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Critical slowing down in Krylov methods for the Dirac operator presents a major obstacle to further
advances in lattice field theory as it approaches the continuum solution. Here we formulate a multigrid
algorithm for the Kogut-Susskind (or staggered) fermion discretization which has proven difficult relative
to Wilson multigrid due to its first-order anti-Hermitian structure. The solution is to introduce a novel
spectral transformation by the Kähler-Dirac spin structure prior to the Galerkin projection. We present
numerical results for the two-dimensional, two-flavor Schwinger model; however, the general formalism is
agnostic to dimension and is directly applicable to four-dimensional lattice QCD.

DOI: 10.1103/PhysRevD.97.114513

I. INTRODUCTION

Increasingly powerful computers and better theoretical
insights continue to improve the predictive power of
lattice quantum field theories, most spectacularly for lattice
quantum chromodynamics (LQCD) [1]. However, with
larger lattice volumes and finer lattice spacing, exposing
multiple scales, the lattice Dirac linear system becomes
increasingly ill-conditioned threatening further progress.
The cause is well known: as the fermion mass approaches
zero, the Dirac operator becomes singular, due to the exact
chiral symmetry of the Dirac equation at zero mass,
causing critical slowing down [2]. The algorithmic solution
to this problem for lattice QCD was recognized 25 years
ago. The fine-grid representation for the linear solver
should be coupled to multiple scales on coarser grids in
the spirit of Wilson’s real space renormalization group and
implemented as a recursive multigrid (MG) preconditioner
[3]. Early investigations in the 1990s introduced a gauge-
invariant projective MG algorithm [4,5] with encouraging
results for the Dirac operator in the presence of weak

(or smooth) background gauge fields near the continuum.
However, in practice lattice sizes at that time were too small
and the gauge fields were too rough to achieve useful
improvements.
Not until the development of adaptive geometric MG

methods [6,7] was a fully recursive MG algorithm found for
the Wilson-Dirac discretization, which was able to transfer
the strong background chromodynamics fields onto coarser
scales and eliminate the ill conditioning of the Dirac kernel
in the chiral limit. In spite of this achievement for the
Wilson-Dirac and closely related twisted mass formulation
[8,9], these are not the only important Dirac discretizations
in common use in lattice field theory. Three other discre-
tizations used extensively in high energy applications,which
more faithfully represent chiral symmetry on the lattice,
are referred to as the domain wall [10], overlap [11], and
staggered [12] fermions. The application of adaptive geo-
metric MG to these discretizations has proven to be more
difficult, perhaps related to the improved lattice chiral
symmetry. A two-level MG solver for domain wall fermions
has been implemented [13,14] which shows some promise,
and a non-Galerkin algorithm has been implemented for
overlap fermions [15], but there has been no success at
formulating an MG staggered algorithm. Moreover, since
staggered lattice ensembles are now the largest available for
LQCD, requiring Oð105Þ iterations for good convergence,
improving staggered solvers is a critical issue. Here we
introduce a novel solver with theKähler-Dirac spin structure
[16,17] that allows, at last, the construction of an effective
multilevel adaptive geometric MG algorithm for staggered
fermions.
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The staggered fermion is a remarkable discretization
[12,18] which closely resembles the continuum Dirac linear
operator,

Dijψ jðxÞ ¼ ½γijμ ð∂μ − iAμðxÞÞ þmδij�ψ jðxÞ: ð1Þ

The lattice discretization replaces the derivative by a gauge-
covariant central difference,

Dx;y ¼
1

2a

Xd
μ¼1

ημðxÞ½Uðx; xþ μÞδxþμ;y

− U†ðx − μ; xÞδx−μ;y� þmδx;y; ð2Þ

resulting in a sparse matrix operator on a hypercubic lattice
with the background gauge fields Uðx; yÞ represented by
highly oscillatory SUð3Þ matrices on each link hx; yi of the
lattice. The γμ matrices are replaced by a single staggered

�1 sign: ημ ¼ ð−1Þ
P

ν<μ
xν . Similar staggered lattice real-

izations of Dirac fermions have proven valuable not only
for lattice QCD investigations but also for a variety of
physical systems such as graphene in condensed matter
[19], supersymmetry [20], and strongly interacting con-
formal fixed points of possible interest for beyond the
standard model (BSM) physics in the Higgs sector [21–29].
Unlike the Wilson and domain wall methods, the stag-

gered discretization preserves the exact anti-Hermiticity of
the continuum Dirac operator up to a real mass shift. In this
sense it represents the most primitive (or even fundamental)
discretization. It has no explicit spin matrices (γμ), so the
Dirac spin structure only emerges in the continuum limit.
Each 2d lattice sub-block in four dimensions reassembles
into four Dirac flavors (or tastes), the content of a single
Kähler-Dirac fermion [30]. This is the structure that our
MG algorithm exploits: dividing out the 2d Kähler-Dirac
spin structure transforms the spectrum into a near “circle”
in the complex plane as illustrated in Fig. 3. The striking
similarity of the resultant spectrum to the Wilson and
overlap spectra is, we believe, essential to the success of our
staggered MG algorithm.
In LQCD applications with staggered fermions, the

system DðU;mÞijψ j ¼ bi is typically solved via Krylov
methods on the Schur decomposed even/odd operator (or,
equivalently, the red/black operator). Because the precon-
ditioned operator is Hermitian positive definite, the system
can be solved by the conjugate gradient (CG) algorithm.
This method has proven robust, and there are some well
established methods to fend off critical slowing down, such
as EigCG [31] eigenvalue deflation or block Krylov solvers
[32–35]. Block solvers do not remove critical slowing
down, and deflation methods scale poorly with the volume
in terms of the number of eigenvectors needed to remove
critical slowing down. As explained in our earlier report
[36], an adaptive geometric MG algorithm for the staggered

normal operator can easily be formulated which removes
critical slowing down. However, this comes with a heavy
overhead. A Galerkin coarsening of the normal equation
introduces next-to-nearest neighbor (or corner) terms,
resulting in a 2dþ 2dðd − 1Þ site coarse operator stencil,
and in four dimensions increasing the off-diagonal terms
from 8 to 32 terms. This becomes prohibitively expensive
in terms of communication pressure in parallel strong
scaling MG solvers [37–40].
The solution to this problem is to develop an MG

algorithm directly on the staggered operator. In the interest
of algorithm development, we consider a two-dimensional
model system as opposed to the full four-dimensional
QCD. The two-dimensional staggered fermion, coupled
to an Abelian gauge theory, Uðx; xþ μÞ ¼ exp½iθμðxÞ� is
the two-flavor Schwinger model in the continuum limit
[41,42]. This is a fully nonperturbative quantum field
theory which is an ideal analogue to four-dimensional
QCD. Like QCD it exhibits confinement with a zero mass
triplet of “pionlike” bound states in the chiral (zero mass)
limit and instantons that present a topological mechanism
which breaks chiral symmetry dynamically in the flavor
singlet channel [43]. As such, this has proven to be a
reliable test framework [6] prior to a full implementation
for four-dimensional QCD. The reader is referred to an
extensive literature to understand the physical features that
guide our construction in two dimensions and the natural
generalization to four dimensions.
The lattice Schwinger model has the action

Slat ¼ χ̄x½DðUÞ þm0�xyχy þ β
X
x

UplaqðxÞ: ð3Þ

Introducing the lattice spacing a, the bare mass (m) and the
gauge coupling (g) are given by dimensionless parameters,
m0 ¼ am and β ¼ 1=ða2g2Þ, respectively. There are two
important physical length scales determined by these
parameters: (1) The fundamental gauge correlation length
(or string length) measured by the Wilson loop area law is
lσ ¼ a

ffiffiffiffiffi
2β

p
. (2) The fundamental fermion length scale

measured by the “pion” Compton wave length is lMπ
¼

1
Mπ

≈ 0.5aðamÞ−2=3β1=6 [42]. To approach the continuum
both must be large relative to the lattice spacing. As an
analogue to QCD, we should also approach the chiral
regime with lMπ

=lσ ≫ 1. To control finite volume Ld and
finite lattice spacing a errors, the four length scales should
obey the constraint: L ≫ lMπ

≫ lσ ≫ a.
This two-dimensional theory has been carefully selected

because of its remarkable similarity to four-dimensional
QCD in terms of both the underlying physics and the
formal mathematical structure. Although at present our
numerical tests are restricted to two dimensions, the entire
formal structure is applicable to higher dimensions. The
numerical analysis of a four-dimensional algorithm for
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lattice QCD is under development in QUDA [44–46], an
efficient GPU framework for LQCD applications. Results
will be presented in a subsequent publication.
The organization of the paper is as follows. In Sec. II we

give the mathematical framework of the staggered Dirac
operator essential to our subsequent MG formulations. In
Sec. III we consider a Galerkin projection of the original
operator and explain why it fails as a MG preconditioner.
We then contrast it with the coarse projection of our new
Kähler-Dirac preconditioned operator. In Sec. IV we
present in detail the construction of the staggered MG
algorithm, followed by detailed numerical tests for the two-
dimensional Schwinger model. In Sec. V we discuss some
alternatives to our current implementation, which may be
useful in the application of our staggered MG algorithm
to four-dimensional LQCD and other staggered lattice
simulations. For example, a method for exactly preserving
complex conjugate eigenpairing and numerical tests thereof
is presented in Sec. V and in Appendix A, respectively.

