
 

Are there monopoles in the quark-gluon plasma?

Adith Ramamurti,* Edward Shuryak,† and Ismail Zahed‡

Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA

(Received 18 April 2018; published 28 June 2018)

Monopolelike objects have been identified in multiple lattice studies, and there is now a significant
amount of literature on their importance in phenomenology. Some analytic indications of their role,
however, are still missing. The ’t Hooft-Polyakov monopoles, originally derived in the Georgi-Glashow
model, are an important dynamical ingredient in theories with extended supersymmetryN ¼ 2, 4, and help
explain the issues related with electric-magnetic duality. There is no such solution in QCD-like theories
without scalar fields. However, all of these theories have instantons and their finite-T constituents known as
instanton-dyons (or instanton-monopoles). The latter leads to semiclassical partition functions, which for
N ¼ 2, 4 theories were shown to be identical (“Poisson dual”) to the partition function for monopoles. We
show how, in a pure gauge theory, the semiclassical instanton-based partition function can also be Poisson-
transformed into a partition function, interpreted as the one of moving and rotating monopoles.
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I. INTRODUCTION

The possible existence of magnetic monopoles in
electrodynamics fascinated leading physicists in the 19th
century. With the development of quantum mechanics,
Dirac [1] related the existence of monopoles with the
electric charge quantization. However, QED monopoles
were never found.
Classical solitons with magnetic charge were found by

’t Hooft [2] and Polyakov [3] in the Georgi-Glashow
model. Such monopoles exist and play an important role
in other theories with an adjoint scalar field, notably in
theories with extended supersymmetry N ¼ 2, 4. Their
presence and properties have significantly advanced our
understanding of the electric-magnetic duality and its
relation to the renormalization group (RG) flow. In the
N ¼ 2 case, there is a gradual transition from an electric
theory at weak coupling to a magnetic theory at strong
coupling [4]. In the N ¼ 4 case, monopoles dressed by
bound fermions were shown to create an N ¼ 4 multiplet
of fields, making the electric and magnetic theories the
same, up to a coupling. This implies that the beta function
of g and 1=g must be the same, therefore just zero,
explaining why this theory must be conformal.

In QCD-like theories without scalars, e.g., pure gauge
theories or N ¼ 1 SYM, there are no such monopole
solutions. Despite this, Nambu [5], ’t Hooft [6], and
Mandelstam [7] proposed the “dual superconductor”
model of the electric color confinement. In this model,
the Bose-Einstein condensation (BEC) of monopoles at
T ≤ Tc expels electric fields from the vacuum into con-
fining flux tubes.
In lattice studies of gauge theories, monopoles have been

identified, and their locations and paths were correlated
with gauge-invariant observables, such as the action and
square of the magnetic field [8]. The monopoles were found
to create a magnetic current around the electric flux tube
[9,10]. In Landau gauge, while monopole-type singularities
themselves are not present, the physical properties that they
source are still present and gauge-invariant [11]. The
motion and correlations of the monopoles were shown to
be as expected for a Coulomb plasma [12–14], the
deconfinement critical temperature Tc does coincide accu-
rately with that of monopole BEC transition [13,15,16],
and the BEC transition has been shown to be gauge
independent [17–19].
The “magnetic scenario” for quark-gluon plasma (QGP)

[14,20,21] assumes the presence of noncondensed monop-
oles as another kind of quasiparticles. Due to electric
confinement at T < Tc, quarks and gluons have vanishing
densities. More specifically, the density of quarks, as the
derivative over the chemical potential μb (at μb ¼ 0 in this
paper), is directly observed on the lattice. Near Tc it is
proportional to the expectation value of the Polyakov line
hPðTÞi. The gluon density is assumed to be proportional to
its square.) In contrast to that the monopoles do not have
color electric charge and their density has a peak near Tc.
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(The monopole density can either be directly deduced from
lattice simulation, or deduced from the known total free
energy, in the assumption that these three components
reproduce it (see e.g., Fig. 1 of our previous paper [22] in
which all components are shown as a function of T).
Monopole-gluon and monopole-quark scattering were

