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We use a symmetry-preserving truncation of meson and baryon bound-state equations in quantum field
theory in order to develop a unified description of systems constituted from light and heavy quarks. In
particular, we compute the spectrum and leptonic decay constants of ground-state pseudoscalar and vector
mesons: q0q̄, Q0Q̄, with q0, q ¼ u, d, s and Q0, Q ¼ c, b, and the masses of JP ¼ 3=2þ baryons and their
first positive-parity excitations, including those containing one or more heavy quarks. This Poincaré-
covariant analysis predicts that such baryons have a complicated angular momentum structure. For
instance, the ground states are all primarily S wave in character, but each possesses P-, D- and F-wave
components, with the P-wave fraction being large in the qqq states, and the first positive-parity excitation
in each channel having a large D-wave component, which grows with increasing current-quark mass, but
also exhibits features consistent with a radial excitation. The configuration space extent of all such baryons
decreases as the mass of the valence-quark constituents increases.
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I. INTRODUCTION

Constituent-quark models have long predicted the exist-
ence of doubly and triply heavy baryons [1–3]. Some of
those predictions have recently been qualitatively con-
firmed via numerical simulations of lattice-regularized
QCD [4–6]. Within the models the level ordering and
splittings are sensitive to the shape assumed for the
potential between the constituent quarks, so there are
some quantitative disagreements. Such problems might
be ameliorated through the use of a potential constructed
systematically using an effective field theory framework
[7,8], but issues of convergence may obscure this path.
Notwithstanding such theoretical issues, the experimen-

tal search for these states is underway. There is empirical
evidence for the existence of baryons containing two heavy
quarks [9–11], and although triply heavy baryons have not
yet been seen, it has been argued that even states constituted
from three valence b-quarks could be produced at the large
hadron collider [12].
The beauty of triply heavy baryons is the analogies one

might draw between these systems and heavy quarkonia
states, about which much is known [13]; the curse is that
any continuum bound-state treatment must involve a
strategy for producing an accurate solution to the three-
body problem. The three-body challenge has long been

faced in connection with quantum-mechanical potential-
models and strategies exist [14,15]. In relativistic quantum
field theory, on the other hand, the three-valence-body
problem is a greater challenge. Tackling it is made worth-
while because one can formulate the problem in such a way
as to maintain a traceable connection with QCD, making
predictions that can systematically be improved, and also
unify the treatment of mesons and baryons, and light- and
heavy-quark composites within a single framework.
A contemporary perspective on the continuum bound-

state problem in QCD is provided, e.g., in Refs. [16–20],
and although a treatment of (heavy-heavy) mesons will be
an important part of the analysis herein, the essentially new
element is solution of a three-body analogue of the Bethe-
Salpeter equation for triply-heavy baryons. Herein, as is
common, we will describe this equation as a Poincaré-
covariant Faddeev equation and call its solution the
Faddeev amplitude. This approach to baryons was intro-
duced in Refs. [21–24], which capitalized on the role
of diquark correlations in order to simplify the problem
[25–28], but we will adapt the formulation in Ref. [29] and
solve the three-valence-body problem directly, under the
assumption that two-body interactions dominate in forming
a baryon bound-state.
We describe the Faddeev equation in Sec. II, focusing on

JP ¼ 3=2þ states in this first Poincaré-covariant study of
triply-heavy baryons. Section III details the quark-quark
interaction that we use in solving for all elements relevant
to our two- and three-valence-body bound-state equations.
In Sec. IV, we report a range of properties of light-quark
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mesons and baryons, which provide a benchmark for our
results in the heavy-quark sector: mesons (Sec. V) and
baryons (Sec. VI). Section VII provides a summary and
perspective.

