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The nature of the thermal phase transition of two flavor QCD in the chiral limit has an important
implication for the QCD phase diagram. We carry out lattice QCD simulations in an attempt to address this
problem. Simulations are conducted with a Symanzik-improved gauge action and the Highly Improved
Staggered Quark fermion action. Within the imaginary chemical potential formulation, five different quark
masses, am ¼ 0.020, 0.018, 0.015, 0.013, 0.010, and four different lattice volumes, Ns ¼ 8, 12, 16, 20,
with temporal extent Nt ¼ 4 are used to explore the scaling behavior. At each of the quark masses, the
Binder cumulants of the chiral condensate on different lattice volumes approximately intersect at one point.
We find that at the intersection point the Binder cumulant B4ðam; aμcÞ is around 3, which deviates from the
Zð2Þ universality class value 1.604. However, based on the expectations of Zð2Þ criticality, the fitting result
only with the data from the largest lattice volume Ns ¼ 20 agrees well with earlier result [Phys. Rev. D 90,
074030 (2014). This fact implies that, although the finite cutoff effects could be reduced with Highly
Improved Staggered Quark fermions even on Nt ¼ 4 lattices, larger lattices with spatial extent Ns >¼ 20

for such studies are needed to control finite volume effects.

DOI: 10.1103/PhysRevD.97.114514

I. INTRODUCTION

The thermodynamics of matter described by QCD is
characterized by a transition from the low-temperature
hadronic phase with confined quarks and gluons to the
high-temperature phase with deconfined quarks and gluons.
This phase transition is relevant to the early Universe,
compact stars, and heavy ion collision experiments.
Reviews on the study of the phase diagram can be found
in Refs. [1–3] and references therein. Mapping out the phase
diagram of QCD is one of the most challenging tasks
presented for theoretical physics. Although substantial
progress has been achieved in determining the phase diagram
of QCD at zero density, the nature of the phase transition of
QCD with two massless flavors remains still open.

At the transition point, if the UAð1Þ symmetry is not
restored, QCD with two massless flavors has the
symmetry-breaking pattern ½SUð2ÞL × SUð2ÞR�=Zð2ÞV →
SUð2ÞV=Zð2ÞV ; on the other hand, if the UAð1Þ symmetry
is effectively and fully restored, QCD with two massless
flavors has the symmetry-breaking pattern ½Uð2ÞL×Uð2ÞR�=
Uð1ÞV→Uð2ÞV=Uð1ÞV [4–6]. For two-flavor QCD,
Pisarsky andWilczek pointed out that if theUAð1Þ symmetry
is broken at transition point Tc the system undergoes second-
order transition withOð4Þ scaling, although not necessarily.
On the other hand, if the UAð1Þ symmetry is restored at Tc,
the system undergoes a first-order transition. However,
further studies [5,6] show that, even if the UAð1Þ symmetry
is restored at Tc, the system also may have an infrared stable
fixed point, so the transition can be of either first order or
second order with different critical exponents from the O(4)
universality class. Reference [7] suggests the transition is of
second order, but one of critical exponents is different from
the standard Oð4Þ model.
As the interaction between the quarks and gluons is

inherently strong at hadronic energy scales, lattice QCD
simulation is the most reliable method up to date. The
standard method to address the nature of QCD with two
massless flavors is to carry out simulations by successively
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reducing the quark mass and in the meantime monitoring
the transition behavior. If the transition is of second order
in the chiral limit, then this second transition disappears
immediately when finite quark masses are turned on. On
the other hand, if the transition is of first order in the chiral
limit, it will get weakened gradually until at a certain Zð2Þ
point as the quark masses increase.
Considerable work using lattice QCD simulations has

been devoted to this problem. Some lattice QCD simulation
studies favor a second-order transition [8–15], some sup-
port that the transition is of the first order [16–21], and
some favor neither [22,23]. For a discussion, see
Refs. [12,16,24] and references therein.
Apart from the conventionalmethod,which focuses on the