shown to play a significant role in kinetic properties of the
QGP, such as the shear viscosity η [23] and the jet
quenching parameter q̂ [22,24,25]. The noncondensed
monopoles should also lead to electric flux tubes at
T > Tc [21], which were recently observed on the lattice
[26]. Thus, there is a growing amount of phenomenological
evidence suggesting magnetic monopoles do exist, not only
as a confining condensate at T ≤ Tc, but also as non-
condensed quasiparticles at T > Tc. While the central role
of monopoles in the confinement-deconfinement transition
was recognized long ago, their relation to another important
nonperturbative aspect of QCD-like theories, chiral sym-
metry breaking, has attracted much less attention prior to
our recent paper [27], in which we have demonstrated how
the quark condensate is formed as T → Tc.
Nevertheless, this phenomenological evidence does not

convince many theorists, whowould rather have an analytic
argument not relying on lattice numerics or heavy-ion
phenomenology. One such argument will be provided by
this paper. It is still indirect, in the sense that we do not have
a microscopic description of these monopoles in terms of
the gauge fields. We do, however, derive the corresponding
partition function, based on a transformed semiclassical
partition function.

The semiclassical description of the vacuum of
gauge theories is based on the instanton solution [28].
At finite temperatures, however, the four-dimensional
instanton solution has been shown to dissolve into
instanton constituents, known as instanton-dyons (or
instanton-monopoles) [29–31]. Studies of the ensembles
of instanton-dyons have explained the deconfinement and
chiral symmetry restoration transitions both numerically
[32,33] and using a mean-field analysis [34,35]. For a
recent short review, see Ref. [36].
The construction of the instanton-dyons starts from the

same ’t Hooft-Polyakov monopole, but with the fourth
component of the gauge field A4 acting as the scalar adjoint
“Higgs” field. However, these objects are pseudo-particles
and not particles, existing only in the Euclidean formu-
lation of the theory for which A4 is real. Therefore, while
instanton-dyons do lead to successful semiclassical appli-
cations, their usage for phenomenological applications is
severely limited. Another obstacle to their development,
perhaps even more important for many, is that their physical
meaning remains rather obscure. In this paper, we argue
that it should not be so, and that the instanton-dyon gauge
field configurations are nothing else but quantum paths of
moving and rotating monopoles.
A gradual understanding of this statement began some

time ago, but remained rather unnoticed by the larger
community. One reason for that was the setting in which it
was shown, which was based on extended supersymmetry.
Only in these cases was one able to derive reliably
both partition functions—in terms of monopoles and
instanton-dyons—and show them to be equal [37–39].
Furthermore, they were not summed up to an analytic
answer, but shown instead to be related by the so-called
“Poisson duality.”
Since this concept it also not widely known, Sec. II

contains a pedagogical section, which discusses a much
simpler toy model of a rotator—a particle on a circle—at
finite temperature. We also obtain two expressions for its
partition function, one based on its excited states and one
based on “winding paths” in Euclidean time. In this model,
one can derive the analytic solution for both sums and
directly see that they are the same.
In Sec. III, we turn to theories with extended supersym-

metry. This section is a brief pedagogical review of the
works of Dorey and collaborators, and shows how the
Poisson duality works in this case—almost identically to
the rotator model.
In Sec. IV, we turn to pure gauge theories at finite

temperature, using as above its simplest version with SU(2)
color. We will explicitly derive the n-winding gauge
configurations, periodic on the Matsubara circle, and the
corresponding semi-classical partition function. We then
Poisson-transform it into another form, the one we argue is
counting occupations of the excited states of moving/
rotating monopoles.

