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We use lattice simulations to compute the baryon spectrum of SU(4) lattice gauge theory coupled to
dynamical fermions in the fundamental and two-index antisymmetric (sextet) representations simulta-
neously. This model is closely related to a composite Higgs model in which the chimera baryon made up of
fermions from both representations plays the role of a composite top-quark partner. The dependence of the
baryon masses on each underlying fermion mass is found to be generally consistent with a quark-model
description and large-Nc scaling. We combine our numerical results with experimental bounds on the scale
of the new strong sector to estimate a lower bound on the mass of the top-quark partner. We discuss some
theoretical uncertainties associated with this estimate.
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I. INTRODUCTION

In this paper, we compute the baryon spectrum of SU(4)
gauge theory with simultaneous dynamical fermions in
two distinct representations, the fundamental 4 and the two-
index antisymmetric 6, which is real. This theory is a slight
simplification of a proposed asymptotically free composite
Higgs model due to Ferretti [1,2]—our model contains two
Dirac flavors in each representation, while Ferretti’s model
has five Majorana fermions in the 6 and three Dirac flavors
in the 4. The two essential physical features of Ferretti’s
model are a composite Higgs boson [3–7] and a partially
composite top quark [8]. The low-energy description of
models like Ferretti’s has been the subject of recent work;
see Refs. [9–13] and references therein. Composite Higgs
scenarios based on other gauge groups are also possible
[14–18] and there has been recent work in connection to
some of these other theories on the lattice [19,20].
We have carried out several lattice studies of this

interesting model already, including studies of its thermo-
dynamic properties [21–24] and a detailed calculation of
the meson spectrum [25]; we shall refer to these previous
works for a number of technical details. A preliminary

study of the baryon spectrum on a limited set of partially
quenched lattices (i.e., with dynamical fundamental
fermions but without dynamical sextet fermions) was
presented in Ref. [26].
In the context of the Ferretti composite Higgs model,

knowing the spectrum of baryon states allows for concrete
predictions about their future discovery potential in LHC
searches. One baryon state, made up of valence fermions
from both the 4 and 6 representations, is of particular
interest; in the model it carries the same standard model
quantum numbers as the top quark, and in fact serves as a
top partner, playing a crucial role in the generation of the
Higgs potential and of the top-quark mass itself. We refer to
such bound states as “chimera” baryons, due to their mixed
composition.
Aside from phenomenology beyond the standard model,

this system offers a rich testing ground for a generalized
version of the familiar quark model description of hadronic
physics, containing baryons with different expected behav-
ior in the large-Nc limit. Since baryons in QCD only
contain quarks in a single representation, the chimera states
are particularly novel from a quark-model perspective.
Our analysis will spend more time on models than is

common in modern QCD simulations. This is an explor-
atory study of a new system. There are many baryon states,
and it is useful to have an organizing principle to present
them. It is also useful to be able to compare the spectros-
copy of this system to that of real-world QCD. Models are a
good way to do that. The models may also be useful in
phenomenology of this and similar theories.
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Regarding phenomenology, we wish to make two
important technical points. First, the model we simulate
is not directly applicable to phenomenology, in the sense
that the coset SUð4Þ=SOð4Þ does not accommodate a Higgs
field. Introducing standard model fields as additional
dynamical degrees of freedom of the lattice theory is not
possible in the foreseeable future (partly because the
standard model itself is a chiral gauge theory), and thus
all the Goldstone bosons of the SU(4) gauge theory remain
indistinguishable within the lattice simulation. Instead, the
focus of this study is the spectrum of the SU(4) strong
dynamics in isolation, and it is anticipated that the further
effects of coupling to the standard model can be treated
perturbatively, similar to the treatment of electroweak
processes in ordinary lattice QCD.
On the other hand, the fact that we do not simulate with

the exact fermion content of the Ferretti model does
introduce an uncontrolled systematic effect, due to the
wrong number of dynamical fermions being used. (We
emphasize that this is a systematic effect only for appli-
cation to Ferretti’s model; in isolation, our results are a
perfectly valid study of the theory with two fermions in
each of the 4 and 6 irreps.) However, lattice studies of other
QCD-like theories show that the spectrum is fairly insen-
sitive to the number of dynamical fermions. For instance,
lattice QCD simulations show that many quantities are
stable (at the level of, say, 15 percent and sometimes much
less) across simulations with Nf ¼ 2, 2þ 1, and 2þ 1þ 1
dynamical fermions [27]. The dependence on the number
of fermions could be much more dramatic near the edge of
the conformal window, but based on a perturbative study of
the two-loop β-function for the ’t Hooft coupling g2Nc, the
present system compares most closely to SU(3) with
between 4 and 5 fundamental fermions while the full
Ferretti model is most similar to SU(3) with 6 fundamental
fermions. Based on these considerations, as well as our own
previous detailed calculations of the meson spectrum [25],
we believe that the theory we study is reasonably QCD-like,
and expect that simulations with the precise fermion content
of Ferretti’s model would be numerically close to our results.
Second, phenomenologically successful models of partial

compositeness often require the strong sector to be near-
conformal, and the operators responsible for the generation
of standard model fermion masses to have large anomalous
dimensions. Together, this gives rise to a large enhancement
of the relevant operators over many scales, which, in turn, is
considered necessary in order to generate the correct fermion
masses while meeting flavor constraints. A detailed dis-
cussion of this matter exceeds the scope of the work, but
we remind readers that these requirements face serious
theoretical difficulties, which are highlighted, e.g., in
Refs. [28,29]. A possible alternative might be to rely on
additional dynamical sectors to generate fermion masses
aside from the top quark, as noted in [12], but this represents
a significant and unsolved model-building challenge to the

best of our knowledge. In either case, if the Ferretti model
as presented requires significant modification of the strong
sector, the spectrum of the theory could be changed
significantly and our results would no longer be directly
relevant.
The paper is organized as follows. In Sec. II, we

introduce a constituent fermion model for the baryons,
using large-Nc scaling as an organizing principle. In
Sec. III, we describe the lattice theory, the ensembles,
and the baryonic observables. In Sec. IV, we present
results for the spectrum and analyze the baryon masses
using global fits to obtain results in the chiral and
continuum limits. Finally, Sec. V summarizes our findings
from the perspective of phenomenology and presents our
conclusions.
Tables containing the various measured quantities have

been collected together in Appendix A. Technical aspects
of the lattice simulation appear in Appendix B.