II. MATHEMATICAL PRELIMINARIES
OF STAGGERED FERMIONS

The geometric structure of the staggered Dirac operator
in Eq. (2) and its relationship to the low-lying eigenspec-
trum is central to our analysis. Indeed, the spectral proper-
ties are directly related to the failure of MG applied directly
to the staggered operator. On the other hand, the geometric
structure allows us to construct a new Kähler-Dirac
preconditioned staggered operator with a dramatically
changed spectrum suited to MG. To this end, we first
present the free spectrum of the original staggered Dirac
operator in comparison with our Kähler-Dirac precondi-
tioned operator. Next, this is followed by a brief discussion
of the impact on the Kähler-Dirac preconditioned spectrum
when nonzero mass, the three-link Naïk term, and inter-
acting gauge fields are included.

A. Staggered Dirac operator

As noted in the Introduction, the staggered fermion is
the lattice fermion discretization “closest” to continuum
Dirac fermions. More concretely, many of its features are
inherited directly from the discretization of the continuum
action,

S ¼
Z

ddxψ̄ ½γμð∂μ − iAμÞ þm�ψ : ð4Þ

The naïve fermion discretization uses a central difference
approximation for the first derivative, which causes the
so-called “doubling” (or aliasing) problem [47]. In the
continuum, a single naïve fermion gives 2d Dirac fermions:
16 four-component spinors in four dimensions and 4 two-
component spinors in two dimensions. The staggered
construction reduces this multiplicity by spin diagonalizing

the Dirac structure, then dropping all but one of the 2d=2

copies. Explicitly, this spin diagonalization,

ψ̄ i;xγ
ij
μ ½Uðx; xþ μÞψ j;xþμ − Uðx; x − μÞψ j;x−μ�

→ ψ̄ i;xημðxÞ½Uðx; xþ μÞψ i;xþμ −Uðx; x − μÞ�ψ i;x−μ;

ð5Þ

is achieved by the unitary field redefinition,

ψx → Ωxψx; ψ̄x → ψ̄xΩ
†
x; ð6Þ

with Ωx ¼ γx11 γ
x2
2 …γxdd . Dropping all but one copy, with the

replacement

Ω†
xγ

ij
μΩxþμ ¼ ημðxÞδij → ημðxÞ ¼ �1; ð7Þ

results in a partial solution of the doubling problem by
reducing the fermion content to 2d=2 staggered Dirac
fermions: 4 in four dimensions and 2 in two dimensions.
It is convenient to write the staggered operator succinctly as

Dψx ¼
1

2

X
μ

ημðxÞ½Dμ − D†
μ�ψx þmψx; ð8Þ

in terms of the gauge covariant forward difference operator
DμψðxÞ≡Uðx; xþ μÞψðxþ μÞ − ψðxÞ and its conju-
gate D†

μψðxÞ≡U†ðx; x − μÞψðx − μÞ − ψðxÞ.
The staggered operator has a few special properties not

shared by other fermion discretizations. The staggered
operator is anti-Hermitian up to a mass shift and is normal:
½DðU;mÞ; D†ðU;mÞ� ¼ 0, just like the continuum operator.
This is in contrast to the Wilson discretization,

DWðmÞ ¼ 1

2

X
μ

½γμ½Dμ − D†
μ� þ rD†

μDμ� þm; ð9Þ

with its Hermitian second order Wilson (stabilization) term
that decouples doublers but makes DW non-normal in the
interacting case. The Wilson term also explicitly breaks
chiral symmetry. On the other hand, the staggered operator
retains a single exact chiral symmetry in the interacting
case,

γ5 → ϵðxÞ ¼ Ω†
xγ5Ωx ¼ ð−1Þx1þx2þ���þxd ; ð10Þ

with ϵðxÞ being the generator of the chiral symmetry. These
good chiral properties give ϵðxÞDþDϵðxÞ ¼ 2mϵðxÞ → 0

as m → 0. The chiral projectors, 1
2
ð1� ϵðxÞÞ, partition the

lattice into even and odd sublattices,

Dψ ¼ b →

�
m Deo

Doe m

��
ψe

ψo

�
¼

�
be
bo

�
: ð11Þ
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Furthermore, D features an ϵðxÞ Hermiticity, analogous to
the γ5 Hermiticity of the continuum Dirac operator.
The normal equations for the staggered operator are

diagonal,

D†Dψ ¼
�
m2 −DeoDoe 0

0 m2 −DoeDeo

��
ψe

ψo

�
: ð12Þ

The Schur-preconditioned system takes on a similar struc-
ture and is also Hermitian positive definite. For the free
problem [i.e., unit gauge fields, Uðx; xþ μÞ ¼ 1], there
is an exact cancellation of all next-to-nearest neighbor
“around-the-corner” terms in the normal operator. This is a
result of the ημ phases preserving a key property of the
Dirac algebra when taking the product of ηs around a
plaquette,

γμγνð−γμÞð−γνÞ ¼ −1

→ ημðxÞηνðxþ μÞημðxþ νÞηνðxÞ ¼ −1: ð13Þ

The result is a set of 2d decoupled Laplace operators on a
lattice with spacing 2a illustrated in Fig. 1. In this sense, the
free staggered operator is truly the “square root” of the
Laplace operator, similar to the continuum Dirac operator.
We can immediately write down the eigenvalues of the free
staggered operator, given by

λðp;mÞ ¼ m� i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
μ

sin2ðpμÞ
s

; ð14Þ

where pμ ¼ 2nμπ=L for integers nμ ∈ ½−L=4þ 1; L=4�
due to the shift-by-two translational invariance. The eigen-
values are imaginary (up to a real mass shift) and come in
complex conjugate pairs. When an interacting gauge field
is turned on, the “around-the-corner” terms no longer
vanish, leaving the two decoupled components in
Eq. (12). These next-to-nearest neighbor terms are the
standard so-called clover term, resulting in an irrelevant, in
the Wilsonian sense, spin-gauge interaction (σμνFμν) in the
continuum. The spectrum cannot be found analytically,
but ϵðxÞ Hermiticity symmetry ensures that the eigenvalues
still appear in exact complex conjugate pairs.

B. Kähler-Dirac preconditioning

We now consider the spectral transformation which is
essential to the staggered MG algorithm presented in
Sec. III and tested numerically in Sec. IV. Here we will
show that when the staggered operator is right precondi-
tioned by the 2d Kähler-Dirac blocks, the spectrum on the
resultant 2a blocked lattice is dramatically different. In the
free case, we prove that this transformation gives an exactly
circular spectrum in the complex plane, similar to the
overlap lattice Dirac discretization [11]. The inclusion of
gauge fields and/or the three-link Naïk term [48] are
relatively small modifications of this basic circular
structure.
The argument proceeds as follows. The staggered

operator is composed of blocks containing 2d sites,
corresponding to 2d degrees of freedom (d.o.f.) that in
the continuum limit are recombined into a multiplet of
Dirac fermions [49,50]. It is straightforward to see that the
decomposition of the staggered operator in 2d blocks of
sites partitions the lattice, as illustrated in red in Fig. 2, into
independent 2d blocks B containing a plaquette of links.
We will refer to these as Kähler-Dirac blocks. We also
include the local mass term into this B block. The nearest-
neighbor terms between the B blocks contribute to a block
hopping term C, which is unitarily equivalent, up to the
mass shift, to the block-local contributions in B. B and C
only share sites at the corners of squares in two dimensions,
cubes in three dimensions, and hypercubes in four dimen-
sions. This is a dual decomposition: half of the links on the
original lattice contribute to B, and half contribute to C, as
represented in Fig. 2. We denote this partition between
hopping terms within and across blocks as

D ¼ 1

2
ημ½Dμ − D†

μ� þm ¼ Bþ C: ð15Þ

We remark that we can interchange this dual description by
shifting the coordinates x⃗i → x⃗i þ 1⃗, where 1⃗ is a vector of
ones. We now construct the right-block-Jacobi or Kähler-
Dirac preconditioned operator as

FIG. 1. The normal operator applied on an odd site “o.” All
contributions to even sites “x” cancel due toD being normal. Links
in black (solid) and red (dashed) correspond to �1, respectively,
due to the contributions of ημ and the anti-Hermiticity ofD. In the
free field, it is clear that corner terms cancel.
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A ¼ DB−1 ¼ I þ CB−1: ð16Þ

This is a remarkably different operator with which we
develop our MG algorithm.
To characterize these differences, we will first consider

the free case. After rescaling and multiplying by ϵðxÞ, the
generator of the exact staggered chiral symmetry, both
terms are separately Hermitian, traceless, and unitary.
More concretely, we define B̂ ¼ BϵðxÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dþm2

p
and Ĉ ¼

CϵðxÞ= ffiffiffi
d

p
and note

B̂B̂† ¼ B̂2 ¼ I; ĈĈ† ¼ Ĉ2 ¼ I; ð17Þ

as a trivial consequence of the perfect cancellation of
the corner terms for Eq. (13). These properties imply that B̂

and Ĉ have equal numbers of �1 eigenvalues, and further
that the product ĈB̂ is a unitary matrixU. (The addition of a
Naïk term does not change B̂, but it does contribute to Ĉ.)
With this observation, our free Kähler-Dirac staggered

operator A is given by

A ¼ DB−1 ¼ I þ CB−1

¼ I þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d
dþm2

r
ĈB̂ ¼ I þ ρU: ð18Þ

The eigenvalues of DB−1 lie on a circle centered at 1 as
illustrated in the top panel of Fig. 3. The radius of the circle

is ρ ¼
ffiffiffiffiffiffiffiffiffi
d

dþm2

q
. In the massless limit, the radius is exactly 1.