FIG. 1. The partition function Z of the rotator as a function of
the external Aharonov-Bohm phase ω (two periods are shown to
emphasize its periodicity). The (blue) solid, (red) dashed and
(green) dash-dotted curves are for ΛT ¼ 0.3, 0.5, 1.
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II. QUANTUM ROTATOR AT FINITE T AND ITS
DUAL DESCRIPTIONS

A quantum rotator is a particle moving on a circle. Its
location is defined by the angle α ∈ ½0; 2π� and its action is
defined by kinetic and topological parts

S ¼
I

dt
Λ
2
_α2 þ StopðωÞ; ð1Þ

where _α ¼ dα=dt, and Λ ¼ mR2 is the corresponding
moment of inertia for rotation. (It can be set to unity by
appropriately selecting units, but for the purposes of this
paper, we keep it.)
The topological part Stop ∼

R
dt _αðtÞ does not lead to any

“force”—there is no contribution to the classical equation
of motion—but it provides an extra phase factor in the
quantum partition function. The phenomenon was intro-
duced by Aharonov and Bohm in a celebrated paper [40]
and is well known. We remind the reader that this phase is
an external parameter which can be induced by a solenoid
in extra dimensions, provided the rotating particle is
charged and the time derivative is generalized to the long
gauge-invariant derivative including the A4 field.
The quantum mechanical spectrum of states is immedi-

ately obtained via quantization of the angular momentum l
and the partition function at temperature T is

Z1 ¼
X∞
l¼−∞

exp
�
−

l2

2ΛT
þ ilω

�
; ð2Þ

where, for convenience, we normalized the Aharonov-
Bohm contribution to a phase ω. Since the angular
momentum l is integer-valued, each term in Z1 is a periodic
function of this phase, with a natural 2π period. Note also
that positive and negative l cancel the imaginary part, so Z1

is real. Finally, this sum is best convergent at small
temperature T, where only a few states close to the ground
state with l ¼ 0 need to be included.
In the dual approach, finite temperature is introduced via

the standard Euclidean Matsubara time defined on another
circle τ ∈ ½0; β≡ 1=T�. The path integral which leads to the
partition function needs to be done over the periodic paths,
αð0Þ ¼ αðβÞ, so one may say that the Euclidean theory is a
particle on a double torus.
Classes of paths which make a different number n of

rotations around the original circle can be defined as
“straight” classical periodic paths

αnðτÞ ¼ 2πn
τ

β
; ð3Þ

plus small fluctuations around them. Carrying out a
Gaussian integral over them leads to the following partition
function,

Z2 ¼
X∞
n¼−∞

ffiffiffiffiffiffiffiffiffiffiffiffi
2πΛT

p
exp

�
−
TΛ
2

ð2πn − ωÞ2
�
: ð4Þ

The key point here is that these quantum numbers, l used
for Z1 and n for Z2, are very different in nature. In Z1, each
term of the sum is periodic inω, while in Z2, this property is
recovered only after summation over n. The temperature T
in Z2 happens to be in an unusual place, in the numerator of
the exponent, so this sum converges best at high temper-
ature, unlike the sum in Z1. Indeed, at high T the Matsubara
circle becomes small and the path integral is dominated by
paths with small number of windings.
In spite of such differences, both expressions are in fact

the same! In this toy model, it is not difficult to do the sums
numerically and plot the results. Furthermore, one can also
derive the analytic expressions, expressible in terms of the
elliptic theta function of the third kind

Z1 ¼ Z2 ¼ θ3

�
−
ω

2
; exp

�
−

1

2ΛT

��
; ð5Þ

which is plotted in Fig. 1 for few values of the temper-
ature T.
Mathematically, the identity of the two sums can be

traced to the fact that our path integral is defined on two
circles, or, equivalently, a 2d torus, and the circles can be
interchanged. In string theory, such relations are known as
T-duality. In practice, these are the low-temperature and the
high-temperature approximations, often used without
noticing the exact summation and duality.
Even if one is not able to identify the sums as the same

elliptic function, the equality can be seen from the
observation that the sum Z1 is the discrete Fourier trans-
form of the Gaussian, which is known to be the “periodic
Gaussian” appearing in Z2. One can further recognize that
the identity of the two sums is just a particular case of a
more general relation known in mathematics as the Poisson
summation formula, valid not only for a Gaussian but for
arbitrary functions. For reference, let us mention here one
particular version [41],

X∞
n¼−∞

fðωþ nPÞ ¼
X∞
l¼−∞

1

P
f̃

�
l
P

�
ei2πlω=P; ð6Þ

where fðxÞ is some function, f̃ is its Fourier transform, and
P is the period of both sums as a function of the “phase” ω.