II. THREE-BODY EQUATION

The Faddeev amplitude for a J ¼ 3=2 baryon can be
written in terms of a Rarita-Schwinger spinor as follows,

Ψα1α2α3;δ
μ;c1c2c3 ðp1;p2;p3;PÞ ¼

1p
6
εc1c2c3Ψ

α1α2α3;δ
μ ðp1;p2;p3;PÞ;

ð1Þ

where μ is the spinor’s Lorentz index, α1;2;3, δ are
spinor indices for the three-valence quarks and baryon,
respectively, c1;2;3 are color indices, and P ¼ p1 þ
p2 þ p3, P2 ¼ −M2

baryon, where p1;2;3 are the valence-
quark momenta. Herein we only solve directly for QQQ
baryons, so the flavor structure is trivial, and owing to
explicit antisymmetry under the exchange of color indices,
Ψμ is completely symmetric under exchange of any other
pair of valence-quark labels.
The continuum bound-state problem is defined by a

collection of coupled integral equations. A tractable system
of equations is only obtained once a truncation scheme is
specified, and a systematic, symmetry-preserving approach
is described in Refs. [30–32]. The leading-order term is the
widely used rainbow-ladder (RL) truncation, which is
known to be accurate for ground-state light-quark vector-
and isospin-nonzero-pseudoscalar mesons, related ground-
state octet and decouplet baryons [16–20], and, with
judicious modification, heavy-heavy S-wave quarkonia
[33]. RL truncation is accurate in these channels because
corrections largely cancel owing to the preservation of
relevant WGT identities ensured by the scheme [30–32].
Consequently, it should be equally reliable for ground-state
QQQ baryons; and, hence, we consider the following
three-body equation, depicted in Fig. 1:

Ψα1α2α3;δ
μ ðp1; p2; p3Þ ¼

X
j¼1;2;3

½KSSΨμ�j; ð2aÞ

½KSSΨμ�3 ¼
Z
dk
Kα1α

0
1
;α2α02

ðp1; p2;p0
1; p

0
2Þ

× Sα0
1
α00
2
ðp0

1ÞSα02α002 ðp0
2ÞΨ

α00
1
α00
2
α3;δ

μ ðp0
1; p

0
2; p3Þ;
ð2bÞ

where
R
dk represents a translationally invariant definition

of the four-dimensional integral, ½KSSΨμ�1;2 are obtained
from ½KSSΨμ�3 by cyclic permutation of indices, and addi-
tional details concerning the structure of the Poincaré-
covariant Faddeev amplitude are supplied in Appendix A.

III. QUARK-QUARK INTERACTION

The key element in all analyses of the continuum
bound-state problem for hadrons is the quark-quark scat-
tering kernel. In RL truncation, that can be written
(k ¼ p1 − p0

1 ¼ p0
2 − p2):

Kα1α
0
1
;α2α02

¼ GμνðkÞ½iγμ�α1α01 ½iγν�α2α02 ; ð3aÞ

GμνðkÞ ¼ G̃ðk2ÞTμνðkÞ; ð3bÞ

where k2TμνðkÞ ¼ k2δμν − kμkν. Thus, in order to define all
elements in Eq. (2) and hence the bound-state problem, it
remains only to specify G̃. After two decades of study,
the following form has been found appropriate for RL
truncation [34,35] (s ¼ k2),

1

Z2
2

G̃ðsÞ ¼ 8π2

ω4
De−s=ω

2 þ 8π2γmF ðsÞ
ln½τ þ ð1þ s=Λ2

QCDÞ2�
; ð4Þ

where γm¼12=ð33−2NfÞ, with Nf¼5 herein; τ ¼ e2 − 1;

F ðsÞ ¼ ð1 − e−s=½4m2
t �Þ=s, with mt ¼ 0.5 GeV; and Z2 is

the dressed-quark wave function renormalization constant.
We employ a momentum-subtraction scheme in renorm-
alizing gap and inhomogeneous vertex equations. Hence,
for QCD with five active quark flavors, wherewith [36]

ΛMS
QCD ¼ 0.21 GeV, in Eq (4) we use [37]

