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We investigate the question whether Lipatov’s high energy effective action is capable of reproducing
quark and gluon propagators that resum the interaction with a strong background field within high energy
factorization. Such propagators are frequently employed in calculations within the color glass condensate
formalism, in particular when considering scattering of a dilute projectile on a dense target nucleus or
nucleon. We find that such propagators can be obtained from the high energy effective action, if a special
parametrization of the gluonic field is used, first proposed by Lipatov in the original publication on the high
energy effective action. The obtained propagators are used to rederive from the high energy effective action
the leading order Balitsky, Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner evolution
equation in covariant gauge. As an aside, our result confirms the definition of the Reggeized gluon as the
logarithm of an adjoint Wilson line, proposed in the literature.
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I. INTRODUCTION

The color glass condensate (CGC) formalism is an
effective field theory approach to quantum chromodynam-
ics (QCD) at small xwhere gluon densities in the nucleus or
proton are large. With x the ratio of the hard scale M2 of a
certain hard process and s the center-of-mass energy
squared, the limit x → 0 at fixed M2 corresponds to the
perturbative Regge limit of QCD. In such a scenario, the
smallness of the strong coupling αsðM2Þ ≪ 1 can be
compensated by logarithms in x, αsðM2Þ ln 1=x ∼ 1, which
requires the resummation of terms ðαsðM2Þ ln 1=xÞn to all
orders. For perturbative scattering amplitudes, such a
resummation is achieved at leading [1,2] and next-to-
leading order [3] by the Balitsky-Fadin-Kuraev-Lipatov
(BFKL) evolution equation. Even though BFKL evolution
is successfully applied to the description of collider data at
currently accessible center-of-mass energies (see, e.g., [4]),
the powerlike rise of the gluon distribution predicted by
BFKL evolution will eventually drive cross sections to a
region of phase space, where parton densities are no longer
perturbative; BFKL evolution will therefore break down in
such a regime. Instead, it is more appropriate to treat the

hadron or nucleus as a coherent color field rather than a
collection of incoherent and individual partons. This is the
region of phase space that is addressed by the initially
mentioned CGC; see [5] for a review. At the classical level,
the CGC generalizes scattering via exchange of a single
gluon to multiple gluon exchanges within high energy
factorization. Including, furthermore, quantum effects, one
arrives at a resummation of logarithms in 1=x, generalizing
BFKL evolution to the case of large gluon densities. The
resulting Balitsky, Jalilian-Marian, Iancu, McLerran,
Weigert, Leonidov, Kovner (Balitsky-JIMWLK) evolution
[6–10] provides finally an evolution equation for Wilson
lines that sum up the strong gluonic field in the target.
In the present article we discuss Lipatov’s high energy

effective action [11,12] and its relation to the above
mentioned formulation of a CGC effective theory. One
of the main advantages of Lipatov’s high energy effective
action is that it provides a gauge invariant factorization of
QCD amplitudes in the high energy limit through intro-
ducing a new type of field, i.e., the Reggeized gluon. Using
this effective action it has been possible to both reproduce
and derive a number of next-to-leading order (NLO)
results, most notable the calculation of NLO correction
to forward jet production without [13,14] and with rapidity
gap [15], the gluon Regge trajectory up to two loops
[16], and the NLO kernel of the Bartels-Kwiecinski-
Praszalowicz evolution equation [17] (see also the review
[18]); for the determination of NLO corrections for
Reggeized quarks, see [19]. The description of scattering
amplitudes for multiple Reggeized gluon exchange has also
been studied by a number of authors; see, e.g., [20–22]. At
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the same time the ability of the Balitsky-JIMWLK evolu-
tion to reproduce scattering amplitudes with multiple
Reggeized gluon states has been demonstrated for various
cases (see, e.g., [23,24]), hinting at a possible equivalence
of both formalisms. Furthermore the color glass condensate
formalism and the high energy effective action have been
compared directly at the level of the Lagrangian; see, e.g.,
[8,25,26]. In particular, the authors of Ref. [26] demon-
strate that it is possible to reproduce the classical gluon
fields of the CGC approach from the Lipatov’s high energy
effective action.
Instead of comparing the two approaches on the level of

the resulting effective Lagrangians, we take here a prag-
matic approach and attempt to answer the question whether
Lipatov’s high energy effective action can be used to
reproduce the quark and gluon propagators in the presence
of a strong gluonic field. Such propagators are one of the
core elements in calculations of the scattering of dilute
projectiles on dense targets within the color-glass-conden-
sate formalism. We find that this can be indeed achieved by
choosing a special parametrization of the gluonic field
already proposed in [11]. Moreover, since Lipatov’s high
energy effective action provides a gauge invariant factori-
zation of QCD amplitudes in the high energy limit, the
resulting propagators are not restricted to a certain gauge,
such as the light-cone gauge. The obtained propagators
furthermore allow one to rederive leading order Balitsky-
JIMWLK evolution directly from Lipatov’s high energy
effective action. As an aside, our result confirms that the
definition of the Reggeized gluon as the logarithm of
adjoint Wilson lines, proposed in [27], is consistent with
Lipatov’s high energy effective action.
The outline of this paper is as follows. Section II

provides a short summary of Lipatov’s high energy
effective action. Section III introduces the special para-
metrization of the gluonic field proposed in [11] and
demonstrates how it can be used to derive resummed
partonic propagators in the presence of a strong
Reggeized gluon field. Section IV contains a comparison
of our result with the literature. Section V presents a
derivation of Balitsky-JIMWLK evolution from Lipatov’s
high energy effective action. In Section VI we summarize
our results and draw our conclusions. Some details of the
calculations are summarized in two appendixes.

II. THE HIGH-ENERGY EFFECTIVE ACTION

Within the framework provided by Lipatov’s effective
action [11,12], QCD amplitudes are in the high energy limit
decomposed into gauge invariant subamplitudes, which are
localized in rapidity space. The effective Lagrangian then
describes the coupling of quarks (ψ) and gluon (vμ) fields
to a new degree of freedom, the Reggeized gluon field
A�ðxÞ. The latter is introduced as a convenient tool to
reconstruct the complete QCD amplitudes in the high
energy limit out of the subamplitudes restricted to small

rapidity intervals. Lipatov’s effective action is obtained by
adding an induced term Sind. to the QCD action SQCD,

Seff ¼ SQCD þ Sind; ð1Þ

where the induced term Sind. describes the coupling of the
gluonic field vμ ¼ −itavaμðxÞ to the Reggeized gluon field
A�ðxÞ ¼ −itaAa

�ðxÞ, with ta a SUðNcÞ generator in the
fundamental representation, trðtatbÞ ¼ δab=2. For the def-
inition of light-cone directions we follow the conventions
established in the original publication [11],

k� ¼ n� · k ¼ n∓ · k ¼ k∓; ð2Þ

with n� · n∓ ¼ 2 and ðn�Þ2 ¼ 0. This implies the follow-
ing Sudakov decomposition of a four momentum

k ¼ kþ

2
n− þ k−

2
nþ þ k ¼ k−

2
nþ þ kþ

2
n− þ k: ð3Þ

Note that transverse momenta and coordinates will be
denoted by bold letters. Furthermore

