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One of the remarkable features of high-multiplicity hadronic events in proton-proton collisions at the
LHC is the fact that the produced particles appear as two “ridges”, opposite in azimuthal angle ϕ, with
approximately flat rapidity distributions. This phenomenon can be identified with the inelastic collision of
gluonic flux tubes associated with the QCD interactions responsible for quark confinement in hadrons. In
this paper, we analyze the ridge phenomena when the collision involves a flux tube connecting the quark
and antiquark of a high energy real or virtual photon. We discuss gluonic tube string collisions in the
context of two examples: electron-proton scattering at a future electron-ion collider or the peripheral
scattering of protons accessible at the LHC. A striking prediction of our analysis is that the azimuthal angle
of the produced ridges will be correlated with the scattering plane of the electron or proton producing the
virtual photon. In the case of ep → eX, the final state X is expected to exhibit maximal multiplicity when
the elliptic flow in X is aligned with the electron scattering plane. In the pp → ppX example, the
multiplicity and elliptic flow in X are estimated to exhibit correlated oscillations as functions of the
azimuthal angleΦ between the proton scattering planes. In the minimum-bias event samples, the amplitude
of oscillations is expected to be on the order of 2% to 4% of the mean values. In the events with highest
multiplicity, the oscillations can be three times larger than in the minimum-bias event samples.

DOI: 10.1103/PhysRevD.97.114021

I. INTRODUCTION

Scattering has been critical to understanding submicro-
scopic structure since the earliest stages. Alpha-particle
scattering revealed the atomic nucleus and its components
—protons and neutrons. Later, elastic electron scattering

found the electric charge distribution of nuclei, and
inelastic electron scattering found pointlike structure inside
the nucleon, while electron-positron pair annihilation
revealed also the presence of gluons inside hadrons. The
existence of such objects does not necessarily tell the whole
story about hadron structure; the arrangement of quark and
gluon configurations could be more than just “floating”
particles. One possible configuration is a string of gluons
connecting a quark and antiquark in a meson or quark and
diquark in a nucleon. Strings provide a linear structure, so if
two strings are aligned parallel to each other in the plane
perpendicular to the collision direction, then their collision
can give rise to higher multiplicity than if the strings are
oriented transversely to each other. The flow of collision
products is also different. It is hence encouraging for
thinking about gluon strings that patterns of varying

*stglazek@fuw.edu.pl
†sjbth@slac.stanford.edu
‡goldhab@max2.physics.sunysb.edu
§rwb@case.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 97, 114021 (2018)

2470-0010=2018=97(11)=114021(14) 114021-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.114021&domain=pdf&date_stamp=2018-06-20
https://doi.org/10.1103/PhysRevD.97.114021
https://doi.org/10.1103/PhysRevD.97.114021
https://doi.org/10.1103/PhysRevD.97.114021
https://doi.org/10.1103/PhysRevD.97.114021
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


multiplicity and collective flow of products are seen in
occasional pp collisions.

A. Strings in ep → eX and pp → ppX scattering

We suggest that scattering of charged particles may be
directly sensitive to the formation of gluon strings [1]. An
electron can emit a virtual photon that in turn develops a
quark-antiquark pair connected by a gluon string (see
Fig. 1). The string azimuthal orientation, defined by the
angleΦ illustrated in Fig. 2, is correlated with the scattering
plane of the parent charged particle. An example of the
probability distribution of string orientation with respect to
the scattering plane is shown in Fig. 3. Details of its
calculation are described in Sec. III D. Such a probability
distribution implies that the charged-particle scattering-
plane azimuthal orientation is correlated with the multi-
plicity or collective flow of particles that emerge from a
subsequent collision of the virtual string with another one
that comes from the opposite-going charged particle in the
scattering process.
To be specific, when an electron scatters off a proton,

through a collision of a string of gluons between a quark
and antiquark in a photon with a string that connects a
quark and a diquark in the proton, see Fig. 4, the
multiplicity of the final state is optimized when its
collective flow is aligned with the electron scattering plane.
Similarly, the probability of rare events with large multi-
plicity and elliptic flow in peripheral pp scattering illus-
trated in Fig. 5, cf. Refs. [2–5], is maximal when one
projectile recoil is parallel to the recoil of the opposite-
going projectile. For example, such rare large-multiplicity
peripheral events with sizable elliptic flow at the LHC are

expected to have the maximal probability of occurring
when the two proton scattering planes are parallel to each
other. The probability is minimal when the scattering
planes of the protons appear rotated by 90 deg with respect
to each other. Figure 6 illustrates our estimate for string
collision effects in terms of the multiplicity NðΦÞ=Nð0Þ
and elliptic flow v2ðΦÞ=v2ð0Þ in the final state X as
functions of the angle Φ between the planes ðp1; p0

1Þ
and ðp2; p0

2Þ defined by the direction of proton beams
and final proton three-momenta p⃗0

1 and p⃗0
2 in the labo-

ratory; see Fig. 7. Figure 6 is obtained using Eqs. (7)
and (8). Examples like this suggest that the azimuthal
variation of multiplicity and elliptic flow can be used to
study properties of gluonic strings at the LHC.
Our calculations are carried out using Hamiltonian

dynamics in quantum field theory in the approximation
of very large beam momentum, and collisions of strings are

FIG. 1. Scattering of an electron yields a virtual photon that
develops quark-antiquark pair connected by a gluon string.

FIG. 2. Beam of charged particles is scattered with momentum
transfer q⃗ that defines a scattering plane. The photon that carries q⃗
creates a quark-antiquark pair with relative momentum k⃗. The
gluon string lies along that momentum, and it forms the azimuthal
angle Φ with the scattering plane.

FIG. 3. Example of probability PðΦÞ of finding a gluon string
produced electromagnetically through scattering of an electron, as a
function of the azimuthal angleΦ around the electron beambetween
the electron scattering plane and the string axis that connects a quark
with an antiquark in the string rest frame; see Fig. 2. In the example,
the incoming electron momentum is 7 TeV. Electrons scatter
elastically with momentum transfers of square q2 ¼ −1.4 GeV2,
gaining 1 GeVofmomentum transverse to the beam and losing 1=4
of their initialmomentumalong the beam.Only the strings due touū
are accounted for. Inclusion of d and s quark pairs reduces the
probability variation amplitude by about 1%. Inclusion of heavy
quarks further reduces the variation by about 1=5 of the shown
magnitude, mostly due to the c quarks that cause about 98% of the
latter reduction. The probability plot practically does not change
when the electron beam is replaced by a proton beam.

FIG. 4. Electron scattering on protons proceeds through a
collision of gluon strings, S1, that connects a quark and an
antiquark in a photon and S2 that connects a quark and a diquark
in a proton.
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estimated using a geometrical picture. The strings seen
along the proton beam form certain shapes (see Fig. 8) in
the plane transverse to the beam. We call this plane the
transverse plane (TP). The string shape in the TP corre-
sponds to a string that is stretched in space along the vector
r⃗, which extends from antiquark to quark in the string rest
frame (SRF). When the string moves very fast along the
proton beam, its shape in the TP is seen in the laboratory as
built around a two-dimensional vector r⃗T that forms the
transverse part of r⃗ ¼ ðrx; r⃗TÞ. The component rx corre-
sponds to the beam direction in the frame of reference that
we work with; its x axis is chosen along the beam. The

collision of strings S1 and S2 proceeds via the interaction of
partons in the region of overlap of the string shapes on the
TP, illustrated in Fig. 9.
The magnitude of overlap grows when the angle between

the strings decreases, provided that their impact parameter
is smaller than the string width. There is a competing effect
that the impact parameters may reach values comparable
with the string length, much larger than the string width,
when the angle between the strings is not small. Therefore,
in the minimal bias (MB) averages over events with all
possible impact parameters, these effects cancel each other.
The resulting azimuthal correlations between projectile
planes and the average multiplicity and elliptic flow are
small. They can be enhanced by averaging over events with
relatively large multiplicities, discussed later.
Concerning the length and width of gluonic strings, we

assume that the typical time needed by a string to reach its
full width is longer than the time of stretching a string by
quarks. This is in agreement with the flux-tube knot model
assumption [6,7] that the relaxation of a topologically
nontrivial string configuration to a tight-knot state con-
figuration is faster than the configuration decay rate,
cf. Refs. [8,9]. In the same spirit, we assume that the
suddenly stretched string has a diameter as small as
∼0.1 fm. Knowing that hadrons extend over distances
order 1 fm, one could consider string models with width
related to length, such as w ¼ r=10, etc.
One might hope to estimate the shape of gluonic strings

in photons using the vector dominance model (VDM) of

FIG. 5. The peripheral p1p2 → p10p20X scattering proceeds
through collision of gluon strings S1 and S2.