ΛMOM
QCD ¼ ΛMS

QCDe
507−40Nf
792−48Nf ¼ 0.36 GeV: ð5Þ

The development of Eqs. (3), (4) is summarized in
Ref. [34] and their connection with QCD is described in
Ref. [38], but it is worth reiterating some of that material.
The interaction in Eqs. (3), (4) is deliberately consistent

with that determined in studies of QCD’s gauge sector,
which indicate that the gluon propagator is a bounded,
regular function of spacelike momenta that achieves its
maximum value on this domain at k2 ¼ 0 [39–44], and the

FIG. 1. Three-body equation in Eq. (2), solved herein for the
mass and amplitude of qqq and QQQ baryons, q ¼ u, d, s,
Q ¼ c, b. Amplitude: vertex on the lhs; spring with shaded circle:
quark-quark interaction kernel in Eq. (3); and solid line with
shaded circle: dressed-propagators for scattering quarks, obtained
by solving a gap equation with the same interaction.
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dressed-quark-gluon vertex does not possess any structure
which can qualitatively alter these features [45,46]. It also
preserves the one-loop renormalization group behavior of
QCD so that, e.g., the quark mass-functions one obtains are
independent of the renormalization point. On the other
hand, in the infrared, i.e., k2 ≲ Λ2

QCD, Eq. (4) defines a two-
parameter model, the details of which determine whether
confinement and/or dynamical chiral symmetry breaking
(DCSB) are realized in solutions of the dressed-quark gap
equations.
Computations [34,35] reveal that observable properties

of light-quark ground-state vector- and isospin-nonzero
pseudoscalar mesons are practically insensitive to varia-
tions of ω ∈ ½0.4; 0.6� GeV, so long as

ς3 ≔ Dω ¼ constant: ð6Þ

This feature also extends to numerous properties of the
nucleon and Δ-baryon [47,48]. The value of ς is chosen
so as to obtain the measured value of the pion’s leptonic
decay constant, fπ, and in RL truncation this requires
(q ¼ u, d, s)

ςq ¼ 0.80 GeV: ð7Þ

Another way of looking at Eq. (4) is suggested by
Refs. [38,44]. Namely, one can sketch a connection
with QCD’s renormalization-group-invariant process-
independent effective charge by writing

1

4π
G̃ðsÞ ≈ α̃PIðsÞ

sþ m̃2
gðsÞ

; m2
gðsÞ ¼

m̃4
0

sþ m̃2
0

; ð8Þ

and extract α̃PIð0Þ≕ α̃0, m̃0 via a least-squares fit on an
infrared domain: s≲ ð4ΛQCDÞ2. In this way, one obtains

1

π
α̃RL0 ¼ 9.7; m̃RL

0 ¼ 0.54 GeV; ð9Þ

αRL0 =π=½mRL
0 �2 ≈ 33 GeV−2. Comparison of these values

with those predicted via a combination of continuum and
lattice analyses of QCD’s gauge sector [44]: α0=π ≈ 0.95,
m0 ≈ 0.5 GeV, α0=π=m2

0 ≈ 4.2 GeV−2, confirms an earlier
observation [38] that the RL interaction defined by
Eqs. (3), (4) has roughly the correct shape, but is an order
of magnitude too large in the infrared. As explained
elsewhere [49–51], this is because Eq. (3) suppresses all
effects associated with DCSB in bound-state equations
except those expressed in G̃ðk2Þ, and therefore a description
of hadronic phenomena can only be achieved by over-
magnifying the gauge-sector interaction strength at infrared
momenta.
Our primary foci herein are systems involving heavy-

quarks, so it is pertinent to remark that RL truncation has
also been explored in connection with heavy-light mesons

and heavy quarkonia [33,52–54]. Those studies reveal that
improvements to RL are critical in heavy-light systems, and
an interaction strength for the RL kernel fitted to pion
properties alone is not optimal in the treatment of heavy
quarkonia. Both observations are readily understood, but
we focus on the latter because it is most relevant to
our study.
Recall, therefore, that for meson bound-states it is now

possible [49–51] to employ sophisticated kernels which
overcome many of the weaknesses of RL truncation. The
new technique is symmetry preserving and has an addi-
tional strength, i.e., the capacity to express DCSB non-
perturbatively in the integral equations connected with
bound-states. Owing to this feature, the scheme is described
as the “DCSB-improved” or “DB” truncation. In a realistic
DB truncation, ςDB ≈ 0.6 GeV, a value which coincides
with that predicted by solutions of QCD’s gauge-sector gap
equations [38,44,55]. Straightforward analysis shows that
corrections to RL truncation largely vanish in the heavy
+heavy-quark limit; hence, the aforementioned agreement
entails that RL truncation should provide a reasonable
approximation for systems involving only heavy quarks so
long as one employs ςDB as the infrared mass-scale. In
heavy-quark systems we therefore employ Eqs. (3), (4) as
obtained using

