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Attempts to extract the order of the chiral transition of QCD at zero chemical potential, with two
dynamical flavors of massless quarks, from simulations with progressively decreasing pion mass, have
remained inconclusive because of their increasing numerical cost. In an alternative approach to this
problem, we consider the path integral as a function of continuous number Nf of degenerate quarks. If the
transition in the chiral limit is first order for Nf ≥ 3, a second-order transition for Nf ¼ 2 then requires a
tricritical point in between. This, in turn, implies tricritical scaling of the critical boundary line between the
first-order and crossover regions as the chiral limit is approached. Noninteger numbers of fermion flavors
are easily implemented within the staggered fermion discretization. Exploratory simulations at μ ¼ 0 and
Nf ¼ 2.8, 2.6, 2.4, 2.2, 2.1, on coarse Nτ ¼ 4 lattices, indeed show a smooth variation of the critical mass
mapping out a critical line in the (m, Nf ) plane. For the smallest masses, the line appears consistent with
tricritical scaling, allowing for an extrapolation to the chiral limit.
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I. INTRODUCTION

Knowledge of the nature of the chiral phase transition
of QCD with two flavors of massless quarks is of great
importance for further progress in various directions of
particle and heavy ion physics. Besides its theoretical
relevance for the interplay of chiral and confining dynam-
ics, it also has implications for the thermal transition of
physical QCD. The light quark mass values realized in
nature are close to the chiral limit, and the thermal
transition might well be affected by remnants of the chiral
universality class. Furthermore, the chiral limit of the two-
flavor theory constrains the nature of the QCD phase
diagram at finite baryon density; see e.g., [1].
Unfortunately, simulations of lattice QCD with standard

methods are impossible in the chiral limit because of the
associated zero modes of the Dirac operator. Thus, the
computational cost rises with some power of the inverse
quarkmass andsimulations are limitedbysomesmallestmass
depending on the lattice action, algorithms and machines.
Moreover, for the cheaper Wilson and staggered-type

actions, the continuum limit should be taken before the
chiral limit in order to avoid lattice artifacts. As a result, the
nature of the chiral transition in the continuum is not yet
settled to date.
On the other hand, the nature of the thermal QCD

transition is known to depend on the number of quark
flavors Nf and on the masses m of the quarks. At zero
baryon density and in the chiral (m → 0) limit, the
transition is expected to be first order forNf ¼ 3 degenerate
quark flavors [2], while its nature for Nf ¼ 2 degenerate
quark flavors of massmu;d is still under debate. Based on an
ε expansion, it was argued already long ago that the order
of the transition depends crucially on the strength of the
Uð1ÞA anomaly at finite temperature [2]. Possible scenarios
are depicted in Fig. 1. Distinguishing between these for
Nf ¼ 2 in numerical simulations is a challenging task. On
coarseNτ ¼ 4 lattices with lattice spacing a ∼ 0.3 fm using
unimproved Wilson [3] and staggered [4] actions, a region
of first-order transitions is explicitly visible, terminating in
a critical quark mass in the Z2-universality class. For three
degenerate flavors, Nf ¼ 3, the first-order region is wider
than for Nf ¼ 2, i.e., the critical mass marking the
boundary between the first-order and crossover regions
is larger, both for Wilson [5] and staggered fermions [6,7].
This is in accord with the general expectation that a larger
symmetry renders the transition stronger, as sketched in
Fig. 2. Initial investigations of Nf ¼ 4 in the staggered
discretization confirm this general trend [8]. On the other
hand, again for both discretizations and all Nf , the first-
order region shrinks as the lattice is made finer [9,10], with
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the critical quark masses becoming unreachably small
when highly improved actions and/or fine lattices Nτ ≥
12 are used [11–13]. Quite generally, for all Nτ’s inves-
tigated so far, the first-order region is vastly smaller for
staggered discretizations, suggesting that the latter have the
smaller cut-off effects in the critical quark mass configu-
ration. Altogether it thus remains a formidably difficult
task to determine whether or not a finite first-order region
survives in the continuum limit.
This situation motivates attempts to better constrain the