FIG. 7. Angle Φ between scattering planes in Fig. 6.

FIG. 8. Qualitative view of the two-dimensional string shape in
the TP. The length rT corresponds to the vector r⃗T that describes
the relative position of the quark with respect to the antiquark,
projected on the TP. w denotes the string width. The shape is
assigned some thickness distribution, ρðx⃗TÞ, that corresponds to
the density of partons as a function of position x⃗T in the TP. The
shape of string ends does not matter much if the string length is
much bigger than the width. In this work, the ends are
rectangular, which is the simplest shape to use in our estimates.

FIG. 6. Example of an estimate for the minimal-bias average
ratios of multiplicity, NðΦÞ=Nð0Þ, and elliptic flow, v2ðΦÞ=
v2ð0Þ, in the pp peripheral scattering process p1p2 → p0

1p
0
2X at

theLHC that proceeds throughcollisions of gluon strings.The ratios
are calculated using Eqs. (7) and (8). They depend on the angle Φ
between the two projectile planes that are shown in Fig. 7. Protons
come from opposite directions, with momenta equal in size, 7 TeV.
They scatter elastically with momentum transfers squared
q21 ¼ q22 ¼ −1.4 GeV2. For example, proton p1 scatters horizon-
tally, gaining 1GeVofmomentum transverse to the beamand losing
one-fourth of its initial momentum along the beam. Proton p2

scatters in a plane forming angle Φ with the horizontal plane and
gains 1GeVofmomentum in that plane transversely to the beamand
also loses 1=4 of its initial momentum in the beam direction. The
multiplicity is estimated assuming it is proportional to the number of
partonic collisions, and the elliptic flow is estimated assuming it is
proportional to the eccentricity in the initial stage of the string
collision. The unknown proportionality constants cancel out in the
ratios shown.
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photon-nucleon coupling. Three issues arise. One is that the
VDM does not provide any information on the shapes of
flux tubes in virtual ρ mesons. Another issue is that the
collision of two photons may proceed through quark-
antiquark pairs of which the relative motion is not at all
limited as the relative motion of quarks is limited by the
wave function of quarks in the neutral ρmeson. The quark-
gluon picture is dual to the sum over the whole spectrum of
hadronic states that contribute. The third issue is that,
although the VDM suggests that a photon can interact with
an extended proton via a pair of quarks resembling a ρ
meson, it does not tell us how a photon can turn into a pair
of quarks that do not interact and do not need to overlap
with a nucleon’s structure. Having no firm theoretical input
concerning the relation between strings’ width w and the
distance between the quark and antiquark in a pair in a
photon, r ¼ jr⃗j, we consider w a free parameter. Figure 6 is
obtained assuming that w ¼ 0.1 fm.
Themagnitude of string overlap is used as ameasure of the

number of partonic collisions that are possible in a given
configuration of strings heading toward each other.
Multiplicity is assumed proportional to this number. The
shape of the overlap area is used to estimate the eccentricity
of the colliding parton matter in the transverse plane. The
eccentricity is used to estimate the elliptic flow inX, the latter
assumed proportional to the former. The unknown propor-
tionality constants cancel out in ratios shown in Fig. 6.
In an event that leads from protons p1 and p2 to p0

1 and
p0
2, the density of parton-parton collisions in the TP is

described using the formula [10–13]

ncollðx⃗T ;b⃗; r⃗1; r⃗2Þ¼σρ1ðx⃗T− b⃗=2; r⃗1Þρ2ðx⃗Tþ b⃗=2; r⃗2Þ: ð1Þ
It says that the probability density for finding pairs of
partons capable of colliding at the point x⃗T in the TP is
proportional to a product of parton probability densities in
the parent strings that are separated by the impact vector b⃗.
The photons come from protons almost along the beam,
and the string impact parameter is assumed the same as the
proton-proton impact parameter. The coefficient σ stands
for the parton-parton cross section, presumably on the

order of a few to 10 mb. The string parton densities are
determined by the string orientations, r⃗1 and r⃗2, in the
respective SRFs. Formulas used for estimates of the parton
densities in strings are described in Sec. II.
In addition to the string parton densities, evaluation of

observables concerning collisions of strings involves prob-
abilities, denoted below by Pðr⃗1; p0

1; p1Þ and Pðr⃗2; p0
2; p2Þ,

for the string orientationvectors r⃗1 and r⃗2. These probabilities
are estimated using QED. They depend on the incoming and
outgoing protons’ momenta. Protons’ spins are summed and
averaged over because we assume that the beam protons are
not polarized and final proton polarizations are not measured.
Strings are assumed to not depend on the quark spins. The
probabilities we use are described in Sec. III.

B. Observables associated with string collisions

Consider the example of pp scattering. The density of
collisions in Eq. (1) is used to estimate multiplicity and
ridge effects as functions of the azimuthal angle Φ between
proton planes. The multiplicityNðb⃗; r⃗1; r⃗2Þ of X is assumed
proportional to the number of partonic collisions,

Nðb⃗; r⃗1; r⃗2Þ ¼ CNNcollðb⃗; r⃗1; r⃗2Þ ð2Þ

¼ CN

Z
d2xTncollðx⃗T ; b⃗; r⃗1; r⃗2Þ: ð3Þ

CN denotes an unknown coefficient that can be estimated
by comparison with models of string collisions and data on
particle production for selected scattering parameters.
The ridge effect is estimated assuming that the elliptic

flow v2 in X is proportional to the eccentricity ε2ðb⃗; r⃗1; r⃗2Þ
of the density of partonic collisions, ncollðx⃗T ; b⃗; r⃗1; r⃗2Þ, with
a model-dependent coefficient on the order of 0.3 [11]. The
definition of eccentricity [13] uses the concept of averaging
of a quantity fðx⃗TÞ with the density,

ffg ¼
R
d2xTfðx⃗TÞncollðx⃗T ; b⃗; r⃗1; r⃗2ÞR

d2xTncollðx⃗T ; b⃗; r⃗1; r⃗2Þ
; ð4Þ

where it is understood that x⃗T is measured from the
geometrical center of the overlap area in the TP so that
fx⃗Tg ¼ 0. One introduces polar coordinates in the TP,
angle α, and length xT ¼ jx⃗T j, using x⃗T ¼ ðx; yÞ ¼
xTðcos α; sin αÞ. Eccentricity is defined in terms of the
averaged values of x2−y2¼x2T cos2α and 2xy¼x2T sin2α.
Both are contained in the averaged value of the complex
quantity x2Te

2iα. Eccentricity of a density is defined as the
modulus of the averaged value of this quantity [13],

ε2ðb⃗; r⃗1; r⃗2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fx2T cosð2αÞg2 þ fx2T sinð2αÞg2

p
fx2Tg

: ð5Þ

The square root of the sum of squares of averaged values
reflects the relationship between real and imaginary parts of
a complex number and its modulus.