ςQ ¼ 0.6 GeV: ð10Þ

IV. LIGHT QUARKS

In order to compute properties of systems constituted
from lighter valence quarks, q ¼ u, d, s, all that remain
to be specified are the Higgs-generated current-quark
masses, mq. We work in the isospin symmetric limit:
mu ¼ md, and employ a mass-independent momentum-
subtraction renormalization scheme at a far-ultraviolet scale
ζ19 ¼ 19 GeV, wherewith the choices

mζ19
u;d ¼ 3.3 MeV; mζ19

s ¼ 74.6 MeV; ð11Þ

when used to specify the gap equation solutions that feed
into the Bethe-Salpeter and Faddeev equations, yield
the results in Table I.1 (Aspects of our approach to solving
Eq. (2) are detailed in Appendix B.) The values in
Eq. (11) correspond to renormalization-group-invariant
masses m̂u;d ¼ 6.3 MeV, m̂s ¼ 146 MeV; one-loop-
evolved masses at 2 GeV of

1We reiterate here that the mass-scale in Eq. (7) makes no
allowance for the effect of corrections to RL truncation on light-
hadron observables. This issue is canvassed elsewhere [56], with
the conclusion that for systems in which orbital angular mo-
mentum does not play a big role, the impact of such corrections
may largely be absorbed in a redefinition of this scale; something
we discussed in connection with Eq. (10).
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m2GeV
u¼d ¼ 4.8 MeV; m2GeV

s ¼ 110 MeV; ð12Þ

Euclidean constituent quark masses,

ME
u;d ¼ 0.41 GeV; ME

s ¼ 0.57 GeV; ð13Þ

defined via ME
q ¼ fkjMqðkÞ ¼ kg, where MqðkÞ is the

nonperturbative solution of the appropriate gap equation
and gives m̂s=m̂u¼d ¼ 23. They are consequently compat-
ible with modern estimates by other means [36].
It is worth making a few remarks here. First, recall the

equal spacing rule [57,58],

1.38 ¼ mΣ� ≈minterp
Σ� ≔

2

3
mΔ þ 1

3
mΩ ¼ 1.36; ð14aÞ

1.53 ¼ mΞ� ≈minterp
Ξ� ≔

1

3
mΔ þ 2

3
mΩ ¼ 1.52; ð14bÞ

where the listed values are empirical (GeV). This approxi-
mate linear growth of mass with the infrared scale of the
dressed-masses of a baryon’s constituents is preserved in
RL truncation treatments of the Faddeev equation [59–61].
Empirically, similar correspondences are found in the light-
quark sector for the masses and decay constants of vector
mesons (GeV):

0.89 ¼ mK� ≈minterp
K� ≔

1

2
mρ þ

1

2
mϕ ¼ 0.90; ð15aÞ

0.16 ¼ fK� ≈ finterpK� ≔
1

2
fρ þ

1

2
fϕ ¼ 0.16: ð15bÞ

Again, such near-linear evolution is found for these systems
in RL truncation [62], which also predicts the same

behavior for the leptonic decay constants of light-quark
isospin-nonzero pseudoscalar mesons [62] (GeV):