first-order region by studying its extension in additional
parameter directions, which might allow for controlled
extrapolations to the chiral limit. The idea is based on the

fact that a first-order transition in the chiral limit on a finite
system represents a 3-state coexistence (with the chiral
condensate being positive, negative or zero). If a continu-
ous parameter is varied such as to weaken the transition,
like increasing the strange quark mass ms in Fig. 1(b), the
3-state coexistence may terminate in a tricritical point,
which governs the functional behavior of the second-order
boundary lines emanating from it by known critical
exponents. Thus, if such a boundary line can be followed
into the tricritical scaling regime, an extrapolation becomes
possible. This kind of approach has been successfully
tested varying imaginary chemical potential. There is
compelling numerical evidence [14–17] that, whatever

(a) (b)

FIG. 1. Two possible scenarios for the order of the QCD thermal phase transition as a function of the quarks masses.

(a) (b)

FIG. 2. The two considered possible scenarios for the order of the QCD thermal phase transition as a function of the light-quarks mass
and the number of fermion flavors.
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the realized scenario for the Columbia plot at μ ¼ 0, the
chiral first-order region widens inmu;d as soon as a nonzero
imaginary chemical potential is switched on, which makes
it easier to map out its second-order critical boundary.
Using unimproved staggered fermions on Nτ ¼ 4 lattices,
tricritical scaling is observed and an extrapolation yields a
first-order transition in the chiral limit [4]. A different
analysis [18] also finds the chiral first-order region to
become larger both with increasing chemical potential
and additional Nf heavy flavors considering ð2þ NfÞ-
flavor QCD.
In this paper, we investigate to which extent we can

alternatively exploit the dependence of the chiral transition
on the number of light degenerate flavors Nf as a means to
perform controlled chiral extrapolations. To this end, we
treat Nf as a continuous real parameter as explained in
Sec. II and sketched in Fig. 2. Starting from Nf ¼ 3, where
there is a first-order chiral transition region for finite quark
masses, we then follow its boundary line to smaller m and
Nf until we indeed observe an apparent onset of tricritical
scaling. The extrapolation to the chiral limit with known
exponents can then decide between the two scenarios in the
figure, depending on whether the tricritical value of Nf is
larger or smaller than 2. The problem is analogous to that of
determining the order of the phase transition of q-state Potts
models in d dimensions, which can be either first or second
order separated by a tricritical line in (q, d)-space. In
particular, for d ¼ 3 the transition is first order for q ¼ 3
and second order for q ¼ 2. In [19], an analytic continu-
ation to noninteger values of q leading to simulable models
was presented, for which a tricritical value qtric ≈ 2.2 was
determined [20].
In Sec. III, our numerical analysis using staggered

fermions on Nτ ¼ 4 lattices is explained. Section IV is
dedicated to a study of the finite-size effects affecting the
skewness of the chiral condensate distribution sampled in
our simulations. In Sec. V, we present and discuss our
results. Lastly, Sec. VI contains our conclusions.

II. LATTICE QCD FOR NONINTEGER Nf

We consider QCD with Nf mass-degenerate quarks of
mass m at zero density and the partition function reads

ZNf
ðmÞ ¼

Z
DU½detMðU;mÞ�Nfe−SG : ð1Þ

Ignoring, for the moment, that it originates from QCD,
we can formally view this as a partition function of some
statistical system characterized by a continuous parameter
Nf . Our question then is for which (tricritical) value of Nf
the phase transition displayed by this system changes from
first order to second order.
Of course, the extension of ZNf

ðmÞ to noninteger values
of Nf is not unique, with infinitely many possibilities to fill
in values such that in the limits Nf → 2, 3 the respective