FIG. 9. The number of partonic collisions in a collision of two
strings S1 and S2 is assumed to be proportional to the overlap area
in the TP, in which the strings are seen as they appear when
looked at along the beam.
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The differential string collision cross section can be
estimated using the formula [10,12,14,15]

d2σðb⃗; r⃗1; r⃗2Þ
dbydbz

¼ 1 − e−Ncollðb⃗;r⃗1;r⃗2Þ; ð6Þ

which corresponds to the assumption that the dominant
angle dependence comes from strings that are made of
similar numbers of gluons, Ng, large enough to justify the
use of an exponential form. Otherwise, a formula
ð1 − Ncoll=N2

gÞN2
g may be used. The examples shown in

Fig. 6 are obtained using Eq. (6).
Estimates for the MB-averaged Φ-dependence of multi-

plicity and elliptic flow, shown in Fig. 6, result from
integration over the impact vector b⃗. We use the formulas

Nðp0
1; p

0
2Þ ¼

CN

σp

Z
d2b

×
Z

d3r1Pðr⃗1; p0
1; p1Þ

Z
d3r2Pðr⃗2; p0

2; p2Þ

× ½1 − e−Ncollðb⃗;r⃗1;r⃗2Þ�Ncollðb⃗; r⃗1; r⃗2Þ; ð7Þ
v2ðp0

1; p
0
2Þ ¼

Cv

σp

Z
d2b

×
Z

d3r1Pðr⃗1; p0
1; p1Þ

Z
d3r2Pðr⃗2; p0

2; p2Þ

× ½1 − e−Ncollðb⃗;r⃗1;r⃗2ÞÞ�ε2ðb⃗; r⃗1; r⃗2Þ; ð8Þ
where σp is a total cross section normalization factor that
cancels out in the ratios of interest in Fig. 6. The
normalization factor will not be further discussed. We only
mention that its calculation requires integration over all
possible final states. Similarly, the unknown proportionality
constant Cv, assumed to relate elliptic flow to eccentricity,
cancels out in the ratios of Fig. 6. Consequently, we focus
on the eccentricity that is meant to yield directly the ratio
shown in Fig. 6 for the elliptic flow.

II. GEOMETRICAL OVERLAP OF STRINGS

Modeling of string collisions involves consideration of
rotations and boosts required for description of the off-shell
stringworld sheets in different frames of reference.However,
the fast motion of a quark-diquark or quark-antiquark pair
along the beam implies a simple picture in the TP. We limit
explicit discussion to quark-antiquark pairs from photons.

A. String shape in the transverse plane

In the laboratory, a string specified by the quark-
antiquark relative position vector, r⃗ in the SRF, moves
very fast along the proton beam. The beam is used to define
the laboratory x axis. The string has the same width w,
transverse to the beam, in both frames. The length and
orientation of the string on the TP are determined by the

vector r⃗T, which is the transverse part of r⃗, and a correction
due to the string width (see below). The string shape in the
TP has some density profile, coming from the string
structure and orientation in space. In the TP region where
the string density differs from zero, it is useful to set the
string thickness to its average value, say, ρ̄1 for string S1
and ρ̄2 for S2. This approximation greatly simplifies
estimates of angular correlations.
If a string forms an angle β with the TP, which is the

angle it makes with the yz-plane in the SRF, its projection
on that plane is described by the vector ⃗l of length

l ¼ ðrþ wÞjcos βj þ wjsin βj; ð9Þ
where r ¼ jr⃗j and sin β ¼ rx=r. The two-dimensional string
shape in the TP is assumed to be a rectangle of area aβ ¼ wl.
The string average parton probability density on the TP ρ̄
times the area aβ gives the same number of partons Ng,
described by the formula ρ̄aβ, as a product of the average
three-dimensional parton probability density in the string ρ
times the string volume ρðrþ wÞπw2=4. This implies

ρ̄ ¼ ρπwðrþ wÞ=4
ðrþ wÞj cos βj þ wj sin βj : ð10Þ

In this approximation, the product of parton densities is

ρ1ðx⃗T − b⃗=2; r⃗1Þρ2ðx⃗T þ b⃗=2; r⃗2Þ
¼ ρ̄1ρ̄2A1ðx⃗T − b⃗=2; r⃗1ÞA2ðx⃗T þ b⃗=2; r⃗2Þ; ð11Þ

where A1 and A2 denote the characteristic functions
of the two string shapes on the TP. The two strings may
a priori have different widths,w1 andw2. Thesewidths may
be correlated with the string lengths, as an element of
modeling of how strings develop. The characteristic func-
tion of the overlap area is denoted by Aðx⃗T ; b⃗; r⃗1; r⃗2Þ ¼
A1ðx⃗T − b⃗=2; r⃗1ÞA2ðx⃗T þ b⃗=2; r⃗2Þ. In our estimates, we
only consider fixed, small w1 ¼ w2 ¼ w ¼ 1=10 fm.

B. Thin string approximation

The thin strings approximation means that the string
width w is typically much smaller than its length r. For thin
strings, the dominant overlap shape is a rhombus, as
illustrated in Fig. 10. It is dominant in the sense that a
rhombus occurs for most of the impact parameters and for
most lengths l1 and l2 of the strings and most angles γ
between them. The rhombus area and eccentricity are

arhombus ¼ w2=j sin γj; ð12Þ

ε2 rhombus ¼j cos γj: ð13Þ

Note that these quantities do not depend on the string
lengths. Departures from the rhombus shape occur for
small γ or when one string overlaps the other with its end.
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III. PROBABILITY OF A STRING

We consider pp scattering. Equations (7) and (8) provide
expectation values of multiplicity Nðb⃗; r⃗1; r⃗2Þ and eccen-
tricity ϵðb⃗; r⃗1; r⃗2Þ, averaged over string lengths and ori-
entations described in terms of vectors r⃗1 and r⃗2. The
probability densities, Pðr⃗1; p0

1; p1Þ and Pðr⃗2; p0
2; p2Þ, are

estimated using the canonical QED Hamiltonian in the
instant form (IF) of dynamics [16] in the Coulomb, or
radiation gauge [17], in which protons are treated as
extended particles with form factors and quarks are coupled
to photons as pointlike particles. Formulas for electrons are
obtained by removing the form factors. The limit of large
projectile energy allows us also to use the infinite momen-
tum frame approximation, which leads to the advantage of
using results of the front form (FF) of dynamics [16] and, in
particular, light-front holography [18,19] for estimates of
the string probability, in addition to the estimates based on
the IF linear potential; e.g., see Sec. III B.
The quark-antiquark pair creation term in the

Hamiltonian acts off the energy shell. Therefore, when
the pair current is contracted with the physical proton
momentum transfer, one does not obtain zero, even if one
assumes, as we do, that the electromagnetic production of
off-shell qq̄ pairs is fully expressible in terms of the
physical momentum transfer qμ ¼ pμ − p0μ between the
initial proton p and the final one p0. In order to remove
the off-shell current nonconservation effect, one can
replace the canonical pair current off shell by

jμpair → jμcons ¼ jμpair −
jpairqqμ

q2
: ð14Þ

Since the proton current is conserved, the conserved pair
current coupling through gμν to the proton current
jconsjproton is the same as jpairjproton. The same result is
obtained using the Feynman gauge.

