
 

Gradient-flowed thermal correlators: How much flow is too much?
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Gradient flow has been proposed in the lattice community as a tool to reduce the sensitivity of operator
correlation functions to noisy UV fluctuations. We test perturbatively under what conditions doing so may
contaminate the results. To do so, we compute gradient-flowed electric field two-point correlators and
stress-tensor one- and two-point correlators at finite temperature in QCD. Gradient flow has almost no
influence on the value of correlators until a (temperature- and separation-dependent) level of flow is reached,
after which the correlator is rapidly compromised. We provide a prescription for how much flow is “safe.”
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I. INTRODUCTION

Gradient flow [1–12] is a nonperturbative and gauge-
invariant method in quantum field theory for defining not-
quite-local operators with greatly improved insensitivity to
ultraviolet fluctuations. Gradient flow is defined by intro-
ducing a procedure which, configuration by configuration
within the Euclidean path integral, applies “heat equation”
evolution to the fields, before constructing operators out of
them. Roughly speaking, one can think of this as replacing
the fields in an operator with those averaged over a Gaussian
envelope.However, by using a nonlinear andgauge-invariant
version of the heat equation, the procedure maintains gauge
invariance. One can make a rigorous connection between
operators under gradient flow and renormalized operators,
and all perturbation theory tools needed to study gradient-
flowed operators have been developed [5].
The main applications of gradient flow have been within

lattice quantum field theory. Thevalueof theF2 operator (Fμν

the field strength) as a function of scale can be used to “read
off” the scale-dependent coupling constant and therefore to
perform scale setting [9]. This can also be used to extract the
MScoupling,where thevalueof theF2 operator under flow is
now known to next-to-next-to-leading order [13]. Gradient
flow is also now widely used to remove UV fluctuations
which contaminate the determination of topology on the
lattice [14–20]. This is similar to older “smearing” methods
[21], with the difference that the gradient-flow approach is on
more solid field theoretical foundations.

Gradient flow has also seen its first applications to the
study of thermodynamical properties of finite-temperature
systems. The energy density and pressure of SU(3) gauge
theory were calculated directly on the lattice using gradient
flow [22]. This was recently expanded to the energy-
momentum tensor in order to determine the equation of
state for SU(3) gauge theory [23]. The great advantage of
gradient flow in this context is that, by reducing sensitivity
to ultraviolet fluctuations, it can dramatically reduce stat-
istical fluctuations in evaluating thermal operator expect-
ationvalues and correlation functions. For instance, consider
the determination of thermodynamical information. One
could evaluate the energy density at temperature by
evaluating the difference hT00iβ − hT00ivac, the thermal-to-
vacuum difference in the 00 component of the stress
tensor. The configuration-by-configuration squared fluctu-
ations in this quantity are set by the two-point function
limx→0hT00ðxÞT00ð0Þi. Based on operator dimension, we
see that this quantity diverges at small x as x−8. Of course on
the lattice this divergence is cut off by the lattice spacing and
is Oða−8Þ. This squared fluctuation must be compared to
β−8, the square of the size of the energy density difference;
the number of spacetime points times configurations must
compensate this large ratio to obtain a statistically signifi-
cantmeasurement. On the other hand, under gradient flow to
a depth τF, we expect the overlapping two-point function to
be Oðτ−4F Þ (τF has dimensions of length2, not length).
Therefore the UV fluctuations which inhibit a statistically
significant evaluation are ameliorated and the number of
configurations we must evaluate to obtain good statistics is
reduced by a factor1 of ða2=τFÞ2.
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a4 of volume.
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A little gradient flow is certainly a good thing, improving
statistics, fixing some operator renormalization issues [3],
and making the lattice more continuumlike. However, too
much gradient flow is definitely bad, as eventually we erase
the fluctuations responsible for the physics we want to
study. In particular, we want to know, for the study of
thermal one-operator and multioperator correlators, exactly
how much gradient flow one may apply before one changes
the physics of interest. Previously several authors have
performed empirical investigations to study the limitations
to the use of gradient flow on the lattice in the context of
nonlocal objects such as Wilson loops, Polyakov loops, and
Wilson-line separated fermions [24–31]. The goal of this
work is to go beyond empirical arguments and give an
analytical study of the flow time dependence of correlation
functions, specializing to finite temperature.
In this note we will study this problem perturbatively. To