0.11 ¼ fK ≈ finterpK ≔
1

2
fπ þ

1

2
fs0 s̄ ¼ 0.11; ð16Þ

where fs0 s̄ ¼ 0.13 GeV is a RL prediction for the leptonic
decay constant of a fictitious “heavy pion,” constituted
from mass-degenerate valence partons with s-quark current
masses.
Returning now to Table I B, we have not yet generalized

the RL-truncation Faddeev equation, Fig. 1, to the case of
systems with nondegenerate valence-quark flavors. This is
formally straightforward. However, as the study of mesons
has shown, owing to moving singularities in the complex-
k2 domain sampled by the integration [63], it can become
difficult practically to obtain a reliable solution when the
difference between the Euclidean constituent-quark masses
of the valence quarks involved becomes large, and, more-
over, RL truncation becomes a poor approximation as one
moves into the domain of heavy-light systems [17].
Consequently, the baryon mass predictions listed in the
rightmost four columns of Table I B were obtained using
the equal spacing rule (ESR) described in connection with
Eq. (14). Experience and usage indicates that these ESR
values should reliably approximate the results that would
be obtained directly from Fig. 1: at most, they may
underestimate the RL-truncation Faddeev equation values
by 1%–2%. This is smaller than the RL truncation’s
systematic error, an insight which a posteriori justifies
our decision not to become encumbered with the effort
of solving the Faddeev equation for flavor-asymmetric
systems.

V. HEAVY QUARK MESONS

As discussed at the end of Sec. III, RL truncation should
serve as a good approximation in the study of systems
constituted from heavy quarks so long as the mass-scale in
Eq. (10) is used. In this case one must choose a value for ω,
i.e., the range of the infrared piece of the interaction.
Considering again QCD’s process-independent effective
charge [44], a more realistic value of α̃0=m̃0 is obtained by
increasing ω. Following this guide, we incremented ω,
keeping ς ¼ ςQ fixed, so as to optimize our description
of the masses and decay constants of S-wave heavy
quarkonia.
With ωQ ¼ 0.8 GeV and the choices

mζ19
c ¼ 0.82 GeV; mζ19

b ¼ 3.59 GeV; ð17Þ

we obtain the results in Table II. The values in
Eq. (17) correspond to renormalization-group-invariant
masses m̂c¼1.61GeV, m̂b¼7.16GeV; one-loop-evolved
masses at 2 GeV of

TABLE I. Computed values for a range of light-quark-hadron
properties, obtained using the quark-quark scattering kernel
described in Sec. III to specify the relevant gap-, Bethe-Salpeter-
and Faddeev-equations: Δ0 and Ω0 denote the first positive-parity
excitations in these channels. The interaction scale is stated in
Eq. (7) and the current-quark masses in Eq. (11) were chosen
to reproduce the empirical values of mπ ¼ 0.14 GeV, mK ¼
0.50 GeV. (Z2ðζ19Þ ≈ 1.) The rms relative-error per degree-
of-freedom between calculation and experiment is 7%. N.B.
The results in the rightmost four columns of panel B were
obtained using the equal spacing rule described in connection
with Eqs. (14). (All quantities listed in GeV; and where known,
experimental values drawn from Ref. [36].)

(A) fπ fK mρ fρ mK� fK� mϕ fϕ

herein 0.094 0.11 0.75 0.15 0.95 0.18 1.09 0.19
expt. 0.092 0.11 0.78 0.15 0.89 0.16 1.02 0.17

(B) mΔ mΔ0 mΩ mΩ0 mΣ� mΞ� mΣ�0 mΞ�0

herein 1.21 1.46 1.67 1.96 1.36 1.52 1.63 1.79
expt. 1.21 1.51 1.67 � � � 1.38 1.53 � � � � � �
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m2GeV
c ¼ 1.22 GeV; m2GeV

b ¼ 5.41 GeV; ð18Þ

Euclidean constituent quark masses

ME
c ¼ 1.32 GeV; ME

b ¼ 4.22 GeV; ð19Þ

and give m̂c=m̂s ¼ 11, m̂b=m̂s ¼ 49. They are thus com-
patible with other contemporary estimates [36].
We have also computed the masses and decay constants

of the Bc- and B�
c-mesons in this RL truncation: our results

are listed in Row 1 of Table II B.2 For comparison, recall
Eqs. (14)–(16) and note that RL truncation predicts
analogous linearities for S-wave heavy-heavy mesons
[52,70]. (The correspondence does not extend to heavy-
light systems [71].) This prediction of near-linearity leads
to the estimates in Row 2 of Table II B. Notably, they are
only ∼3% underestimates of the true RL results and the
value of mBc

obtained in this way is within 1.2% of
the current empirical value [36]. If one were interested in

fine-tuning the ESR estimates, then the methods of poten-
tial nonrelativistic QCD could be adopted [72].

