition of Ref. [15]. The differences between our
treatment and the definition in Ref. [15] deserves some
comments. The use of unitarity cutoff ΛU instead of NDA
cutoff Λ is not essential, although this could have some
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FIG. 5. Density plot of LogΔλ
RG in the mη −mT plane for

f ¼ 10 TeV. Here Log means log10.

7A similar definition is also employed by Ref. [39] in the
context of the littlest Higgs model with T-parity.
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impact on the quantitative value of fine-tuning. The g4f2

8

5þt2W
3−t2W

part reflects the interpretational difference between our
treatment and that of Ref. [15]. In Ref. [15], the regulari-
zation cutoff is invested with a physical meaning and the
different terms in the one-loop δμ2 expression are then
considered as independent sources of tuning. However, in
our treatment, this expression reflects the RG running of λR
and through this running we infer how the IR parameters
are sensitive to the UV parameters. It is then clear that the
g4f2

8

5þt2W
3−t2W

part should be retained because it also contributes

to the β function. Since this part has a relative minus sign
compared to the fermionic contribution, it effectively
reduces the fine-tuning in the model. In Eq. (93) we also
have a 3

4π2
B
m2

h
term which is absent in the definition of

Ref. [15]. This is again due to the interpretational differ-
ence. In our treatment, the starting point of the RG running
is ML, and only when the fermionic contribution is much
larger than the gauge contribution to the scalar effective
potential can we have ML ∼MT . Finally, in Eq. (93) we

have the 1þ 2m2
η

m2
h
part which is also absent in Ref. [15]. We

can understand the role of this part in the following manner.

Suppose we turn off the 1þ 2m2
η

m2
h
part for the moment, then

we could realize that the situation would correspond to
when defining the RG tuning Δλ

RG we omit the “1” before
the plus sign in Eq. (85). In other words, the ratio of the
amount of RG running to the value of λR defined at ML is
taken to be the measure of RG tuning. If RG tuning is much

larger than 1, then the difference induced by the 1þ 2m2
η

m2
h

part is in fact negligible.
The above discussion in fact leads to a more clear

understanding of the NDCC assumption. In previous
literature, this is equivalent to calculating the scalar
effective potential by turning off the relevant tree-level
contribution and imposing a NDA cutoff to momentum
integral. In our fine-tuning analysis we see that for those
parameter points that satisfy λU ¼ 0, the total tuning of λ,
denoted as Δλ

TOT vanishes since the RG tuning Δλ
RG

vanishes. Therefore, if we interpret the NDCC assumption
as corresponding to λU ¼ 0 in the CEFT approach, then
parameter points that satisfy this assumption will auto-
matically have the property of making Δλ

TOT ¼ 0. It is
tempting to consider these parameter points satisfying the
NDCC assumption as particularly good ones. However, the
real situation is not that simple, due to the following
reasons. First, even if Δλ

TOT ¼ 0, we still need to consider

Δμ2

TOT, which cannot be made arbitrarily small given
Δλ

TOT ¼ 0. Second, Δλ
TOT ¼ 0 is, honestly speaking, illu-

sory. This is because Δλ
TOT ¼ 0 is derived from a com-

pletely IR point of view. If we think a little bit about UV
completion, then from the UV point of view, any tiny
variation of UV fixed that is possible to vary λU slightly

indicates an infinite sensitivity and thus an infinite amount
of fine-tuning. The problem is that we choose a “bad”
transition point to connect IR and UV. If we use another
scale at which λU ≠ 0, we would be able to obtain finite
fine-tuning result.
It is also instructive at the moment to consider the

alternative interpretation [20] that Λ is chosen to be the
renormalization scale in conjunction with the NDCC
assumption adopted in previous literature. In our CEFT
approach the renormalization scale is denoted as μR
[Eq. (26)] and physics does not depend on the choice of
μR. In fact we obtained the β function associated with λ and
the renormalized coupling λR is required to have the correct
μR dependence to cancel the μR dependence in λ̄. Then for
fixed chosen cutoff, the solution under the NDCC
assumption obtained by previous literature would corre-
spond to a subset of the solution obtained in our CEFT
approach. The description of this subset of solution, from
the CEFT point of view, is a little bit subtle since it seems to
violate closure under renormalization. However, if we pick
any one element of this subset, it does not violate RG
invariance: at the cutoff λR vanishes and only receives loop
corrections, while at scale below cutoff λR receives both
tree and loop contribution. The CEFT approach makes this
point clear. However, we note that this alternative inter-
pretation can only hold when the replacement Λ → μR
indeed yields the corresponding CEFT result. In those
circumstances which terms involving Λ2 are retained, it is
difficult to reconcile this interpretation with a mass-
independent renormalization scheme.
Therefore it is clarified that the commonly seen NDCC