∂�x� ¼ 2; ∂∓x� ¼ 0: ð4Þ
High energy factorized amplitudes reveal strong ordering in
plus and minus components of momenta, which leads to the
following kinematic constraint obeyed by the Reggeized
gluon field:

∂þA−ðxÞ ¼ 0 ¼ ∂−AþðxÞ: ð5Þ

Even though the Reggeized gluon field is charged under the
QCD gauge group SUðNcÞ, it is defined to be invariant
under local gauge transformation δLA� ¼ 0. With the local
gauge transformations of gluon and quark fields given by

δLvμ¼
1

g
½Dμ;χL�; δLψ ¼−χLψ ; Dμ ¼ ∂μþgvμ; ð6Þ

where Dμ denotes the covariant derivative and χL the
parameter of the local gauge transformations that decreases
for x → ∞, the Reggeized gluon fields are invariant under
local gauge transformations,

δLA� ¼ 1

g
½A�; χL� ¼ 0: ð7Þ

The kinetic term and the gauge invariant coupling of the
Reggeized gluon field to the QCD gluon field are provided
by the induced term

Sind ¼
Z

d4xftr½ðT−½vðxÞ� − A−ðxÞÞ∂2⊥AþðxÞ�

þ tr½ðTþ½vðxÞ� − AþðxÞÞ∂2⊥A−ðxÞ�g: ð8Þ
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The functionals T�½v� can be obtained from the following
operator definition:

T�½v� ¼−
1

g
∂�

1

1þ g
∂�v�

¼ v�−gv�
1

∂�
v�þg2v�

1

∂�
v�

1

∂�
v�− � � � ; ð9Þ

where the integral operator is implied to act on a unit
constant matrix from the left. Boundary conditions of the
1=∂� are fixed through

1

1þ g
∂� v�

¼ P exp

�
−
g
2

Z
x�

−∞
dx0�v�ðx0Þ

�

¼ 1 −
g
2

Z
x�

−∞
dx0�v�ðx0Þ

þ g2

4

Z
x�

−∞
dx0�

Z
x0�

−∞
dx00�v�ðx0Þv�ðx00Þ þ � � � :

ð10Þ

Because of the induced term in Eq. (1), the Feynman rules
of the effective action comprise, apart from the usual QCD
Feynman rules, the propagator of the Reggeized gluon and
an infinite number of so-called induced vertices. The
leading order vertices and propagators are summarized
in Fig. 1. These induced vertices are special in the sense
that they contain only the antisymmetric color-octet sector
of the eikonal operator Eq. (9).
While the projection on the color octet sector arises

automatically from the induced term due to the combina-
tion with the Reggeized gluon field, the antisymmetric
color structure [written in terms of SUðNcÞ structure
constants only] requires in general the use of a

corresponding projector; for an explicit construction see
[28]. The original argument given by Lipatov for this
projection is based on the observation that in generalized
multi-Regge kinematics the values of the operator ∂�
acting on a gluonic field is never zero for the vertices
arising from Eq. (8), since the resulting light-cone momenta
are proportional to large center-of-mass energies of clusters
of particles significantly separated in rapidity. In particular,

1

∂�
ṽ�ðpÞ ¼

i
p�

ṽ�ðpÞ ð11Þ

with p� ≠ 0 where ṽ�ðpÞ denotes the Fourier transform
of the gluonic field vðxÞ; this is especially true for the case
of real particle production within the generalized multi-
Regge kinematics, which initiated the discussion of the
formulation of the high energy effective action in [11]. For
a more detailed discussion we refer to [29]. With p� ≠ 0,
antisymmetric color structure as given in Fig. 1 arises
automatically from the high energy effective action; see
also the discussion in [29]. The condition p� ≠ 0 is,
however, at least at first violated in the evaluation of loop
integrals, where the p� are integrated over all possible
values. The projection of [28] implies then the use of the
boundary conditions of Eq. (10), with an additional
projection for the color structure of the vertices in
Fig. 1 on the desired anti-symmetric color octet sector.
Corresponding symmetric counterparts are then taken into
account by an exchange of multiple Reggeized gluons
and the combination of multiple Reggeized gluons and
induced vertices; see also the discussion in Appendix A.
In the following we use always the pole prescription for
induced vertices proposed in [28].

FIG. 1. Feynman rules for the lowest-order effective vertices of the effective action. Wavy lines denote Reggeized fields and curly lines
denote gluons. Note that in comparison with the Feynman rules used in [13–16] we absorb a factor of 1=2 into the vertices, which is
compensated by changing the residue of the Reggeized gluon propagator from 1=2 to 2.
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III. RESUMMATION OF A STRONG
REGGEIZED GLUON FIELD

In the following we provide a formulation of the high
energy effective action that allows for a straightforward
resummation of multiple Reggeized gluon exchange in the
chase of quasielastic scattering, which is the relevant case
for describing scattering of a dilute partonic projectile on a
dense target nucleus or proton.

A. A special parametrization of the gluonic field

The bulk of calculations performed within the frame-
work set by the high energy effective action employs the
vertex of Fig. 1(a) that provides a direct transition between
a Reggeized gluon field and a conventional QCD gluon. As
noted in [11,12], it is possible to avoid the use of such a
direct transition vertex, if one performs a shift v� → V� ¼
v� þ A� of the gluonic field in the effective action.1 Such a
shift has, however, the disadvantage that the gluonic field
v� transforms like a gauge field under local gauge trans-
formations while the Reggeized gluon field is invariant
under such transformations. To avoid such differing trans-
formation properties, the following parametrization of the
gluonic field has been proposed in [11]:

VμðxÞ ¼ vμðxÞ þ nμþ
2
U½vþðxÞ�A−ðxÞU−1½vþðxÞ�

þ nμ−
2
U½v−ðxÞ�AþðxÞU−1½v−ðxÞ�

¼ vμðxÞ þ nμþ
2
B−ðxÞ þ

nμ−
2
BþðxÞ; ð12Þ

where

B�½v∓� ¼ U½v∓�A�U−1½v∓�; ð13Þ

and (inverse) Wilson line operators are defined as

U½v�� ¼
1

1þ g
∂� v�

; U−1½v�� ¼ 1þ g
∂�

v�: ð14Þ

Here the integral operatorsU andU−1 act on a unit constant
matrix from the left- and right-hand sides, respectively. For
the above composite field B�½v∓�, one finds the following
gauge transformation properties:

δLB� ¼ δLU½v∓�A�U−1½v∓� þ U½v∓�A�δLU−1½v∓�
¼ ½gB�; χL�: ð15Þ

As a consequence the shifted gluonic field Eq. (12) trans-
forms as

δV� ¼ ½D�; χ� þ ½gB�; χ� ¼ ½D� þ gB�; χ�; ð16Þ

i.e., the field Vμ has consistent gauge transformation
properties corresponding to a gauge field. In the following
wewill use the above parametrization of the gluonic field to
expand the high energy effective action for the quasielastic
case around the Reggeized gluon field Aþ, which we treat
as a strong classical background field gAþ ∼ 1.