This leads to an identical structure to the overlap operator,

Dov ¼ 1þ γ5γ̂5; γ̂5 ≡ sign½γ5DWð−MÞ�; ð19Þ

under the mapping ðγ5; γ̂5Þ → ðĈ; B̂Þ. Both Ĉ and B̂ are
algebraically similar to γ5 and γ̂5, being Hermitian and
unitary with an equal number of �1 eigenvalues. Adding a
mass term to the overlap operator similarly rescales the
unitary portion of the spectrum,

FIG. 2. On the top is the two-dimensional partition into the
spin-tasted block B (in red) and the complementary connecting
block C (in blue). On the bottom is the three-dimensional
partition again into spin-tasted block B and the complementary
connecting block C. In any dimension these partitions into B and
C contain all N lattice sites of the periodic lattice and each share
half of the dN links.

FIG. 3. The spectrum of the free, massless Kähler-Dirac
preconditioned operator, with and without a Naïk term on top,
compared against the Wilson, overlap, and original staggered
formulations on the bottom.
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Dov ¼ I þ 1 −m
1þm

γ5γ̂5; ð20Þ

introducing a mass gap. For comparison, in the bottom
panel of Fig. 3, we show the free spectrum of the massless
two-dimensional Wilson operator, the two-dimensional
overlap operator, and our new two-dimensional Kähler-
Dirac preconditioned operator. Very similar figures apply to
four dimensions, except the Wilson spectrum now has four
arcs in the positive real direction. Finally, we note that if we
add a Naïk term to the original staggered operator, the right
preconditioning perturbs the unitarity of the spectrum but
preserves the qualitative geometric features. A comparison
of the Kähler-Dirac preconditioned operator to the original
staggered operator is given in the top panel of Fig. 3. We
compare the massless spectrum against all other fermion
discretizations in Fig. 4.
The Kähler-Dirac operator no longer admits a simple

“γ5” Hermiticity condition. However, it does obey a
modified asymmetric γL=R5 condition, which is essential
for our discussions in Sec. III. The key observation is to
note that we can change the “convention” that A is given by
a right block preconditioning of D to a left block pre-
conditioning via the transformation ϵðxÞA†ϵðxÞ ¼ B−1D.
We can rearrange this identity and note

ϵðxÞB−1A ¼ A†ϵðxÞB−1 ⇒ γL5A ¼ A†γL5 ; ð21Þ

and likewise we can take advantage of the ϵðxÞ Hermiticity
of D to note

ABϵ ¼ BϵA† ⇒ AγR5 ¼ γR5A
†: ð22Þ

Here we have defined ðγL5 ; γR5 Þ ¼ ðϵðxÞB−1; BϵðxÞÞ. This is
a generalization of the idea of γ5 Hermiticity: now, γL5 γ

R
5 ¼1

and A† ¼ γL5Aγ
R
5 . Also, just as is the case for theWilson and

staggered operators, these properties are enough to show

that A features complex conjugate eigenpairs. Assume
AjλRi ¼ λjλRi, where the superscript R denotes it is the
right eigenvector corresponding to the eigenvalue λ. We can
take the Hermitian conjugate of each side of the equation.
Next, we can right multiply by γL5 and take advantage of

γL=R5 Hermiticity. This gives us hλRjγL5A ¼ hλRjγL5 λ�; that
is, A also has an eigenvalue λ� with a left eigenvector
hλ�Lj≡ hλRjγL5 . This same exercise can be trivially repeated
for left eigenvectors using γR5 to the same end.

C. Free spectrum after Kähler-Dirac preconditioning

For a detailed analysis of the spectrum, we introduce the
flavor representation of the staggered operator [49–51],
which is unitarily equivalent to a lattice Kähler-Dirac
fermion in the free field [17,52]. Here each submatrix B
is expressed in terms of the spin-taste gamma matrices
which enumerate the components of a single continuum
Kähler-Dirac fermion [30]. Its action is

S¼bd
X
X;μ

q̄ðXÞ
�
∇μðγμ⊗1Þ−b

2
▵μðγ5⊗ τμτ5Þþm

�
qðXÞ;

ð23Þ
where qðXÞ is the Kähler-Dirac field containing 2d d.o.f., X
is the Kähler-Dirac block index, b ¼ 2a ¼ 2 is the lattice
spacing between Kähler-Dirac blocks, and the finite differ-
ence operators are defined as

ð∇μqÞðXÞ ¼
qðX þ bμ̂Þ − qðX − bμ̂Þ

2b
; ð24Þ

ð▵μqÞðXÞ ¼
qðX þ bμ̂Þ − 2qðXÞ þ qðX − bμ̂Þ

b2
: ð25Þ

In the language of staggered fermions, the γμ matrices
generate the spin algebra, while the matrices τμ ¼ γ†μ
generate the so-called taste algebra. It should be noted
that if these lattice fermions are gauged on the lattice
with twice the lattice spacing b ¼ 2a, the resulting lattice
theory of interacting Dirac-Kähler fermions [16,53] is no
longer equivalent to the interacting staggered fermion
and, of note, can generate a dynamical mass term.
Likewise, on a continuum Riemann manifold, a Kähler-
Dirac fermion admits a different gravitational gauging than
Dirac fermions [54].
Our decomposition of D ¼ Bþ C is now partitioning

Eq. (23) into local and nearest neighbor contributions. The
local block B is given by

B ¼ −B† ⇔
X
μ

γ5 ⊗ τμτ5 ð26Þ

in the massless case. The inverse is given by

B−1 ¼ −B−† ⇔ −
1

d

�X
μ

γ5 ⊗ τμτ5

�
: ð27ÞFIG. 4. The free field spectrum of the staggered, Kähler-Dirac

preconditioned (with and without the Naïk contribution), Wilson,
and overlap operators.
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The transformation D → A ¼ DB−1 gives the kernel

A¼DB−1 ¼ −
1

d

X
μ;ν

�
∇μðγμγ5 ⊗ τντ5Þ þ

1

2
▵μð1⊗ τμτνÞ

�
:

ð28Þ

This operator can be explicitly diagonalized in arbitrary
dimension by noting the Hermitian and anti-Hermitian
projections of the operator commute, the Hermitian pro-
jection can be trivially diagonalized, and the imaginary part
is prescribed by recalling the shifted unitary structure of the
spectrum. This gives

λðpμÞ ¼ 1 −
1

d

X
μ

cosðpμÞ � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
1

d

X
μ

cosðpμÞ
�

2
s

:

ð29Þ
This spectrum is visualized on the top panel of Fig. 3. The
spectrum can be written as 1 − eiθ for where cosðθÞ ¼
d−1

P
μ cosðpμÞ ∈ ½−1; 1�. We note again that, up to a

scaling, the low spectrum is similar to the Wilson, overlap,
and staggered spectra.

1. Nonzero mass term

The spectrum undergoes a minor change when the
original staggered operator is massive. The local block
now becomes

P
μγ5 ⊗ τμτ5 þm, and the preconditioned

spectrum becomes

λðpμÞ ¼ 1 − ρ

�
ρ

d

X
μ

cosðpμÞ � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðρ

d

X
μ

cosðpμÞÞ2
s �

;

ð30Þ

which parametrizes the arc of a circle 1 − ρeiθ centered

at (1, 0) with radius ρ ¼
ffiffiffiffiffiffiffiffiffi
d

dþm2

q
. The arc is bounded to

the range cosðθÞ ¼ ρd−1
P

μ cosðpμÞ ∈ ½−ρ; ρ�, giving a

gap λð0Þ ¼ 1 − ρ2 � i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρ2

p
.