II. LARGE-Nc AND CONSTITUENT
FERMION MODELS

A. Baryons in SU(4) with two representations

Let N4 and N6 denote the number of Dirac flavors of
fermions in the fundamental and sextet representations.
In the present study N4 ¼ N6 ¼ 2, to be compared with
N4 ¼ 3 and N6 ¼ 5=2 in Ferretti’s model. The global
symmetry group of this model in the massless limit is
SUð2N6Þ × SUðN4ÞL × SUðN4ÞR × Uð1ÞB × Uð1ÞA.
Uð1ÞB is the baryon number of the fundamental fermions,
and Uð1ÞA is a conserved axial current. After spontaneous
breaking of chiral symmetry, the unbroken symmetry group
is SOð2N6Þ × SUðN4ÞV × Uð1ÞB. Additional group theo-
retical details relating to the fact that the 6 representation is
real appear in Ref. [30].
The spectrum of the lightest s-wave baryons in this theory

consists of three classes of states with differing valence
fermion content: fundamental-only baryons, sextet-only
baryons, and mixed-representation baryons. Fundamental-
only baryons contain four valence fermions and have
nonzero Uð1ÞB. We shall denote these bosonic states as
q4 states. Sextet-only baryons contain six valence fermions
and we will denote these bosons as Q6 states. No unique
definition of baryon number exists for these pure-sextet
objects, although one can single out one of the unbroken
SOð4Þ generators and call it a baryon number. In practice, we
shall only discuss theQ6 states with color indices contracted
against the Levi-Civita symbol of SOð6Þ, as in Ref. [30].
[Note that the defining representation of SOð6Þ is isomor-
phic to the 6 of SUð4Þ.] Finally, the color-singlet combina-
tion of two fundamentals with a single sextet fermion gives
a mixed-representation baryon containing three fermions.
We shall denote these fermionic states as Qqq states and
refer to them as chimera baryons.
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The lightest Qqq chimera baryons are expected to be
stable under strong decay, due to conservation of funda-
mental baryon number Uð1ÞB. The q4 baryons can decay
into a pair of chimeras, and a q4 baryon will be stable only
if it is sufficiently light. Because the 6 of SU(4) is a real
representation, di-fermion QQ states live in the same
multiplets with fermion-antifermion Q̄Q states; the same
applies to the four-fermion statesQQQQ, Q̄QQQ, etc. The
Q6 states are unstable against decay into three QQ
particles, which include in particular some of the states
in the Goldstone multiplet of SUð2N6Þ → SOð2N6Þ sym-
metry breaking [30].
Mixed-representation baryons represent a new sort of

baryon, but the relevant interpolating fields are closely
related to those of the QCD hyperons containing a single
strange quark (i.e., Σ⋆, Σ, and Λ), with the lone sextet
fermion playing the role of the strange quark. From a
computational perspective, the only new feature is the
presence of an additional color SUð4Þ index for the sextet
fermion; details appear in Appendix B. As in QCD, these
mixed-representation baryons are classified according to
their total spin J and the isospin I of the qq pair; the three
possible states are identified as Σ⋆, ðJ; IÞ ¼ ð3=2; 1Þ; Σ,
ðJ; IÞ ¼ ð1=2; 1Þ; and Λ, ðJ; IÞ ¼ ð1=2; 0Þ. (Total antisym-
metry of the operator under exchange of identical fermions
forbids a spin-3=2 isosinglet state.) The chimera analogue
of the Λ is of particular phenomenological interest, since it
plays the role of a partner for the top quark in Ferretti’s
model. More information relating to its role as the top
partner appears in Sec. V below.

B. Continuum large-Nc expectations

The properties of both q4 and Q6 baryons have been
studied in the continuum (a partial list of references are
Refs. [31–37]) and on the lattice (in quenched simulations
and in ones with a single representation of dynamical
fermion—see Refs. [30,38–41]). These states form multip-
lets in which angular momentum and isospin (flavor) are
locked together, I ¼ J ¼ 0; 1;…N=2 where N ¼ 4 or 6 for
the q4 and Q6 states. For the q4 states, this is an aspect of
the “contracted SUð2NcÞ” symmetry of large-Nc baryons
[42–45].
Large-Nc predicts that masses of single-representation

baryons, which are classified according to their total spin J,
should follow a rotor formula. Mass formulas through
Oð1=NcÞ for these baryons are given in Refs. [46–48],

MB ¼ dimrM
ð0Þ
r þMð1Þ

r þ Brr
JðJ þ 1Þ
dimr

ð2:1Þ

¼
(
4Mð0Þ

4 þMð1Þ
4 þ B44

JðJþ1Þ
4

; for q4

6Mð0Þ
6 þMð1Þ

6 þ B66
JðJþ1Þ

6
; for Q6;

ð2:2Þ

where the dimensions of the representations are dimr ¼ Nc
for the fundamental and dimr ¼ NcðNc − 1Þ=2 for the

two-index antisymmetric representation. In these expres-
sions, the bulk of the mass of the baryons comes from the
leading-order constituent mass term proportional to dimr.
Subleading corrections appear in the term Mð1Þ

r and the
rotor splitting Brr. Because the Nc-dependence has been
made explicit, no a priori hierarchy is assumed to exist
among the parameters Mð0Þ

r , Mð1Þ
r and Brr.