B. The effective Lagrangian quadratic in vμ
In the following we limit ourselves to the quasielastic

case where the Lagrangian contains only the induced terms
corresponding to the functional W−½v�. The second set of
induced terms is set aside for the moment. This is sufficient
to describe the interaction of a dilute projectile with a target
characterized by high parton densities in the high energy
limit, where the Aþ will couple through the Reggeized
gluon propagator to color charges in the target. To construct
the effective action for quasielastic processes, we use the
following parametrization of the gluonic field:

VμðxÞ ¼ vμðxÞ þ 1

2
ðn−ÞμBþ½v−� ð17Þ

and consider the following effective action for the quasie-
lastic case:

Sq:e:eff ¼ SQCD þ Sq:e:ind ð18Þ

with

SQCD¼
Z

d4x

�
tr

�
1

2
GμνGμν

�
þ ψ̄ðxÞðiDÞψðxÞ

�
; ð19Þ

where Gμν ¼ 1
g ½Dμ; Dν� and

Sq:e:ind ¼
Z

d4xtrðfW−½v� − A−ðxÞg∂2AþðxÞ�: ð20Þ

Keeping fields Aþ to all orders and expanding in quantum
fluctuations vμ and ψ , ψ̄ to quadratic order we obtain

Sq:e:eff ¼
Z

d4x½L0 þ L1 − trðA−∂2AþÞ� þOðv3μÞ; ð21Þ

with the kinetic term of the gluonic and quark field

L0 ¼ trð−vμ½gμν∂2 − ∂μ∂ν�vνÞ þ ψ̄i∂ψ ð22Þ

and the quadratic terms that describe the interaction with
the Reggeized gluon field,1Such a shift has been used, for instance, in [20,21].
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L1 ¼ g ·

�
i
2
ψ̄=n−Aþψ þ tr

�
∂−vμ½Aþ; vμ� þ 2∂μv−½vμ; Aþ�

þ ∂2v−

��
1

∂−
v−

�
; Aþ

�
− v−

�
1

∂−
v−

�
∂2Aþ

��
:

ð23Þ

Since we assume that the Reggeized gluon field couples to
high partonic densities in the target, we have gAþ ∼ 1; the
term L1 is therefore of the same order as L0. The term
trðA−∂2AþÞ provides the kinetic term of the Reggeized
gluon field, which is only needed to connect the Aþ field to,
e.g., the target.

C. Parton-parton-Reggeized gluon vertices

The above Lagrangian L1 allows now for the straightfor-
ward determination of the quark-quark-Reggeized gluon
(QQR) and gluon-gluon-Reggeized gluon (GGR) vertex.
Keeping an explicit dependence on the Reggeized gluon
field, we find for quarks,

ð24Þ

which coincides with the expression used, e.g., in [13]. For
gluons one obtains instead

ð25Þ

with Tc
ab ¼ −ifabc. Since ∂−Aþ ¼ 0, the integral over z

yields for both vertices a δðpþ − rþÞ. We note that the
above GGR vertex was already obtained in [11]; it differs
from the GGR vertex obtained in, e.g., [14,29], which is
derived using the direct transition vertex in Fig. 1(a). The
above GGR vertex obeys the following important proper-
ties: at first one finds current conservation on the level of
the vertex, even if the second gluon is not real and/or does
not carry physical polarization,

rν · Γ
νμ
þ ðr; pÞ ¼ 0 ¼ Γνμ

þ ðr; pÞ · pμ: ð26Þ

A disadvantage of the above vertex, already noticed
in [11] is that the term p · r=pþ is in potential conflict

with the Steinmann relations [30], since it may yield
individual Feynman diagrams which contain singularities
in overlapping channels, e.g., the s and the t channels.
Nevertheless, since this vertex is obtained from a shift in
the gluonic field from an effective action that explicitly
obeys the Steinmann relations, the terms that potentially
violate the Steinmann relations should cancel for physical
quantities. Application of this vertex to the calculation of
physical observables should therefore be safe. Apart from
the above relation, this GGR vertex also obeys

nþν · Γνμ
þ ðr; pÞ ¼ 0 ¼ Γνμ

þ ðr; pÞ · nþμ ; ð27Þ
as well as

Γναþ ðr; kÞ · ð−gαα0 Þ · Γα0μ
þ ðk; pÞ ¼ −pþΓνμ

þ ðr; pÞ: ð28Þ
Identical properties hold for the QQR vertex,

Γβγ0 ðr; pÞ=nγ0γ ¼ 0 ¼ =nββ0Γβ0γðr; pÞ;
Γβγðr; pÞ=kγγ0Γγ0αðr; pÞ ¼ −pþΓβαðr; pÞ: ð29Þ

D. Properties of the Reggeized gluon field

The last two properties, Eqs. (28) and (34), are of high
importance to arrive at a summation of the Reggeized gluon
field to all orders. Before addressing this task, we first recall
the following property of the Reggeized gluon field:

∂−AþðxÞ ¼ 0; AþðxÞ ¼ Aþðx−0 ; x; xþÞ;
∂þA−ðxÞ ¼ 0; A−ðxÞ ¼ A−ðxþ0 ; x; xþÞ; ð30Þ

with a x�0 as a constant that is common to all Aþ fields;
since the scattering amplitude depends by Lorentz invari-
ance not on absolute space-time values, this constant can be
conveniently set to x�0 ¼ 0. To keep the presentation as
general as possible, we keep in the following, however, the
dependence on x�0 and set it only to zero when comparing
to other approaches. We further recall that the propagator of
the Reggeized gluon field, Fig. 1(b), which connects
clusters significantly separated in rapidity, comes with a
purely transverse denominator. The corresponding configu-
ration space propagator is therefore in four dimensions
given by

hAþðxÞA−ðyÞi¼
Z

d4q
ð2πÞ4e

−iq·ðx−yÞ 2i
q2

¼1

2

Z
d2q
ð2πÞ2

Z
dqþ

2π
e−iq

þðx−
0
−y−Þ=2

×
Z

dq−

2π
e−iq

−ðxþ−xþ
0
Þ=2eiq·ðx−yÞ

2i
q2

¼4δðy−−x−0 Þδðxþ−xþ0 Þ ·
Z

d2q
ð2πÞ2e

iq·ðx−yÞ i
q2
:

ð31Þ
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The four-dimensional Reggeized gluon propagator can
therefore be interpreted as the propagator of a two-dimen-
sional Reggeized gluon field αðzÞ, together with corre-
sponding delta functions,

hAþðxÞA−ðyÞi ¼ 4δðxþ − xþ0 Þδðy− − x−0 Þ · hαðxÞαðyÞi;
ð32Þ

with

hαðxÞαð0Þi ¼
Z

d2q
ð2πÞ2

ieiq·ðxÞ

q2
: ð33Þ

The result then suggests to parametrize the Reggeized
gluon field as

AþðxÞ ¼ 2 · αðxÞδðxþ − xþ0 Þ; ð34Þ

where the factor of 2 appears due to the chosen convention
for light-cone directions. We note that such a parametriza-
tion is commonly used in calculations within the CGC
formalism (see, e.g., [6–10]) with xþ0 ¼ 0. This treatment of
the Reggeized gluon field is possible, since the fields A�
are within the effective action to be treated as external
classical fields for individual rapidity clusters, while they
only connect to other clusters through the above Reggeized
gluon propagator.