VI. TRIPLY-HEAVY BARYONS

A. Mass

Using the quark-quark scattering kernel constrained via
the study of heavy-heavy mesons, we solved the
RL-truncation Faddeev equation depicted in Fig. 1 to obtain
themasses and Faddeev amplitudes of JP ¼ 3

2
þ ccc and bbb

baryons: our results are compared with a raft of other
estimates in Fig. 2 and listed in Table III.
The comparison in Fig. 2(a) reveals that, using the

current-quark masses in Eq. (17), our results for the
Ωccc and Ωbbb masses are low compared with a theory
average. We therefore repeated all relevant calculations
using current-quark masses inflated by 2%:

mζ19
c ¼ 0.83 GeV; mζ19

b ¼ 3.66 GeV: ð20Þ

TABLE II. (A). Computed values for a range of properties of
ground-state S-wave heavy quarkonia, obtained using the quark-
quark scattering kernel described in Sec. III to specify the relevant
gap- and Bethe-Salpeter-equations. The interaction scale is stated
in Eq. (10) and the current-quark masses listed in Eq. (17) were
chosen to reproduce the empirical values of mηc , mηb . We used
ωQ ¼ 0.8 GeV; notably, a �10% change in this value has almost
no perceptible effect on our results, e.g., mηc ¼ 2.98ð1Þ GeV.
The rms relative-error per degree-of-freedom between calculation
and experiment is 9%. (where reported, experimental values are
inferred from Ref. [36]—fηc ¼ 0.238ð12Þ, fJ=Ψ ¼ 0.294ð5Þ,
fϒ ¼ 0.506ð3Þ, and lattice-QCD (lQCD) results are drawn from
Refs. [64–67]—fηc ¼0.279ð17Þ,fηb ¼0.472ð4Þ,fJ=Ψ¼0.286ð4Þ,
fϒ ¼ 0.459ð22Þ.) (B) Row 1—Computed RL truncation results
for selected Bc and B�

c meson properties; Row 2—Estimates
of these same quantities obtained using equal spacing rules,
Eqs. (14)—(16); Row 3—Same rules used with experimental
values of the relevant quarkonia properties; Row4—Results stated
in Ref. [68]. An average of theory results yields mBc

¼ 6.336ð2Þ
[69]. (All quantities listed in GeV.)

(A) mηc fηc mηb fηb mJ=ψ fJ=ψ mϒ fϒ

herein 2.98 0.28 9.40 0.57 3.12 0.30 9.50 0.54
expt. 2.98 0.24 9.40 � � � 3.10 0.29 9.46 0.51
lQCD 0.28 0.47 0.29 0.46

(B) mBc
fBc

mB�
c

fB�
c

herein 6.39(1) 0.43 6.54(2) 0.43
ESR herein 6.19(2) 0.42 6.31(2) 0.42
ESR expt. 6.19 � � � 6.28 � � �
lQCD 6.28(1) 0.35 6.32(1) � � �
expt. 6.27 � � � � � � � � �

(a)

(b)

FIG. 2. Upper panel (A)—Our predictions for the Ωccc and
Ωbbb masses: darker (red) band, impact of ωQ ¼ 0.8� 0.08
(�10%); and lighter (blue) band, �10% change to ΛQCD in
Eq. (5). The masses increase with either increase in scale.
For comparison, we also indicate results obtained using other
approaches, left-to-right: Refs. [1,4,7,73–82]. Lower panel
(B)—Analogous comparison, prepared using the current-quark
masses in Eq. (20), which yield the baryon masses in the second
rows of Table III (A,B).