our knowledge this is the first perturbative study of thermal
correlation functions, and of correlators of spacetime-
separated operators, under gradient flow. Therefore we
will content ourselves for the moment with a leading-order
perturbative evaluation, which will already provide lessons
on how much flow we may and may not use. In the future
we want to extend this investigation beyond leading order,
to see whether interactions significantly impact its findings.
Here we will consider three types of correlation func-

tions. First and simplest, we consider the stress-tensor one-
point function at finite temperature. As discussed above,
this can be used to measure rather directly the energy
density as a function of temperature (if the operator
renormalization issues can be resolved; so far the renorm-
alization of a gradient-flowed stress tensor has only been
studied perturbatively [5,10], while a nonperturbative treat-
ment is probably necessary). Second, we will consider the
correlator of two electric field operators, embedded along a
Polyakov line:

GEEðτÞ ¼ hReTrUðβ; 0; τ; 0ÞEiðτ; 0ÞUðτ; 0; 0; 0ÞEið0; 0Þi
hReTrUðβ; 0; 0; 0Þi

ð1:1Þ

where Uðt1; x1; t2; x2Þ is a straight Wilson line from point
ðt1; x1Þ to point ðt2; x2Þ and Ei is the electric field. This
operator was introduced in [32], whose authors showed that
its analytical continuation to Minkowski frequency deter-
mines the (momentum-space and coordinate-space) diffu-
sion of a heavy quark, mq ≫ T in a thermal bath. Recently
there has been a vigorous effort to measure this correlation
function on the lattice [33], but so far only quenched results
are available and the issue of theE-field renormalization has
not been resolved. Gradient flow would fix the renormal-
ization issue and will hopefully improve statistical power
such that the correlation function can be reliablymeasured at
the nonperturbative level. Finally, we will consider the
correlation function of two stress tensors at vanishing spatial

momentum (equivalently, integrated over spatial separation)
as a function of the Euclidean time separation τ. For those
Tμν components which couple to hydrodynamical modes,
such as T00T00 and T0iT0i, the correlator should be τ
independent and should reproduce thermodynamical infor-
mation (the heat conductivity and enthalpy density respec-
tively). For the l ¼ 2 space component, e.g., TxyTxy, the
analytical continuation of the correlator holds information
about the shear viscosity [34–37].
In the next section we will develop perturbative tools for

gradient flow at finite temperature in coordinate space,
which turns out to be the most convenient for the problems
we study here. Next, Sec. III contains the specific details of
the leading-order calculations of each correlator mentioned
above. In every case we find that there is a (τ-dependent)
range of flow times τF for which the correlator feels
exponentially suppressed corrections; but for more flow
it quickly goes wrong. We end with a discussion which
presents our recommendations for the amount of flow
which can be applied “safely,” given our lowest-order
perturbative results.

II. GRADIENT FLOW AT TEMPERATURE
IN COORDINATE SPACE

We write the unflowed gauge field as Aa
μðxÞ and will

generally suppress the color index a. The flowed gauge
field Bμðx; τFÞ is defined at non-negative flow time τF
through the τF ¼ 0 boundary condition

Bμðx; τFÞjτF¼0 ¼ AμðxÞ ð2:1Þ

and the flow equation

∂Bμðx; τFÞ
∂τF ¼ DνGνμðx; τFÞ þ α0Dμ∂νBνðx; τFÞ; ð2:2Þ

where Gνμðx; τFÞ is the field strength tensor written using
Bμðx; τFÞ rather than AμðxÞ. The second term in the flow
equation constitutes a τF-dependent gauge choice, which is
convenient to make in the context of perturbative calcu-
lations [3]. Choosing α0 ¼ 1 and working to linearized
order, the flow equation simplifies to