E. All order summation of the Reggeized gluon fields

To sum up the interaction of partons with Reggeized
gluon fields to all orders in αs, it is necessary to determine

the free gluon propagator of the quantum fluctuations vμ,
which requires fixing a gauge following the usual Faddeev-
Popov procedure. While the following discussion will be
based on the covariant gauge, we will also comment on the
corresponding results obtained in axial light cone gauge
with the free propagators given by the usual expressions

G̃ð0Þ;ab
cov;μνðkÞ ¼ δabD̃0ðkÞ

�
−gμν þ ð1 − ξÞ kμkν

k2

�

¼ δabdμνðk; ξÞD̃0ðkÞ;

G̃ð0Þ;ab
l:c:;μν ðkÞ ¼ δabD̃0ðkÞ

�
−gμν þ

kμðnþÞν þ ðnþÞμkν
k · nþ

�

¼ δabdl:c:;μνðk; nþÞD̃ð0ÞðkÞ; ð35Þ

with

D̃ð0ÞðkÞ ¼ i
k2 þ iϵ

: ð36Þ

If not denoted otherwise, we will in the following always
use covariant gauge. For the quark propagator one finds the
usual expression

S̃ð0ÞF ðkÞ ¼ =kD̃ð0ÞðkÞ: ð37Þ

Because of the properties Eqs. (26) and (30), connecting
two GGR vertices with a gluon propagator, the polarization
tensor of the latter reduces always to −gμν, since all other
terms are set to zero. Using further the properties Eqs. (28)
and (34), the interaction of n Reggeized gluons with a
quark or gluon reduces essentially to

Yn
i¼1

Z
dz4i

Yn
j¼1

Z
d4kj
ð2πÞ4 ð−k

þ
1 ÞD0ðk1Þeik1·ðz1−z2Þ � � � ð−kþn−1ÞD0ðkn−1Þeikn−1·ðzn−1−znÞ

× e−ip·z1ð−igAþðznÞÞ � � � ð−igAþðz1ÞÞeir·zn

¼ −2πδðpþ − rþÞe−ixþ0 ðp−−r−Þ
Z

d2zeiz·ðp−rÞ

×

�
θðpþÞP

�
−g
2

�
n
Z Yn

i¼1

dzþi ÃþðziÞ − θð−pþÞP̄
�
g
2

�
n
Z Yn

i¼1

dzþi ÃþðziÞ
�
: ð38Þ

To arrive at the above identity, we used the property Eq. (34). Aþ ¼ −itcjiAcþ are Reggeized gluon fields in the fundamental

representation for quarks while gluons require Aþ → Ãþ ¼ −iTc
baA

cþ, i.e., Reggeized gluon fields in the adjoint
representation. (Anti)path ordering of color matrices is defined as

PAþðzþn ; zÞ � � �Aþðzþ1 ; zÞ≡ Aþðzþn ; zÞ � � �Aþðzþ1 ; zÞθðzþn − zþn−1Þ � � � θðzþ2 − � � � zþ1 Þ;
P̄Aþðzþn ; zÞ � � �Aþðzþ1 ; zÞ≡ Aþðzþ1 ; zÞ � � �Aþðzþn ; zÞθðzþn − zþn−1Þ � � � θðzþ2 − � � � zþ1 Þ: ð39Þ

Summing finally over the number of Reggeized gluons, one obtains for gluons the following effective vertex that sums up
the interaction with an arbitrary number of Reggeized gluon fields,
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ð40Þ

For quarks one finds

ð41Þ

To write down the above expressions, we introduced
Wilson lines in the adjoint

UabðzÞ ¼ P exp

�
−
g
2

Z
∞

−∞
dzþÃþ

�
;

Ãþ ¼ −iTc
abA

cþ; ð42Þ
and the fundamental representation

WðzÞ ¼ P exp

�
−
g
2

Z
∞

−∞
dzþAþ

�
;

Aþ ¼ −itcijAcþ: ð43Þ
In contrast to the notation used in [28,31] and elsewhere, we
use here the letter W to denote the Wilson line in the
fundamental representation to avoid confusion with the
gluonic field in the effective action. The above expressions
Eqs. (40) and (41) are one of the central results of this paper.

IV. COMPARISON WITH EXPRESSIONS
IN THE LITERATURE

At this stage it is necessary to compare the result derived
from Lipatov’s high energy effective action with the
conventional quark and gluon propagators in the presence
of a background field used in the literature.

A. Comparison with propagators in the
presence of a background field

Corresponding resummed propagators are within the
effective action now easily obtained. Using Eqs. (40)
and (41) one finds for the resummed quark (SF) and gluon
(G) propagators

SFðp; qÞ ¼ Sð0ÞF ðpÞð2πÞ4δð4Þðp − qÞ
þ Sð0ÞF ðpÞ · τFðp; qÞ · Sð0ÞF ðqÞ;

Gad
μνðp; qÞ ¼ Gð0Þ;ab

μν ðpÞð2πÞ4δð4Þðp − qÞ
þGð0Þ;ab

μα ðpÞ · ταβ;bcG ðp; qÞ ·Gð0Þ;cd
βν ðqÞ; ð44Þ

where for the moment we do not specify the gauge of
the free gluon propagators. These expressions are now
to be compared with propagators obtained from treating the
target as a background field in light-cone gauge b · n− ¼ 0
with the only nonzero component

bþðxþ; zÞ ¼ δðxþÞβðzÞ; ð45Þ

while bμ⊥ ¼ 0. Using the Fourier transform of correspond-
ing counterparts in configuration space (see, e.g., [32]) one
finds in momentum space (see, e.g., [31] for expressions
used in a recent calculation)

S½b�F ðp;qÞ¼ Sð0ÞF ðpÞð2πÞ4δð4Þðp−qÞ
þSð0ÞF ðpÞ · τ̃Fðp;qÞ ·Sð0ÞF ðqÞ;

G½b�;ad
μν ðp;qÞ¼Gð0Þ;ab

l:c:;μν ðpÞð2πÞ4δð4Þðp−qÞ
þGð0Þ;ab

μα ðpÞ · τ̃αβ;bcG ðp;qÞ ·Gð0Þ;cd
l:c:;βνðqÞ; ð46Þ

where the gluon propagator is now restricted to v · n− ¼ 0
light-cone gauge. The superscript “[b]” indicates that
these propagators have been derived using the background
field in light-cone gauge and not the Reggeized field Aþ.
One has