III. SEMICLASSICAL THEORY AND
MONOPOLES IN THEORIES WITH
EXTENDED SUPERSYMMETRY

A. The setting

The following discussion concerns a Euclidean theory
defined on R3 × S1. In this section, unlike in the following
one, all of the fields, including the fermions, have periodic
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boundary conditions on S1, and therefore supersymmetry is
not broken.
We study the weak coupling g ≪ 1 scenario, which

makes the instantons and their constituents—as well as the
monopoles with actions/masses Oð1=g2Þ—heavy enough
to trust the dilute gas approximation. This lets us focus on a
single object and avoid finite-density (many-body) com-
plications. In theN ¼ 4 theory, the charge does not run and
g is simply an input parameter. In the N ¼ 2 theory,
however, the coupling does run, and one needs to select the
circumference of the circle β to be small enough such that
the corresponding frequencies ∼2π=β are large enough to
ensure weak coupling.
Compactification of one coordinate to the circle is

needed to introduce “holonomies,” gauge invariant inte-
grals over the circle

H
dxμAμ,

H
dxμCμ of the electric and

magnetic potentials, respectively. Their values can have
nonzero expectation values, which can be viewed as
external parameters given by Aharonov-Bohm fluxes
through the circle induced by fields in extra dimensions.
These holonomies will play important role in what follows.
Dorey et al. [42] call these external parameters ω and σ,
respectively.
Finally, in order to make the discussion simpler, one

assumes the minimal non-Abelian color group SUðNcÞ
with the number of colors Nc ¼ 2. This group has only one
single diagonal generator τ3, breaking the color
group SUð2Þ → Uð1Þ.
The theories with extended supersymmetry N ¼ 2, 4

have one and six adjoint scalar fields, respectively. Recall
that these two theories also have, respectively, 2 and 4
fermions, so that the balance between bosonic and fer-
mionic degrees of freedom is perfect. For simplicity, all
vacuum expectation values (VEV) of the scalars, as well as
both holonomies are assumed to be in this diagonal
direction, so the scalar VEVs and ω and σ are single-
valued parameters without indices. In the general group
SUðNcÞ, the number of diagonal directions is the Abelian
subgroup, and thus the number of parameters is Nc − 1.

B. Monopoles and their partition function

Considering the theories on the Coulomb branches, with
nonzero VEVs of the scalars ϕA; A ¼ 1…6, one can
naturally use the original BPS version of the ’t Hooft-
Polyakov monopole, with a mass

M ¼
�
4π

g2

�
ϕ: ð7Þ

We will only discuss the N ¼ 4 case, following Dorey
and collaborators [42]. Six scalars and two holonomies can
be combined to vacua parameterized by 8 scalars, extended
by supersymmetry to 8 chiral supermultiplets. These 8
fermions have zero modes, describing their binding to

monopoles. We will, however, not discuss any of those in
detail.
The SU(2) monopole has four collective coordinates,

three of which are related with translational symmetry and
location in space, while the fourth is rotation around the τ3

color direction,

Ω̂ ¼ expðiατ̂3=2Þ: ð8Þ

Note that such rotation leaves unchanged the presumed
VEVs of the Higgses and holonomies, as well as the
Abelian A3

μ ∼ 1=r tails of the monopole solution.
Nevertheless, these rotations are meaningful because they
do rotate the monopole core—made up of non-Abelian A1