2. Naïk term

Many modern LQCD simulations add a next-to-next-to-
nearest neighbor improvement term known as a Naïk [48]
term. Two common realizations of this improvement,
equivalent in the free-field limit, are AsqTad [55] and
HISQ [56] fermions. The free operator [52] is given by

DðmÞNaikx;y ¼ −
1

2

X
μ

ημðxÞ
�
9

16
ðδx;y−μ̂ − δx;yþμ̂Þ

1

48
ðδx;y−3μ̂

− δx;yþ3μ̂Þ
�
þmδx;y: ð31Þ

The improved action admits the spectrum

λNaikðp;mÞ¼m� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
μ

sin2ðpμÞ
�
1þ1

6
sin2ðpμÞ

�
2

s
: ð32Þ

The effect of the Naïk term on the Kähler-Dirac action is to
modify the nearest neighbor term and add a next-to-nearest
neighbor term. The 2d Kähler-Dirac block BNaik ¼ 9

16
B is

unchanged up to a trivial rescaling. The new contributions
are confined to C, which is no longer unitary:
Ĉ†
NaikĈNaik ≠ I. Likewise, the spectrum is no longer a

shifted unitary spectrum. Indeed, in two dimensions, the
massless free spectrum is given by

λðpμÞ ¼ 1 − ½ð1 − xÞS1 þ xS2� � i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ½ð1 − xÞS1 þ xS2�2 − 2x½S2 − S1 þ xðS3 − 1Þ�

q
; ð33Þ

where Sn ¼ 1
2

P
μ¼x;y cosðnpμÞ and x ¼ −1=48

9=16 , the ratio of
the improvement coefficients in the Naïk-improved action.
The improved spectrum is shown on the left panel of Fig. 3,
with the low modes emphasized in Fig. 4. We again make
the critical observation that the spectrum is qualitatively
similar to the original Kähler-Dirac spectrum, Wilson
spectrum, and overlap spectrum.

3. Interacting staggered fermions in Kähler-Dirac form

We are ultimately interested in performing this right-
block-Jacobi preconditioning on the interacting staggered
operator, not the free operator. Procedurally, this is done by
first gauging the staggered operator, and then performing the
same unitary blocking transformation between the staggered

form and the Kähler-Dirac form. The local block no longer
has a simple structure because of gauge links [17]. In two
dimensions, the Kähler-Dirac block B attached to a unit
corner at 2n⃗ on the original staggered lattice is given by0
BBBBB@

m 0 −1
2
Uxð2n⃗Þ −1

2
Uyð2n⃗Þ

0 m −1
2
U†

yð2n⃗þ x̂Þ 1
2
U†

xð2n⃗þ ŷÞ
1
2
U†

xð2n⃗Þ 1
2
Uyð2n⃗þ x̂Þ m 0

1
2
U†

yð2n⃗Þ −1
2
Uxð2n⃗þ ŷÞ 0 m

1
CCCCCA:

ð34Þ

Like the free case, the block B is still anti-Hermitian plus a
massive shift. However, unlike the free case, the interacting
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B̂ and Ĉ are not unitary, and as such the product CB−1 does
not have a unitary spectrum. Nonetheless, the spectrum is
still approximately circular and centered at 1, as can be seen
later in Fig. 9. This is a desirable property for matrix
preconditioning in general [57,58], and it is essential for
a successful MG algorithm. Importantly, this operator still
maintains the γL=R5 Hermiticity defined in Eqs. (21) and (22).

This is true because the proofs of γL=R5 Hermiticity solely
depend on the ϵðxÞ Hermiticity of D, which holds in the
interacting case. By extension, the proofs of complex
conjugate eigenpairing still hold. These comments carry
over as appropriate when a Näik term is also included.

III. MULTIGRID COARSE OPERATOR

In forming the Galerkin projection of the staggered
operator, we follow the methods of previous successful
formulations of MG for the Wilson-Dirac discretization for
LQCD [6]. Near-null vectors, or vectors which predomi-
nantly span the low-right eigenspace of the Wilson oper-
ator, are constructed by relaxing on the homogeneous
equation with a random initial guess as is discussed in
detail in Sec. IV. Later in this section we will also consider
exact low eigenvectors programmatically as near-null
vectors. The resulting near-null vectors are chirally doubled
and block orthonormalized to construct the rows of the
restrictor matrix R, which aggregates fine d.o.f. to a single
site on the coarse lattice, and the prolongator matrix P,
which maps coarse d.o.f. back to the fine lattice. Unless
otherwise noted, R ¼ P†. For the staggered operator, this
implies that coarsening preserves the anti-Hermitian plus
mass-shift structure. Block orthonormalization implies
P†P ¼ I. The prologator and restrictor can be used to
define the coarse operator,

D̂ ¼ RDP: ð35Þ

The hat notation refers to an operator one level coarser than
the “unhatted” operator.
We will begin by reviewing the Wilson formulation,

largely to establish notation. We will extend this formu-
lation to the staggered operator and show why this method
fails to produce an effective recursive algorithm in this case.
We will last repeat this formulation for the Kähler-Dirac
preconditioned operator and show that, in contrast to the
original staggered case, this method succeeds.

A. Review of Wilson-Dirac coarse operator

We begin by a basic restatement of the procedure for the
adaptive geometric MG developed for the Wilson operator
in QCD [5,6]. It is important to first note that the Wilson
operator does obey γ5 Hermiticity, that is, γ5DWγ5 ¼ D†

W .
The γ5 Hermiticity is sufficient to prove that eigenvalues of
DW come in complex conjugate pairs as the limiting case of

γL5 ¼ γR5 , as discussed in Sec. II B. Returning to MG, n1vec
near-null vectors are generated, where the “1” refers to
coarsening the finest level, as discussed in Sec. IV. A key
next step is chiral doubling: every near-null vector jψ ii is
“doubled,” giving 1

2
ð1� γ5Þjψ ii. For this reason, on the

coarse operator, each coarse site has 2n1vec internal d.o.f., or,
alternatively, a dense structure of n1vec “coarse color” dof
times two “chirality” dof. A successful implementation of
Wilson MG critically depends on the preservation of
chirality.
After performing a chiral doubling of the near-null

vectors, we pack the doubled vectors into the prolongator

P̃ ¼
�
1
2
ð1þ γ5Þjψ ii; 12 ð1 − γ5Þjψ ii

�
; ð36Þ

and again define R̃ ¼ P̃†. The tilde convention here is an
indication that we have not (yet) block orthonormalized the
2n1vec vectors on each block. The chiral doubling implies
γ5P̃ ¼ P̃σ3, where σ3 ¼ diag½1;…; 1;−1;…;−1� is a
block Pauli matrix, or alternatively, the traditional σ3 acting
on the coarse chirality dof. It is easy to see that P̃†DWP̃ is
“σ3” Hermitian:

σ3P̃†DWP̃σ3 ¼ P̃†γ5DWγ5P̃ ¼ P̃†D†
WP̃ ¼ ðP̃†DWP̃Þ†:

ð37Þ

The essential property γ5P̃ ¼ P̃σ3 is unchanged after we
perform the last step, block orthonormalizing P̃ to get P,
because we performed our chiral doubling with a bona
fide projector. The top chiral components and the bottom
chiral components are already trivially orthonormal. This
gives the final essential properties γ5P ¼ Pσ3, and D̂W ¼
P†DWP is σ3 Hermitian. This methodology can be trivially
extended to a recursive coarsening.

B. Failure of Galerkin projection of staggered operator

The prescription for (recursively) generating a coarse
refinement of the Wilson operator DW fails when naïvely
translated to the staggered operator D with the only change
being the replacement of γ5 with ϵðxÞ, as noted by Eq. (10).
While the iterative inversion of the even/odd precondi-
tioned system exhibits critical slowing down, it does
converge. However, this attempt at a Galerkin MG on
the staggered operator D stalls completely at large volumes
as illustrated in Fig. 5. We need to understand the cause of
the failure of the Galerkin projection D̂ ¼ P†DP as a
preconditioner. A MG algorithm may fail because the
coarse operator does not accurately reproduce the low
eigenspace of the fine operator, or because the coarse error
“correction” is ineffective. We will study each of these
properties for the staggered operator to attempt to under-
stand the issue.
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As a spectral preconditioner, we expect the coarse
operator to approximately preserve the low eigenmodes
of the fine operator. In Fig. 6 we address this issue by
comparing our failed staggered MG spectra with the
successful Wilson MG spectra in Fig. 7.
First consider the staggered case. The center column (red

squares) in Fig. 6 gives the positive imaginary component
of the low-lying spectrum for the fine staggered operator.
The spectrum is exactly paired with complex conjugate
eigenvalues below the real axis due to ϵðxÞ Hermiticity on
the fine level and coarse levels. The other four columns give
the spectrum for a recursively coarsened operator, con-
structing the prolongator/restrictor from exact low eigen-
vectors (left side) and near-null vectors (right side), where
the near-null vectors are again generated as discussed in
Sec. IV. Filled shapes correspond to the first coarse level.
Hollow shapes correspond to the operator from a recursive
coarsening. The horizontal black lines trace the low modes

of the fine operator across the coarsened operators. While
these physical low modes are well preserved in all cases,
there are many additional, spurious low eigenvalues in the
coarse spectrum.
These spurious eigenvalues have a simple origin.