QCD partition functions are recovered. In general, such
interpolations using noninteger powers of the determinant
will not correspond to local quantum field theories. One
possibility, already suggested in [21], that does represent a
local quantum field theory is to consider a partition
function with a fixed integer number of NI

f þ 1 flavors,
ZNI

fþ1ðm;m1Þ, where NI
f quarks are mass-degenerate with

mass m and an additional flavor has mass m1 (the super-
script in NI

f is there to stress that we consider an integer
number of flavors in this case). Starting from m1 ¼ m, we
can increase the mass m1 until that flavor effectively
decouples, such that the partition function for NI

f flavors
is recovered. For any value ofm1 in the local quantum field
theory with fixed NI

f þ 1, we can now find an in general
noninteger value of Nf for our statistical system ZNf

ðmÞ,
such that (with all other parameters held fixed)

ZNI
fþ1ðm;m1Þ ¼ ZNf

ðmÞ: ð2Þ

For our practical exploration, we employ a simpler strategy
using staggered fermions, where the determinant needs to
be rooted in order to describe any integer number of quark
species smaller than four. The RHMC algorithm [22] is
used to simulate any number Nf of degenerate flavors of
staggered fermions, with Nf

4
being the power to which the

fermion determinant is raised in the lattice partition
function. Thus, even theories with integer NI

f ¼ 2, 3 suffer
from an apparent lack of locality as long as no continuum
limit is taken. In this framework, it is straightforward to
continuously vary Nf, with exactly the same locality
properties as for integer NI

f < 4 at any finite lattice spacing.
The precise value of Ntric

f , which we seek to determine,
has no meaning in itself other than being located between
two particular integer NI

f’s. In particular, for each lattice
spacing the nature of the chiral phase transition for
Nf ¼ 2 can be decided by whether the extrapolated Ntric

f
is smaller or larger than 2, as in Fig. 2. In the left scenario,
this produces a critical quark mass mZ2

ðaÞ for the NI
f ¼ 2

theory, which eventually can be continuum extrapolated.
We should emphasize that a formal proof for the locality

of the target theories at noninteger Nf is missing, while
properties connected with universality, such as the exist-
ence of second-order boundaries and tricritical scaling, do
depend on locality. On the other hand, an effective locality,
in the sense that all n-point functions decay exponentially,
is sufficient for this purpose and, as we shall see, we do
indeed observe the expected scaling phenomena, already on
coarse lattices.

III. SIMULATION SETUP AND
NUMERICAL STRATEGY

All numerical simulations have been performed using
the publicly available [23] OpenCL-based code CL2QCD
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[24], which is optimized to run efficiently on AMD GPUs
and provides, among others, an implementation of the
RHMC algorithm for unimproved rooted staggered fer-
mions. In our exploratory study, conducted at zero chemical
potential μ ¼ 0, we kept the temporal extent of the lattices
fixed at Nτ ¼ 4. The ranges in mass m and gauge coupling
constant β of the investigated parameter space were
dictated by our purpose of locating the chiral phase
transition for values of the mass m around the critical
mZ2

value, with the temperature related to the coupling
according to T ¼ 1=ðaðβÞNτÞ.
Moreover, to locate and identify the order of the chiral

phase transition a finite-size scaling analysis of the third
and fourth standardized moments of the distribution of the
(approximate) order parameter is necessary. The nth stand-
ardized moment for a generic observable O is expressed as

Bnðβ; m; NσÞ ¼
hðO − hOiÞni

hðO − hOiÞ2in=2 : ð3Þ

Being interested in the thermal phase transition in the
chiral limit, we measured the chiral condensate hψ̄ψi as an
approximate order parameter. In order to extract the order
of the transition as a function of the quark mass and
number of flavors, we considered the kurtosis B4ðβ; mÞ
[25] of the sampled hψ̄ψi distribution, evaluated at the
coupling βc for which we have vanishing skewness
B3ðβ ¼ βc; m;NσÞ ¼ 0, i.e., on the phase boundary.
In the thermodynamic limit Nσ → ∞, the kurtosis
B4ðβc; m;NσÞ takes the values of 1 for a first-order
transition and 3 for an analytic crossover, respectively,
with a discontinuity when passing from a first-order region
to a crossover region via a second- order point. For the
three-dimensional Ising universality class of interest here, it
takes the value 1.604 [26],

lim
Nσ→∞

B4ðβc; m;NσÞ ¼

8>><
>>:

1; 1st order

1.604; 2nd order Z2

3 crossover

: ð4Þ

TABLE I. Overview of the statistics accumulated in all the simulations (Nτ ¼ 4 and μ ¼ 0). The indicated β ranges are the ones over
which, for the smallest considered volume, simulated data for B3ðβ; mÞ and B4ðβ; mÞ were used as input for the Ferrenberg-Swendsen
reweighting [27], which interpolates between the simulated β to allow for a more precise determination of βc and, thus, of the order of
the transition. Per each β range we also indicate the number of simulated β because the resolution in β changed both withm and with Nσ .
In the indicated total statistics perNσ, we are summing up the number of simulated trajectories over four independent Markov chains and
over all simulated β. The average length of each chain is then easily inferable.

Nf m β range

Total statistics per spatial lattice size Nσ (# of simulated β values)

8 12 16 20 24

2.8 0.0250 5.1620-5.1680 1.12M (4) 0.84M (3) 0.86M (3) … …
0.0225 5.1580-5.1610 1.40M (4) 0.80M (3) 1.06M (3) … …
0.0200 5.1520-5.1580 0.94M (4) 1.16M (3) 0.56M (3) … …
0.0175 5.1490-5.1520 1.32M (4) 1.20M (3) 0.96M (3) … …

2.6 0.0200 5.1840-5.1900 0.96M (4) 0.92M (3) 0.78M (3) … …
0.0175 5.1790-5.1830 1.12M (4) 1.17M (4) 0.95M (3) … …
0.0150 5.1740-5.1780 1.24M (3) 1.12M (3) 1.08M (3) … …
0.0125 5.1680-5.1740 1.08M (4) 0.92M (3) 1.48M (4) … …

2.4 0.0150 5.2060-5.2120 1.04M (4) 0.88M (3) 0.68M (3) 0.48M (4) …
0.0125 5.2010-5.2070 1.12M (4) 0.96M (3) 0.96M (3) 0.32M (3) …
0.0100 5.1960-5.2020 0.92M (4) 1.08M (3) 1.04M (3) … …
0.0075 5.1900-5.1960 1.40M (4) 0.95M (3) 1.03M (4) … …

2.2 0.0100 5.2280-5.2360 1.80M (4) 2.00M (7) 1.14M (4) 0.96M (4) …
0.0075 5.2240-5.2300 1.24M (4) 0.92M (3) 1.12M (4) 0.68M (3) …
0.0050 5.2200-5.2230 0.96M (4) 0.84M (3) 1.08M (4) 1.04M (4) …
0.0025 5.2140-5.2180 1.16M (3) 1.18M (5) 0.76M (3) 0.59M (3) …

2.1 0.0045 5.2380-5.3400 … 0.68M (3) 0.71M (3) 0.74M (3) 0.39M (3)
0.0035 5.2340-5.2380 … 0.64M (3) 0.82M (3) 0.72M (3) 0.30M (3)
0.0025 5.2330-5.2360 … 1.00M (4) 0.80M (3) 0.66M (3) 0.19M (3)
0.0015 5.2310-5.2340 … 0.84M (4) 0.74M (4) 0.42M (4) …