assumption actually corresponds to selecting a subset of
parameter space obtained via the CEFT approach, which
satisfies λU ¼ 0. We need to be careful about such
selection, for the following reasons. First, we need to
check whether such selection is consistent with the require-
ment of correct EWSB, given the measured electroweak
vacuum expectation value and Higgs mass. Second, there is
no a priori reason to confine us to this selection. The nature
may well allow some amount of Δλ

TOT. Third, the real EFT
cutoff is unknown, and the physical predictions made based
on some fixed Λ value could be unreliable. This is the
crucial place where CEFT reveals its power: as long as we
accept the SLH as a self-contained low energy EFT where
perturbation theory is valid, we are able to establish the
mass relation like Eq. (59) without reliance on the knowl-
edge or assumption about the cutoff.
In Fig. 6 we present the density plot of LogΔλ

TOT and
LogΔTOT in the mη −mT plane for f ¼ 10 TeV. Two plots
are similar except for a small region in the leftmost corner.
This is because for f ¼ 10 TeV ΔTOT is mainly determined
by Δλ

TOT except for the region with small enough mT in

which Δλ
TOT < Δμ2

TOT. From the figure we see that for f ¼
10 TeV the parameter space favored by naturalness con-
sideration has small mT (down to ∼3 TeV) and large tβ
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(near the unitarity boundary), with Δ−1
TOT approaching a few

percent. The favored pseudoaxion mass is around 600 GeV
in this case. Unfortunately the parameter region corre-
sponding to a light pseduoaxion with mass smaller than
400 GeV is strongly disfavored by naturalness, as can be
inferred from the figure. Our results shown here to some
extent answers from the CEFT point of view the question in
Ref. [40] which raises concern about the fine-tuning in the
SLH given a strong constraint on f.
Figure 7 shows the minimum allowed Δλ

TOT and ΔTOT as
a function of f. It is not surprising that both of them exhibit
a monotonically increasing behavior. We note that for a
sufficiently small f ∼ 7.5 TeV, Δλ

TOT can reach zero,
indicating that a vanishing λU at the unitarity cutoff is still
allowed. However this value of f is already near the
boundary of LHC exclusion limit. For larger f, Δλ

TOT ¼
0 is then impossible which implies the NDCC assumption
with exactly vanishing λU is no longer valid. The value of

minimumΔTOT is determined byΔμ2

TOT for f < 25 TeV and
Δλ

TOT for larger f. This yields a slight kink at f ∼ 25 TeV in
the right panel of Fig. 7.

V. DISCUSSION AND CONCLUSIONS

In this work we have analyzed the SLH scalar potential
in an approach consistent with the spirit of CEFT. The most
important message we obtained from the analysis is a mass
relation connecting the pseudoaxion mass and the top
partner mass, Eq. (59). The anticorrelation between these
two masses gives rise to interesting constraints on the SLH
parameter space. Especially, the minimally allowed tβ
increases with f for f > 18 TeV (Fig. 1). On the other
hand, the unitarity constraint leads to a maximally allowed
tβ independent of f. Therefore an absolute upper bound on
f (f < 85 TeV) is obtained. This in turn implies absolute
upper bound on Z0 mass mZ0 < 48 TeV and top partner
mass mT < 19 TeV. Pseudoaxion mass is also bounded
from above: mη can reach the maximum allowed value of
mη ≈ 1.5 TeV when f ≈ 51 TeV. We emphasized the
importance of retaining the field dependence in the field
form factor ΔðĥÞ for a quantitative analysis of the scalar
potential, which is often ignored by previous studies.
We have also analyzed the issue of Higgs mass natu-

ralness in the SLH in an approach consistent with the spirit
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of CEFT. The parameter space with the least fine-tuning
turns out to be characterized by a low value of f and a small
mT , with an inverse total tuningΔ−1