Large-Nc together with arguments involving spin-
flavor symmetry furnish further predictions for mixed-
representation baryons [34]. The key insight is that
mixed-representation baryons can be classified according
to the (unbroken) flavor symmetry of the fundamental
fermions, SUð2ÞI × Uð1ÞB. With this symmetry, it can be
shown that

MQqq ¼ 2M̃ð0Þ
4 þ M̃ð0Þ

6 þ M̃ð1Þ
mix þ B̃46

JðJ þ 1Þffiffiffiffiffi
24

p

þ
�
B̃44

4
−

B̃46ffiffiffiffiffi
24

p
�
IðI þ 1Þ: ð2:3Þ

Several comments are in order. First, writing down
Eqs. (2.1) and (2.3) required no model assumptions beyond
large-Nc counting. The factors of 4 and 6 are conventional.
Second, the tildes in Eq. (2.3) remind us that, from the
perspective of large-Nc, the expansion parameters of the
single-representation baryons are completely unrelated to
those of the mixed-representation baryons. The raw lattice
data will soon demonstrate, however, that there is good
reason to believe that they are in fact related (e.g.,
B̃44 ≃ B44). Third, each of the parameters above is implic-
itly a function of the fermion masses m4 and m6.

C. Baryon masses on the lattice

Motivated by the general arguments above, we now turn
to models for describing our lattice data. Following the
methodology we developed studying the meson spectrum
of this theory, we express all quantities in units of the
Wilson flow length scale

ffiffiffiffi
t0

p
[49]. The use of a hat

distinguishes these quantities from the corresponding
values in lattice units, e.g., M̂B ≡ ðMBaÞð

ffiffiffiffi
t0

p
=aÞ. This

comes from a mass-dependent scale-setting prescription:
the lattice spacing in a given ensemble is derived via direct
measurement of â ¼ a=

ffiffiffiffi
t0

p
[25].

Our simulations are performed across a wide spread of
lattice spacings, allowing us to model and remove lattice
artifacts. We expect that the leading-order lattice correction
to dimensionless ratios will be linear in the lattice spacing,

m1a
m2a

¼ m1

m2

þOðaÞ þ � � � : ð2:4Þ

This means that (for each individual state)

M̂B ¼ M̂0
b þ ABâþ � � � ; ð2:5Þ

where M̂0
b is the continuum limit value.
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Equation (2.5) does not yet include any explicit depend-
ence on the input fermion masses. One could consider a
simple linear dependence on the valence fermion mass m̂v
(for the q4 or Q6 states),

M̂B ¼ M̂0
b þ M̂1

bm̂v þ ABâ; ð2:6Þ

or perhaps on both valence and sea masses,

M̂B ¼ M̂0
b þ M̂1

bm̂v þ M̂2
bm̂s þ ABâ: ð2:7Þ

In a fit of this form, one would expect M̂1
b > M̂2

b, reflecting
the fact that the baryon mass depends predominantly on the
valence fermion mass.
One could also consider a more complex model based on

Eq. (2.1), in which all the coefficients have their own lattice
artifacts (B̂rr ¼ B̂0

rr þ B̂1
rrâ, for example). In practice, we

find that a single artifact term reproduces all the spectros-
copy in a multiplet. Our model for the lattice baryon
spectrum is, hence,

M̂Q6 ¼ 6½C6 þ C66m̂6� þ
B66

6
JðJ þ 1Þ þ A6â; ð2:8Þ

M̂q4 ¼ 4½C4 þ C44m̂4� þ
B44

4
JðJ þ 1Þ þ A4â; ð2:9Þ

M̂Qqq ¼ 2½C4þC44m̂4�þ ½C6þC66m̂6�þCmixþAmixâ

þB46

JðJþ1Þffiffiffiffiffi
24

p þ
�
B44

4
−

B46ffiffiffiffiffi
24

p
�
IðIþ1Þ: ð2:10Þ

The constants proportional to â are the explicit lattice
artifact terms.
It is also worth noting that independent of any fitting, the

compatibility of the rotor formula (2.1) with our baryon
mass results can be tested across fermion mass values with
an analog of the Landé interval rule: ratios of differences
ðMBðJ1Þ −MBðJ2ÞÞ=ðMBðJ3Þ −MBðJ4ÞÞ should be pure
numbers, depending only on the J’s. We will present such a
test in Sec. IVA below as a check on our more elaborate
results based on fitting.
The parameters of the lattice models above are related to

those of the original large-Nc formulas according to the
following relations:

M̃ð0Þ
4 ¼ Mð0Þ

4 þMð1Þ
4 =4 ¼ C4 þ C44m̂4; ð2:11Þ

M̃ð0Þ
6 ¼ Mð0Þ

6 þMð1Þ
6 =6 ¼ C6 þ C66m̂6; ð2:12Þ

Cmix ¼ M̃ð1Þ
mix −Mð1Þ

4 =4 −Mð1Þ
6 =6: ð2:13Þ

This redefinition is desirable from a numerical perspective,
since the original large-Nc formulas contain more inde-
pendent parameters than can be distinguished by data at a
single value of Nc. Since the three multiplets of states

furnish three linear relations among the constituent masses,
a fit can only distinguish between three independent linear
combinations of the constituent mass parameters.

III. LATTICE THEORY AND SIMULATION
DETAILS

The ensembles used in this study were generated with
simultaneous dynamical fermions in the fundamental and
two-index antisymmetric representations of SU(4). Each
fermion action is a Wilson-clover action, with normalized
hypercubic (nHYP) smeared gauge links [30,50,51]. The
clover coefficient cSW is set equal to unity for both fermion
species. For the gauge field, we use the nHYP dislocation
suppressing (NDS) action, a smeared action designed to
reduce gauge-field roughness that would create large
fermion forces in the molecular dynamics [52]. More
details about the action and the gauge configurations can
be found in our recent study of the meson spectrum [25].
Baryon correlators are noisy, so for the present study, we

use only a subset of our full data set, focusing on a dozen
ensembles with sufficient statistics to achieve reliable
measurements of the baryon spectrum. Table III lists the
ensembles used here. In lieu of repeating the technical
details, we summarize some features of these ensembles in
Table I.
All the ensembles in the present study have volume