A. String amplitude

The Hamiltonian terms that describe the dynamics of
quark pairs with strings qq̄S and protons p as eigenstates of
the Hamiltonian of QCD, completed with the two lowest-
order QED interactions of these particles and photons γ, is
written as [17]

H ¼ H0 þH1 þH2: ð15Þ

The subscripts denote powers of electric charge. In the
intuitive notation, relevant terms are

H0 ¼ Hγ þHqq̄S þHp; ð16Þ
H1 ¼ Hqq̄Sγ þHγqq̄S þHγp0p þHpγp0 ; ð17Þ
H2 ¼ Hqq̄Sp0p þHpqq̄Sp0 þ δHp: ð18Þ

The term δHp denotes the proton electromagnetic self-
energy counterterm, cf. Ref. [20]. The proton eigenstate of
H is written as a superposition of just three components,
neglecting terms that eventually do not contribute to the
string probability at order e4,

jprotoni ¼ Nprotonðjpi þ jγp0i þ jqq̄Sp0iÞ: ð19Þ
It is normalized by the constant Nproton so that
hprotonjprotoni ¼ EpV, where V is the large volume in
the laboratory frame, in which the quantum theory is
developed. Including proton spin, hproton sjproton0 s0i ¼
2Epð2πÞ3δ3ðp − p0Þδss0 . In the formal scattering theory
[20], the eigenvalue equation,

Hjprotoni ¼ Epjprotoni; ð20Þ
determines the amplitude of string component in the form

hqq̄Sp0jprotoni ¼ Nproton

Ep − Ep0 − Eqq̄ þ iϵ

×
X
γ

hqq̄SjHqq̄Sγjγihγp0jHγp0pjpi
Ep − Ep0 − E−

γ þ iϵ

þ Nprotonhqq̄Sp0jHqq̄Sp0pjpi
Ep − Ep0 − Eqq̄ þ iϵ

: ð21Þ

The matrix elements on the right-hand side are defined
by the assumption that once the quark pair is created
in a pointlike event according to QED, the quark and
antiquark move away from each other and stretch the string
S. Thus, the matrix element hqq̄SjHqq̄Sγjγi is equal
to the QED amplitude for the pointlike event of
creation of the pair, hqq̄SjHqq̄Sγjγi ¼ hqq̄jHqq̄γjγi ¼
eqūqγμvq̄ϵ

μ
γ16π3δ3ðpq þ pq̄ − pγÞδcqcq̄ . Similarly, the

Coulomb matrix element hqq̄Sp0jHqq̄Sp0pjpi is equal to
the QED amplitude hqq̄p0jHqq̄p0pjpi for the transition
p → qq̄p0. Assuming that the string is stretched independ-
ently of the spins, flavors, and colors of quarks, we have

hqq̄Sp0jprotoni ¼ Nproton

Ep − Ep0 − Eqq̄ þ iϵ

×
X
γ

hqq̄jHqq̄γjγihγp0jHγp0pjpi
Ep − Ep0 − E−

γ þ iϵ

þ Nprotonhqq̄p0jHqq̄p0pjpi
Ep − Ep0 − Eqq̄ þ iϵ

: ð22Þ

FIG. 10. Rhombus overlap area for thin strings.
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B. String length and orientation

The string is stretched by the quarks along their relative
momentum k⃗ in the SRF. At creation, the quark has
momentum k⃗, and the antiquark has momentum −k⃗. Their

invariant mass is Mqq̄ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

q þ k⃗2
q

. The outward quark

motion is slowed down by the buildup of a string. In the
holography [18,19] motivated by the anti-de Sitter/QCD
duality idea, the buildup is described by the decrease of
M2

qq̄ and increase of the effective potential UeffðrÞ ¼
κ4r2=4, where r is a three-dimensional distance between
the quark and antiquark in the SRF. The quadratic FF
holography potential corresponds to the linear quark-
antiquark potential that describes the gluon strings in
the IF [21]. In the Wentzel-Kramers-Brillouin (WKB)
approximation, in the FF and IF of Hamiltonian dynamics
equally, the quarks can reach the distance rmax for which
the pair potential energy equals the initial energy of the
quarks’ relative motion. This implies rmax ¼ 4jk⃗j=κ2. The
expectation value of a string length in the quantum
oscillator is smaller

ffiffiffi
2

p
times. Thus, the length and

orientation of the string S stretched between the quark
and antiquark that are created with invariant mass Mqq̄

from a photon are estimated to be

r⃗ ¼
ffiffiffi
8

p

κ2
k⃗: ð23Þ

With the proton beam along the x axis and the string
moving very fast along the beam, the string shape of Fig. 8
is built around the vector

r⃗T ¼
ffiffiffi
8

p

κ2
ðky; kzÞ; ð24Þ

the azimuthal angle around the beam of which, measured
from the y axis, is φ ¼ arctan ðkz=kyÞ. The pair invariant
mass and the string length in the TP are related through

M2
qq̄ ¼ 4ðm2

q þ κ4r⃗2=8Þ: ð25Þ

The string width w is left as a parameter. Strings spanned
quickly by quarks in photons may be thinner than in
mesons, because the relative momentum of quarks created
from a photon in a pointlike event is not limited, while the
relative momentum of quarks in typical mesons corre-
sponds to the scale of ΛQCD. For as long as the relativistic
mass of quarks, γmq, is large, the string is stretched with
the speed of light irrespective of any dynamical widening
that may occur later. The strings in photons may be thinner
than the strings that connect quarks to diquarks in
nucleons [2], since diquarks are extended objects.
Once the string extension is parametrized by the vector r⃗

that is proportional to k⃗ with a fixed coefficient, the
integration over all lengths and directions of the strings

in pp collisions is equivalent to the integration over the
relative momenta of quarks in the SRF. In the case of fast
motion of a string along the beam, in which r⃗ ¼ ðrx; r⃗TÞ,
we have

Z
drx

Z
d2rT ¼ 8

ffiffiffi
8

p

κ6

Z
dkx

Z
d2kT: ð26Þ

C. Limitation of string length

The holographic estimate of string length does not include
any limitation despite the fact that gluon strings must break
before they can reach lengths much greater than the hadronic
size. Therefore, the integrals in Eq. (26) ought to be limited.
Although various hypotheses concerning the limit on string
length can be developed,we find itmost instructive to set that
limit as amodel parameter. Itsmagnitudemaybe on the order
of 1–10 fm. The simplest way to introduce the limitation is to
cut the integral off. In Eq. (26), we adopt

Z
d3r →

Z
d3rθðL − jr⃗jÞ; ð27Þ

where L is the length that strings in photons cannot exceed.
Figure 6 is obtained using L ¼ 10 fm, which for the holo-
graphic κ ∼ 0.5 GeV implies formation of strings of mass up
to about 4.5 GeV.
The string is stretched off shell. Therefore, it may be

active over a period limited by the inverse of its off-shell-
ness. Thus, the potentially longer a string, the less time for
quarks to stretch it. In terms of the invariant mass M of a
pair of light quarks, the time available for string stretching
in the SRF is ∼1=M. Heavy quarks have much less time to
stretch a string than the light ones have.
In the holographic harmonic oscillator potential that

describes the string, the quarks slow down. Assuming that
the holographic oscillator frequency is ωholl ¼ κ2=ð2mqÞ, a
classical distance at time t is rðtÞ ¼ rmax sinωhollt. If the
available time is t ∼ 1=M, the distance between the quark
and antiquark is

rðtÞ ¼ rmax sin

�
κ2

2mq

1

M

�
: ð28Þ

It is clear that for light quarks there is enough time to reach
rmax. For heavy quarks, the FF holography awaits justifi-
cation, but if one assumes the harmonic potential to be valid
[22], there may not be enough time for charmed quarks to
reach rmax. Bottom quarks appear for even shorter times. A
simplification adopted in estimates made below is to ignore
the off–shell time limitation.