2The B�
c-meson is only just accessible in a brute-force use

of RL truncation, owing to the moving singularities described
above [63].
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This yields the masses listed in the second rows of
Table III (A,B), from which we produced Fig. 2(b): on
average, the values are increased by 1.5%. Evidently, this
small increase in current-quark mass is sufficient to remedy
the mass-deficit with respect to the theory average.
It is worth noting here that the current-quark masses in

Eq. (20) correspond to renormalization-group-invariant
masses m̂c ¼ 1.64 GeV, m̂b¼7.30GeV; one-loop-evolved
masses at 2 GeV of

m2GeV
c ¼ 1.24 GeV; m2GeV

b ¼ 5.52 GeV; ð21Þ

Euclidean constituent quark masses

ME
c ¼ 1.35 GeV; ME

b ¼ 4.28 GeV; ð22Þ

and give m̂c=m̂s ¼ 11, m̂b=m̂s ¼ 50. Computed with these
current-quark masses, the values of heavy-heavy meson
observables reported in Table II increase by 1.6%, on
average. Such changes are within the margin of error for RL
truncation.
For the reasons detailed in closing Sec. IV, we do not

directly solve the Faddeev equation in Fig. 1 for ccb and
cbb baryons, but instead report masses obtained using
equal spacing rules analogous to Eq. (14): at worst, these
values might underestimate the true RL results by ∼3%, an
amount subsumed in the reported error.

Table III (C,D) reexpress all computed results in
Table III (A,B) as a multiple of the Ωccc mass computed
within the same framework/setup. Evidently, so far as these
systems are concerned, the gross features of the spectrum
are fixed once the overall mass-scale is set; and hence
results for level splittings are very sensitive to fine details of
the interaction. Such precision is beyond the scope of RL
truncation; and might also be a challenge to other con-
temporary nonpeturbative approaches to strong QCD.
The success of Eq. (14) motivates us to define a

constituent-quark passive-mass via

MP
f ¼ 1

3
mΩfff

; ð23Þ

with the computed values (in GeV):

baryon∶
f u ¼ d s c b

MP
f 0.40 0.56 1.56 4.71

: ð24Þ

The analogous quantity defined via ground-state vector-
meson masses takes very similar values (in GeV):

meson∶
f u ¼ d s c b

MP
f 0.38 0.55 1.56 4.75

: ð25Þ

For light quarks in RL truncation, MP
q is close to the

Euclidean constituent-quark mass, but MP
Q is better

matched with MQðk ≃ 0Þ, i.e., the appropriate heavy-quark
mass function evaluated near the origin. In DB-truncations,
the latter is true for all quark flavors becauseMqð0Þ andME

q

are more nearly equal for sound physical reasons that are
understood [38,44,49–51,55].
We now capitalize on Eqs. (23), (24), using these

constituent-quark passive-masses to obtain mass estimates
for the members of the symmetric-20 of SUcð4Þ and
SUbð4Þ that we have not computed directly. The results
are reported in Table IV: evidently, the equal spacing rules
also provide a reasonable guide for these systems.

TABLE III. Baryon masses obtained by solving the Faddeev
equation in Fig. 1 using the quark-quark scattering kernel
described in Sec. V: (A)—J ¼ 3

2
þ ground state; and

(B)—J ¼ 3
2
þ first positive-parity excitation. Two sets of current-

quark masses are used: Eqs. (17), (20). Our results in the two
rightmost columns of panels (A) and (B) were obtained using
equal spacing rules analogous to Eq. (14); and the masses are
listed in GeV. Panels (C) and (D) reexpress the results in (A) and
(B) in terms of the like-computed Ωccc mass.