2.0 0.0020 5.2500-5.2520 … 0.67M (3) 0.47M (3) 0.16M (3) …
0.0015 5.2490-5.2510 … 0.72M (3) 0.52M (3) 0.28M (3) …
0.0010 5.2480-5.2500 … 0.68M (3) 0.35M (3) 0.07M (3) …
0.0007 5.2460-5.2490 … 0.82M (4) 0.42M (3) 0.08M (3) …
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The discontinuous step function is smeared out to a smooth
function as soon as a finite volume is considered. In the
vicinity of a critical point, the kurtosis can be expanded in
powers of the scaling variable x≡ ðm −mZ2

ÞN1=ν
σ , and, for

large enough volumes, the expansion can be truncated after
the linear term,

B4ðβc; m;NσÞ ≃ B4ðβc; mZ2
;∞Þ þ cðm −mZ2

ÞN1=ν
σ : ð5Þ

In our case, the critical value for the mass mZ2
corresponds

to a second-order phase transition in the three-dimensional
Ising universality class, so that one can fixB4ðβc;mZ2

;∞Þ¼
1.604 and ν ¼ 0.6301 to better constrain the fit.
While, strictly speaking, away from the chiral limit the

true scaling field is a mixture of the chiral condensate and
gauge variables, it has been known for a time [6] and
demonstrated repeatedly, e.g., [10], that the scaling of
B4ðβ; mÞ is dominated by the chiral condensate, with
corrections due to mixing suppressed by the volume and
vanishing in the thermodynamic limit. Sensitivity to mixing
can be checked by comparing the critical exponent with its
infinite volume value [10]. We thus confirmed that fits
with B4ðβc; mZ2

;∞Þ and ν as free parameters give results
consistent with the thermodynamic limit, before fixing
them to their known values for precision.
Our simulated values for B4ðβc; m;NσÞ are then fitted to

Eq. (5) and the fit parameters c and mZ2
are extracted. We

are particularly interested in mZ2
indicating the position in

mass of the Z2 critical boundary in the (mZ2
, Nf ) plane. We

varied the spatial extent of the lattice Nσ such that the
aspect ratios, governing the size of the box in physical
units at finite temperature, was in the range L=T ¼
Nσ=Nτ ∈ f2; 3; 4; 5g. The whole study has been repeated
for five different Nf values, Nf ∈ f2.8; 2.6; 2.4; 2.2; 2.1g.
For each parameter set fNf ; m; Nσ; βg, statistics of about
ð200–400kÞ trajectories has been accumulated over four
Markov chains, subject to the requirement that the skew-
ness of the chiral condensate distribution is compatible
within two to three standard deviations between the differ-
ent chains. A detailed overview of all our simulation runs is
provided in Table I.

IV. FINITE-SIZE EFFECTS AND THE
ZERO-CROSSING OF THE SKEWNESS

Besides the increase in simulation time, numerical
studies approaching the chiral limit also feature additional
intricacies in the data analysis. We are not aware of any
literature on these technical issues and hence present
them here.
Below the critical temperature chiral symmetry is both

spontaneously and explicitly broken, above the critical
temperature there is chiral symmetry restoration for what
concerns the spontaneous breaking, still quark masses
break it explicitly. This reflects in our results for the chiral

condensate hψ̄ψi being nonzero both in the chirally broken
and in the chirally restored phase. Before going to actual
results let us first consider what happens in some volume V
close enough to the thermodynamic limit so that the
tunneling probability between broken and restored phase
is suppressed. Then the distribution of measured values for
the chiral condensate will always be a single normal
distribution of some given width characterized by the mean
value hψ̄ψi ≃ 0 (hψ̄ψi ≠ 0) for β > βc (β < βc) in the
restored (broken) phase. The third standardized moment of
such distributions i.e., its skewness would be zero at
every β.
However, our simulations take place in not so large

volumes where tunneling between stable ground states is
probable due to the finite height of the potential barrier
between them. This has important effects on the sampled
distribution of the chiral condensate and also sets the
procedure for identifying the phase boundary. In formulas,
one can model the described behavior considering the
chiral condensate distribution PðxÞ expressed as