D. Elements of string probability density

The matrix element of Eq. (22) is a product of the proton
state of norm squared 2EpV with a quark-antiquark-proton
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state of norm squared 23EqEq̄Ep0V3. In a small volume
d3p, there are d3nð2πÞ3=V states. So, the probability of
finding a quark pair with a string qq̄S and a final proton p0
in the initial proton p with momentum quantum numbers
n⃗p in the small volumes of quantum numbers around the
momentum quantum-number vectors n⃗q, n⃗q̄, and n⃗p0 is

dP ¼ jhqq̄Sp0jprotonij2
2EpV

d3pqd3pq̄d3p0

2EqEq̄Ep0 ½2ð2πÞ�3 : ð29Þ

According to Eq. (22), one can write

hqq̄Sp0jprotoni ¼ Nproton
ð2πÞ3δ3ðpq þ pq̄ − qÞ
Ep − Ep0 − Eqq̄ þ iϵ

×
−eqj

μ
qq̄γgμνepj

ν
γp0pδcqcq̄

2EγðEp − Ep0 − Eγ þ iϵÞ ; ð30Þ

where q ¼ p − p0 and

jμqq̄γ ¼ ūpq
γμvpq̄

; ð31Þ

jνγp0p ¼ ūp0

�
γνF1ðq2Þ þ iσναqα

F2ðq2Þ
2mp

�
up: ð32Þ

Hence, in the limit of very large initial proton momentum
px ¼ P, p0

x ¼ uP,

dP ¼ N2
proton2Pð1 − uÞ2ð2πÞ3δ3ðpq þ pq̄ − qÞe2pe2q

×

���� jμ qq̄γjμγ p0p

ðq2 −M2
qq̄Þq2

����
2

δcqcq̄
d3pqd3pq̄d3p0

EqEq̄Ep0 ½2ð2πÞ�3 : ð33Þ

The kinematics is described in Sec. IV and illustrated in
Fig. 11. Integration over the pair total momentum renders

dP ¼ N2
proton2ð1 − uÞe2pe2q

���� jμ qq̄γjμ γp0 p

ðq2 −M2
qq̄Þq2

����
2

δcqcq̄

×
d3k

ð2πÞ3Mqq̄

d3p0

2Ep0 ð2πÞ3 : ð34Þ

A sum over colors yields a factor 3 instead of δcqcq̄ . After
averaging over initial proton spins and summing over final
proton spins and quark spins and flavors, with ep ¼ 1,

dP ¼ N2
proton3

X
flavor

ðeq=epÞ2ð1 − uÞ

×
Tðx; k⊥; p0; pÞ
ðq2 −M2

qq̄Þ2q4
d3k

ð2πÞ3Mqq̄

d3p0

2Ep0 ð2πÞ3 ; ð35Þ

where

Tðx; k⊥; p0; pÞ ¼
X
sp

X
sqsq̄sp0

jjμ qq̄γjμ γp0 pj2: ð36Þ

Evaluation yields

Tðx;k⊥;p0;pÞ¼ 16ðF1þF2Þ2T f

−16F2

�
F1þ

1

2

�
1þ q2

4m2
p

�
F2

�
T s; ð37Þ

with

T f ¼ 2ðt1t4 þ t2t3Þ −m2
pM2

qq̄ − q2m2
q; ð38Þ

T s ¼ 2ðt1t4 þ t2t3Þ þ 2ðt1t2 þ t3t4Þ
þ ðq2 − 4m2

pÞM2
qq̄=2; ð39Þ

t1 ¼ ppq; t2 ¼ ppq̄; t3 ¼ p0pq; t4 ¼ p0pq̄:

ð40Þ

The proton form factors F1 and F2 are parametrized as
in Ref. [23].
Using notation ½p0� ¼ d3p0=½2Ep0 ð2πÞ3� and Eqs. (23)

and (27), the string probability density in the space of
vectors r⃗ is obtained in the form

Pðr⃗;p0;pÞ¼ dP
d3r

¼ ½p0�N2
proton

3κ6

8
ffiffiffi
8

p ð2πÞ3

×
X
flavor

e2q
e2p

1−u
Mqq̄

Tðx;k⊥;p0;pÞ
ðq2−M2

qq̄Þ2q4
θðL− rÞ: ð41Þ

Its magnitude includes the volume of the final proton
detector momentum bin ½p0�. Formally, the same formulas

FIG. 11. The proton produces a pair in the fool’s Intersecting
Storage Rings (FISR) frame at the LHC. In this example, the
proton plane matches the xy plane. The photon emitted by the
proton carries the transverse momentum qT ¼ðqy;qzÞ. The figure
is simplified by setting qz ¼ 0. Generally, q⃗ ¼ ðqx; qy; qzÞ ¼
½ð1 − uÞP; qy; qz�, and the outgoing proton carries p⃗0 ¼
ðp0

x; p0
y; p0

zÞ ¼ ðuP;−qy;−qzÞ. The relative momentum of a

quark with respect to an antiquark is k⃗, in the rest frame of
the pair. The string between quarks has azimuthal angle
φ ¼ arctanðkz=kyÞ. For further details, see Sec. IV.
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are obtained using the FF and IF of dynamics, except for the
difference in direction in the off-shell continuation. The
same result holds for electrons, when one sets F1 ¼ 1,
F2 ¼ 0 and replaces the proton mass mp by the electron
mass me.
The probability PðΦÞ in Fig. 3 is obtained by intro-

ducing spherical coordinates, r⃗ ¼ ðr sin β; r cos β cosφ;
r cos β sinφÞ with β ¼ π=2 − θ and θ measured from
the x axis, which is the beam direction, so that d3r ¼
r2dr sin θdθdϕ. One integrates

R
L
0 r2dr and

R
π
0 sin θdθ and

sets ϕ ¼ Φ.

IV. STRING COLLISIONS IN pp SCATTERING

We consider peripheral pp scattering that proceeds
through photons. In the LHC laboratory frame of reference,
the x axis is set along the proton beams, the z axis is
vertical, and the y axis is along ẑ × x̂.

A. Proton momenta

Initial protons have four-momenta

p1 ¼ ðE;þP; 0; 0Þ; ð42Þ

p2 ¼ðE;−P; 0; 0Þ; ð43Þ

with E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

p þ P2
q

. Final protons four-momenta,

p0
1 ¼ ðE0

1; p
0
1x; p

0
1y; p

0
1zÞ ¼ p1 − q1; ð44Þ

p0
2 ¼ðE0

2; p
0
2x; p

0
2y; p

0
2zÞ ¼ p2 − q2; ð45Þ

include energies

E0
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

p þ ðP − q1xÞ2 þ q21y þ q21z

q
; ð46Þ

E0
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

p þ ð−P − q2xÞ2 þ q22y þ q22z

q
ð47Þ

and the azimuthal angles Φ1 and Φ2 of the proton planes

p⃗0
T1 ¼ ð−q1y;−q1zÞ ¼ p0

T1ðcosΦ1; sinΦ1Þ; ð48Þ

p⃗0
T2 ¼ð−q2y;−q2zÞ ¼ p0

T2ðcosΦ2; sinΦ2Þ: ð49Þ

The angle Φ in Fig. 6 equals Φ1 −Φ2. The protons are
assumed to lose a sizable fraction of their momentum along
the beam, so that the strings have a lot of energy to produce
X. So, q1x is on the order of P, and q2x is on the order of
−P. Denoting both incoming protons momenta equally by
p and both photons momenta equally by q, we have
p0

x ¼ �P − qx ¼ �uP, and in the limit P → ∞,

q2 ¼ −
ð1 − uÞ2m2

p þ q2y þ q2z
u

þOð1=P2Þ: ð50Þ

B. Quark momenta

In terms of the SRF quark relative momentum k⃗, the
four-momentum of a quark from proton 1 reads

p0
q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ q⃗2

q
þ q⃗ · k⃗

M
; ð51Þ

p⃗q ¼
1

2
q⃗þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ q⃗2

p
M

q⃗ · k⃗
q⃗2

q⃗þ k⃗ −
q⃗ · k⃗
q⃗2

q⃗; ð52Þ

where q⃗ ¼ ½ð1 − uÞP; qy; qz� and M ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

q þ k⃗2
q

.