Consider the normalized eigenvector of the coarse operator
D̂jλ̂i ¼ λ̂jλ̂i. We note that λ̂ ¼ hλ̂jD̂jλ̂i ¼ ðhλ̂jP†ÞDðPjλ̂iÞ.
If we perform an eigendecomposition of Pjλ̂i ¼ P

icijλi,
we find that λ̂ ¼ P

ijcij2λ, a consequence of D being
normal. This implies λ̂ is some linear combination of
eigenvalues of D in the interval ½−λmax; λmax�. A coarse
eigenvalue can have an arbitrarily small imaginary part if,
for example, Pjλ̂i is dominantly spanned by a pair of fine
eigenvectors with complex conjugate eigenvalues. This
eigenvector may have nothing to do with the low modes
of D.
This would be less of an issue if higher modes were

gapped along the real axis. This is true of the Wilson
operator, as can be seen for a representative case in Fig. 7.1

For the fine operator, whose eigenvalues are given by red
squares, high modes are gapped along the real axis. For the
coarse operator, whose eigenvalues are blue triangles, low
modes are well preserved. Higher modes “collapse” toward
the complex origin but are still well gapped along the real
axis. This could be why MG on the Wilson operator does
not break down, and may identically predict success for
the Kähler-Dirac preconditioned operator.
Local collinearity versus the oblique projector. The

Galerkin MG scheme involves two different projection
operators:

(i) The projection operator, P ¼ PR, from the fine
space into a coarse subspace. Using the right
eigenvectors as a basis for the fine vector space,

FIG. 5. The relative residual as a function of fineD applications
for CG on the even/odd system compared with a failing MG solve
on the staggered operator. The parameters of the MG solve are
given in Table I.

FIG. 6. The imaginary part of the spectrum of D for a
representative configuration using a recursive symmetric Galer-
kin projection with both eigenvectors (left) and generated near-
null vectors (right). Recursive coarsening introduces “spurious”
low modes. The parameters of the MG coarsening are given in
Table I.

FIG. 7. A representative spectrum of an interacting Wilson
operator and its Galerkin coarsening. The MG coarsening
aggregates fine d.o.f. over a 42 block into a coarse site using
n1vec ¼ 4 near-null vectors.

1In the interacting case, the Wilson operator is no longer
normal, and our convex hull proof breaks down. It appears that it
is still sufficiently true, perhaps because the free Wilson operator
is exactly normal. In a perturbative sense, the interacting Wilson
operator is then “approximately” normal.
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V ¼ fjvλi; 0 < jλj ≤ jλmaxjg, our goal is for
eigenvectors with small (near-null) eigen-
values, jλj=jλmaxj < ε, to be approximately repre-
sented within the span of the coarse subspace,
V̂ ¼ PV, in a least-squares sense.

(ii) The oblique (or Petrov-Galerkin) projector,
Pob ¼ 1 − PðRDPÞ−1RD, that defines space of
error components that are returned to the fine level
with a complete solve in the coarse subspace. To not
overburden the smoother this should at least not
unduly amplify large eigenvectors, jλj=jλmaxj > ε.

Both are true projectors dividing the fine vector spaceV into
disjoint subspaces, Pð1 − PÞ ¼ 0 and Pobð1 − PobÞ ¼ 0,
though they do not define the same subspaces. The ortho-
gonality, PobP ¼ 0 is one-sided since PPob ≠ 0.
Let us see how well the staggered MG handles these two

requirements. In our construction, R ¼ P†, so the coarse
space projector is Hermitian. The statement of preserving
the low eigenspace in the least-squares sense can be
formulated as sufficiently minimizing

kð1 − PRÞv⃗λk2; ð38Þ

for small eigenvalues of fine operator D. Since we generate
our coarse space by geometric aggregation, this can be
thought of as the local collinearity of near-null vectors with
low eigenmodes. In the top left panel of Fig. 8, we see that
starting with a block-orthonormalized basis either of near-
null vectors or of low eigenvectors results in a good
coverage of the low spectrum. This is typical of MG
methods. At the bottom left this is extended to the next
coarsest level with a similar result. This has important
implications for eigenvector compression methods [59].
However, this is not sufficient for a successful coarse

correction in an MG algorithm. The coarse correction
should address the low modes of the fine operator without
introducing large errors in the high mode subspace. The
error after solving the coarse level is updated as e ← e−
PðRDPÞ−1RDe ¼ Pobe. This is quantified by the magni-
tude of each eigenvector acted on by the Petrov-Galerkin or
the so-called oblique projector,

FIG. 8. On the left, a measurement of local collinearity: how well low near-null vectors can reconstruct eigenvectors. On the right, the
contribution of eigenvector to the error after the coarse level solve. The top row of figures is the fine-to-first-coarse operator, and the
bottom row is the next level from the coarse to doubly coarsened operator. The parameters of the MG coarsening are given in Table I.
Both panels are sorted by increasing magnitude of the eigenvalues.
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kð1 − PðRDPÞ−1RDÞv⃗λk2: ð39Þ

The oblique projection of the coarse error (Pe) is
zero: PobP ¼ ½1 − PðRDPÞ−1RD�PR ¼ 0. However, the
oblique projection is not Hermitian so this does not imply
the error in the orthogonal complement space (e − PRe)
vanishes. This is illustrated on the right side of Fig. 8.
A magnitude less than or greater than one corresponds to

a reduction or enhancement of the complementary error
component, respectively. A successful coarse operator
should strongly reduce the error component for low
eigenmodes. In the context of MG, the enhancement from
higher modes is addressed by the smoother. A larger
enhancement requires a more expensive smoother; other-
wise the solve stalls. In the top right panel of Fig. 8, we see
that, for high modes, there is a large error enhancement.
This is worse for a prolongator generated from near-null
vectors than one generated from eigenvectors. In the lower
right panel, we see the situation is even worse for a three-
level algorithm. In all cases, an aggressive smoother is
needed, increasingly so at coarser levels. This is why we

saw the MG algorithm fail. Now we turn to the same
analysis for the Galerkin construction of the Kähler-Dirac
preconditioned operator, which has in contrast minimal
error enhancement, evident in Fig. 10.

C. Coarse Kähler-Dirac staggered operator: Â

We will coarsen the Kähler-Dirac preconditioned oper-
ator similar to how we coarsened the staggered operator,
still using 1

2
ð1� ϵðxÞÞ (unitarily rotated into the flavor

basis) as a chiral projector on the near-null vectors. We will
denote the method of coarsening the Kähler-Dirac pre-
conditioned operator using 1

2
ð1� ϵðxÞÞ as chiral projectors.

Again, we will use R ¼ P†. In Sec. V, we will discuss an
asymmetric coarsening where R ≠ P†. While not being of
merit in two dimensions, it may be an interesting point of
investigation in four-dimensional QCD. In this section we
will consider the spectrum, collinearity, and oblique pro-
jector for a symmetric coarsening. Looking forward, in
Sec. IV, we will demonstrate that symmetric coarsening
produces a well behaved and robust recursive algorithm
independent of the volume and the mass for physically
relevant values of β.
As we described previously, the Wilson operator has a

well behaved spectrum for MG as the high modes are well
gapped along the real axis. This is also true for the Kähler-
Dirac preconditioned operator in Fig. 9. As we discussed at
the end of Sec. II B, the interacting spectrum is no longer a
perfect circle in the complex plane. This does not under-
mine the qualitative benefits of the spectrum. Additionally,
in the interacting case, a mass term still gaps the spectrum.
In the bottom panel of Fig. 9, where we zoom in on the
origin of the complex plane, we see that low modes are well
preserved under our coarsening prescription, and there are
no spurious modes near the complex origin. Eigenvalues of
the coarse operator do not come in exact complex conjugate
pairs, a consequence of using ϵðxÞ as the chiral projector.
This is inescapable because, in general, γL=R5 does not
define a good projector. The eigenvalues are approximately
paired, which is consistent with a general preservation of
the low spectrum. This may also be consistent with
1
2
ð1� ϵðxÞÞ becoming equivalent to 1

2
ð1� γL=R5 Þ, up to a

unitary transformation, in the continuum limit, and as such
preserving complex conjugate eigenpairs.
A careful study of the bottom panel of Fig. 9 shows

that both the original operator and its coarsening feature
eigenvalues with a negative real part, that is, lying in the
left-half plane. We refer to these eigenvalues as exceptional
eigenvalues, borrowing the language from Wilson-clover
fermion literature [60]. The existence of modes in the left-
half plane invalidate proofs which bound the convergence
of Krylov solvers [61]. We will see in Sec. IV that, because
error components in these exceptional modes are well
solved by the coarse error correction, a recursive MG
algorithm can successfully address this problem. As wewill

FIG. 9. On the top, a representative spectrum of the Kähler-
Dirac preconditioned operator and its Galerkin projection from an
interacting gauge field. On the bottom, a zoom in on the low
spectrum. The parameters of the MG coarsening are given in
Table I.