V ¼ 163 × 32. In our previous study, we estimated the
finite volume effects for mesons and concluded that they
were at the level of a few percent. Baryons, of course, are a
different story, because their sizes are expected to be larger
than those of mesons. Still, the pseudoscalar decay con-
stants in the SU(4) gauge theory are larger than those of
SU(3) and, since finite volume corrections from pion loops
are proportional to 1=F2

P, we expect that they are smaller
than in SU(3) (see Ref. [25] for a discussion). Section IV B
presents a preliminary estimate of finite-volume effects in
our analysis.
We extract baryon masses MB in the usual way from

two-point correlation functions. We shall often consider the
baryon masses as functions of the fermion masses m4 and
m6, which are defined by the axial Ward identity (AWI),

∂μh0jAðrÞ
μa ðxÞOrj0i ¼ 2mrh0jPðrÞ

a ðxÞOrj0i; ð3:1Þ

TABLE I. Summary of basic physical properties of the ensem-
bles used in this study.

Min Max

t0=a2 1.06 2.67
MP4=MV4 0.55 0.79
MP6=MV6 0.47 0.73
Mp4L 4.23 8.16
Mp6L 4.03 8.91
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where a is an isospin index. Table IV collects the measured
fermion masses, taken from Ref. [25]. Further information
about our conventions and methods for spectroscopy
appears in Appendix B.

IV. SPECTRUM RESULTS AND ANALYSIS

A. Results from the raw data

The tables containing the measured values for the
baryons have been collected in Appendix A. The figures
in this section summarize the content of the tables. Figure 1
shows the measured spectrum of baryon masses. Masses of
single-representation baryons M̂r are plotted as functions of
the corresponding AWI fermion mass m̂r. The chimera
baryons are plotted as a function of m̂4, although one
expects some dependence on m̂6 as well. The baryon
masses all increase with fermion mass, but no clear func-
tional dependence is conspicuous. As in our meson study,
lattice artifacts—which we shall model and remove—
obscure the underlying linear nature of our data. To
motivate the forthcoming analysis in Sec. IV B, we first
consider evidence for the models which exists before
fitting.
According to the large-Nc model of Eq. (2.1), ratios of

baryon mass differences for the q4 or Q6 states are
parameter-free functions of the spins. In particular, the
parameter Brr only controls the overall size of the splittings.
Figure 2 shows mass differences among the single-
representation baryons, with errors on the differences from
a jackknife. The dotted lines are the expected values from
JðJ þ 1Þ splittings. The rotor behavior is clearly evident in
the raw data.

For single-representation baryons, the mass of the J ¼ 0
state furnishes estimates for the individual constituent
masses. The constituent mass of a chimera baryon is
therefore nearly

M̂Qqq; constituent ≃
M̂ðJ¼0Þ

q4

2
þ
M̂ðJ¼0Þ

Q6

6
: ð4:1Þ

On the other hand, one can use Eq. (2.3) to eliminate the
splitting terms in favor of the spin independent contribution
by averaging the chimera baryon masses together with
appropriate weights,

M̂Qqq; constituent

≃
�
2M̂ðJ;IÞ¼ð3=2;1Þ

Qqq þ M̂ðJ;IÞ¼ð1=2;1Þ
Qqq þ M̂ðJ;IÞ¼ð1=2;0Þ

Qqq

�
=4:

ð4:2Þ
Figure 3 shows these two raw-data estimates for the total
constituent mass of the chimera baryons plotted against
each other, with errors from a jackknife. The line indicates
equality, as predicted by the large-Nc model. The impres-
sive agreement of the two estimates suggests that the
chimera baryons should be modeled together with the
single-representation baryons.
Finally, we examine the strength of the splitting terms.

Equation (2.10) says that

B44 ¼
2

3

�
2M̂ðJ;IÞ¼ð3=2;1Þ

Qqq þ M̂ðJ;IÞ¼ð1=2;1Þ
Qqq − 3M̂ðJ;IÞ¼ð1=2;0Þ

Qqq

�
;

ð4:3Þ

B46 ¼
ffiffiffiffiffi
24

p

3

�
M̂ðJ;IÞ¼ð3=2;1Þ

Qqq − M̂ðJ;IÞ¼ð1=2;1Þ
Qqq

�
: ð4:4Þ

FIG. 1. Lattice data for the baryon mass spectrum M̂B. The horizontal positions contain small offsets to reduce overlap and aid
readability.

BARYON SPECTRUM OF SU(4) COMPOSITE HIGGS … PHYS. REV. D 97, 114505 (2018)

114505-5



Likewise, the single representation formulas (2.8) and (2.9)
say that

B44 ¼
2

3

�
M̂ðJ¼2Þ

q4
− M̂ðJ¼0Þ

Q6

�
; ð4:5Þ

B66 ¼
1

2

�
M̂ðJ¼3Þ

Q6 − M̂ðJ¼0Þ
Q6

�
: ð4:6Þ

Figure 4 shows these estimates for the rotor splitting
coefficients B, displayed as functions of m̂4 (m̂6) in the
left (right) pane, with errors from a jackknife.
Physically motivated models of baryons predict different

mass dependence for the splitting coefficients. For instance,

if the JðJ þ 1Þ term arises from rigid rotation (e.g., of a
skyrmion), the coefficient should scale inversely with the
mass of the baryon [46]. In nonrelativistic quark models, the
splittings arise from a color hyperfine interaction and (in
analogy with the familiar hyperfine interaction of atomic
physics) scale inversely with the square of the constituent
quark mass [53]. The raw data show considerable spread,
and no particular functional dependence is evident for any of
the B coefficients in either pane. The models (2.8)–(2.10)
therefore treat the B coefficients as constants. It is worth
noting that the two independent estimates of B44 from the
fundamental baryons (squares) and from the chimera bary-
ons (stars) are consistent within the uncertainty of the data.
Another feature of Fig. 4 is the large value of B46

compared to the other splitting coefficients. This is easily
understood in a model where the spin splittings are due to
one-gluon exchange, that is, Vij ∝ CijSi · Sj where Cij is a
color factor and Si is the spin of constituent i. The
appropriate color factors are Cqq ¼ 5=8 for the q4 baryons
(and for the qq diquark in theQqq baryon), CQQ ¼ 1=2 for
the Q6 baryons, and CQq ¼ 5=4 for the mixed interaction
chimeras. In other words, one expects B46=B44 ∼ CQq=Cqq
and B46=B66 ∼ CQq=CQQ. This expectation is in agreement
with the qualitative behavior of Fig. 4, which suggests that
B46 is roughly twice as large as B44 or B66.