Components of the antiquark four-momentum pq̄ are

obtained by changing k⃗ to −k⃗. The change of sign in front
of P provides expressions for quarks coming from proton 2.

C. Probability Pð⃗r; p0; pÞ
Given the incoming and outgoing particles’ momenta,

elements of probability densities in Eqs. (37)–(40) are

T f ¼ R1R4 þ R2R3

2xð1 − xÞuð1 − uÞ2 −m2
pM2

qq̄ − q2m2
q; ð53Þ

T s ¼
R1R4 þ R2R3

2xð1 − xÞuð1 − uÞ2 þ
u2R1R2 þ R3R4

2xð1 − xÞu2ð1 − uÞ2
þ ðq2 − 4m2

pÞM2
qq̄=2; ð54Þ

where, using k ¼ ðky; kzÞ and q ¼ ðqy; qzÞ,

R1 ¼ ðkþ xqÞ2 þm2
q þ ½xð1 − uÞmp�2; ð55Þ

R2 ¼½k − ð1 − xÞq�2 þm2
q þ ½ð1 − xÞð1 − uÞmp�2; ð56Þ

R3 ¼ðukþ xqÞ2 þ u2m2
q þ ½xð1 − uÞmp�2; ð57Þ

R4 ¼½uk − ð1 − xÞq�2 þ ½umq�2 þ ½ð1 − xÞð1 − uÞmp�2:
ð58Þ

The probability Pðr⃗; p0; pÞ of Eq. (41) is obtained
using Eq. (23) for k⃗, so that the string vector r⃗ ¼
ðr sin β; r cos β cosφ; r cos β sinφÞ, where β and φ are
the angle, the string forms with the TP, and the azimuthal
angle measured from the y axis, respectively. We have

ky ¼ ðκ2=
ffiffiffi
8

p
Þ r cos β cosφ; ð59Þ

kz ¼ðκ2=
ffiffiffi
8

p
Þ r cos β sinφ; ð60Þ

x ¼ 1

2
þ ðκ2=

ffiffiffi
8

p
Þ r sin β
Mqq̄

; ð61Þ

and M2
qq̄ ¼ 4ðm2

f þ κ4r2=8Þ.
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D. Characteristics of string collisions

Scattering characteristics shown in Fig. 6 are evaluated
using Eqs. (7) and (8) and

NðΦÞ
Nð0Þ ¼ Nðp0

1; p
0
2Þ

Nðp0
10; p

0
20Þ

¼ Ñcollðp0
1; p

0
2Þ

Ñcollðp0
10; p

0
20Þ

; ð62Þ

v2ðΦÞ
v2ð0Þ

¼ ε2ðp0
1; p

0
2Þ

ε2ðp0
10; p

0
20Þ

¼ ε̃2ðp0
1; p

0
2Þ

ε̃2ðp0
10; p

0
20Þ

; ð63Þ

where the functions Ñcollðp0
1; p

0
2Þ and ε̃2ðp0

1; p
0
2Þ do not

contain any constant factors that cancel out in the evaluated
ratios. These functions are defined in Appendix, Eqs. (A8)
and (A9). Their values result from integration over the
range of impact vectors b⃗, for which strings are capable of
slamming into each other, on the features of strings overlap
area from Fig. 9 and on the probability distribution of the
string vectors r⃗1 and r⃗2, over which one integrates in MB
averages. For example, strings cannot collide if half of the
sum of their lengths is smaller than the length of the impact
vector, collisions of thin strings mostly occur through the
rhombus shape of Fig. 10, and experimental cuts on
multiplicity or elliptic flow limit the azimuthal angle γ
between vectors r⃗1 and r⃗2.
Suppose that strings are chains of effective gluons [24]

and the volume of a gluon in a chain is w3. The
corresponding density of gluons is then ρ ¼ 1=w3.
Consequently, the cross section for inelastic gluon-gluon
scattering is σ ∼ w2. The number of gluons in a string of
length r much longer than the width w, Ng ∼ r=w, is large,
which justifies the Glauber-model formula of Eq. (6),
which appears in Eqs. (7) and (8) and their computational
forms in Eqs. (A11) and (A12). The rhombus area in
Eq. (12) is independent of the impact vector b⃗ for any
sizable γ. So is the corresponding number of collisions
Ncollðb⃗; r⃗1; r⃗2Þ, which makes the exponential in the cross
section take the form expð−c=j sin γjÞ, where for the thin
strings introduced above the constant c > 1.
Integration over the impact vectors is illustrated in Fig. 12.

For every choice of string transverse lengths l1, l2 and their
relative azimuthal angle γ, the strings have a nonzero overlap

area when the end of vector b⃗ lies anywhere within a
parallelogram of sides l1 and l2. For all vectors b⃗ in the
parallelogram, the overlap area and its eccentricity are
approximately the same, variations appearing only near
the boundaries of the parallelogram and for γ ∼ 0 or γ ∼ π.
Thus, the parallelogram picture applies in the case of string
width w much smaller than the string lengths l1 and l2. The
area of such a parallelogram is l1l2j sin γj. Hence, using
Eqs. (12) and (13), the thin string approximation for angles γ
much greater than γ0 ¼ 2w=l1 þ 2w=l2 yields

Ñcollðr⃗1; r⃗2Þ
¼ l1l2½1 − e−σðρπw=4Þ2ρ̂1ρ̂2w2=j sin γj�ρ̂1ρ̂2w2; ð64Þ

ε̃2ðr⃗1; r⃗2Þ
¼ l1l2j sin γj½1 − e−σðρπw=4Þ2ρ̂1ρ̂2w2=j sin γj�j cos γj; ð65Þ

where the density factor ρ̂ is defined in Eq. (A17), resulting
from Eq. (10).
Note that after integration over impact vectors, the MB

average number of collisions is not inversely proportional
to j sin γj, as intuition for small impact vectors suggests.
Similarly, eccentricity is not just proportional to j cos γj but
rather to j sin 2γj. The reason is that both these character-
istics include the factor j sin γj that results from integration
over impact vectors. Therefore, the MB-averaged multi-
plicity and elliptic flow correlations shown in Fig. 6 result
from the inverse of sin γ in the exponential representing the
Glauber-model formula.
When γ → 0, the Glauber-model exponential tends to

zero, and the rhombus approximation yields

Ñcollðr⃗1; r⃗2Þ ¼ ρ̂1ρ̂2w2l1l2; ð66Þ

ε̃2ðr⃗1; r⃗2Þ ¼ l1l2j sin γjj cos γj; ð67Þ

while exact integration for γ ¼ 0, ignoring the exponen-
tials, results in

Ñcollðr⃗1; r⃗2Þjγ¼0 ¼ ρ̂1ρ̂2w2l1l2; ð68Þ

ε̃2ðr⃗1; r⃗2Þjγ¼0 ¼ 4ðl1l2 þ w2Þ arctanðw=l1Þ
− 2wðl2 − l1 þ 2wÞ: ð69Þ

In the limit γ → 0, the two results for Ñcoll agree well with
each other. In contrast, the rhombus approximation for
eccentricity does not extend below the minimal angle order
w=l at which the rhombus shape is altered by interference
from the ends of strings. The eccentricity formula of
Eq. (67), valid for γ ≫ γ0 ¼ 2w=l1 þ 2w=l2, does not
automatically match the exact result for γ ¼ 0, with
neglected exponentials. Instead, a simple formula achieves
the required matching,

FIG. 12. Illustration of the parallelogram in the transverse
plane, over which the end of impact vector b⃗ ranges for some
fixed values of the strings lengths l1 and l2 and their relative
azimuthal angle γ in the TP. In almost the entire parallelogram,
the overlap area and its eccentricity are the same when the ratios
w=l1 and w=l2 are negligible. The overlap area is marked in
yellow.
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ε̃2ðr⃗1; r⃗2Þ ¼ l1l2ðj sin γj þ γ0Þj cos γj:

Hence, for general angles γ, the thin string model provides
the following expressions that are used in our estimates:

Ñcollðr⃗1; r⃗2Þ ¼ w2ðr1 þ wÞðr2 þ wÞ
× ½1 − e−σðρπw=4Þ2ρ̂1ρ̂2w2=j sin γj�; ð70Þ

ε̃2ðr⃗1; r⃗2Þ ¼ l1l2ðj sin γj þ γ0Þj cos γj
× ½1 − e−σðρπw=4Þ2ρ̂1ρ̂2w2=j sin γj�: ð71Þ

We use these formulas to obtain the ratios shown in Fig. 6
from Eqs. (7) and (8), or their equivalents (62) and (63).
The six-dimensional integrals over string vectors r⃗1 and r⃗2
are carried out numerically.