MULTIGRID ALGORITHM FOR STAGGERED LATTICE … PHYS. REV. D 97, 114513 (2018)

114513-11



see in Sec. IV, this stabilizes the MG solve, independent of
mass and volume, and is consistent with the success of MG
for the Wilson operator beyond the critical mass.
Local collinearity versus the oblique projector. The

overall failure of MG for the staggered operator stemmed
from the large error enhancement to the high modes from
the coarse correction. A predictor of success for MG on the
Kähler-Dirac preconditioned operator would be a signifi-
cant reduction of this enhancement. We would also still
need to see strong local collinearity and a significant coarse
error correction on low modes. In the left and right panels
of Fig. 10, we consider the local collinearity and oblique
projector, respectively, of the Kähler-Dirac preconditioned
operator on a representative configuration. We explore
using both near-null vectors and right eigenvectors to
define the prolongator P and restrictor R ¼ P†.
On the left, we see that local collinearity of low modes

of the Kähler-Dirac operator is well maintained, similar to
the original staggered operator. The benefit of coarsening
the Kähler-Dirac preconditioned operator as opposed to the
original staggered operator is most clearly noted by the

action of the oblique projector as displayed on the right
panel of Fig. 10. The oblique projector reduces the error
component on the fine level for roughly the lowest 15% of
the spectrum. Above this threshold, the error component is
enhanced, but only minimally.

IV. MG ALGORITHM PRESCRIPTION AND
NUMERICAL RESULTS

The convergence rate of our new MG algorithm on the
Kähler-Dirac preconditioned operator, illustrated in Fig. 11,
is a dramatic improvement relative to the failed MG
algorithm applied to the original staggered operator in
Fig. 5. The only methodological difference is coarsening
the Kähler-Dirac preconditioned operator instead of the
original staggered operator. While starting from the Kähler-
Dirac preconditioned operator was an essential step in
formulating a MG algorithm, there are many other aspects
that need to be tuned to make it robustly successful. The
prescription for generating near-null vectors, as well as
iterating on the coarser levels, is also important.

FIG. 10. On the left, a measurement of local collinearity, and on the right, the effect of the oblique projector on eigenvectors. The top
row considers a representative Kähler-Dirac preconditioned operator; the bottom row considers its coarsening. Both panels are sorted by
increasing magnitude of the eigenvalues. The parameters of the MG coarsening are given in Table I.
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With this in mind, we will begin by describing the
complete prescription for defining our MG algorithm. Next,
we will discuss the results of our tests of the MG algorithm.
Importantly, we will see that as we scan in the quark mass,
as shown in Fig. 12, our formulation has eliminated ill
conditioning due to critical slowing down: unlike using CG
on the even/odd preconditioned system, an MG solve takes
a roughly constant number of outer iterations as the chiral
limit is approached. Last, we will investigate the behavior
of our MG algorithm as the continuum limit is approached,
which is the most relevant regime for eliminating critical
slowing down.

A. Definition of the MG algorithm

There are several parameters that need to be tuned when
defining a MG algorithm. The parameters we choose are
summarized in Table I. First, we consider a two-level

algorithm. We construct a right near-null vector ψ by
relaxing on the homogeneous normal system AA†ψ ¼ 0,
using Gaussian distributed random vectors ψ0 as the initial
guess.2 In practice, this is performed in multiple steps.

(i) We convert the homogeneous system to the residual
system AA†e⃗ ¼ r⃗≡ −AA†ψ0.

(ii) We relax on the residual system using CG to a
relative tolerance of 10−4 or a maximum number of
250 iterations.

(iii) We reconstruct the near-null vector ψ ¼ ψ0 þ e⃗,
where e⃗ is the result of relaxation.

This is performed n1vec times, and then we globally
orthonormalize the full set of near-null vectors. We
subsequently chirally double the near-null vectors using
1
2
ð1� ϵðxÞÞ, and form the second-level operator Â ¼ P†AP

from the block-orthonormalized chirally doubled null
vectors. The coarse correction follows three steps.
(1) Relax on the current residual, a process known as
the presmoother, (2) approximately solve the second-level
system: ½RAP�Re ¼ Rr (or, equivalently, approximately
solve Âê ¼ r̂Þ, giving the prolonged error correction
e ¼ Pê, and (3) postsmooth on the error accumulated from
steps (1) and (2). In step (2) we use a Krylov solver, and as
such the MG preconditioner is not stationary. For this
reason, we use the restarted generalized conjugate residual
(GCR) [63] as a flexible outer solver, forming a K-cycle.
We use a global MR for our presmoother and postsmoother.
The specific details of these steps are given in Table I. In
practice, we iterate on the even/odd preconditioned system
on the fine level, with the prescription where we coarsen
assuming the odd contributions are all zero, and we also
ignore the odd contributions in the prolonged error. This
technique proved successful for the Wilson operator [64].
A two-level algorithm does not fully eliminate critical

slowing down, it just shifts it to the second level.We address
this by generalizing to a recursive algorithm, where we
perform a still coarser correction to the system in step (2) of

the above description.We generate a third level, ˆ̂A, similar to
how we generate the second level: we generate near-null
vectors with ÂÂ†, chirally double the near-null vectors using
1
2
ð1� σ3Þ, and subsequently form a third level.
This clearly generalizes to still coarser levels. For

our numerical experiments in Sec. IV, we only study a
three-level algorithm. Unlike on the fine level, the Krylov
solve we perform on the intermediate level is an iteration
directly on Â, as we found this was more stable in practice.
We approximately solve the coarsest level via CG on the

FIG. 11. The relative residual as a function of the number of fine
operator applications for a representative β ¼ 10.0; 2562 configu-
ration. The parameters of the MG solve are given in Table I.

FIG. 12. The number of fine operations as a function of the bare
mass for CG on the even/odd system, which exhibits critical
slowing down, and for MG on the Kähler-Dirac preconditioned
operator, where it is eliminated. Each data point is an average
over 100 runs. Error bars are generally too small to be visible on
the figures.

2We remark that A†A generally works just as well. We have
also explored relaxing on A directly using BiCGstab and
BiCGstab(l), l ¼ 6 [62], which in practice works well at small
volumes but degrades for larger volumes. The use of the normal
operator may be why we can effectively capture exceptional
eigenvalues.
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normal error (CGNE). Due to the exceptional eigenvalues
which propagate to coarser levels, as noted in Fig. 9,

numerical experiments with Krylov solvers acting on ˆ̂A
were in general not successful. This was either due to
stability reasons [using BiCGstab(l) [62]] or due to cost
(using GCR). We believe using the normal operator is of
critical importance.

B. Results

A successful, recursive MG algorithm will shift critical
slowing down to the coarsest level. In the context of the
Schwinger model, and four-dimensional QCD, this means
we want consistent convergence independent of mass and
volume. We are also interested in the MG algorithm being
successful in all physically interesting regimes. In the case
of our target problems, this means we need to study the
behavior with the bare coupling β. The continuum limit is
taking β → ∞ at constant physics, where the relevant
region is lMπ

> lσ. When β is too small, close to the cutoff
scale, we are no longer studying relevant physics.
A breakdown of MG for very small β is acceptable. The
values of β studied, 3.0, 6.0, and 10.0, correspond to
lσ ≈ 2.4; 3.5, and 4.5, respectively. The lowest value of β is
becoming rather unphysical.

1. Elimination of critical slowing down: Fine level

The indication of a successful two-level algorithm is the
elimination of critical slowing down for the fine operator A,
that is, constant iterationswith respect to themass andvolume
per each β. In Fig. 13, we present the number of applications
of the fine operator A between the GCR algorithm and the
MG preconditioner, which is proportional to the number of
iterations for the outer GCR solve. In the left panel we
consider the case of fixed physical β ¼ 6.0 at varying
volume. The number of A applications is roughly constant,
independent of the volume andmass in the chiral limit. In the
right panel, we consider our largest volume, 2562, fixed for
three different values of β. We see that at β ¼ 10.0 and 6.0,
critical slowing down has been essentially eliminated as a
function of mass. At β ¼ 3.0, where we are probing some-
what cutoff scale physics, the number of iterations appears to
not be divergingwith power law behavior, and as such critical
slowing down has still been eliminated.

2. Elimination of critical slowing down:
Intermediate level

A successful recursive algorithm eliminates critical slow-
ing down at each level. Thus, we consider the average
number of iterations for the second level coarse correction,
averaged over each outer iteration. In the left panel of Fig. 14,

TABLE I. The parameters we use for our K-cycle. For consistency, we use the same setup parameters throughout
the procedures described in this paper. We remark that, for the setup, A†A works just as well as AA†.