μ,
A2
μ fields—nontrivially. It is this rotation in the angle α that

makes the monopole problem similar to a quantum rotator.
As was explained by Julia and Zee [43], the corresponding
integer angular momentum is nothing but the electric
charge of the rotating monopole, denoted by q.
Now that we understand the monopoles and their rotated

states, one can define the partition function at certain
temperature, which (anticipating the next sections) we will
call T ≡ 1=β,

Zmono ¼
X∞
k¼1

X∞
q¼−∞

�
β

g2

�
8 k11=2

β3=2M5=2

× exp

�
ikσ − iqω − βkM −

βϕ2q2

2kM

�
; ð9Þ

where k is the magnetic charge of the monopole. The
derivation can be found in the original paper, and we only
comment that the temperature in the exponent only appears
twice, in the denominators of the mass and the rotation
terms, as expected. The two other terms in the exponent,
expðikσ − iqωÞ, are the only places where holonomies
appear, as the phases picked up by magnetic and electric
charges over the circle.

C. Instantons and monopole-dyons

Now we derive an alternative four-dimensional version
of the theory, in which we will look at gauge field
configurations in all coordinates including the compactified
“time coordinate” τ. These objects are versions of instan-
tons, split by a nonzero holonomy into instanton constitu-
ents. Since these gauge field configurations need to be
periodic on the circle, and this condition can be satisfied
by paths adding arbitrary number n of rotations, their
actions are

Snmono ¼
�
4π

g2

�
ðβ2jϕj2 þ jω − 2πnj2Þ12; ð10Þ

including the contribution from the scalar VEV ϕ, the
electric holonomy ω, and the winding number of the path n.
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In the absence of the holonomies, the first term would be
M=T as one would expect.
The partition function then takes the form [42]

Zinst ¼
X∞
k¼1

X∞
n¼−∞

�
β

g2

�
9 k6

ðβMÞ3

× exp
�
ikσ − βkM −

kM
2ϕ2β

ðω − 2πnÞ2
�
; ð11Þ

where M ¼ ð4πϕ=g2Þ, the BPS monopole mass without
holonomies; thus, the second term in the exponent is
interpreted as just the Boltzmann factor. The “temperature”
appears in the unusual place in the last term (like for the
rotator toy model). The actions of the instantons are large at
high-T (small circumference β); the semiclassical instanton
theory works best at high-T.
The Poisson duality relation between these two partition

functions, Eqs. (9) and (11), was originally pointed out by
Dorey and collaborators [42]. In this paper, it was explained
earlier for the simpler toy model of a quantum rotator. Its
mathematical origins were presumably clarified enough by
our toy model, and it is perhaps enough to remind the
reader that the two circles (or the double torus) at play are
the angle α ∈ ½0; 2π� related with the rotation of the
monopole in ordinary/color space and the compactified
coordinate τ ∈ ½0; β�.

IV. SEMICLASSICAL THEORYANDMONOPOLES
IN PURE GAUGE THEORIES

Now consider theories without adjoint scalars, which do
not have an obvious ’t Hooft-Polyakov monopole solution.
One example of such a theory discussed in Ref. [42] is the
N ¼ 1� theory obtained from theN ¼ 4 theory by giving a
mass to the three chiral multiplets, which, in the IR,
eliminates three out of four fermions and all six scalars.
Wewill not discuss this particular case, but proceed directly
to pure gauge theory, starting from the instantons.

A. Finite temperature instanton-dyons with an
arbitrary time winding

At zero temperature, the Euclidean space R4 is sym-
metric in all four coordinates, and thus the corresponding
saddle points of the integral over fields—the instantons—
are four-dimensional spherically symmetric. At finite
temperatures, Euclidean time is defined on the circle
τ ∈ ½0; β�. The corresponding solitons—the calorons—are
deformed periodic instantons.
In order to keep the weak coupling and the small density

approximation valid, we need to consider sufficiently high
T. What this means practically will be discussed at the end
of the paper. For simplicity, for now we will also ignore the
issue of a dynamically generated potential and mean value
of the electric holonomy on the time circle, and continue to