B. Fitting mass and lattice-spacing dependence

We now present fit results modeling the dependence of our
baryons on the fermionmasses and lattice spacing, as outlined
in Sec. II. To justify the assumption that lattice artifacts are
proportional to â in our general model, we begin by
conducting a simple linear fit following Eq. (2.5) for each
state individually in the fundamental and sextet multiplets.
Figure 5 shows the result of these fits, which are in excellent
agreement with the data. The parameter corresponding to the

FIG. 2. Mass splittings between baryons in the fundamental (left) and sextet (right) representations. The lines indicate the expected
JðJ þ 1Þ behavior.

FIG. 3. Estimates for the total constituent mass of the chimera
baryons from the chimeras themselves (vertical axis) again the
estimates from single-representation baryons (horizontal axis).
The line indicates the expectation that the two independent
estimates agree.
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artifact is approximately the same for all the states within a
given multiplet, giving support to the models of Eqs. (2.8)–
(2.10). The case for the chimera baryons is similar, using the
form (2.6) which is linear in both m̂4 and m̂6.
Based on the success of these simple fits, we proceed to a

simultaneous global fit. Using Eqs. (2.8)–(2.10), we simul-
taneously model all 10 baryon masses on 12 ensembles.
Single-elimination jackknife furnishes errors and correla-
tions among the masses. The model used contains 11 free
parameters, leaving 120 − 11 ¼ 109 degrees of freedom.
The resulting fit is good, with χ2=DOF ≃ 93=109 ¼ 0.85.
Figure 6 shows the data with the fit overlaid.
Figure 7 shows the same fit result after subtracting

the lattice artifacts (proportional to â) from each state.

In this figure, the sextet baryons are plotted as functions of
m̂6, while the fundamental baryons are plotted as functions
of m̂4. Because the masses of the chimera baryons are joint
functions of the fermionmass in both representations, they are
plotted against the combination ð2C44m̂4 þ C66m̂6Þ=6. The
fit formula is linear in this combination. (The factor of 6 is
arbitrary and chosen to give the independent variable a similar
range to m̂4 and m̂6.)Theunderlying linear behavior for all the
baryons is now clearly visible.
In general, one expects the masses of the single-

representation baryons to depend predominantly on the
mass of the valence fermions in the same representation and
only weakly on the sea fermions in the other representation.
The analogy in QCD is the mass of the proton, which also

FIG. 4. Estimates of the splitting coefficients B44, B66, and B46 on each ensemble as functions of m̂4 (left) and m̂6 (right). The
horizontal positions contain small offsets to reduce overlap and aid readability.

FIG. 5. Data (solid marker) and linear fits (open marker) to each state in the fundamental and sextet multiplets using the simple linear
model (2.5), including a linear term proportional to â. The error bars of the open markers are those of the fit. The horizontal positions
contain small offsets to reduce overlap and aid readability.
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receives virtual contributions from strange quarks. The fact
that our models produce a good fit while neglecting these
effects suggests that they are small, although we expect
their existence as a matter of principle. Repeating the fits
including sea dependence did not produce any important
changes in the results.
As a preliminary estimate of finite-volume effects, we

repeated the above fitting analysis keeping only ensembles
withMPL > ð4.25; 4.5; 4.75; 5.0Þ. All qualitative features of
the spectrum—the ordering, the rotor splitting, and general
placement of the states—were stable against these variations.
Quantitatively, the fit parameters were unchanged at the level

of roughly one standard deviation. Because the focus of the
present study is largely qualitative in nature, we leave a more
systematic study of these effects for future work.

C. Physical limits

The fit results of the previous section are most interesting
in two limits: the m̂6 → 0 chiral limit and the double limit
m̂4, m̂6 → 0. The former limit is important in Ferretti’s
model, where the Higgs boson arises (before perturbative
coupling to the standard model) as an exactly massless
sextet Goldstone boson. Figure 8 shows the baryon
spectrum in the m̂6 → 0 limit, displayed as a function of

FIG. 6. Results from the joint correlated fit of all baryon data to Eqs. (2.8)–(2.10). The data (solid marker) correspond well to the fit
(open marker) at each point. The errors bars of the open markers are those of the fit. The horizontal positions contain small offsets to
reduce overlap and aid readability.

FIG. 7. Results from the joint correlated fit of all baryon data to Eqs. (2.8)–(2.10). The left pane shows continuum masses obtained by
subtracting the lattice artifact from the data. The right pane shows the corresponding fit, with the lattice artifact term removed. The
horizontal positions contain small offsets to reduce overlap and aid readability.
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the fundamental fermion mass. By construction, the masses
of the sextet baryons are independent of m̂4. Likewise, the
masses of fundamental and chimera baryons are linear in
the fundamental fermion mass. The lightest baryons in the
spectrum are the nearly degenerate J ¼ 1=2 chimera
baryons, the analogues of the Σ and Λ in QCD.
Regarding these two states, it is interesting to note that
we observe an inverted multiplet MΛ ≳MΣ with respect to
the ordering in QCD, where MΣ > MΛ. This ordering is
present in the raw lattice data on all the ensembles we
considered. Using a nonrelativistic quark model as a
guide, one would also expect this inversion to occur in
QCD if the strange quark were lighter than the up and down
quarks.
The spectrum in the double chiral limit (m̂4, m̂6 → 0)

corresponds to the vertical axis in Fig. 8. For convenience,
Table II also records numerical values for the spectrum in
the double chiral limit, both in units of the flow scale

ffiffiffiffi
t0

p
and in units of the sextet pseudoscalar decay constant,
which we determined in our previous study of the meson
spectrum.