Parameter

Setup Setup operator Normal operator, AA†

Setup solver CG
Max iterations 250
Max residual tolerance per null vector 10−4

Number of null vectors, level 1 (n1vec) 8
Size of aggregate block, level 1 42 (82 in the original lattice)
Number of null vectors, level l > 1 (nlvec) 12
Size of aggregate block, level l > 1 22

Number of levels lmax 3

Solver, level 1 Operator Schur preconditioned, I − AeoAoe
Restart length of GCR 32
Relative residual tolerance 10−10

MR iterations for pre-,postsmooth 2
MR relaxation parameter 0.85

Solver, level 2 Operator Â
Max iterations 16
Restart length of GCR 8
Relative residual tolerance 0.2
MR iterations for pre-, postsmooth 2
MR relaxation parameter 0.85

Solver, level 3 Operator Normal operator, ˆ̂A ˆ̂A
†

Solver CGNE
Relative residual tolerance 0.2
Maximum iterations 256

BROWER, WEINBERG, CLARK, and STRELCHENKO PHYS. REV. D 97, 114513 (2018)

114513-14



we consider the average number of intermediate iterations at
fixed β ¼ 6.0 at varying volume. In the chiral limit, the
average number of iterations is essentially fixed at 3
independent of volume. In the right panel we consider a
fixed volume of 2562 for three different values of β. As with
the fine level, we see an elimination of critical slowing down
for each value of β.
We remark that in a highly optimized and tuned

implementation, it is important that we use a K-cycle at
the second level. In such an implementation, the maximum
number of iterations on the coarsest level may be capped to
some reasonable amount. This would cause the number of
iterations on the intermediate level to increase. Since in a
K-cycle the second level is solved to a fixed residual as
opposed to a fixed number of iterations, the number of
iterations at the finest level remains stable.

3. Critical slowing down: Coarsest level

The previous two paragraphs demonstrate an elimination
of critical slowing down from finer levels. Thus, there

should be critical slowing down on the efficiently solvable
coarsest level. In Fig. 15 we consider the average number
of iterations for the coarsest solve via CGNE. In contrast to
the previous two figures, these plots are on a log-log scale
instead of a log-linear scale. In the left and right panels, we
consider constant β ¼ 6.0 and a constant volume of 2562,
respectively. The number of iterations is divergent with
power law behavior.3 Critical slowing down has been
shifted to the coarsest level.

4. Comparison with a direct solve

In looking at the outermost level, the intermediate level,
and the coarsest level in a three-level solve, we see that we
have formulated an MG algorithm which shifts critical
slowing down to the coarsest level. Furthermore, the solve
is stable: in Fig. 11, we saw that an MG-GCR solve

FIG. 13. The number of applications of the fine operator A per MG-preconditioned solve as a function of mass. On the left, we
consider fixed β, and on the right, fixed volume. Each data point is an average over 100 runs. Error bars are generally too small to be
visible on the figures.

FIG. 14. The average number of iterations for the inner Krylov solve of Â as a function of mass. On the left, we consider fixed β, and
on the right, fixed volume. Each data point is an average over 100 runs. Error bars are generally too small to be visible on the figures.

3It will not exactly diverge for m extremely small due to finite
volume cutoff effects.
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converges smoothly at our most chiral point for β ¼ 10.
There are large reductions in the relative residual on each
iteration. On the other hand, the traditional solve with CG
on the even/odd operator, despite converging successfully,
converges very slowly, an indication of critical slowing
down.
This behavior persists independent of mass. In Fig. 12,

we trace the number of iterations away from the chiral limit,
seeing that it is roughly constant. Critical slowing down
has been eliminated. On the other hand, the number of
iterations for a solve with the even/odd operator diverges
with mass with power law behavior. This is exactly the
critical behavior that has been shifted to the coarsest level in
Fig. 15. The benefit of our MG algorithm is drastic.

C. Continuum limit

It should be emphasized that our fixed prescription is
effective in the most relevant regime: toward the con-
tinuum, where the lattice spacing vanishes relative to fixed
physics, and in the chiral limit, where lMπ

diverges relative
to lσ.
For the two-dimensional Schwinger model, taking the

continuum limit at constant physics corresponds to simul-
taneously doubling the length scale of the fine volume,
halving the mass, and quadrupling β. In Table II, we

consider the use of MG while taking the continuum limit
from two base configurations. First, we consider a base
configuration of 642 at m ¼ 0.01 and β ¼ 3.0, where we
have discussed earlier that an MG algorithm is successful.
On two successive refinements toward the continuum limit,
we see that there is a reduction in the number of outer
applications of A and in the average number of iterations on
the intermediate level. In tandem, the average number of
iterations on the coarsest level increases: there is more
critical slowing down to shift to the coarsest level, which is
to be expected, toward the continuum limit. Our MG
algorithm performs better as the continuum limit is taken.
Next, we consider a base configuration of 642 atm ¼ 0.004
and β ¼ 0.75, an unphysically coarse configuration. In this
case, an MG algorithm fails to converge. Again, on
progressive refinements, the MG algorithm becomes con-
vergent and becomes better behaved as the continuum limit
is taken.

V. PRESERVING COMPLEX CONJUGATE PAIRS

A possible, if not necessary, generalization for four-
dimensional QCD or other staggered fermion problems
could be the exact preservation of complex conjugate pairs
upon coarsening. Indeed it is possible to develop a

FIG. 15. The average number of iterations of CGNE on the coarsest level for, on the left, fixed β, and on the right, fixed volume. Note
that this is a log-log plot. Each data point is an average over 100 runs. Error bars are generally too small to be visible on the figures.

TABLE II. The effect of taking the lattice spacing to zero at constant physical box size and mass gap for two
sequences of successive refinement. Cases where the maximum number of iterations is sometimes hit on the coarsest
level are denoted with a dagger. All quantities are averaged over 100 runs.

L m β Fine mat-vec Intermediate average iterations Coarsest average iterations

64 0.01 3.0 228.6(1.2) 3.45(4) 62.0(0.5)
128 0.005 12.0 159.4(0.4) 2.60(2) 95.7(0.6)
256 0.0025 48.0 147.4(0.5) 2.09(1) 205.0(0.6)
64 0.004 0.75 � � � � � � Max
128 0.002 3.0 290.5(1.8) 5.08(8) 206.2ð1.5Þ†
256 0.001 12.0 189.9(0.4) 4.61(2) 249.6ð0.2Þ†
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prolongator P and a restrictor R ≠ P†, abandoning chiral
doubling with projectors, which preserves complex con-
jugate eigenpairs after coarsening the Kähler-Dirac pre-
conditioned operator, or any operator satisfying γL=R5

Hermiticity with γL5 γ
R
5 ¼ I. The resulting formalism gives

what we will call an asymmetric coarsening with σL=R1

Hermiticity on the coarse level.
We consider a set of left and right vectors, hψ̄ ij and jψ ii,

respectively, which can generally be arbitrary and unequal.
We perform a chiral doubling which gives

R̃ ¼
� hψ̄ ij
hψ ijγL5

�
; P̃ ¼

�
jψ ii γR5 jψ̄ ii

�
: ð40Þ

These prolongators and restrictors obey P̃σ1 ¼ γR5 R̃
† and

σ1R̃ ¼ P̃†γL5 . This is sufficient to prove R̃AP̃ is σ1
Hermitian. The next step is to block bi-orthonormalize R
and P, enforcing RP ¼ I, by-products of which give
us σL=R1 .
As a clarifying tangent, we will consider the case

γL5 ¼ γR5 and jψ ii ¼ jψ̄ ii, that is, R̃ ¼ P̃†. This is true,
for example, for the Kähler-Dirac preconditioned operator
in the free field limit, or when considering the Wilson
operator in general. The critical observation in this case is
to recall that the process of (block) orthonormalization via a
Gram-Schmidt is equivalent to a thin-QR decomposition.
We define the block-dense matrix M of block dimension
(coarse dof) × (coarse dof) as

P̃†P̃ ¼ M ¼ Σ†Σ; ð41Þ

where in the last step we have performed a Cholesky
decomposition. We can rearrange Eq. (41) as

ðP̃Σ−1Þ†ðP̃Σ−1Þ≡ P†P ¼ I: ð42Þ

By definition, P≡ P̃Σ−1 is block orthonormal. With the
definition σΣ1 ≡ Σσ1Σ−1, we have γ5P ¼ PσΣ1 , and P†AP is
σΣ1 Hermitian.
We return to the (block) bi-orthonormalization of R

and P. The above procedure generalizes to a “thin-LU”
decomposition. Equation (41) generalizes to

R̃P̃ ¼ M ¼ LU; ð43Þ

where in the last step we have performed an LU decom-
position. We can rearrange Eq. (43) as

ðL−1R̃ÞðP̃U−1Þ≡ RP ¼ I: ð44Þ

R and P are block bi-orthonormal. We can show Â≡ RAP
admits a σL=R1 Hermiticity condition via defining

σL1 ¼ U−†σ1L; σR1 ¼ Uσ1L−†; ð45Þ

and noting

σL1R ¼ P†γL5 ; PσR1 ¼ γR5R
†: ð46Þ

The pair σL=R1 obeys σL1 σ
R
1 ¼ I, as can be verified by explicit

calculation, requiring the critical and subtle observation
that R̃P̃ is σ1 Hermitian itself.
We emphasize that this construction is fully generic,

whether or not jψ ii ¼ jψ̄ ii. We defer a discussion of
numerical experiments with preserving complex conjugate
eigenpairs to Appendix A. Our deference to an appendix
reflects our observations that, in two dimensions, (recur-
sively) preserving eigenpairing actually leads to a less
effective, and sometimes unstable algorithm. This method,
or a further development thereof, may bear some fruit in
four dimensions.
We make the additional remark that we can now make

the algorithmic choice to right-block-Jacobi precondition
Â, analogous to the transformation we made to the
staggered operator in the Kähler-Dirac form in the first
place, and we continue to preserve complex conjugate
eigenpairs if we coarsen again. Let us denote Â ¼ B þ C,
where B is the block-local contribution. The resulting right-
block-preconditioned operator ÂB−1 obeys a σrbj;L=R1