τ̃Fðp;−qÞ ¼ 2πδðpþ − qþÞ=nþ

×
Z

d2zeiz·ðp−qÞfθðpþÞ½W½b�ðzÞ − 1�

− θð−pþÞ½W½b�†ðzÞ − 1�g; ð47Þ

τ̃abG;νμðp; qÞ ¼ 2πδðpþ − qþÞð−2pþgνμÞ

×
Z

d2zeiz·ðp−qÞfθðpþÞ½Uab½b�ðzÞ − 1�

− θð−pþÞ½ðUab½b�Þ†ðzÞ − 1�g; ð48Þ

with Wilson lines in fundamental (W) and adjoint (U)
representation
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W½b�ðzÞ ¼ P exp

�
−
g
2

Z
∞

−∞
dxþb−;cðxþ; zÞtc

�
;

b−ðxþ; zÞ ¼ −ib−;cðxþ; zÞtc;

U½b�ðzÞ ¼ P exp

�
−
g
2

Z
∞

−∞
dxþb−;cðxþ; zÞTc

�
;

b̃−ðxþ; zÞ ¼ −ib−;cðxþ; zÞTc: ð49Þ

Leaving aside potential differences in the Wilson lines, to
which we will turn in Sec. IV B, one observes that both
quark propagators agree directly with each other (if one sets
xþ0 ¼ 0). To carry out a similar comparison for the gluon,
we consider first the case where the external free propa-
gators in Eq. (44) are taken in v · n− ¼ 0 light-cone gauge.
Since dμνl:c:ðp; nþÞnþν ¼ 0 ¼ dμνl:c:ðr; nþÞnþμ , all terms in the
vertex Γνμðr; pÞ that contain a nþμ or nþν vanish. One
therefore remains with the 2pþgμν term only, which is
precisely the term used in Eq. (48). Both expressions
therefore agree for xþ0 ¼ 0. We further note that both the
light-cone gauge polarization tensor and the GGR vertex
can be factorized into the products of a “left” and a “right”
tensor,

cμαL ðp; nþÞ ¼
�
gμα −

ðnþÞμpα

p · nþ

�
;

cανR ðr; nþÞ ¼
�
gαν −

rαðnþÞν
r · nþ

�
; ð50Þ

where

Γμν ¼ pþcμαL ðp; nþÞcανR ðr; nþÞ; ð51Þ

and

dμνðp; nþÞ ¼ cμαR ðp; nþÞð−gαβÞcβνL ðp; nþÞ: ð52Þ

This property allows to establish on a diagrammatic level
how the vertex Γμν can build up from properly factorizing
the numerator of the light-cone gauge gluon propagator and
absorbing them into the vertex; the information contained
in Eqs. (44) and (46) is therefore in this sense identical. It is
an interesting note aside that a similar mechanism has been
used in the construction of a certain projector in [33].

B. Comparison of Wilson lines and the definition
of the Reggeized gluon

In the following we attempt a somewhat detailed
comparison between the Wilson lines in the Reggeized
gluon field Aþ, arising from Lipatov’s high energy effective
action, and Wilson lines in the background field bþ,
frequently encountered in CGC calculation in a light-cone
gauge. While we find that the interpretation of these Wilson
lines differs, we would like to stress that for the calculation

of correlators in the dilute quasielastic region, i.e., pertur-
bative forward scattering in the presence of a strong
background field (Reggeized gluon or light-cone gauge),
both formalisms are equivalent; the only difference is that
the effective action allows the use of arbitrary gauges.2 The
difference therefore lies mainly in the interpretation of the
background field, i.e., the coupling to color sources in a
different rapidity cluster. At first both Wilson lines appear
to resum identical fields; Eqs. (34) and (45) take identical
forms. Obviously one has for a Wilson line of a generic
gluonic field Vþ,

W½V�ðxÞ¼Pexp
�
−
g
2

Z
∞

−∞
dxþVþðxÞ

�

¼
X∞
n¼0

ð−gÞn
2nn!

Z Yn
i¼1

dxþi

× ½Vþðx1Þ � � �VþðxnÞθðxþ1 −xþ2 Þ � � �θðxþn−1−xþn Þ
þpermutations�: ð53Þ

If now VþðxÞ ¼ AþðxÞ ¼ −2iδðxþ − xþ0 ÞαaðxÞta, the per-
mutations of the fields AðxiÞ, i ¼ 1;…; n are all identical
(since their xþ dependence is identical) and we arrive
directly at

W½A�ðxÞ¼
X∞
n¼0

1

n!

�
−g
2

�
nYn
i¼1

Z
dxþi Aþðx1Þ� � �AþðxnÞ

× ½θðxþ1 −xþ2 Þ � � �θðxþn−1−xþn Þþpermutations�

¼
X∞
n¼0

1

n!

�
−g
2

�
nYn
i¼1

Z
dxþi Aþðx1Þ� � �AþðxnÞ

¼ eigα
aðxÞta : ð54Þ

We therefore obtain a simple matrix exponential. Formally,
also the choice VþðxÞ ¼ bþðxÞ ¼ −iδðxþÞβaðx; x−Þta
leads obviously to the same result. In the literature such
an interpretation is, however, usually avoided, by treating
the contracting of the xþ dependence to deltalike support as
an approximation that applies to the calculation of corre-
lators in the background field, while the bþ itself is ordered
in the xþ coordinates; see, e.g., [10].
While the precise interpretation used is irrelevant for the

calculation of correlators in the presence of a background
field, the difference becomes striking once correlators of
the background field with, e.g., color charges in a rapidity
cluster significantly separated in rapidity are considered
(“the dense target”). Vertices that describe the interaction of
the Wilson line with n-Reggeized gluon fields come with
purely symmetric color tensors, since the precise ordering

2Nevertheless, we stress that calculation based on the back-
ground field in the light-cone gauge also allows at least in
principle for the use of different gauges for the gluon fluctuations.
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of fields is irrelevant. For the gluonic field bþðxÞ such a
result is not acceptable, since one would miss the corre-
sponding antisymmetric and mixed symmetry correlators.
Within the effective action, the interaction with these color
charges does not occur directly through the Reggeized
gluon field, but through the induced vertices of Fig. 1 and
corresponding higher order vertices. Following the treat-
ment in [28], these vertices carry only antisymmetric color
tensors [corresponding to a combination of anticommuta-
tors of SUðNcÞ generators]. Combining these induced
vertices with the symmetric m Reggeized gluon state to
construct a “Wilson-line-n gluon” vertex (n ≥ m), where
the coupling to the Wilson line is always mediated by at
least one Reggeized gluon, one recovers the complete
symmetry structure. For a pedagogic presentation for the
case up to three gluons we refer to Appendix A; see also the
discussion in [21].
At this point we return to a proposal made in [27] for the

definition of the Reggeized gluon from Wilson lines in the
Balitsky-JIMWLK formalism. There it has been proposed
to define the Reggeized gluon RaðzÞ as the logarithm of the
adjoint Wilson line,

RaðzÞ≡ 1

gNc
fabc logUbcðzÞ: ð55Þ

Using the above results, one finds directly for the results
obtained from Lipatov’s high energy effective action,

RaðzÞ¼ 1

gNc
fabc½igαdðzÞTd

bc� ¼ αaðzÞ¼ 1

2

Z
dxþAaþðxþ;zÞ;

ð56Þ

i.e., the definition of the Reggeized gluon of [27] coincides
with the Reggeized gluon field of Lipatov’s effective
action, once this field is integrated over the corresponding
light-cone coordinate.3

V. BALITSKY-JIMWLK EVOLUTION

In the following we demonstrate that the high energy
evolution of Wilson lines of Reggeized gluons (obtained
within the high energy effective action) leads directly to
the leading order Balitsky-JIMWLK evolution equation.
Even though this is expected, given the coincidence in the
resummed gluon and quark propagators, this provides an
important consistency check, in particular, for the future
calculation of CGC observables. We will then investigate
the question whether integrating out quantum fluctuations
of a general ensemble of Wilson lines gives indeed rise to
the Balitsky-JIMWLK evolution equation.