D. Scalar matrix element

We can repurpose our calculations of the mass depend-
ence of the baryons to extract the scalar matrix element
hBjψ̄ψ jBi using the Feynman-Hellmann theorem [54]. In
the context of composite dark matter models, this matrix
element determines the coupling of the Higgs boson to the
dark matter and is thus required to calculate the cross
section for dark matter direct detection. (For a review of
composite dark matter models, see Ref. [55].) Following
Ref. [41], we define the quantity fBr for the lowest-lying
baryon in each representation r:

fBr ≡ m̂r

M̂r

∂M̂r

∂m̂r
¼ mr

Mr
hBjψ̄ψ jBi; ð4:7Þ

The dimensionless factor m̂r=M̂r serves to cancel the
dependence on the renormalization prescription of ψ̄ψ in
this expression. We expect fBr to be equal to zero in the
chiral limit, and to approach unity in the heavy fermion
(m̂r → ∞Þ limit.
Figure 9 shows our results for fBr in the fundamental

and sextet representations, displayed as functions of the
pseudoscalar-to-vector mass ratios on each ensemble. Only
the values for the lightest state in each representation are
shown; the heavier states are similar. We note that, in the
Ferretti model, none of these baryon states plays the role of

FIG. 8. The baryon spectrum in the m̂6 → 0 limit.

TABLE II. The baryon spectrum in the double chiral limit (m̂4,
m̂6 → 0) in units of the flow scale

ffiffiffiffi
t0

p
and of the sextet

pseudoscalar decay constant F6. For comparison, the masses
of the fundamental and sextet vector mesons in this limit are also
included. Mesonic quantities were determined in [25].

MB
ffiffiffiffi
t0

p
MB=F6

Fundamental vector meson 0.74(3) 4.2(3)
Sextet vector meson 0.80(3) 4.6(3)

Chimera ðJ; IÞ ¼ ð1=2; 0Þ 1.08(4) 6.4(4)
Chimera ðJ; IÞ ¼ ð1=2; 1Þ 1.05(4) 6.2(4)
Chimera ðJ; IÞ ¼ ð3=2; 1Þ 1.21(4) 7.1(5)
Fundamental (J ¼ 0) 1.60(7) 9.4(7)
Fundamental (J ¼ 1) 1.63(7) 9.6(7)
Fundamental (J ¼ 2) 1.71(7) 10.1(7)
Sextet (J ¼ 0) 3.14(8) 18(1)
Sextet (J ¼ 1) 3.19(8) 19(1)
Sextet (J ¼ 2) 3.29(8) 19(1)
Sextet (J ¼ 3) 3.44(8) 20(1)
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a dark matter candidate because of the precise standard
model charge assignments of the model. However, it is
interesting that the values for fBr for the fundamental and
sextet baryons resemble results seen previously in a number
of different gauge theories (in particular, see Fig. 4 of
Ref. [56]). The values of both rescaled matrix elements for
the chimera baryon come out significantly larger.

V. DISCUSSION

In this paper, we have described the baryon spectrum of
SU(4) gauge theory coupled to dynamical fermions in the
4 and 6 representations. Our simulations of this theory with
fully dynamical fermions in multiple representations are the
first of their kind. Our choice of this theory was inspired by
its close similarity to an asymptotically free composite
Higgs model first studied by Ferretti [2].
The baryon spectrum of this theory contains three

classes of baryons with differing valence fermion content:
fundamental-only baryons, sextet-only baryons, and mixed-
representation baryons. Our analysis began by considering
raw lattice results for the baryon masses to motivate a joint
model based on large-Nc counting. The important features of
this model—a JðJ þ 1Þ rotor behavior for splittings and
shared set of constituent masses for fermions—were clearly
visible even before fitting. The resulting fit was successful
and identified a significant lattice artifact proportional to the
lattice spacing in each baryon multiplet.
After removing the lattice artifact, the baryon mass data

show linear dependence on the fermion mass. Presumably, a
more careful analysis in the spirit of heavy baryon chiral
perturbation theory [57,58] would predict nonanalytic
behavior similar to that of QCD. The precision of our data
does not allow us to test these predictions. Observing this
behavior inQCD is notoriously difficult, requiring very light
fermions.

In Ferretti’s model, the standard model top quark mixes
linearly with the analogue of the Λ. This happens because
the fundamental fermions carry SUð3Þ × SUð3Þ0 ⊃ SUð3Þc
flavor quantum numbers and transform as a 3̄, while sextet
fermions are uncharged under SUð3Þc. The fundamental
fermions within the top partner are contracted antisym-
metrically to form a 3 of SUð3Þc. Discarding one of the three
fundamental fermions as we did in this paper, we obtain a qq
state, still antisymmetrized on its flavor index and hence an
isospin singlet. Because the qq state is antisymmetric on
both its SUð4Þ-color and flavor indices, the spins must
couple antisymmetrically as well into a Jqq ¼ 0 state. Thus,
the top partner is the analogue of the Λ hyperon in QCD.
The phenomenology of composite Higgs completions of

the standard model is commonly presented in terms of a
ratio ξ ¼ v2=F2 where v is the Higgs vacuum expectation
value (246 GeV), and F is the relevant pseudoscalar decay
constant. In the Ferretti model, F ¼ F6=

ffiffiffi
2

p
where F6 is the

decay constant of the sextet Goldstone bosons. (The factor
of

ffiffiffi
2

p
is due to our normalization convention, which

corresponds to Fπ ≃ 130 MeV in QCD.) In the absence
of a direct detection of new resonances, a discovery of new
physics can come through a deviation of some observable
from its standard model value, which would point to a value
of ξ and hence of F6. That would set the scale for other
hadronic observables in the new physics sector.
Table II gives the spectrum of light hadrons in our system

in units of F6, and Fig. 10 shows the baryon and meson
masses in the m6 → 0 limit as a function of the ratio
ðMP4=F6Þ2. The mass ratio of Qqq baryons to vector
mesons is quite similar to what is seen in QCD. The ratios
of all masses to F6 are smaller than in QCD, but that is
something we have seen before, and is broadly consistent
with large-Nc expectations.
Current experimental evidence suggests that ξ≲ 0.1

[6,7,59], which means that the scale of the new strong

FIG. 9. Baryon matrix elements of the scalar density, defined via Eq. (4.7). Only the lightest state in each representation is shown; the
heavier states are similar. The mesonic quantities were determined in [25].