critical exponents, the nature of the phase transition of QCD
with two massless flavors can be addressed by exploring the
fate of UAð1Þ symmetry at high temperature [20,21,25–29].
Reference [18] discusses this problem from the aspect of a
noninteger number of flavors. In Ref. [16], a novel approach
has been developed to address the nature the phase transition
of QCD with two massless flavors within the staggered
fermion formulation, and this approach is employed in
Ref. [17] within the Wilson fermion formulation. The
approach takes advantage of the fact that when the imaginary
chemical potential is switched on the second-order line that
separates the first-order region from the crossover region is
governed by the tricritical scaling law, and the critical
exponents around am ¼ 0 are known [16,17,30].
So far, the investigation to address the nature of the phase

transition of QCD with two massless flavors using this
method are implemented through standard gauge and fermion
actions [16,17]. Standard Kogut-Susskind fermions suffer
from taste symmetry breaking at nonzero lattice spacing a
[31]. This taste symmetry breaking can be illustrated by the
smallest pion mass taste splitting, which is comparable to the
pion mass even at lattice spacing a ∼ 0.1 fm [32].
In this paper, we aim to investigate the nature of the phase

transitionofQCDwith twomassless flavorswith aonequark–
loop Symanzik-improved gauge action [33–38] and the
Highly Improved Staggered Quark (HISQ) action [39]. The
one quark–loop Symanzik-improved gauge action has a
discretization error of Oðα2sa2; a4Þ, and the HISQ action
completely eliminates the Oða2Þ error at tree level by
including smeared one-link and “Naik terms” [40,41].
Moreover, the HISQ action yields the smallest violation of
taste symmetry among the currently used staggered actions
[31,42,43]. These improvements are significant on theNt ¼ 4
lattice where the lattice spacing is quite large.
The paper is organized as follows. In Sec. II, we define

the lattice action with imaginary chemical potential and the
physical observables we calculate. Our simulation results
are presented in Sec. III, followed by discussion in Sec. IV.

II. LATTICE FORMULATION WITH IMAGINARY
CHEMICAL POTENTIAL

After introducing a pseudofermion field Φ, the partition
function of the system can be represented as

Z ¼
Z

½dU�½dΦ��½dΦ�e−Sg−Sf ; ð1Þ

where Sg is the Symanzik-improved gauge action and Sf is
the HISQ quark action with the quark chemical potential μ.
Here, μ ¼ iμI is purely imaginary. For Sg, we use

Sg ¼ β

�
CP

X
x;μ<ν

ð1 − PμνÞ þ CR

X
x;μ<ν

ð1 − RμνÞ

þ CT

X
x;μ<ν<σ

ð1 − TμνσÞ
�
; ð2Þ

with Pμν, Rμν, and Tμνσ standing for 1=3 of the real part of
the trace of 1 × 1, 1 × 2 planar Wilson loops, and 1 × 1 × 1
“parallelogram” loops, respectively,

ð3Þ

ð4Þ

ð5Þ

The coefficientsCP,CR, andCT are tadpole improved [43],

CP ¼ 1.0; ð6Þ

CR ¼ −1
20u20

ð1 − ð0.6264 − 1.1746nfÞ lnðu0ÞÞ; ð7Þ

CT ¼ 1

u20
ð0.0433 − 0.0156nfÞ lnðu0Þ; ð8Þ

with u0 ¼ ðhPμνiÞ3=4.
The HISQ action with pseudofermion field Φ is

Sf ¼ hΦj½M†½U�M½U��−nf=4jΦi; ð9Þ

where the form of Mx;y½U� ¼ 2mx;y þ 2=Dx;yðUÞ with
2=Dx;yðUÞ reading
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2=Dx;y¼
X3
ρ¼1

fXρðxÞδxþρ̂;y−X†
ρðx− ρ̂Þδx−ρ̂;yg

þ
X3
ρ¼1

fNρðxÞδxþ3ρ̂;y−N
†
ρðx−3ρ̂Þδx−3ρ̂;yg

þfeiaμIX4ðxÞδxþ4̂;y−e−iaμIX†
4ðx− 4̂Þδx−4̂;yg

þfei3aμIN4ðxÞδxþ34̂;y−e−i3aμIN†
4ðx−34̂Þδx−34̂;yg:

ð10Þ

The Dirac operator =D is constructed from smeared
links [43]. The fundamental gauge links are UμðxÞ, the fat
links after a level-1 fat7 smearing are VμðxÞ, the reunitarized
links are WμðxÞ, and the fat links after level-2 asqtad
smearing are XμðxÞ. For simplicity, we use Nx;ρ ¼
WρðxÞWρðxþ ρ̂ÞWρðxþ 2ρ̂Þ. The staggered fermion
phases are absorbed into the link variables. ρ̂ and 4̂ are
the unit vectors along ρ direction and 4 direction,
respectively.
In the study to address the chiral transition, it is natural to

choose the chiral condensate as our observable. The chiral
condensate is defined as

X ¼ ψ̄ψ ¼ 1

N3
sNt

TrðM−1Þ: ð11Þ

Ns and Nt are the spatial and temporal extents of the lattice,
respectively. To simplify notation, we use X to represent the
chiral condensate. The susceptibility of chiral condensate is
defined as

χψ̄ψ ¼ hðX − hXiÞ2i: ð12Þ
We also calculate the Binder cumulant of chiral con-

densate, which is defined as

B4 ¼ hðX − hXiÞ4i=hðX − hXiÞ2i2: ð13Þ

The Binder cumulant of the chiral condensate can be
expanded around aμc as [16,17]

B4ðam;aμÞ¼B4ðam;aμcÞþb1ððaμÞ2− ðaμcÞ2ÞN1=ν
s þ�� � :

ð14Þ

III. MC SIMULATION RESULTS

Before presenting the simulation results, we describe
the computation details. Simulations are carried out at
quark masses am ¼ 0.020, 0.018, 0.015, 0.013, 0.010.
The rational MonteCarlo algorithm [44–46] is used to
generate configurations. We use different molecular dynam-
ics step sizes for the gauge and fermion parts of the action,
with three gauge steps for each fermion step [47]. The
Omelyan integration algorithm [48,49] is employed for

the gauge and fermion action. For the molecular dynamics
evolution, we use a ninth rational function to approximate
½MþðUÞMðUÞ�−nf=4 for the pseudofermion field. For the
heat bath updating and for computing the action at the
beginning and end of the molecular dynamics trajectory,
two tenth rational functions are used to approximate
½MþðUÞMðUÞ�nf=8 and ½MþðUÞMðUÞ�−nf=8, respectively.
The step is chosen to ensure the acceptance rate is around
72%–82%. Five thousand trajectories of configuration are
taken as warmup from a cold start. To fill in observables
at additional β values, we employ the Ferrenberg-Swendsen
reweighting method [50].
At a certain pair of the value of quark mass am and

chemical potential aμI , we scan the β values and calculate
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FIG. 1. Susceptibility of chiral condensate χψ̄ψ as a function of
coupling β at am ¼ 0.020, aμI ¼ 0.240 on lattice 123 × 4 and
163 × 4.
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FIG. 2. Reweighted distribution of ψ̄ψ at different β at
am ¼ 0.020, aμI ¼ 0.240 on lattice Ns ¼ 12. β ¼ 6.025 corre-
sponds to the pseudocritical temperature. The horizontal axis
represents the value of ψ̄ψ , and the vertical axis stands for the
number of ψ̄ψ , which is transformed from the probability of
corresponding ψ̄ψ .
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the susceptibility χψ̄ψ of chiral condensate ψ̄ψ . The location
of peak of susceptibility of the chiral condensate is
interpreted as the transition point. For clarity, we only
present the results of χψ̄ψ on latticeNs ¼ 12 andNs ¼ 16 at
am ¼ 0.020, aμI ¼ 0.240 in Fig 1. Similar behavior of χψ̄ψ
can be observed at other couples of ðam; aμIÞ on different
lattice volumes.

To monitor the change of ψ̄ψ near the pseudotransition
point, we present the reweighted distribution of ψ̄ψ at
three temperatures around the transition on Ns ¼ 12 and
Ns ¼ 16 at am ¼ 0.020, aμI ¼ 0.240 in Figs. 2 and 3,
respectively. The horizontal axis represents the value of
ψ̄ψ , and the vertical axis stands for the number of ψ̄ψ ,
which is transformed from the probability of corresponding
ψ̄ψ . From Figs. 2 and 3, we can find that the reweighted
distribution of ψ̄ψ does not show the signal of first-order
transition. At other quark masses, similar behavior can be
observed.
The results of critical couplings βc and the corresponding