∂Bμðx; τFÞ
∂τF ¼ ∂ν∂νBμðx; τFÞ; ð2:3Þ

which is the heat equation.
In vacuum, the Feynman-gauge momentum-space

propagator after flow is

GBB
E ðp; τF1 ; τF2Þ ¼

Z
d4xeipμxμhBμðx; τF1ÞBνð0; τF2Þi

¼ g2δμν
e−ðτF1þτF2 Þp2

p2
ð2:4Þ
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and Fourier transforming leads to the zero temperature
flowed propagator in coordinate space

GBB
E ðx; τF1 ; τF2Þ ¼

g2δμν
4π2x2

�
1 − e

− x2
4ðτF1þτF2

Þ
�
: ð2:5Þ

This result was found by Lüscher in [3]. But we could
have reached this result faster by noting that the coordinate-
space propagator before flow is the solution to the Poisson
equation −∂2

μGAA
E ðxÞ ¼ g2δ4ðxÞ, which is GAA

E ðxÞ ¼
g2=ð4π2x2Þ. At tree level and in Feynman gauge, flow is
the application of the heat equation to this propagator,
which is the same as convolving it with a Gaussian
envelope,

GBBðx; τF1 ; τF2Þ ¼
Z

d4y
g2

4π2y2
e
− ðx−yÞ2
4ðτF1þτF2

Þ

¼ g2

4π2x2

�
1 − e

− x2
4ðτF1þτF2

Þ
�
: ð2:6Þ

Alternatively, one may take the right-hand expression as
an ansatz and verify that it satisfies the τF ¼ 0 boundary
conditions and the heat equation.
To introduce finite temperature, we restrict the Euclidean

time to lie in x0 ∈ ½0; β� with periodic boundary conditions.
The fast way to find the coordinate-space propagator is to
note that the Poisson equation is now solved using the
method of images,

GAA
E;βðx0; x⃗Þ ¼

X
n∈Z

g2

4π2x2n
; xμn ≡ ðx0 þ nβ; x⃗Þ; ð2:7Þ

and that flow again corresponds to evolving this propagator
under the heat equation or convolving with a Gaussian:

GBB
E;βðx; τF1 ; τF2Þ ¼

X∞
n¼−∞

g2δμν
4π2x2n

�
1 − e

− x2n
4ðτF1þτF2

Þ
�
: ð2:8Þ

We could also arrive at this result the “hard way” by Fourier
transforming the finite-temperature, flowed momentum-
space propagator

GBB
E;βðx; τF1 ; τF2Þ ¼ T

Xm∈Z

p0¼2πmT

Z
d3p
ð2πÞ3 e

ip·x ×
g2e−p

2ðτF1þτF2 Þ

p2

ð2:9Þ

by use of Poisson’s summation formula [38]

T
Xm∈Z

p0¼2πmT

¼
X
n∈Z

Z
∞

−∞

dp0

2π
eip

0βn ð2:10Þ

to rewrite the summation over p0 as a sum over coordinate-
space copies—essentially, the same images as above.

At this point each
R
dp0 term represents a vacuum con-

tribution with a different x0 position, shifted into one of the
image copies. This leads rather directly back to Eq. (2.8). In
the following we will only work at finite temperature so we
will suppress the subscript β.
When we take correlation functions, we will have to

include a sum over images for each propagator which
appears. We present an illustration of this procedure
in Fig. 1.

III. CALCULATIONS

We will now use the coordinate-space propagator to
compute the desired correlation functions. While the last
section has introduced propagators between fields with
different amounts of flow, here we will only consider
correlators where all operators are evaluated after the same
amount of flow τF; so the previous formulas should be
modified by writing τF1 ¼ τF2 ¼ τF.

A. Energy-Momentum Tensor One-Point Function

The tree-level energy-momentum tensor in Yang-Mills
theory is2

TB
μνðx; τFÞ ¼

1

g2

�
ðGa

μσGa
νσÞðx; τFÞ−

1

4
δμνðGa

ωσGa
ωσÞðx; τFÞ

�
;

Gμνðx; τFÞ ¼ ∂x
μBνðx; τFÞ− ∂x

νBμðx; τFÞ: ð3:1Þ

FIG. 1. The images and correlation of the finite-temperature
gauge-field propagator. The colored circles represent the gauge
fields, the horizontal lines the periodic boundaries in the time
plane, and the dashed lines the correlations between one field and
the images of the other.