VENKITESH AYYAR et al. PHYS. REV. D 97, 114505 (2018)

114505-10



sector is roughly F6 ≳
ffiffiffi
2

p
v=

ffiffiffiffiffiffiffi
0.1

p
≃ 1.1 TeV in our

normalization. Assuming that our results are directly
applicable to Ferretti’s model, Fig. 10 then shows that
the mass of the Λ analogue—the top partner—must be
MΛ ≳ 6.5 TeV. This bound is subject to some important
theoretical uncertainties. First, this estimate for the mass of
the top partner will be modified by perturbative corrections
from interactions with the standard model. We expect these
corrections to be small, just as perturbative electromagnetic
corrections to hadron masses are small in QCD. Second, the
present work has not attempted a detailed budgeting of
systematic effects from the lattice computation itself. This
includes, of course, those due to the slightly different
fermion content of the model we studied in comparison
with the Ferretti model. Finally, this bound of course
assumes the viability of Ferretti’s model itself; if significant
modifications are required to render it viable, e.g., the
addition of extra fermion species to generate large anoma-
lous dimensions for mass operators, then our results may
not apply directly.
Although our results for the chimera mass indicate that it

is somewhat heavier than assumed in Ref. [2], it remains to
be seen whether this leads to any significant phenomeno-
logical tension or fine-tuning requirement. The most crucial
role of the top partner is in the generation of a realistic
potential for the Higgs boson; we plan to investigate the top
contribution to the Higgs potential nonperturbatively in a
future work. We are also planning a follow-up study of the

decay matrix elements of the chimera baryon, which will
allow the calculation of its decay width; experimental
bounds on the top-partner mass typically assume a narrow
width, and could be significantly weaker for a wide
resonance.
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APPENDIX A: DATA TABLES

This brief appendix collects important numerical tables.
Table III lists the set of ensembles used with their
simulation parameters. Table IV shows the fermion mass
and Wilson flow scale for each ensemble, taken from
Ref. [25]. Finally, Tables V–VII show results for the
various baryon masses on each ensemble.

APPENDIX B: TECHNICAL
MATTERS—LATTICE

1. Chimera baryons

Let Q denote a sextet fermion and q a fundamental
fermion. The interpolating field for a chimera baryon has
the form Oϵ

B ¼ ϵabcdQab
α qcγqdδC

αγδϵ, where Latin indices
indicate SU(4) color and Greek indices indicate spin. For
brevity, we suppress flavor SU(2) indices. The tensor C is
some combination of gamma matrices which projects onto
the desired spin state. Because these chimera operators are
fermionic, they naturally carry a free spinor index. We find
it useful to work in a “nonrelativistic” formulation, pro-
jecting onto eigenstates of P� ¼ 1

2
ð1� γ4Þ. This projection

produces two-component spinors, which we identify with
the familiar spin-up and spin-down states of a nonrelativ-
istic fermion. To extract the ground-state mass from a two-
point correlation function, any gauge-invariant operator
with the correct spin and internal quantum numbers
suffices. Since the mass spectrum is the focus of the
present work, we find the nonrelativistic formulation
easiest to implement. For a discussion of its use in the
existing lattice literature, see [60,61] and references therein.
Propagators form the numerical building blocks of our

correlation functions,

D−1
q ðmjnÞa;bα;β ≡ hqðmÞaαq̄ðnÞbβi; ðB1Þ

where m, n are points on the lattice; a, b are SUð4Þ-color
indices; and α, β are nonrelativistic spin indices. There is an
analogous expression for the sextet propagator D−1

Q .
A chimera propagator then takes the form

TABLE III. The ensembles list used in this study. All ensembles
have volume V ¼ N3

s × Nt ¼ 163 × 32.

Ensemble β κ4 κ6 Configurations

1 7.25 0.13095 0.13418 61
2 7.25 0.13147 0.13395 71
3 7.30 0.13117 0.13363 61
4 7.30 0.13162 0.13340 71
5 7.55 0.13000 0.13250 84
6 7.65 0.12900 0.13080 49
7 7.65 0.13000 0.13100 84
8 7.65 0.13000 0.13200 84
9 7.75 0.12800 0.13100 84
10 7.75 0.12900 0.13080 54
11 7.75 0.12950 0.13150 34
12 7.85 0.12900 0.13080 44

TABLE IV. Fermion masses and flow scales for the ensembles
used in this study.

Ensemble t0=a2 m̂4 m̂6

1 1.093(9) 0.0422(7) 0.020(1)
2 1.135(9) 0.028(1) 0.025(1)
3 1.13(1) 0.0345(8) 0.032(1)
4 1.111(9) 0.0228(6) 0.0381(8)
5 1.85(2) 0.050(1) 0.034(1)
6 1.068(5) 0.082(1) 0.0896(8)
7 1.46(2) 0.046(2) 0.080(2)
8 2.29(2) 0.038(1) 0.036(2)
9 1.56(1) 0.108(1) 0.071(1)
10 1.75(2) 0.073(2) 0.077(2)
11 2.62(2) 0.047(1) 0.040(1)
12 2.67(2) 0.060(1) 0.060(1)

TABLE V. Masses M̂Qqq for the chimera baryons in units of the
flow scale t0=a2.