E. Beyond minimal bias

A condition of relatively large multiplicity selects events
with small values of the angle γ in the minimal bias
expectation values only through the Glauber cross section
exponential and not directly through the overlap shape.
This is so because the sin γ that results from integration
over impact vectors b⃗ cancels the effect of the rhombus
overlap area growing like 1= sin γ for small angles γ. In bins
of data with large multiplicity, for which the Glauber
exponential ought to be small, there also ought to be an
increase in elliptic flow.
Indeed, this is what happens according to Eqs. (7) and (8)

when one limits the averaging to events with large
multiplicities. The resulting effects can be estimated by
requiring that the number of binary collisions of Eq. (64) in
the events over which one averages is not smaller than a
specified fraction f of the maximal observed multiplicity in
the peripheral events. According to Eq. (64), this condition
reads

Ñcollðr⃗1; r⃗2Þ ≥ fw2ðLþ wÞ2: ð72Þ

Computation shows that for f ¼ 1=2 and f ¼ 0.75, the
multiplicity ratio Nðπ=2Þ=Nð0Þ decreases from its MB
value of about 0.975 in Fig. 6 to about 0.93 and 0.92,
respectively. This is an oscillation nearly three times bigger.
Correspondingly, the elliptic flow ratio v2ðΦÞ=v2ð0Þ drops
from its MB value of about 0.965 in Fig. 6 to about 0.90
and 0.875, which is even bigger than a threefold increase in
the amplitude.

F. Sensitivity to string features

Our assumed gluon string width w ∼ 0.1 fm is extremely
small. In our estimates, when this is decreased or increased
by a factor of 3, the multiplicity ratio at its minimum at
Φ ¼ π=2 does not visibly change. The eccentricity ratio at

its minimum decreases by about a percent whenw increases
in that range.
The upper limit we imposed on the string length,

L ¼ 10 fm, also appears extreme. Reduction of L by half
causes an increase of the multiplicity ratio at its minimum
to 99% and an increase of the eccentricity ratio at its
minimum to about 98%. Thus, both azimuthal correlation
effects become approximately halved.
Theoretically, when the impact parameter b in a pp

ultraperipheral collision exceeds some value bmin larger
than the strong-interaction proton diameter, one may
exclude from the integration range over b⃗ in Fig. 12 a
circle of radius bmin. For example, when bmin is set to 4 fm,
and the product of string lengths l1l2 is replaced by
l1l2 − πb2min > 0, the multiplicity and eccentricity ratios
at their minima drop to about 0.93, increasing the string
azimuthal effect. This can be interpreted as a consequence
of the feature that only long strings can collide for large b
and for long strings the azimuthal correlation may be more
pronounced than for short ones.
A line of study emerges regarding the variation of the

multiplicity and elliptic flow ratios with the projectile
momentum transfers, such as the variation of Fig. 6 with
the photon q21 and q22 in pp → ppX collisions. For
example, when one of the protons referenced in Fig. 6
loses half instead of a quarter of its initial momentum along
the beam, which implies that its momentum transfer
squared changes from −1.4 to −2.4 GeV2, the ratios of
Fig. 6 increase at their minima by about 1%.

G. Comparison with QED lepton pair production

In our study, the initial stage of a string-string collision
resembles photon-photon production of quark pairs. Virtual
photons emitted from the beam particles dominate the
forward scattering in which one can study string signatures.
Key to the formation of these signatures are the initial-stage
correlations among the two scattering planes of beam
particles and two quark pair planes. We explain the
relevance here of the analogous QED results for the
production of two lepton pairs with proton beams. Each
virtual photon coming from its respective proton turns into
a pair of leptons, and the two pairs exchange another virtual
photon.
We can infer some preliminary idea of the QED results

from Ref. [25]. In the on-shell reaction, γγ → eþe− þ eþe−,
the cross section is dominated by the collinear mass
divergences arising from the electron and photon propagator
poles. This in turn implies that each pair is close to threshold
with little average azimuthal correlation between the pair
planes, for unpolarized real photons. This remains true for
virtual photons of which the average includes the longi-
tudinal mode and of which the spacelike mass is small
compared to the pair energies. Taking into account the
projectile current, on the other hand, we find correlations
between the projectile scattering plane and its corresponding
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lepton pair plane. What is of primary interest is the
correlation between the two lepton pair planes and how this
correlation depends on the angle between the projectile
planes.
Comparison of the string-string collision correlations

with QED lepton pair production hinges on the degree to
which a photon exchange between lepton pairs and the
strong interaction between quark pairs differ in their
influence on the final-particle distributions. As a bench-
mark for comparisons, the QED results by themselves are
of interest in all of the three cases of proton beams induced,
electron beams induced, or electron beam and proton beam
induced double lepton pair production. Although the QED
discussion is beyond the scope of the present paper, we
wish to mention that the benchmark estimates can be based
on a combination of analytical and numerical calculations
as in Ref. [25] or on the event-generator approach as in
Ref. [26]. The central need is to identify the data cuts for
simulations that allow for comparison with the string-
model predictions.

V. CONCLUSION

As we have shown in this paper, the physics of ridge
production seen in high-multiplicity hadronic events in
proton-proton collisions at the LHC has important conse-
quences for high energy collisionsmediated by photons. This
includes ultraperipheral pp collisions at the LHC, photon-
photon collisions at a high energy electron-positron collider,
and electron-proton collisions at an electron-ion collider. In
each case, the virtual photon creates a quark-antiquark pair
connected by a gluonic string, i.e., a gluon flux tube.
The gluonic string represents the QCD dynamics of the

force which confines the triplet and antitriplet color of the
quark and antiquark. For example, the confining harmonic
oscillator potential in the light-front holographic model
[18,19] can be identified with the dynamics of a gluon string.
In the case of an electron at an electron-ion collider, the

frame-independent wave function of its je−qq̄i Fock state,
defined at fixed light-front time xþ ¼ tþ z=c, is off shell in
P− ¼ P0 þ Pz and thus off shell in the invariant qq̄ mass.
The quark and antiquark in the Fock state are confined via
the exchange of gluons, the same stringlike interactions
responsible for color confinement and Pomeron exchange.
The virtual state of the lepton becomes on shell in the
electron-proton collision. The high energy collisions of the
two flux tubes will produce maximal hadronic multiplicity
when the flux tubes are maximally aligned, i.e., when the
area of overlap in the transverse plane is maximal as
illustrated in Fig. 10. Moreover, as we have shown, the
azimuthal distribution of the resulting hadronic ridges will
be correlated with the scattering plane of the scattered
lepton as illustrated in Fig. 6.
The ratios of multiplicities and elliptic flows shown in