Hermiticity condition with σrbj;L1 ¼ σL1B
−1 and σrbj;R1 ¼

BσR1 . This recursive right-block-Jacobi preconditioning did
not lead to an effective algorithm in two dimensions.
Exact preservation of eigenvectors. In the case of, for

example, the Wilson operator, chiral doubling with
1
2
ð1� γ5Þ preserves complex conjugate eigenpairs. We

can choose the vectors jψ ii≡ jψ̄ ii to be right eigenvectors
jλþ;R

i i with eigenvalues λþi , where the þ denotes that the
eigenvalue has a positive real part.
The coarse operator P†DWP exactly preserves the

eigenvalue λþi , and jλþ;R
i i is exactly preserved on the

coarse subspace, that is, PP†jλþ;R
i i ¼ jλþ;R

i i. However,
even though chiral doubling guarantees the eigenvalue
λ−i is also preserved by the coarse operator, it is not
because jλ−;Ri i is exactly preserved by the coarse subspace,
that is, PP†jλ−;Ri i ≠ jλ−;Ri i.
We can use asymmetric coarsening to preserve jλ−;Ri i.

We can choose jψ ii ¼ jλþ;R
i i and hψ̄ ij ¼ hλþ;L

i j, then
chirally double using Eq. (40), and subsequently block
bi-orthonormalize the P and R. This operator preserves the
eigenvalues λ�i , and additionally PRjλ�;R

i i ¼ jλ�;R
i i

and hλ�;L
i jPR ¼ hλ�;L

i j.

VI. CONCLUSION

The first successful MG algorithm in LQCD was
constructed for the Wilson discretization of the Dirac
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operator nearly a decade ago [6,7]. This advance relied on,
at the time, the novel approach in LQCD to adaptively
discover the near-null space and geometrically project onto
coarse lattices. Remarkably, with the exception of the
similar twisted-mass discretization, the basic method has
not easily been generalized to two important methods:
staggered and domain wall fermions, each of which feature
improved chiral symmetry. A more fundamental under-
standing of MG methods in LQCD is clearly lacking. Here,
we have taken a step toward this. For the staggered
operator, we identified the spectral feature that was respon-
sible for the failure of a straightforward generalization of
Wilson MG and have overcome this problem by precondi-
tioning by the Kähler-Dirac (spin-flavor) block structure.
We demonstrate that this has a dramatic effect on the
spectrum: in the singular, zero mass limit, the pure
imaginary spectrum of the anti-Hermitian operator maps
to a unitary circle of the form seen in the overlap operator.
The success of the resultant MG algorithm for this

Kähler-Dirac preconditioned operator has been demon-
strated numerically for the two-dimensional Schwinger
model. Both the theoretical framework and the phenom-
enological features naturally generalize to the case of four-
dimensional QCD. On this basis, we are optimistic that our
staggered multigrid algorithm will have similar success in
this application. Numerical tests for this conjecture are
underway by extending the high performance MG frame-
work of the QUDA library to coarsen staggered-like
operators. These tests will be made on the largest available
lattices to explore the scaling of the algorithm over a range
similar to the two-dimensional tests presented here.
We have also made an effort to explore a range of

projection methods that are capable of exactly preserving
the complex conjugate pairs of eigenvalues present in the
Kähler-Dirac preconditioned operator. We hope our

emphasis on spectral analysis and transformations will
provide some flexibility in adapting our algorithm not only
to four-dimensional QCD but also to similar Dirac dis-
cretizations found in BSM theories [2], supersymmetric
Yang-Mills theory [20], and quantum critical behavior in
condensed matter [19].
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APPENDIX: STUDIES OF PRESERVING
COMPLEX CONJUGATE EIGENPAIRS

In Sec. V, we developed a formalism to exactly preserve
complex conjugate eigenpairs for a coarsened Kähler-Dirac
preconditioned operator. This used an asymmetric coars-
ening which gave a σL=R1 on the coarse level. This
formulation is largely successful; however, it can suffer
from anomalously large real eigenvalues in the negative

FIG. 16. On the left, the spectrum of the Kähler-Dirac preconditioned operator from an interacting gauge field, overlaid with the
spectrum of the operator coarsened via naïve chiral doubling and complex eigenpair doubling. On the right, a zoom in on the low portion
spectrum which shows eigenvalues in the left-half plane and further emphasized complex eigenpairing.
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half plane, destabilizing the MG preconditioned solve, in
cases where the symmetric coarsening proceeded without
issues. If these stability issues can be addressed, it may lead
to a better algorithm in two dimensions and four dimen-
sions. As appropriate, this will be the topic of a future
publication.
This appendix will follow the structure of Sec. III C,

where we study the spectrum, local collinearity, and
oblique projector of the asymmetrically coarsened operator
in the case where a recursive algorithm is successful. We
will then scan the iteration counts as a function of mass,
similar to in Sec. IV B, and identify cases where the
algorithm breaks down. Last, we will investigate one of
these cases.
In Sec. III C we considered a representative spectrum of

the Kähler-Dirac preconditioned operator and a symmetric
coarsening. In the case of asymmetric coarsening, we again
expect the low modes to be preserved well, but additionally
come in complex conjugate pairs. This is exactly the case in

Fig. 16, where we overlay the spectrum of the asymmetric
coarse operator. We also see a “feature” of σL=R1

Hermiticity: there are pairs of purely real eigenvalues.
In the case of the Wilson or overlap operator, pairs of

purely real eigenvalues have a physical interpretation. The
smaller real eigenvalue corresponds to a physical chiral
mode via the lattice index theorem [65], which thus needs
to be well captured by an MG algorithm. The paired large
real eigenvalue is merely a quirk of being on a finite lattice,
and thus lives as an isolated large eigenvalue near the
cutoff. On the other hand, the pairs of real eigenvalues for
the coarsened Kähler-Dirac operator do not have an
obvious physical intuition, just as the naïve staggered
fermion operator does not trivially correspond to an index
theorem [43]. These purely real eigenvalues are a symptom
of unstable solves at larger volumes.
Returning to stable solves, we consider the local colli-

nearity and the oblique projector under an asymmetric
coarsening. These are overlaid on the data for a symmetric

FIG. 17. On the left, a measurement of local collinearity: how well low near-null vectors can reconstruct higher eigenvectors. On the
right, the effect of the oblique projector on eigenvectors. The top row considers a representative Kähler-Dirac preconditioned operator;
the bottom row considers its coarsening. Both panels are sorted by increasing magnitude of the eigenvalues.
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coarsening in Fig. 17. An asymmetric coarsening is roughly
comparable to quality of a symmetric coarsening, indicative
of a successful MG algorithm.4

As a next task, we consider MG preconditioned solves
with the asymmetric coarsened operator. We will only
present a subset of the cases considered in Sec. IV B and
instead focus on the cases where the solve is unstable: large
volumes. The number of fine operator applications and
average intermediate applications are presented in Fig. 18.

In the cases where a data point is marked by a “×”, the
solve failed. The failures are largely confined to smaller
masses, but not with a discernible pattern; indeed, for
β ¼ 6.0, the lowest masses had stable solves.
We present the spectrum of the asymmetric coarsened

operator, where an MG solve with an asymmetric coars-
ened operator fails, in the left panel of Fig. 19, where we
see there are now large, real eigenvalues far in the right
plane and also in the left plane. There is also a large
negative real eigenvalue at approximately −26.75. These
pathological real eigenvalues are not part of the low
subspace and are therefore not well captured by our MG
algorithm. However, in the right panel, we see that the low
spectrum is still well behaved. It is a point of future research
to see if these anomalously large, real eigenvalues can be
addressed.

FIG. 19. The spectrum of a representative coarse operator from a symmetric coarsening with the asymmetric coarsening overlaid.
There are large purely real eigenvalues. Not included is a large negative eigenvalue λ ¼ −26.75. Computing the fine operator spectrum
was prohibitively expensive.

FIG. 18. On the left, the number of outer iterations, and on the right, the average number of iterations in the K-cycle on the
intermediate level, as a function of mass at fixed β. Values marked with “×” indicate a failure to converge when an asymmetric
coarsening is used. All data points are from a single configuration per β but are representative of a more general behavior.

4In general, the local collinearity is not bounded by 1 when
R ≠ P†. This is because ð1 − PRÞ is not a normal operator. Thus,
for a normalized vector v, v†ð1 − R†P†Þð1 − PRÞv is not
bounded by 1. This can be realized by the bi-orthonormal basis
p1 ¼ ð1=2; 1=2; 1=2; 1=2Þ, p2 ¼ ð1=2; 1=2; 1=2;−3=2Þ, r1 ¼ð1=2; 1=2; 1=2; 1=2Þ, r2 ¼ ð1=2;−1=2; 1=2;−1=2Þ.
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