TOT at a few percent level.
This can be achieved if tβ is relatively large, close to the
unitarity upper bound, while predicting a pseudoaxion
mass at around 600 GeV.
Although the pseudoaxion mass is bounded from above

by a not-very-large value of about 1.5 TeV, it is nevertheless
quite challenging to detect such a particle at current and
future colliders. The reason is that the pseudoaxion
couplings to SM particles are all suppressed by v

f, and in
some cases even by v3

f3 (such as the antisymmetric ZHη

vertex [26]). Considering the current bound on f
(f > 7.5 TeV) the suppression is already quite significant.
In such a situation it is helpful to consider detecting η from
the decay of other new heavy resonances such as Z0, T
[13,41], other heavy quarks or leptons. The Z0 search using
dilepton channel is expected to be most promising in terms
of discovery or most stringent in terms of constraint. Taking
into account off-shell Z0 contributions [42] may even
extend the reach and be helpful to cover the very heavy
region at a 100 TeV pp collider. Another important target
for future collider search should be the top partner.
Although the heaviest mass value of about 19 TeV is
beyond the reach of even a 100 TeV pp collider, the
parameter region favored by naturalness consideration
should be well in reach.
A full program of testing the mass relation Eq. (59) is

conceivable if the associated mass scales are in reach of
proposed future colliders. This should be the case for a
100 TeV pp collider if the SLH is realized in nature with
Δ−1

TOT at a few percent level. Four crucial quantities need to
be measured, namely f; tβ; mη, and mT . f can be deter-
mined once the Z0 is discovered and its mass measured at,
for example, the dilepton channel. For the region with small
fine-tuning, the top partner should be relatively light and
therefore be within reach in the pair production channel.
The pseudoaxion η might be discovered via Z0 or top
partner decay. Finally, some couplings related to the top
partner and other heavy fermions are related to tβ [34] and
might provide a measurement thereof. Combining all the
information it would then be possible to understand or veto
the EWSB as the consequence of perturbative vacuum
misalignment during the global symmetry breaking Eq. (1).
It is certainly warranted to make a comparison between

our CEFT-based approach to analyze the scalar potential
and the approach based on the NDCC assumption. An even
sharper question might be: what is the virtue of the CEFT-
based approach compared to using a “floating cutoff” in
previous analyses? We may criticize an analysis using the

NDCC assumption with a fixed cutoff value by noting that
any of its EWSB predictions which depend on the choice of
the cutoff have an uncertainty which is hard to quantify.
However, if a floating cutoff is used instead of a fixed value,
then it seems that it would yield the same parameter space
as compared to our CEFT-based approach. Our answer to
this question consists of two aspects. First, it is always
desirable that physics theory be not only a tool for
calculation, but also can be interpreted in a conceptually
consistent manner. In this regard, the practice of imparting
physical meaning to the regularization cutoff is not con-
ceptually solid. For example, if we consider an asymptoti-
cally free theory like QCD, then we would realize that its
perturbative calculation involves logarithmic divergences
which need not be cut off by any new particles since QCD
can be consistently extrapolated to arbitrarily high energy,
yet the divergences are actually harmless [18]. Another
example is that imparting physical meaning to the regu-
larization cutoff could lead to violation of field redefinition
invariance, as pointed out in Ref. [22]. On the other hand,
the CEFT-based approach is based on standard renormal-
ization theory and is therefore conceptually clear. Second,
from a practical point of view, the CEFT approach makes
manifest the reliable prediction of the theory. In the SLH
case, it is the mass relation which has been hidden for a
long time under previous studies. It is also worth noting that
the CEFT-based approach facilitates the analysis of physi-
cal fine-tuning, as demonstrated in Sec. IV.
The CEFT-based approach to scalar potential and fine-

tuning analysis adopted in this work can be carried over to a
wide class of little Higgs and twin Higgs models as well.
The expected outcome should contain at least various mass
relations which pertain to each of the model under inves-
tigation. These mass relations should serve as crucial tests
of the related EWSB mechanism. The parameter space with
small fine-tuning is expected to be associated with a small
top partner mass. In conjunction with other theoretical
considerations (e.g., perturbative unitarity and vacuum
stability) and experimental probes, it is hopeful that we
may obtain a deeper understanding of the EWSB, one of
the most important pillars of contemporary particle physics.
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