Fig. 6 are independent of absolute probabilities or cross
sections for the events they concern. The absolute

quantities cannot be estimated without using advanced
models [27]. The ratio of cross sections for single tagged vs
untagged pp → X hadronic events at the LHC and
Relativistic Heavy Ion Collider are needed. One needs to
estimate the event rate for high-multiplicity events in γp
collisions and the analogous quantity for the process
pp → ppX. High-multiplicity cuts deplete the number
of available events by a factor 10−6 or smaller [28] in
central collisions. In peripheral ones, additional factors of
powers of α ∼ 1=137 significantly reduce the probability to
see a large number of products in the final state X.
However, it is possible to consider the replacement of a

photon by a Pomeron. A string due to a photon from a
lepton or a proton may collide with a string due to the
Pomeron from another proton. Instead of the factor α4,
one obtains the much larger value α2. In such a setup, in
analogy to deep inelastic ep scattering illustrated in
Fig. 4, one could only seek alignment of elliptic flow
with the electron scattering plane. Single-hadron corre-
lation with a projectile plane, in that case a lepton, has
already been studied [29]. However, azimuthal asymme-
try of elliptic flow in the final state has to our best
knowledge not been measured. If two Pomerons replaced
two photons, the small factors due to α would be
eliminated. However, note that the LHC is already
considered a photon-photon collider, and software for
simulating exclusive production is being built [30]. As far
as we know, extension to string collisions due to the
photons has not been considered yet.
As a final warning, it should be kept in mind that

observable many-body effects due to collisions of gluonic
strings are not guaranteed to be describable by many-body
techniques used for nucleons in heavy ion physics [31–33].
Quarks and gluons are confined objects. Their long-
distance interactions, where color-confining strings are
formed, are much less understood than the interactions
that characterize the formation of nuclei. Discussion of
implications of the string picture for scattering processes
that involve ions, including dependence on atomic numbers
A and Z from 1 to the largest available values, would
require extension of the theory.
In summary, our estimates for collisions of gluon

strings suggest that building required theory and com-
putational tools for absolute estimates should follow
experimental verification if the azimuthal variations of
multiplicity and elliptic flow do manifest themselves in
measurements of ratios exemplified in Fig. 6. Thus,
instead of predicting the absolute size of multiparticle
string collision effects, our estimates pose a question of
to what extent the correlations of the type illustrated in
Fig. 6 do actually occur in proton-proton, lepton-proton,
or even lepton-lepton scattering. Experimental assessment
of their magnitude would motivate directions for devel-
oping theory and studying gluon strings using the LHC
and other machines.
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APPENDIX: EQS. (7) AND (8)

Equations (7) and (8) for average string collision quantities
and Eqs. (62) and (63) for the ratios shown in Fig. 6 involve
integration over string vectors r⃗1 and r⃗2 as arguments of the
string probability densities Pðr⃗1; p0

1; p1Þ and Pðr⃗2; p0
2; p2Þ.

Since the densities are independent of the impact vector b⃗, the
order of integration in Eqs. (7) and (8) can be changed, and
multiplicity N and eccentricity ε2 are

Nðp0
1; p

0
2Þ ¼

CN

σp

Z
d3r1Pðr⃗1; p0

1; p1Þ

×
Z

d3r2Pðr⃗2; p0
2; p2ÞNcollðr⃗1; r⃗2Þ; ðA1Þ

ε2ðp0
1; p

0
2Þ ¼

1

σp

Z
d3r1Pðr⃗1; p0

1; p1Þ

×
Z

d3r2Pðr⃗2; p0
2; p2Þε2ðr⃗1; r⃗2Þ; ðA2Þ

where

Ncollðr⃗1; r⃗2Þ ¼
Z

d2b½1 − e−Ncollðb⃗;r⃗1;r⃗2Þ�

× Ncollðb⃗; r⃗1; r⃗2Þ; ðA3Þ

ε2ðr⃗1; r⃗2Þ ¼
Z

d2b½1 − e−Ncollðb⃗;r⃗1;r⃗2Þ�

× ε2ðb⃗; r⃗1; r⃗2Þ: ðA4Þ

In the ratios shown in Fig. 6, all constant factors cancel out,
and they can be removed from calculation. With the use of
definitions

Nðp0
1; p

0
2Þ ¼ CNC1C2Ñcollðp0

1; p
0
2Þ; ðA5Þ

ε2ðp0
1; p

0
2Þ ¼ C1ε̃2ðp0

1; p
0
2Þ; ðA6Þ

where C2 ¼ σðρπw=4Þ2 and

C1 ¼
1

σp
2½p0

1�N2
proton

3e4pκ6

8
ffiffiffi
8

p ð2πÞ3 2½p
0
2�

× N2
proton

3κ6

8
ffiffiffi
8

p ð2πÞ3 : ðA7Þ

The constant CN is dimensionless, the dimension of C1 is
mass to the power 18, and the dimension of C2 is mass

squared. Dimensional considerations ought to include the
fact that all the observables refer to specific states of final
protons and as such are actually densities in the space of final
proton momenta, where the measure is ½p0

1p
0
2� of dimension

mass to the fourth power. The infinitesimal momentum
volumes are to be replaced with the experimental ranges
of detection of the two outgoing protons. Other factors are σ,
the parton-parton cross section; ρ, the parton density in a
string volume;w, the string width;Nproton, the dimensionless
proton-state normalization constant; ep ¼ 1, the proton
charge; and κ, the holography effective-potential parameter
∼0.5 GeV.
With constants factored out, evaluation of ratios in Fig. 6

can be carried out replacing Ncollðp0
1; p

0
2Þ and ε2ðp0

1; p
0
2Þ by

Ñcollðp0
1; p

0
2Þ ¼

Z
d3r1P̃ðr⃗1; p0

1; p1Þ

×
Z

d3r2P̃ðr⃗2; p0
2; p2ÞÑcollðr⃗1; r⃗2Þ; ðA8Þ

ε̃2ðp0
1; p

0
2Þ ¼

Z
d3r1P̃ðr⃗1; p0

1; p1Þ

×
Z

d3r2P̃ðr⃗2; p0
2; p2Þε̃2ðr⃗1; r⃗2Þ; ðA9Þ

where the probability densities without constants are

P̃ðr⃗; p0; pÞ ¼ θðL − rÞ

×
X
f

e2f
e2p

1 − u
Mqq̄

Tðx; k⊥; p0; pÞ
ðq2 −M2

qq̄Þ2q4
; ðA10Þ

and

Ñcollðr⃗1; r⃗2Þ ¼
Z

d2b½1 − e−C2Ñcollðb⃗;r⃗1;r⃗2Þ�

× Ñcollðb⃗; r⃗1; r⃗2Þ; ðA11Þ

ε̃2ðr⃗1; r⃗2Þ ¼
Z

d2b½1 − e−C2Ñcollðb⃗;r⃗1;r⃗2Þ�

× ε̃2ðb⃗; r⃗1; r⃗2Þ: ðA12Þ

The functions of impact vector b⃗ result from integration
over the string overlap,

Ñcollðb⃗; r⃗1; r⃗2Þ ¼
Z

d2xTñcollðx⃗T ; b⃗; r⃗1; r⃗2Þ; ðA13Þ

ε̃2ðb⃗; r⃗1; r⃗2Þ ðA14Þ

¼ ½fx2T cosð2αÞg2 þ fx2T sinð2αÞg2�1=2
fx2Tg

; ðA15Þ
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ñcollðx⃗T ; b⃗; r⃗1; r⃗2Þ¼ ρ̂1ρ̂2×A1ðx⃗T − b⃗=2; r⃗T1ÞA2ðx⃗T þ b⃗=2; r⃗T2Þ; ðA16Þ

ρ̂ ¼ rþ w
ðrþ wÞ cos β þ w sin β

: ðA17Þ
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