B4 values on different spatial volumes at different quark
masses am are summarized in Table. I. These βc’s are
determined from the locations of peak susceptibility χψ̄ψ of
chiral condensate ψ̄ψ .
After the critical couplings βc and the corresponding B4

values are obtained, we can monitor their behavior on
different lattice spatial volumes at a certain quark mass. The
results are presented in Figs. 4, 5, and 6. From Figs. 4, 5,
and 6, we can find that with decreasing the absolute value
of the chemical potential, the B4 value increases on lattice
Ns ¼ 12, 16 and Ns ¼ 20. On the contrary, on lattice
Ns ¼ 8, the values of B4 fall with the declining absolute
value of chemical potential due to large finite size effect.
So, we do not include them in Figs. 4, 5, and 6.
Nevertheless, at a certain quark mass, we can find that
the B4 values on different lattice volumes intersect approx-
imately at one point.
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FIG. 3. Reweighted distribution of ψ̄ψ at different β at
am ¼ 0.020, aμI ¼ 0.240 on lattice Ns ¼ 16. β ¼ 5.998 corre-
sponds to the pseudocritical temperature. The horizontal axis
represents the value of ψ̄ψ , and the vertical axis stands for the
number of ψ̄ψ , which is transformed from the probability of
corresponding ψ̄ψ .

TABLE I. Results of critical couplings βc obtained by the locations of peak of χψ̄ψ and the B4 values on different spatial volumes at
different quark masses am.

Ns ¼ 8 Ns ¼ 12 Ns ¼ 16 Ns ¼ 20

am aμI βc B4 aμI βc B4 aμI βc B4 aμI βc B4

0.010 0.040 5.998(40) 3.68(12) 0.050 6.058(20) 3.28(13) 0.045 6.018(20) 3.25(10) � � � � � � � � �
0.100 6.018(40) 5.33(12) 0.110 6.048(20) 3.04(12) 0.105 5.998(20) 2.93(12) � � � � � � � � �
0.160 6.008(20) 4.03(13) 0.170 5.988(60) 2.77(17) 0.165 5.998(40) 2.39(14) � � � � � � � � �
0.220 5.988(20) 4.31(10) 0.230 6.048(20) 2.48(11) 0.225 6.098(20) 2.22(22) � � � � � � � � �

0.013 0.040 5.998(40) 3.39(15) 0.035 6.008(60) 3.31(10) 0.030 6.008(60) 3.55(11) � � � � � � � � �
0.090 5.998(20) 3.42(11) 0.085 5.968(40) 3.28(18) 0.080 6.008(10) 3.08(14) 0.070 6.048(10) 3.21(13)
0.140 5.988(30) 3.43(11) 0.135 5.988(28) 3.17(12) 0.130 5.964(30) 2.23(11) 0.110 6.048(30) 2.91(11)
0.190 6.048(24) 3.94(12) 0.185 5.984(34) 3.09(11) 0.180 6.090(30) 1.84(11) 0.170 6.098(50) 2.34(10)

0.015 0.050 6.078(30) 2.35(22) 0.065 6.018(20) 3.35(14) 0.055 5.988(30) 3.33(13) 0.045 6.028(20) 3.51(14)
0.100 5.968(40) 3.78(11) 0.115 6.008(70) 3.14(12) 0.105 5.988(20) 3.22(25) 0.090 6.028(20) 3.37(15)
0.160 6.028(30) 3.90(11) 0.175 6.068(110) 2.98(14) 0.165 6.058(30) 2.93(14) 0.150 6.098(10) 2.74(14)
0.220 5.988(10) 4.10(13) 0.230 6.028(20) 2.74(12) 0.225 5.968(100) 2.12(18) 0.210 5.968(10) 1.52(16)

0.018 0.060 5.978(30) 2.20(12) 0.065 6.018(20) 3.05(10) 0.055 6.018(40) 3.24(12) 0.050 6.058(10) 3.75(15)
0.110 5.958(50) 2.69(23) 0.115 5.978(50) 3.05(16) 0.105 6.018(10) 3.04(14) 0.100 5.978(40) 3.12(19)
0.170 5.968(90) 3.22(12) 0.175 5.968(40) 2.70(21) 0.165 5.998(30) 2.86(14) 0.160 5.978(10) 2.70(14)
0.230 5.988(30) 3.61(14) 0.235 6.028(20) 2.89(12) 0.225 6.018(20) 2.65(10) 0.220 5.988(40) 2.51(14)