Within Lipatov’s high energy effective action, the
determination of high energy evolution requires in general
the high energy effective action for “central-rapidity”
processes, i.e., the effective action that contains both A−
and Aþ Reggeized gluon fields and corresponding induced
vertices. For the discussion of dense-dilute collision the
decomposition provided by the effective action for central
rapidities is, however, not very efficient; the additional set
of induced vertices provides a certain color decomposition
of amplitudes that describe gluon production from a multi-
Reggeized gluon exchange. While it has been demonstrated
at the level of the scattering amplitude for four-Reggeized
gluon exchange that after a certain reshuffling of terms the
2–4 Reggeized gluon vertex (triple Pomeron vertex) arises
from the high energy effective action[21] (which at the
same time can be shown to arise as well from Balitsky-
JIMWLK evolution [23]), the calculation is rather cum-
bersome. While the reformulation of the effective action
provided in Sec. III already provides the first simplification,
it is easier to recover the Balitsky-JIMWLK evolution
equation from the quantum fluctuations of the quasielastic
Lagrangian. For an ensemble of Wilson lines the latter are
directly proportional to the high energy divergence, without
the need to drop any finite terms. We hope to return to the
description that uses the high energy effective action for
central rapidity processes in a future publication.
For the following discussion it is sufficient to consider

Wilson lines in the fundamental representation. While
adjoint Wilson lines can be rewritten in terms of funda-
mental Wilson lines using the well-known relation

UabðzÞ ¼ 2tr½taWðzÞtbW†ðzÞ�; ð57Þ
the Hermitian conjugate of a fundamental Wilson line
follows trivially from the discussion of the fundamental
Wilson line. We will therefore consider the quantum
fluctuations of an ensemble of n fundamental Wilson lines
in the Reggeized gluon fields,

W½Aþ�ðz1Þ ⊗ � � � ⊗ W½Aþ�ðznÞ: ð58Þ

A. Feynman rules for quantum fluctuations
of a Wilson line

Integrating out the quantum fluctuations vμ is most
easily achieved, if one supplements the effective action
with an auxiliary complex one-dimensional scalar field,
φ ¼ φðxþ; z; x−0 Þ, where z; x−0 ¼ 0 are constant for the
dynamics of the scalar field. The field is charged in the
fundamental representation of SUðNcÞ and transforms
under gauge transformations as

δLφ ¼ −χLφ: ð59Þ
The one-dimensional gauge invariant action of this
field, which describes interaction with the gluonic field,
is given by

3At least within the high energy effective action, a definition
based on theWilson lines in the fundamental representation would
be equally possible, i.e., RaðzÞ ¼ 2

ig trðta log½VðzÞ�Þ ¼ αaðzÞ.
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S½φ; V� ¼
Z

dxþφ†½i∂þ þ igvþ�φ; ð60Þ

where all fields are taken at fixed ðx; x−0 Þ. One obtains in a
straightforward manner for the propagator of this scalar field�
x−

				 1

1þ g
∂þþϵVþ

1

∂þ þ ϵ

				y−



¼ P exp

�
−g
2

Z
xþ

yþ
dzþvþ

�
:

ð61Þ
As a next step we use the parametrization Eq. (17) of the
gluonic field and limit ourselves to terms quadratic in the
quantum fluctuation. Limiting ourselves further to covariant
orv− ¼ 0gauges, the following simplified shift is sufficient4:

vμ → Vμ ¼ vμ þ 1

2
ðn−Þμ

�
Aþ þ

�
Aþ;

g
∂−

v−

��
þOðv2−Þ:

ð62Þ

Expanding our expressions around the background field
gAþ ∼ 1, the shifted action is given by

S½φ;Aþ;v�¼
Z
dxþφ†

�
i∂þþig

�
vþþAþþ

�
Aþ;

g
∂−

v−

���
φ:

ð63Þ

The resulting set of Feynman rules necessary for the
calculation of Oðg2Þ corrections within covariant and/or
v− ¼ 0 gauges are then summarized in Fig. 2.

B. Calculating quantum fluctuations

Since we require only fluctuations up to quadratic order,
it is sufficient to consider the correlator of two Wilson lines
at one loop. The nonzero diagrams for self-energy type
corrections to one Wilson line are given by

ð64Þ

For interactions between two Wilson lines, evaluation of the following diagrams is sufficient (the remaining diagrams can
be deduced from symmetry):

FIG. 2. Feynman rules for the calculation of quadratic fluctuations of the Wilson lines for covariant or v− ¼ 0 gauge. Note that the
Wilson-line-gluon vertex (d) conserves momentum as usual, while four momenta are not conserved at the vertices (a) and (c). Momenta
that are not fixed by external momenta are understood to be integrated over with the measure d4p=ð2πÞ4.

4Covariant gauge requires correlators of v− and vþ fields as well as two vþ fields; the correlator of two v− vanishes on the other hand.
v− ¼ 0 gauge requires on the other hand only the correlator of two vþ fields.
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ð65Þ

Note that correlators of Wilson lines are only infrared finite, if projected onto the color singlet. The general case of colored
Wilson lines is nevertheless of interest; in particular, it allows one to recover the gluon Regge trajectory (see [27] for a
detailed discussion). We therefore work in d ¼ 4þ 2ϵ space-time dimensions, with the vertices Eqs. (40) and (41)
generalizing trivially. We obtain

ð66Þ

The divergent integral over the plus momenta provides the high-energy singularity that defines the kernel of the high energy
evolution. The precise choice of the regulator is irrelevant for leading order accuracy. In the following we chose Λa;b → ∞
and a scale s0 of the order of the transverse scale, also known as the Reggeization scale, to regularize the integral as

ZΛa

s0=Λb

dpþ

pþ ¼ ln

�
ΛaΛb

s0

�
: ð67Þ

To derive the high energy evolution of Wilson lines, Λa will be the regulator of interest, since it limits the pþ integral from
above. With the MS strong coupling constant in d ¼ 4þ 2ϵ dimensions