2At the loop level we would need to include the trace anomaly.
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We evaluate the correlator of two field strengths by splitting
the field strengths to reside at points x, y; write

hBμðx; τFÞBνðy; τFÞi ¼ GBB
E ðx − y; τFÞ ð3:2Þ

which we found in Eq. (2.8); take derivatives; and then set
x ¼ y. Introducing a dimensionless rescaled flow time
τ̃F ≡ 8τF=β2, we evaluate the two field strength correlators
which we need,

hGa
0σG

a
0σi ¼

3g2dA
π2β4

X
n∈Z

�
e−

n2
τ̃F ·

�
1

τ̃2F
þ 1

τ̃F

1

n2
þ 1

n4

�
−

1

n4

�
;

ð3:3Þ

hGa
iσGiσ

ai ¼ 3g2dA
π2β4

X
n∈Z

�
e−

n2
τ̃F ·

�
1

τ̃2F
−

1

τ̃F

1

n2
−

1

n4

�
þ 1

n4

�
;

ð3:4Þ

where each n2 arises as x2n=β2. Then we combine them to
find a closed expression for the stress-tensor one-point
function after flow,

hT00i ¼−hTiii ¼
3dA
π2β4

X
n∈Z

�
e−

n2
τ̃F ·

�
1

2τ̃2F
þ 1

τ̃F

1

n2
þ 1

n4

�
−

1

n4

�
:

ð3:5Þ

Here dA ¼ N2
c − 1 ¼ 8 is the dimension of the group,

which counts gluon colors. The sum over n is a sum over
images; the vacuum result is the n ¼ 0 term, which is
defined as the n → 0 limit and which actually vanishes. In
the τF → 0 limit the exponential terms vanish and we have
only the 1=n4 term, confirming as expected that

hT00i ¼ −
3dA
π2β4

X
n≠0

1

n4
¼ −

6dA
π2β4

ζð4Þ; ð3:6Þ

the standard Stefan-Boltzmann result.
In the opposite limit, τ̃F ≫ 1, many terms contribute to

the sum and we may approximate it with an integral, giving
rise to

hT00iβ →
τ̃F≫1

3dA
π2β4

1

τ̃3=2F

Z
∞

−∞
du

1

u4

�
−1þ

�
1þu2þu4

2

�
e−u

2

�

¼−
3dA
π2β4

1

τ̃3=2F

ffiffiffi
π

p
6

¼−
dA

32
ffiffiffi
2

p
π3=2τ3=2F β

: ð3:7Þ

This result corresponds to the contribution arising from the
zero Matsubara frequency, as all other Matsubara frequen-
cies are damped away by the flow.

For finite τ̃F we evaluate the sum numerically and display
the result in Fig. 2. The plot shows that, for small τ̃F, the
corrections to Stefan-Boltzmann are exponentially small,
physically representing the exponentially small amplitude
for the “smearing” due to flow to stretch all the way around
the periodic direction. However the stability of the result
then rather abruptly breaks down above τ̃F ∼ 0.12, and for
large τ̃F values the thermal contribution is almost com-
pletely lost. If we require that the flow change the
determined energy density by at most 1%, then we can
constrain the allowed flow depth to be 8τF=β2 ≤ 0.12. On
the lattice with Nt lattice points around the temporal
direction, that corresponds to τF=a2 ≤ 0.015N2

t with a
the lattice spacing.

B. Electric-Field Correlation Function
at Finite Temperature

In Eq. (1.1) we see that the electric field correlator of
interest contains Wilson lines forming a Polyakov loop.
However in a lowest-order evaluation these are irrelevant,
and only derivatives of the gauge-field propagator are
involved. The leading-order contribution reads

hEa
i ðx; τFÞEb

j ð0; τFÞi ¼ ∂x
0∂y

0hBa
i ðx; τFÞBb

j ðy; τFÞi
þ ∂x

i ∂y
jhBa

0ðx; τFÞBb
0ðy; τFÞi

			
y¼0

:

ð3:8Þ

Differentiating and introducing the dimensionless scaled
coordinate x̃n ¼ xn=β and the ratio of squared coordinate to
flow time ξ̃2n ¼ x̃2n=τ̃F, we find