0.020 0.060 5.998(20) 2.16(11) 0.120 6.005(30) 3.26(10) 0.120 6.038(80) 3.10(16) � � � � � � � � �
0.130 5.998(90) 3.19(17) 0.150 6.078(70) 3.28(13) 0.150 6.018(40) 3.40(14) � � � � � � � � �
0.190 6.048(40) 3.31(14) 0.200 6.058(30) 3.08(10) 0.200 6.078(40) 3.12(10) � � � � � � � � �
0.250 5.998(20) 3.62(10) 0.240 6.025(10) 3.18(10) 0.240 5.998(50) 2.87(11) � � � � � � � � �
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However, from Figs. 4, 5, and 6, we can find that the
values of B4 on different lattice sizes approximately
intersect at B4ðam; aμcÞ ∼ 3. We think that it is because
of large finite lattice effects. To gain some understanding
about the result, we fit expression

B4 ¼ 1.604þ bððaμÞ2 − ðaμcÞ2Þ ð15Þ

to the data on the Ns ¼ 20 lattice to get the critical aμc. The
results are presented in Table II.
From the results in Table II, we can see that the critical

aμc’s on lattice 203 × 4 are approximately in a reasonable
region, which should be smaller than 0.262 on the Nt ¼ 4
lattice. If we use Eq. (15) to fit the data on the smaller
lattice, it can be found that the critical aμc’s are much
larger, 0.262. Moreover, the r-square values in Table II that
are close to 1 show that the fit is good. All these facts imply
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FIG. 4. Binder cumulants of ψ̄ψ at quark masses am ¼ 0.020 (left panel) and am ¼ 0.018 (right panel) on different lattice volumes
intersect at one point.
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that the smaller lattices have significant finite volume
effects.
From Fig. 8 in Ref. [16], we can see that the value of B4

at the intersection point is 1.604, which is consistent with
the Zð2Þ universality class value. This shows that the finite
lattice volume effects in Ref. [16] are very small.

IV. DISCUSSIONS

We have made a simulation in an attempt to understand
the nature of the phase transition of QCDwith two massless
flavors with the one quark–loop Symanzik-improved gauge
action and the HISQ fermion action by using the method
proposed in Ref. [16] at the quark masses am ¼ 0.020,
0.018, 0.015, 0.013, 0.010.
In our simulation, we found that the Binder cumulants of

the chiral condensate on different lattice volumes at one
quark mass intersect at one point. The value of B4 at the
intersection point B4ðam; aμcÞ was renormalization invari-
ant. At the quark masses we used, the value of B4 at the
intersection point B4ðam; aμcÞ was around 3.
At a nonvanishing quark mass, an additive and multi-

plicative renormalization of ψ̄ψ was needed to define the
order parameter ψ̄ψ when the scaling property was under
consideration [8,31,51]. Equations (9) and (12) in Ref. [8],
Eq. (36) in Ref. [51], and Eq. (30) in Ref. [31] were used to
subtract the finite quark mass influence on ψ̄ψ . However,
if we start from Eqs. (12) and (13) and subtract the finite

quark mass influence from the chiral condensate, then put
the subtracted chiral condensate into Eqs. (12) and (13), we
think that multiplicative or additive renormalization of ψ̄ψ
would have no effect on the value of B4ðam; aμcÞ.
If we can detect the Zð2Þ transition line, the value of B4

at the intersection point should be 1.604 [16,17]. However,
in our simulation, B4ðam; aμcÞ ∼ 3 deviated from the Zð2Þ
universality class value. If we just used Eq. (15) to fit the
data on Ns ¼ 20 lattice, we found the fit was good and
the aμc’s obtained were reasonable. So, we think that
B4ðam; aμcÞ ∼ 3 is because of large finite volume effects as
described in Sec. III.
Similar behavior was observed in Ref. [52], in which

Wilson-type fermions were employed to determine the
critical point separating the crossover from the first-order
phase transition region for three-flavor QCD. In that
research, the value of kurtosis of the chiral condensate at
the intersection point deviated from the universality class
value on the Nt ¼ 8, 10 lattice due to finite volume
correction. This observation indicates that simulation with
HISQ action along this direction on theNs > 20 lattice is of
great importance.
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