αs ¼
g2μ2ϵΓð1 − ϵÞ

ð4πÞ1þϵ ; ð68Þ

we obtain

ð69Þ

We further have

ð70Þ
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Combining both contributions one obtains

ln

�
ΛaΛb

s0

�
αsΓ2ð1þ ϵÞ
2π2Γð1 − ϵÞ

�
4

πμ2

�
ϵ
Z

d2þ2ϵz
ðx − zÞ · ðx − zÞ

½ðx − zÞ2�1þϵ½ðx − zÞ2�1þϵ ½2UbaðzÞtbWðxÞta − tataWðxÞ −WðxÞtata�: ð71Þ

The calculation for the interaction of two Wilson lines follows in complete analogy:

ð72Þ

and

ð73Þ

We then obtain for the complete correlator of two Wilson lines

ð74Þ

Using the above result it is straightforward to obtain the high energy evolution of an ensemble of n Wilson lines as

−Λa
d

dΛa
½Wðx1Þ ⊗ � � � ⊗ WðxnÞ� ¼

X
i;j¼1

Hij½Wðx1Þ ⊗ � � � ⊗ WðxnÞ�; ð75Þ

with the Balitsky-JIMWLK Hamiltonian

Hij ¼
αsΓ2ð1þ ϵÞ
2π2Γð1 − ϵÞ

�
4

πμ2

�
ϵ
Z

d2þ2ϵz
ðxi − zÞ · ðxj − zÞ

½ðxi − zÞ2�1þϵ½ðxj − zÞ2�1þϵ

× ½Ta
i;LT

a
j;L þ Ta

i;RT
a
j;R −UabðzÞðTa

i;LT
b
j;R þ Ta

j;LT
b
i;RÞ�: ð76Þ
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In the presentation we followed here closely [27] and define
Ta
L;i and T

a
R;j as the group generators acting to the left (L) or

to the right (R) on the Wilson line WðxiÞ,
Ta
L;i½WðziÞ�≡ taWðziÞ; Ta

R;i½WðziÞ�≡WðziÞta: ð77Þ

VI. CONCLUSION AND OUTLOOK

We investigated to which extent it is possible to obtain
within Lipatov’s high energy effective action gluon and quark
propagators, which resum interaction with a strong
(Reggeized) gluon background field, and whether the effec-
tive action allows one to rederive Balitsky-JIMWLK evolu-
tion.We found that bothquestions canbe answeredpositively.
To arrive at this result,weused a special parametrizationof the
gluonic field, already proposed in [11]. This parametrization
both allows an expansion of the gluonic field around the
Reggeized gluon field—which is assumed to be strong—and
provides consistent gauge transformation properties for the
parametrized gluonic field. Expanding the resulting effective
Lagrangian up to quadratic order in quantum fluctuations
around the strong Reggeized gluon field, we obtain a new
kind of gluon-gluon-Reggeized gluon vertex as well as the
usually quark-quark-Reggeized gluon vertex. Both vertices
allow for a straightforward resummation of the Reggeized
gluon field to all orders into Wilson lines. The resulting
resummed gluon and quark propagators agree for v− ¼ 0
light-cone gaugewith corresponding propagators that include
all order resummation of a gluonic background field in light-
cone gauge. The latter is frequently employed in the calcu-
lation of perturbative observables in the presence of high
parton densities, in particular, within the color glass con-
densate effective theory. Finally we demonstrated that these
propagators allow us to recover the complete (leading order)
Balitsky-JIMWLK evolution equation for Wilson lines from
Lipatov’s high energy effective action.
Our results demonstrate that high energy factorization as

formulated within the Balitsky-JIMWLK evolution and high
energy factorization as formulated within Lipatov’s high
energy effective action are equivalent. At the same time,
Lipatov’s high energy effective action provides additional
flexibility for actual calculations, since it allows one to adopt
in a straightforward manner different gauges to determine
quantum fluctuations of the gluonic field. Moreover, a
matching of results obtained within the BFKL formalism
andLipatov’s high energy effective actionon the onehand and
light-front perturbation theory and the color glass condensate
should now be facilitated. As an important side result we
confirm the proposed determination of the Reggeized gluon
from Balitsky-JIMWLK evolution proposed in [27], within
the context of Lipatov’s high energy effective action.
Future lines of research need to address the mentioned

matching of NLO results obtained within the two different
frameworks as well as the explicit calculation of new NLO
observables. Even though a number of important NLO

results have been obtained in the past for the scattering of a
perturbative projectile on a dense target (see, e.g., [34]),
there is still a need to refine the available tools for such
calculations. Another direction of research needs to address
the possible description of central production processes at
high parton densities as required for the analysis of
nucleus-nucleus collisions and/or high multiplicity events.
While the current study is limited to the quasielastic region,
such a program requires the investigation of the corre-
sponding effective action that contains induced terms for
both plus and minus Reggeized gluon fields. This is also
related to the question whether such central production
terms can be formulated in a way that automatically gives
rise to the Balitsky-JIMWLK hierarchy. Related to this
question is the possible extension of the Balitsky-JIMWLK
evolution to exclusive observables, generalizing already
existing results [35].
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APPENDIX A: MULTIGLUON
EXCHANGE WITHIN THE HIGH ENERGY

EFFECTIVE ACTION

We consider in the following the interaction of a Wilson
line in the fundamental representation with a color current,
where the interaction is mediated through the exchange of
Reggeized gluons. To embed theWilson line into a physical
process (and to take the regarding high energy limit), one
can, for instance, use the vertex Eq. (41), and combine it
with corresponding quark spinors; this relates then to the
following discussion of scattering of a quark on a color
current. For definiteness we take for the color current on
which the Wilson is scattering a quark. The following result
does not depend on those details. We are further only
interested in t-channel gluon exchange of (high energy)
gluons between the Wilson line and the color current;
couplings of the Reggeized gluon to the quark therefore
take place through the QCD quark-gluon vertex as well as
induced vertices Fig. 1.
Starting with two gluon exchange as the first nontrivial

contribution we have within conventional QCD the two
diagrams depicted in Figs. 3(a) and 3(b), while the two
relevant contributions within the high energy effective
action are given in Figs. 3(c)–3(e). The black blob denotes
the various couplings of the Reggeized gluon to the Wilson
line. For two Reggeized gluons one has
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ðA1Þ

Because of high-energy kinematics, the loop integral
in the diagram with two Reggeized gluon exchanges of
Fig. 3(c) factorizes. It is therefore possible to associate
the integration over minus momentum directly with the
Wilson line,

ðA2Þ

In the aboveweused a shorthand notation, introduced in [28],

½i;j�≡ ½tci ; tcj �; Snð1 � � �nÞ≡ 1

n!