PðxÞ≡ c1N ðμ1; σÞ þ c2N ðμ2; σÞ; ð6Þ

where

N ðμ; σÞ≡ 1

σ
ffiffiffiffiffiffi
2π

p e−
ðx−μÞ2
2σ2 ð7Þ

is a Gaussian distribution with mean μ and variance σ2, μ1
and μ2 > μ1 are positive real numbers, as well as c1 and c2,
which are the weights of the restored and broken distri-
butions, respectively. Since, in a finite volume, the phase
transition takes place smoothly around βc, both the coef-
ficients c1 and c2 will be nonzero and depend on β, while
always fulfilling the condition c1 þ c2 ¼ 1. To keep the
discussion as simple as possible the variance of the two
Gaussian distributions is assumed to be the same, which
does not spoil the qualitative description of our data.
Far away from the critical temperature we will have

c2 ¼ 0 for β ≫ βc and c1 ¼ 0 for β ≪ βc. Approaching the
critical temperature, for β ≲ βc we mainly sample in the
broken phase (an almost Gaussian peak at hψ̄ψi ≠ 0), but
also tunnel to the restored phase (an almost Gaussian peak
at hψ̄ψi ∼ 0), so that our distribution develops a longer left
tail, i.e., it is left-skewed. This means that its third moment
is negative. On the other hand, for β ≳ βc we mainly sample
in the restored phase, but still tunnel to the broken phase
with some probability. In that case, the sampled distribution
is right-skewed, i.e., its third moment is positive. Indeed,
the general expression for the skewness of PðxÞ is

B3½PðxÞ� ¼
Rþ∞
−∞ ðx − hxiÞ3PðxÞdx

½Rþ∞
−∞ ðx − hxiÞ2PðxÞdx�32 ð8Þ

and using Eq. (6) leads to
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B3½PðxÞ� ¼
c2ð2c2 − 1Þðc2 − 1Þðμ2 − μ1Þ3
½σ2 þ ðc2 − c22Þðμ2 − μ1Þ2�32

: ð9Þ

It is easy to see that B3½PðxÞ� < 0 any time c2 > 1
2
and

B3½PðxÞ� > 0 for c2 < 1
2
.

For a more detailed picture we also model the
β-dependence of both the coefficient c2 and the peak
positions μ1 and μ2, imposing the constraints

c2ðβ ≫ βc; βcÞ ¼ 0 and c2ðβ ≪ βc; βcÞ ¼ 1;

μ1ðβ ≫ βc; βcÞ ¼ x̄1 and μ2ðβ ≪ βc; βcÞ ¼ x̄2:

Naive Ansätze satisfying the above conditions are

c2ðβ; βcÞ ¼
1

2
f1 − tanh ½ξðβ − βcÞ�g;

μ1ðβ; βcÞ ¼
x̄2 − x̄1

2
c2ðβ; βcÞ þ x̄1;

μ2ðβ; βcÞ ¼
x̄2 − x̄1

2
c2ðβ; βcÞ þ

x̄1 þ x̄2
2

; ð10Þ

where ξ is just a scale factor. Note, however, that the
requirements c2ðβ ≪ βc; βcÞ ¼ 1 and μ2ðβ ≪ βc; βcÞ ¼ x̄2
are only approximately fulfilled for β ¼ 0. Moreover,
according to our Ansätze, we also have

μ1ðβ ≪ βc; βcÞ ¼
x̄1 þ x̄2

2
; μ2ðβ ≫ βc; βcÞ ¼

x̄1 þ x̄2
2

:

The skewness of PðxÞ as a function of Δβ ≡ ðβ − βcÞ
follows by inserting the Ansätze of Eq. (10) into Eq. (6) and
evaluating Eq. (8),

B3½PðxÞ� ¼
2ðx̄2 − x̄1Þ3sechðξΔβÞ2 tanh ðξΔβÞ
½σ2 þ ðx̄2 − x̄1Þ2sechðξΔβÞ2�32

:

Figure 3 shows the modeled behavior. The qualitative
agreement with our simulation results for Nf ¼ 2.8 and
m ¼ 0.0200, Fig. 4, is pretty convincing for β ≪ βc and
around βc, but not as much for β ≫ βc, where the skewness
seems to flatten out at some positive value rather than at
zero. Still, we observe our model to give a better and better
description of numerical results in a larger and larger
volume; see Fig. 5.
On the other hand, what we can observe in Fig. 4, as well

as in Fig. 6, is the way this picture gets distorted when the
volume gets too small for a decreasing bare quark mass.
The reason for the distortion is the hard lower bound
imposed on the distribution of the chiral condensate by our
necessarily finite bare quark mass. What happens is that
wider and wider (as the volume gets too small) Gaussian
peaks in the restored phase at very small values of the bare
quark mass become strongly right-skewed because a
symmetric left tail would extend beyond the lower bound.
There can still be a value of the coupling (temperature) at

which the overall distribution is symmetric when the peak
corresponding to the broken phase is sufficiently populated.
However, once only the peak corresponding to the restored
phase is sampled, its asymmetry prevents the skewness to
become zero again [see Figs. 4(b) and 6(b)]. At even smaller
masses the asymmetry characterizing this peak is such that
the overall distribution stays right-tailed, hence the skewness
stays positive, at any temperature [see Figs. 6(c) and 6(d)].
While the volume is increased, both the position of the peaks
and their width change in such a way that the expected
picture is recovered at any fixed mass.
This illustrates the crucial necessity of having larger and

larger volumes while the bare quark mass is decreased,
in order to avoid a qualitatively biased analysis. Chiral
perturbation theory also reminds us of the increasing
severity of finite-size effects at fixed lattice volume while
the bare quark mass is reduced. The GMOR relation

FIG. 3. PðxÞ at various β values and the corresponding skewness as a function of β.
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m2
π ¼

ðmu þmdÞ
F2
π

jh0jūuj0ij; ð11Þ

tells us that, in order to maintain mπL ≫ 1, L should grow
with the square root of the factor by which the sum of the
quark masses is decreased.
This observation on finite-size effects explains the huge

growth in the cost of identifying the critical temperature at
smaller and smaller bare quark mass (i.e., smaller Nf ).
These considerations also have to be taken into account in
estimating the costs of extending the present study to larger
Nτ. In our investigation, we used the smallest volume at
which a zero crossing of the skewness could be found as
the minimal volume in our finite-size scaling analysis.
However, to check that the residual finite-size effects
(B3 ≠ 0 for β ≫ βc) were not affecting our results for

the critical mass in the case of Nf ¼ 2.1, we performed
simulations over four different volumes (see Table I),
considering also Nσ ¼ 24 and then excluding in turn the
biggest and the smallest volume from the fit. In this way,
we could check the stability in the value of mZ2

.

V. RESULTS

Our results formZ2
for all considered Nf are collected in

Table II and they are the outcome of the kurtosis fit
procedure discussed in Sec. III, of which examples, for the
cases Nf ¼ 2.8, 2.4, are plotted in Fig. 7. The ordering of
kurtosis values for a fixed mass m as function of the
volume depends, as expected, on whether m lies in the
crossover region (B4 increases with Nσ) or in the first-
order region (B4 decreases with Nσ),mZ2

being the mass at

(a) (b)

FIG. 5. Examples of chiral condensate normalized histograms and corresponding skewness.

(a) (b)

FIG. 4. Examples of chiral condensate normalized histograms and corresponding skewness.
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(a)

(c) (d)

(b)

FIG. 6. Examples of chiral condensate normalized histograms and corresponding skewness.