FIG. 2. Plot of the one-point function of the energy-momentum
tensor as a function of the applied gradient flow, together with its
asymptotic small τF and large τF behavior.
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hEa
i ðx; τFÞEb

j ð0; τFÞi

¼ g2δab

π2
X
n∈Z

1

x̃4n

�
δijðx̃0nÞ2 þ x̃ix̃j

x̃2n
ððξ̃4n þ 2ξ̃2n þ 2Þe−ξ̃2n − 2Þ

þ δijð1− ð1þ ξ̃2nÞe−ξ̃2nÞ
�
: ð3:9Þ

In this expression we have allowed the electric fields to be
at different spatial coordinates, but the correlator relevant
for heavy quark transport involves x⃗ ¼ 0, which we will set
from now on. Our result then simplifies to

hEa
i ðx0;τFÞEb

j ð0;τFÞi¼
g2δab

π2β4
X
n∈Z

δij
x̃4n

½ðξ̃4nþ ξ̃2nþ1Þe−ξ̃2n −1�:

ð3:10Þ

This is the main result of this section.
To explore this result further, we consider first the

limit of small flow time, τ̃F → 0 or ξ̃ → ∞. In this limit
ðξ̃4 þ ξ̃2 þ 1Þe−ξ̃2 ≃ 0. The sum can be performed analyti-
cally and the result is

hEa
i ðx;τFÞEb

j ð0;τFÞi¼−
π2g2δabδij

β4
cosð2πx̃0Þþ2

3sin4ðπx̃0Þ : ð3:11Þ

The correlation function is negative, as expected; the
electric field is odd under the time-reflection operator

E→
Θ
− E; ð3:12Þ

and so its correlation function should be negative. Note
however that the time-integrated hEEi correlator could still
be positive due to contact terms when the operators overlap.

We can also explore the opposite limit of large flow time,
τ̃F ≫ 1, which allows us to approximate the sum over n
with an integral,

hEa
i ðx; τFÞEb

j ð0; τFÞi

→
τ̃F≫1

g2δab

π2β4

Z
∞

−∞
dn

δij
x̃4n

½ðξ̃4n þ ξ̃2n þ 1Þe−ξ̃2n − 1�

¼ g2δab

π2
δij

β4τ̃3=2F

Z
∞

−∞
du

1

u4
½−1þ ð1þ u2 þ u4Þe−u2 �

¼ g2δabδij
48

ffiffiffi
2

p
π3=2τ3=2F β

; ð3:13Þ

which is the same result we would get by considering only
the contribution of the zero Matsubara frequency. In
contrast to the small τ̃F limit, this result is positive.
There is no contradiction with fundamental theorems,
because the operator after flow is no longer local, so Θ-
odd behavior does not ensure negative correlations. But this
indicates that the result at large flow times has been
thoroughly contaminated with contact-term type contribu-
tions. Once a correlator which is expected to be negative
becomes positive due to flow, the character of the corre-
lation function has been fundamentally altered.
The sum in Eq. (3.10) can be evaluated numerically. In

Fig. 3, the behavior of the correlator is shown for different
values of τ̃F. The black curve is the analytic result for zero
flow from Eq. (3.10). The blue curve related to a flow time
of τ̃F ¼ 0.001 is hidden under the zero-flow curve for
x0=β > 0.2. Figure 3 shows that as we increase the amount
of flow, the x0 range for which the correlator remains
almost unchanged gets narrower; for the larger flow times
shown, the two never coincide. Therefore the amount of

FIG. 3. Left: Plot of the free-theory electric-field electric-field correlation. Right: The same, normalized to the unflowed behavior.
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flow which we can “get away with” is x0 dependent, which
should not be too surprising.
It is also instructive to explore the correlator as a function

of flow time at fixed separation. Figure 4 shows a plot of
this function. The behavior of the function is exactly as
expected. For small flow times, the correlator shows a
plateau of the unflowed value and the amount of
flow which damages the correlator depends on the

separation. If we use more flow, the correlator changes
sign. For enough flow it becomes small as all fluctuations
are damped away.
In Table I we show the maximum amount of flow before

the correlator changes by 1% as a function of x0. We
believe that this can be used as a criterion for how much
flow one can “get away with” in measuring the EE
correlator at a given x0 value.