X
i1;…;in

tci1 � � � tcin ; ðA3Þ

where in the second term the sum is taken over all
permutations of the numbers 1;…; n. Using this notation,
a possible decomposition of a color tensor with two adjoint
color indices is given by the following basis:

½1; 2�; S2ð12Þ: ðA4Þ
In [28], this decomposition has been used to construct the
pole prescription for induced vertices, by projecting out the
antisymmetric sector of the complete color structure of a
Wilson line. Using this pole prescription and associating the
integration over minus momentum similar with the one
Reggeized gluon to the two Reggeized gluon splitting,

similar to Eq. (A2), it is then straightforward to demonstrate
that diagrams such as Fig. 3(e) vanish.We note that this holds
for all splittings of a single Reggeized gluons into n
Reggeized gluons at tree level; i.e., such splittings are
generally absent within this particular pole prescription5

after integration over corresponding light-cone momenta.
The only diagrams left are therefore Figs. 3(c) and 3(d),
where the induced vertex associatedwith Fig. 3(d) carries the
color tensor [1,2], providing therefore the antisymmetric
contribution missing in Eq. (A2). For an explicit decom-
position of diagrams such as Figs. 3(a) and 3(b), we refer the
interested reader to [21,28].
The corresponding symmetry decomposition for three

adjoint color indices is provided by the following six tensors:

½½3; 1�; 2�; ½½3; 2�; 1�; S2ð½1; 2�3Þ;
S2ð½1; 3�2Þ; S2ð½2; 3�1Þ; S3ð123Þ; ðA5Þ

with

ðA6Þ

It is straightforward to demonstrate that

FIG. 3. Left: Two gluon exchange within QCD. Right: The corresponding decomposition within the high energy effective action in
symmetric (two Reggeized gluon exchange) and antisymmetric contributions.

5We note that a prescription different from the one of [28] has been used in [20]. We point out the possibility that the arguments
presented here may not hold for this particular prescription.
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ðA7Þ

We therefore find that Fig. 4(a) represents the color
tensor ½½3; 1�; 2� and ½½3; 2�; 1� through the color tensors
contained in the induced vertex Fig. 1. Figures 4(b)–4(d)
provide the color tensors S2ð½1; 2�3Þ, S2ð½1; 3�2Þ, and
S2ð½2; 3�1Þ, through the combination of the symmetric
two Reggeized gluon state with the induced vertex.
Finally Fig. 4(e) provides the color tensor S3ð123Þ.
For the explicit construction of the Wilson line with
three gluons decomposed into the above color tensors,
we again refer the interested reader to [21,28], where
furthermore some details on the four gluon exchange can
be found. The general picture should be nevertheless
already clear at this stage: even though the color tensor
associated with n Reggeized gluons coupled to a Wilson
line is automatically symmetric, the high energy effective
action is capable to construct the complete color struc-
ture provided by path ordered gluons making use of the
additional induced vertices. The latter provides the
necessary antisymmetric color tensors as well as corre-
sponding terms of mixed symmetry if combined with
multiple Reggeized gluon exchange.

APPENDIX B: QUANTUM FLUCTUATIONS
OF WILSON LINE

In the following we provide further details on the
derivation of the Feynman rules for the calculation of
Wilson lines. The propagator without fluctuations is easily
obtained from the action Eq. (63). In particular,�

∞
				 1

1þ g
∂þþϵAþ

1

∂þ þ ϵ

				 −∞



¼ P exp

�
−g
2

Z
∞

−∞
dzþAþ

�
¼ W½Aþ�ðz; x−0 Þ: ðB1Þ

To include fluctuations, we first consider the case
Aþ → Aþ þ ½Aþ;

g
∂− v−�. Since ∂−Aþ ¼ 0, the operator

1=∂− does not act on the Aþ fields. We therefore consider
a shift of the form AþðxÞ → AþðxÞ þ ½AþðxÞ; wðxÞ� ¼
AþðxÞ þ ½AþðxÞ; wð0; x; x−Þ� with wðxÞ ¼ g

∂− v−ðxÞ and
where we used the delta function implicitly contained in
Aþ to set xþ ¼ 0 in the fluctuation wðxÞ. Expanding to
linear order in w,

ðAþ þ ½AþðxÞ; wðxÞ�Þn ¼ Anþ þ
Xn−1
i¼0

ðAiþ1
þ wAn−i−1þ − AiþwAn−iþ Þ þOðw2Þ ¼ Anþ þ

Xn
i¼1

AiþwAn−iþ −
Xn−1
i¼0

AiþwAn−iþ þOðw2Þ

¼ Anþ þ Anþw − wAnþ þOðw2Þ; ðB2Þ

one finds

W½Aþ þ ½Aþ; w��ðx; x−Þ ¼ W½Aþ� þW½Aþ� · wðxÞ − wðxÞ ·W½Aþ� þOðw2Þ; ðB3Þ

where wðxÞ ¼ wðxþ ¼ 0; x; x−Þ. The fluctuation Aþ → Aþ þ ½Aþ;
g
∂− v−� leads therefore to

g
∂−

½W½Aþ�ðx; x−0 Þ; v−ðxÞ� ¼
g
2

Z
x−
0

−∞
dx−½W½Aþ�ðx; x−0 Þ; v−ðxÞ�; ðB4Þ

which translates directly into the Feynman rule of Fig. 2(c). The second type of fluctuations requires a shift of the form

VþðxÞ ¼ AþðxÞ þ vþðxÞ; ðB5Þ

where vþ does not have deltalike support. One finds to linear order in the fluctuations vþðxÞ,

FIG. 4. Three gluon exchange within the high energy effective action. Left: The antisymmetric contribution. Center: The contribution
with mixed symmetry. Right: The symmetric contribution.
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W½Aþ v�ðxÞjxþ¼∞ ¼ W½A�ðxÞjxþ¼∞ þ
X∞
n¼0

�
−g
2

�
nYn
i¼1

Z
dxþi

Xn
j¼1

Aþðx1Þ � � �Aþðxj−1ÞvþðxjÞAþðxjþ1Þ � � �AþðxnÞ

× θðxþ1 − xþ2 Þ � � � θðxþj−1 − xþj Þθðxþj − xþjþ1Þ � � � θðxþn−1 − xþn Þ þOðv2þÞ: ðB6Þ
AþðxÞ ∼ δðxþ − xþ0 Þ sets now θðxþj−1−xþj Þθðxþj −xþjþ1Þ→θðxþ0 −xþj Þθðxþj −xþ0 Þ. The integral over xþj has therefore zero
support and yields zero result. The only contributions that remain are j ¼ 1 and j ¼ n, i.e., the cases where the vþ is placed
as the first or the last term. For a term with m fluctuations one therefore finds

�
−g
2

�
m Xm

n¼0

Yn
i¼1

Ym
j¼nþ1

Z
∞

xþ
0

dxþi

Z
xþ
0

−∞
dxþj vþðx1Þ � � � vþðxnÞW½Aþ�vþðxnþ1Þ � � � vþðxmÞ

× θðxþ1 − xþ2 Þ � � � θðxþn−1 − xþn Þθðxþnþ1 − xþnþ1Þ � � � θðxþm−1 − xþmÞ: ðB7Þ

Fluctuations Aþ → Aþ þ vþ are therefore taken into account through a Wilson line gluon vertex (see Fig. 2), which can be
inserted only before or after the Aþ fields to the Wilson line.
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