consider it to be an external parameter; we are therefore
considering a “deformed” gauge theory.
The presence of the holonomy is known to split the

calorons into Nc constituents [29–31] known as instanton-
dyons (or instanton-monopoles). The holonomy eigenval-
ues μi, i ¼ 1…Nc enter the gluon and instanton-dyon
masses via their differences νi ¼ μiþ1 − μi. We will con-
sider only the simplest case of the number of colors
Nc ¼ 2, in which case there is a single holonomy para-
meter. The caloron is composed of two types of the self-
dual dyons, known as the time-independentM dyon and the
time-twisted L dyon [44].
Following the discussion above, we need to consider a

larger set of saddle-point configurations with all possible
periodic paths. To be explicit, let us derive the correspond-
ing semiclassical configurations. One starts with the static
BPS monopole, with the A4 component of the gauge field
now as the adjoint scalar. In the simplest “hedgehog”
gauge, the gauge fields are

Aa
4 ¼ nav

�
cothðvrÞ − 1

vr

�
;

Aa
i ¼ ϵaij

nj
r

�
1 −

vr
sinhðvrÞ

�
; ð12Þ

where na ¼ xa=r is the spatial unit vector and v is the VEV
of A4 at large distances r → ∞.
The twisted solution is obtained in two steps. The first is

the substitution

v → nð2π=βÞ − v; ð13Þ

and the second is the gauge transformation with the gauge
matrix,

Ω̂ ¼ exp

�
−
i
β
nπτσ̂3

�
; ð14Þ

where we recall that τ ¼ x4 ∈ ½0; β� is the Matsubara time.
The derivative term in the gauge transformation adds a
constant to A4 which cancels out the unwanted nð2π=βÞ
term, leaving v, the same as for the original static
monopole. After “gauge combing” of v into the same
direction, this configuration—we will call Ln—can be
combined with any other one. The solutions are all self-
dual, but the magnetic and (the Euclidean) electric charges
are negative for positive n, opposite to the original BPS
monopole M for which both are positive. The action
corresponding to this solution is

Sn ¼ ð4π=g2Þj2πn=β − vj: ð15Þ

The contribution to the partition function requires the
calculation of the pre-exponent, due to quantum
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fluctuations around the Ln solution, which have not yet
been calculated explicitly.
In the particular case of the L ¼ L1 dyon, it can be

obtained from the explicit calculation of the moduli for the
caloron (finite temperature instanton, theM þ L system) in
Ref. [44]. For the color SU(2) group, taking the limit of
large separation between the dyons, the L-dyon contribu-
tion has the form

dZL ∼ d3xL

�
8π2

g2

�
2

e
−ð8π2

g2
Þν̄ð2πν̄Þ8ν̄=3; ð16Þ

with ν̄ ¼ 1 − ν and ν ¼ vT=2π. Here the exponent corre-
sponds to the classical action, the power of 2 of the first
semiclassical factor stems from the zero modes 1

2
Nzero modes,

and the last factor stems from the large distance limit of the
volume of the moduli space according to [44], see also
Appendix C of Ref. [32].
Unlike in the theories with extended supersymmetry, in

QCD-like theories there are no (partial) cancellations in the
determinant of the nonzero modes between bosons and
fermions, and the normalization constant require tedious
calculation of the nonzero mode part which was not yet
done. The renormalizability however requires that it
appends the bare charge in the action to the correct running
coupling at the relevant scale is reproduced. This means
that one expects the exponent to read

dZLn
∼ d3xL

×exp
�
−j2πTn−vj

�
8π2

g20
þ 22

3
log

�
p0

j2πTn−vj
���

;

ð17Þ

where the coupling g0 is defined at the normalization scale
p0. Similarly, the power of the action in the numerator must
be appended by the two-loop corrections to the two-loop
beta function, and so on.
For our subsequent discussion, we will ignore the

running and only keep the first term, taking the mean
coupling to be just a constant at a characteristic
p0 ¼ 2πThν̄i, say