C. Stress-Tensor Two-Point Functions

The calculation of the stress-tensor two-point correlator
is similar to the electric field correlator, except that each
stress tensor contains two field strengths. Since there are
two gauge field propagators, there is now a double sum
over images. The connected stress-tensor two-point func-
tion is

hGμσGνσðx;τFÞGαωGβωð0;τFÞi ¼
dAg4

16π4
Cμναβ;abcdefgh∂x

a∂x0
b ∂y

c∂y0
d


�X
n

δeg
ðx−yÞ2n

�
1−e−

ðx−yÞ2n
8τF

���X
m

δfh
ðx0−y0Þ2m

�
1−e−

ðx0−y0Þ2m
8τF

��

þ
�X

n

δeh
ðx−y0Þ2n

�
1−e−

ðx−y0Þ2n
8τF

���X
m

δfg
ðx0−yÞ2m

�
1−e−

ðx0−yÞ2m
8τF

���				
x¼x0;y¼y0¼0

; ð3:14Þ

where we have introduced the Lorentz structure

Cμvαβ;abcdefgh ¼ ðδμaδσe − δμeδσaÞðδνbδσf − δνfδσbÞ
× ðδαcδωg − δαgδωcÞðδβdδωh − δβhδωdÞ:

ð3:15Þ
The derivatives can be applied for each sum separately,

∂x
a∂y

c
δeg

ðx − yÞ2n
�
1 − e−

ðx−yÞ2n
8τF

�				
y¼0

¼ 4δeg
π2x4n

�
δacAnðx; τFÞ þ

xnaxnc
x2n

Bnðx; τFÞ
�

ð3:16Þ

with the dimensionless scalar functions defined as

Anðx; τFÞ ¼
1

2
ð1 − ð1þ ξ̃2nÞe−ξ̃2nÞ; ð3:17Þ

Bnðx; τFÞ ¼ −2þ ð2þ 2ξ̃2n þ ξ̃4nÞe−ξ̃2n : ð3:18Þ

Because at leading order T00 ¼ −Tii, there are three
independent stress-tensor correlators (at vanishing spatial
momentum) for which we can apply these formulas,

hT00T00iβ; hT0iT0iiβ;��
Tij −

1

3
δijTkk

��
Tij −

1

3
δijTll

�

≡ hT tr

ijT
tr
iji; ð3:19Þ

which evaluate to

hT00ðx; τFÞT00ð0; τFÞi

¼ dA
π4

X
n

X
m

�
12

AnAm

x4nx4m
þ 3

ðAnBm þ AmBnÞ
x4nx4m

þ
�
ðxn · xmÞ2 þ

1

2
x2nx2m − 4x⃗2xn;0xm;0

�
BnBm

x6nx6m

�
;

ð3:20Þ

TABLE I. List of the flow times needed to change the hEEi
correlator by 1% relative to the zero-flow value, for different x0

separations.

x0
β

8τF
β2

0.1 0.0011
0.2 0.0044
0.3 0.0099
0.4 0.0180
0.5 0.0274

FIG. 4. Plot of the electric-field electric-field correlator nor-
malized to the unflowed behavior at fixed time separations as a
function of flow times.
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hT0iðx; τFÞT0ið0; τFÞi

¼ dA
π4

X
n

X
m

�
24

AnAm

x4nx4m
þ 6

ðAnBm þ AmBnÞ
x4nx4m

þððxn · xmÞ2 þ 4x2n;0x⃗
2 − x2n;0x

2
m;0 þ x⃗4ÞBnBm

x6nx6m

�
;