FIG. 7. Finite-size scaling of B4 and fit.
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which sets of B4 values for different volumes cross in one
point (provided we are effectively in the thermody-
namic limit).
Table II and Fig. 8 show mZ2

to decrease continuously
towards zero as Nf is lowered. We observe a strinking
near-linear behavior down to very small quark masses.
Regarding the possibility of future continuum extrapola-
tions, it would be very interesting to find an explanation for
this behavior and whether it is possibly genuine on finer
lattices as well.
As the critical line approaches the chiral limit we employ

the fact that, in the vicinity of a tricritical point, it has to
display a power law dependence with known critical
exponents [29]. The scaling law in our case is

m2=5
Z2

ðNfÞ ¼ CðNf − Ntric
f Þ: ð12Þ

The plot of the rescaled mass m2=5
Z2

as a function of Nf is
displayed in Fig. 8(b). Our data are consistent with the
expected scaling relation forNf ≤ 2.2 and hence provide an
extrapolation to the chiral limit resulting in Ntric

f < 2.
Finally, note that our simulated results for Nf ¼ 2.2, 2.1

are fully aligned with the result for Nf ¼ 2.0, which is

based on a similar tricritical extrapolation from imaginary
chemical potential [4]. This is an independent validation
of the former extrapolation and at the same time confirms
this point to be within the tricritical scaling window, whose
width in mass appears to be roughly the same in both
extrapolations. Moreover, we even attempted a direct
extraction of the critical mass mZ2

at Nf ¼ 2.0 to cross-
check the result obtained in the extrapolation from imagi-
nary chemical potential (see Table I). The increase in
simulation time was so high that we could not complete the
extraction of mZ2

via fit of the kurtosis. On the other hand,
for all masses and volumes considered the measured value
for B4ðβc; m; NσÞ turned out to be compatible within errors
with B4ðmZ2

;∞Þ. This further illustrates the benefit of the
tricritical extrapolation discussed here.

VI. CONCLUSIONS

On general symmetry grounds, the chiral phase tran-
sition strengthens with the number of light quark flavors.
On coarse lattices with unimproved actions it is known to
be of first order for Nf ≥ 2. Here we investigated the nature
of the chiral phase transition in the (m, Nf ) plane with Nf
interpreted as a continuous parameter in the path integral
formulation of the theory. If the transition in the chiral limit
changes from first order to second by reducing Nf , there
has to exist a tricritical point at some Ntric

f . The extrapo-
lation of the second-order boundary line between the first-
order and crossover regions to the chiral limit is then
constrained by universality. Our data are indeed consistent
with tricritical scaling in the range Nf ∈ ½2.0; 2.2� and offer
a way to extrapolate to the chiral limit in a controlled way.
On our coarse lattices the conclusion is for Nf ¼ 2 to be in
the first-order region, in agreement with earlier results
using imaginary chemical potential instead of Nf in the
same strategy [4]. Taken together, these might provide

TABLE II. Results for fits to Eq. (5). The Nf ¼ 3.0 result is
taken from [28]. B4ðmZ2

;∞Þ and ν have been set to 1.604 and
0.6301, respectively.

Nf am—range mZ2
c χ2

3.0 [0.0250:0.0450] 0.0259(9) 0.51(6) 0.19
2.8 [0.0175:0.0250] 0.0211(3) 0.59(5) 0.27
2.6 [0.0125:0.0200] 0.0158(2) 0.60(5) 0.18
2.4 [0.0075:0.0150] 0.0109(2) 0.67(5) 0.55
2.2 [0.0025:0.0100] 0.0058(1) 0.77(4) 0.27
2.1 [0.0015:0.0045] 0.0034(2) 0.88(14) 0.15

(a) (b)

FIG. 8. A linear fit in the range [2.0, 2.2] is displayed in the rescaled plot (b) and the corresponding curve is drawn in the nonrescaled
plot (a). For Nf ¼ 2.0 we use the result from the extrapolation from imaginary chemical potential [4].
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useful tools on finer lattices, where ever smaller critical
masses need to be identified on the way to a continuum
extrapolation.
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