S0 ≡ SL þ SM ¼ 8π2

g20
¼ 10: ð18Þ

The simulation of instanton-dyon ensembles [32] were
done for S0 ranging from 5 to 13, and thus defining a rather
large range of dyon densities. Higher-twist instantons Ln
for n > 1 or n < 0 are all strongly suppressed and in
practice can be ignored; the instanton-dyon ensemble
calculations performed in Ref. [32] only included the
n ¼ 0 time independent dyon M and the first twisted
dyons L1 because, in this range of temperatures, the
holonomy phase ω changes from a small value to π at

the confining phase transition, where ω and 2π − ω are
comparable.
In the present calculation, we will keep all of them,

preserving exact periodicity, and write the semiclassical
partition function as

Zinst ¼
X
n

e
−ð4π

g2
0

Þj2πn−ωj ð19Þ

It is periodic in the holonomy, as it should be. Note that,
unlike in Eq. (11), it has a modulus rather than a square of
the corresponding expression in the exponent. This is due
to the fact that the sizes of Ln and their masses are all
defined by the same combination j2πn − ωjT and therefore
the moment of inertia Λ ∼ 1=j2πnβ − vj.

B. The Poisson transformation

A key point of this paper is that the existence of the
semiclassical instanton partition function implies the exist-
ence of monopoles moving and rotating in their collective
coordinates. According to the general Poisson relation,
Eq. (6), the Fourier transform of the corresponding function
appearing in the sum in Eq. (19) reads

Fðe−AjxjÞ≡
Z

∞

−∞
dxei2πνx−Ajxj

¼ 2A
A2 þ ð2πνÞ2 ; ð20Þ

and therefore the monopole partition function is

Zmono ∼
X∞
q¼−∞

eiqω−SðqÞ; ð21Þ

where

SðqÞ ¼ log

��
4π2

g20

�
2

þ q2
�

≈ 2 log

�
4π2

g20

�
þ q2

�
g20
4π

�
2

þ…; ð22Þ

where the last equality is for q ≪ 4π2=g20.

V. WHAT HAVE WE LEARNED ABOUT
THE QCD MONOPOLES?

Before summarizing our answer to this question, let us
first recall the setting and conclusions of the preceding
section. The coupling is presumed small, so the action at
the relevant scale is large 4π=g2 ≫ 1, and the semiclassical
calculation is well controlled. This implies that the corre-
sponding temperature is “high enough.” The holonomies
ω, σ, treated as external Aharonov-Bohm phases imposed
on the system, create a certain “Higgsing” of the gluons,
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with only the diagonal ones remaining massless. Calorons
are split into the instanton-dyons, and the semiclassical
partition function, appended by all Ln contributions, can be
calculated.
What we would actually like to study is the QCD,

with quarks, at temperatures around the deconfinement
transition T ∼ Tc. Indeed, heavy-ion collisions create
matter with T between roughly 2Tc ≈ 300 MeV and
0.5Tc. Most finite-T lattice studies are devoted to this
temperature range as well. In this regime the action of the
L1 instanton-dyon is numerically

SL1
¼ 4π2

g2
∼ 4;

with Ln having larger actions respectively. So, the semi-
classical suppression expð−SL1

Þ ≈ e−4 seems to be robust
enough to keep only L1 and M dyons. But, including the
preexponents, one finds that the ensemble is not really
dilute, and in order to perform the integration over the
collective variables, one needs to solve a nontrivial many-
body problem of a dense instanton-dyon plasma. The
instanton-dyon ensemble of M, L1 dyons does shift the
potential for the electric holonomy dynamically to its
“confining” value, for T < Tc. Semiclassical ensembles
of instanton-dyons also explain chiral symmetry breaking,
and their changes with flavor-dependent quark periodicity
phases. Further development of the semiclassical theory is,
therefore, well justified.
The main point of this paper is that any semiclassical

partition function, once derived, can be Poisson-rewritten
into an identical “H” form, with the sum over certain
excited states. We have shown how one can do so for pure
gauge theory, without scalars, using (relatively schematic
form of) the semiclassical partition function, for which we
calculated its Poisson dual. We further argued that the
resulting partition function can be interpreted as being
generated by moving and rotating monopoles.
The results are a bit surprising. First, the action of a

monopole, although still formally large in weak coupling,
is only a logarithm of the semiclassical parameter; these
monopoles are therefore lighter than the instanton-dyons.
While the specific value of the monopole action,