Ensemble
Chimera

ðJ; IÞ ¼ ð1=2; 0Þ
Chimera

ðJ; IÞ ¼ ð1=2; 1Þ
Chimera

ðJ; IÞ ¼ ð3=2; 1Þ
1 0.84(3) 0.80(3) 0.94(6)
2 0.80(3) 0.75(3) 0.91(6)
3 0.84(2) 0.81(2) 0.95(4)
4 0.83(3) 0.80(3) 0.96(6)
5 0.97(3) 0.960(9) 1.13(6)
6 1.11(2) 1.09(1) 1.20(2)
7 1.04(2) 1.02(2) 1.15(3)
8 1.00(4) 0.96(4) 1.15(4)
9 1.24(3) 1.21(2) 1.34(5)
10 1.17(2) 1.14(3) 1.28(3)
11 1.07(4) 1.03(4) 1.19(5)
12 1.17(2) 1.13(3) 1.30(3)

TABLE VI. Masses M̂q4 for the fundamental baryons in units of
the flow scale t0=a2.

Ensemble
Fundamental

(J ¼ 0)
Fundamental

(J ¼ 1)
Fundamental

(J ¼ 2)

1 1.13(7) 1.20(8) 1.30(9)
2 1.07(9) 1.1(1) 1.26(9)
3 1.10(7) 1.13(8) 1.25(8)
4 1.0(1) 1.1(1) 1.3(3)
5 1.33(4) 1.39(4) 1.54(8)
6 1.46(3) 1.50(4) 1.61(5)
7 1.29(8) 1.37(5) 1.5(2)
8 1.36(6) 1.4(1) 1.6(2)
9 1.75(2) 1.79(4) 1.85(7)
10 1.54(5) 1.60(3) 1.72(6)
11 1.5(2) 1.55(9) 1.7(2)
12 1.53(4) 1.61(3) 1.73(6)
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hOλ
BðmÞŌζ

BðnÞi ¼ ϵabcdϵefghCαγδλCϵϕηζD−1
Q ðmjnÞab;efα;ϵ

× ½D−1
q ðmjnÞc;gγ;ϕD

−1
q ðmjnÞd;hδ;h

−D−1
q ðmjnÞc;hγ;ηD

−1
q ðmjnÞd;gδ;ϕ�: ðB2Þ

The bracketed expression contains both a direct and an
exchange term. Both terms are necessary for states like the
charged Σ or Σ⋆ in QCD which consist of a single light
flavor u or d. States like the Λ, Σ0, or Σ⋆

0 inherently contain
light quarks of two different flavors u and d. Since different
valence flavors cannot be contracted, such states possess no
exchange term. For the chimera analogues of the Σ and Σ⋆,
we consider Iz ¼ 1 states, which include both the direct and
exchange term.
The spin projectors Cαβγλ isolate the correct spin states

for the initial and final baryons. For example, the standard
decomposition of the spins of the S ¼ −1 hyperons is

Σ⋆∶jJ ¼ 3=2; I ¼ 1i ¼ j↑↑↑i

Σ∶jJ ¼ 1=2; I ¼ 1i ¼ 1ffiffiffi
6

p ½2j↓↑↑i − j↑↑↓i − j↑↓↑i�

Λ∶jJ ¼ 1=2; I ¼ 0i ¼ 1ffiffiffi
2

p ½j↑↑↓i − j↑↓↑i�: ðB3Þ

In each line, we have taken the state with largest value of Jz:
for example, jJ ¼ 1=2; I ¼ 0i is shorthand for the Jz ¼
þ1=2 state. The states on the right-hand side are jSQz SqzSqz i.

2. Spectroscopy

For baryon two-point correlation functions, we use a
smeared (Gaussian) source operator on the t ¼ 0 time slice
and a point operator at the sink, projecting onto zero spatial
momentum. Smearing is done after fixing to the Coulomb
gauge. In order to achieve strong signals and flat effective
masses, we use smearing radii ranging from r0 ¼ 4a to
12a. We use antiperiodic boundary conditions in the
temporal direction for the fermion propagators. In order
to maximize statistics, we combine the correlation func-
tions for the forward-propagating and backward-
propagating eigenstates of Pþ and P−. After tuning the
smearing radius r0 to achieve flat effective masses, we
model the baryon two-point functions using a single
decaying exponential. Our final fitting procedure for
baryons follows that described in [25]. In particular,
all baryon results quoted in the present work include
systematic uncertainty from the choice of ½tmin; tmax�.
Details relating to fits for mesonic quantities and fermion

masses are described in [25].

3. Global fit details

Figure 11 shows the distribution of pulls from our global
fit of the baryon masses to Eqs. (2.8)–(2.10). Pulls—
roughly, the difference between the fit and the data in units
of the error of the difference—provide a straightforward
and useful test for bias in large fits [62]. In the asymptotic
limit, where the number of data points becomes large, the
pull distribution should approach a unit-width (σ ¼ 1)
normal distribution centered at the origin (μ ¼ 0).

TABLE VII. Masses M̂Q6 for the sextet baryons in units of the
flow scale t0=a2.

Ensemble
Sextet
(J ¼ 0)

Sextet
(J ¼ 1)

Sextet
(J ¼ 2)

Sextet
(J ¼ 3)

1 1.89(7) 1.92(7) 2.00(6) 2.13(6)
2 1.90(6) 1.95(7) 2.1(1) 2.2(1)
3 1.880(3) 1.93(4) 2.05(6) 2.17(5)
4 1.98(5) 2.04(5) 2.11(5) 2.23(6)
5 2.27(2) 2.33(3) 2.46(2) 2.61(2)
6 2.6(2) 2.63(8) 2.7(2) 2.77(7)
7 2.76(4) 2.81(5) 2.90(5) 3.00(4)
8 2.49(4) 2.54(6) 2.67(7) 2.84(4)
9 2.55(8) 2.57(7) 2.66(6) 2.80(4)
10 2.75(6) 2.79(6) 2.9(2) 3.01(5)
11 2.54(4) 2.58(6) 2.68(6) 2.81(7)
12 2.71(5) 2.74(4) 2.89(4) 3.06(5)

FIG. 11. The distribution of pulls from the fit.
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