ð3:21Þ
hT tr

ijðx; τFÞT tr
ijð0; τFÞi

¼ dA
π4

X
n

X
m

�
80

AnAm

x4nx4m
þ 20

ðAnBm þ AmBnÞ
x4nx4m

þ
�
10ðxn · xmÞ2 −

52

3
ðxn · xmÞx⃗2

þ 10

3
ðx2n þ x2mÞx⃗2 þ

2

3
x⃗4
�
BnBm

x6nx6m

�
: ð3:22Þ

These are the main analytic results of this section.
We are interested in the p⃗ ¼ 0 channel and thus need to

integrate over
R
d3x. At this point we resort to a numerical

evaluation. In Fig. 5 the results for the energy-density-
energy-density component hT00T00i are shown. Energy
conservation implies that for vanishing flow time the
correlator should be a flat line at a value set by the heat

capacity, which in the free theory is 4π2dA
15β5

. Such conse-

quences of stress conservation hold up to exponentially
small corrections so long as ξ̃2 ≫ 1. However, for larger
flow extents, operators effectively overlap, and contact
terms contaminate consequences of stress conservation.
Therefore, when the flow depth approaches the squared

separation, the constancy of the correlator will be lost.
This is indeed what we observe. For large values of flow
time τ̃F ≫ 1, the correlator becomes flat again, as it is
dominated by the time-independent zero Matsubara fre-
quency contribution.
The momentum-momentum component hT0iT0ii is

related to momentum fluctuations in the medium.
Without flow, it should be constant and negative, with

value set by the enthalpy density times temperature, 4π2dA
15β5

.

The behavior under flow is shown in Fig. 6. The flow time
dependence is similar to that for the hT00T00i correlator, for
the same physical reasons.
The stress-stress component hðTij − 1

3
δijTllÞ×

ðTij − 1
3
δijTkkÞi is physically interesting because its con-

tinuation to a spectral function determines the shear
viscosity [34–37]. Because it is not constrained by con-
servation laws, no short-distance cancellations occur and it
shows strong short-distance divergent behavior; the
unflowed behavior is dominated by the vacuum contribu-
tion which diverges at the origin. If we use gradient flow,
the correlator is finite at the origin and for intermediate flow
times 0.01 < τ̃F < 0.1 we find a nontrivial behavior. The
numerical results are presented in Fig. 7. For large flow
times the zero Matsubara frequency again dominates the
correlator, which is nearly x0 independent.
The main result of this numerical evaluation is that if we

are using flow to suppress fluctuations in our correlators,
then the hT00T00i and hT0iT0ii correlators are best evalu-
ated at x0 ¼ β=2 and with at most 8τF=β2 < 0.027. For
hTijTiji one should use the same τF values as for the
electric field correlator with the same x0 value.

FIG. 5. Plot of the hT00T00i correlator at zero spatial momentum as a function of temporal separation, for selected values of flow time.
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IV. DISCUSSION AND CONCLUSIONS

Gradient flow successfully reduces short-distance fluc-
tuations, which is a boon for reducing statistical fluctua-
tions in the lattice determination of local operator
correlation functions. Therefore there is interest in applying
it to lattice measurements of correlation functions. Here we

made a first exploration of how reliable this approach may
be at finite temperature, for the evaluation of the energy
density T00 and of electric field and stress-tensor two-point
functions. At lowest order in perturbation theory, we found
that the energy density of the thermal bath is obtained
reliably provided that the flow depth obeys τF < 0.015β2

FIG. 6. Momentum density correlator as a function of temporal separation at selected flow depths.

FIG. 7. Left: Plot of the shear channel two-point function of the energy-momentum tensor as a function of temporal separation. Right:
The same but normalized to the unflowed result.
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(or τF=a2 ¼ 0.015N2
t on the lattice), whereas a two-point

function of field strengths or stress tensors separated by a
distance x0 is reproduced reliably for τF < 0.014ðx0Þ2 [or
τF=a2 ¼ 0.014ðΔNtÞ2 on the lattice, where ΔNt is the
minimum number of lattice units of separation between the
two operators to be evaluated]. Exceeding this amount of
flow causes contact-term contamination in the correlator,
either between operators or between an operator and its
periodic images. However, below this amount of flow, the
effect of flow on the correlation function due to these
effects is exponentially small, and consequences of sym-
metries such as stress-tensor conservation are preserved up
to exponential corrections.

It would be valuable to extend this study to the loop
level, to see how operator renormalization, the Wilson line
appearing in the definition of the electric field two-point
function, and other interaction effects enter, and to check
whether these effects modify our conclusions.
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