Smono ¼ 2 log

�
4π2

g2

�
≈ 2 logð4.Þ ≈ 2.8;

can still be considered larger than 1, one may ask whether it
can be even parametrically modified by the powers of logs
in the instanton partition function. In summary, it is not yet
clear whether those monopoles are or are not truly
semiclassical.
Second is the issue of monopole rotation. The very

presence of an object that admits rotational states implies
that the monopole core is not spherically symmetric.

The Poisson-rewritten partition function has demonstrated
that the rotating monopoles are not rigid rotators, because
their action, Eq. (22), depends on the angular momentum
q and is quadratic only for small values of q. The slow
(logarithmic) increase of the action with q implies that
the dyons are in fact shrinking with increased rotation.
In the moment of inertia, this shrinkage is more important
than the growth in the mass, as the size appears
quadratically. As strange as it sounds, it reflects on the
corresponding behavior of the instanton-dyons Ln with
the increasing n.
Although such rotations are well known in principle as

Julia-Zee dyons with real electric charge (unlike that of the
instanton-dyons, which only exist in the Euclidean world)
and studied in theories with extended supersymmetries, to
our knowledge the existence of multiple rotational states of
monopoles has not yet been explored in monopole-based
phenomenology. In particular, one may wonder how the
existence of multiple rotational states affects their Bose-
condensation at T < Tc, the basic mechanism behind the
deconfinement transition. The electric charges of the
rotating monopoles should, therefore, also contribute to
the jet quenching parameter q̂ and the viscosity, which was
not included before.
We note that perhaps a useful “middle ground” con-

necting the two regimes—the idealized semiclassical dilute
gas and the real-life finite-T QCD—would be lattice studies
of the gauge theory with an induced holonomy at high T.
To our knowledge, this has not been done in detail.
The semiclassical studies in this direction by introduc-

tion of certain masses, by Dorey et al. using N ¼ 4 →
N ¼ 1 [42] and by Unsal et al. for N ¼ 2 deformed
toward pure gauge theory [38], were the first steps in this
direction. Yet the conjectured continuity of both the
confined and deconfined phases, from dilute to dense
regimes, were never studied nor confirmed.
Lattice measurements of the holonomy potential for the

SU(2) and SU(3) gauge theories with fixed external
holonomy have been performed in Ref. [45]. The
perturbative renormalized potential was derived and
compared to these data in Ref. [46]. Such a subtraction
opens the door to studies of the monopole contribution,
which has not been attempted as of yet. Other lattice
studies, of the “deformed QCD” with an extra holonomy-
dependent term in the action, were performed in
Ref. [47]. Finally, the introduction of light quarks allows
the study of zero modes of both semiclassical instanton-
dyons and monopoles, suggesting another way to test
their mutual correspondence.
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Note added.—After the paper was finished and submitted,
we learned that some features of the “rotator,”used in
Sec. II as the simplest example of the Poisson duality,
have been considered before in the literature on path
integrals over compact manifolds and Lie groups.
Specifically, the result (5) for both partition functions in

terms of the θ3 Jacobi theta function has been derived
already in a classic paper by L. Schulman [48], who also
noticed that the Jacobi identity needed to prove their
equality, θ3ðz; tÞ ¼ ð−itÞ−1=2ez2=iπtθ3ðz=t;−1=tÞ, can be
derived using the Poisson summation formula, the fact
which we emphasized.
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