(A) Ωccc Ωbbb Ωccb Ωcbb

herein—(17) 4.69(6) 14.14(10) 7.84(12) 10.99(12)
herein—(20) 4.76(7) 14.37(10) 7.96(12) 11.17(12)
lQCD [4] 4.80(2) 14.37(2) 8.01(2) 11.20(2)

(B) Ω0
ccc Ω0

bbb Ω0
ccb Ω0

cbb

herein—(17) 5.08(8) 14.74(12) 8.30(14) 11.52(14)
herein—(20) 5.15(8) 14.98(12) 8.47(14) 11.76(14)

(C) Ωccc Ωbbb Ωccb Ωcbb

herein—(17) reference 3.01(5) 1.67(3) 2.34(4)
herein—(20) ” 3.02(5) 1.67(4) 2.35(4)
lQCD [4] ” 2.99(1) 1.67(1) 2.33(1)

(D) Ω0
ccc Ω0

bbb Ω0
ccb Ω0

cbb

herein—(17) 1.08(2) 3.14(5) 1.77(4) 2.46(4)
herein—(20) 1.08(2) 3.15(5) 1.78(4) 2.47(5)

TABLE IV. Baryon mass estimates obtained using the equal
spacing rule constituent-quark passive-masses in Eqs. (23), (24)
compared with values from a contemporary simulation of lattice-
QCD [4]: (A)—c-quark systems; (B)—b-quarks. (All quantities
listed in units of mΩccc

as obtained in the cited work and reported
in Table III.)

(A) Σuuc Ξucc Ωssc Ωscc

herein—(24) 0.51(1) 0.75(1) 0.57(1) 0.79(1)
lQCD [4] 0.52(1) 0.75(1) 0.56(2) 0.78(1)

(B) Σuub Ξubb Ωssb Ωsbb

herein—(24) 1.18(2) 2.10(3) 1.24(2) 2.13(3)
lQCD [4] 1.22(1) 2.11(1) 1.26(1) 2.14(1)
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The results in Table III predict that the energy cost of a
baryon’s first positive-parity excitation rises slowly with
increasing current-quark mass (GeV):

mΔ0 −mΔ ¼ 0.25;

mΩ0 −mΩ ¼ 0.29;

mΩ0
ccc

−mΩccc
¼ 0.39ð1Þ;

mΩ0
bbb

−mΩbbb
¼ 0.60ð16Þ: ð26Þ

There is insufficient empirical information to test this
prediction in baryons. The only comparison one can
currently draw is with the evolution of the analogous
splitting between degenerate-flavor vector mesons, for
which the pattern is a little different, viz. the splitting falls
slowly on the empirically accessible domain. Notably,
mϒð2SÞ −mϒð1SÞ ¼ 0.56 GeV, which is similar to the value
of mΩ0

bbb
−mΩbbb

in Eq. (26). In addition, there is a lQCD
prediction [83]: mΩ0

bbb
−mΩbbb

¼ 0.47ð1Þ, with which our
result is also consistent.

B. Rest-frame orbital angular momentum

Given that nonrelativistic quark models are the most
widely used tool for the study of heavy-quark systems, it is
worth sketching connections between the structural proper-
ties of triply-heavy baryons predicted by our truncated
Faddeev equation and results obtained in typical non-
relativistic treatments. The tightest possible such links
can be made by beginning with the baryon Faddeev
amplitude in Eq. (1) and constructing the Faddeev wave
function by attaching the dressed-quark legs:

χα1α2α3;δμ ðp1; p2; p3Þ ¼ Sα1α02ðp1ÞSα2α02ðp2ÞSα3α03ðp3Þ
×Ψα0

1
α0
2
α0
3
;δ

μ ðp1; p2; p3Þ: ð27Þ

One thereby arrives at that quantity which can directly be
related to the system’s Schrödinger wave function when a
nonrelativistic limit is valid and thus an object with a
probability interpretation in this limit. Since c-quarks and
(particularly) b-quarks are heavy, then our subsequent
comparisons are meaningful, at least at a first level of
approximation; and in any event, the features of the
Faddeev wave function that we expose are instructive in
themselves.
Both the Faddeev amplitude and wave function are

Poincaré covariant, i.e., they are qualitatively identical in
all reference frames. Consequently, each of the scalar
functions that appears is frame-independent, but the frame
chosen determines just how the elements should be
combined. Hence, the manner by which the dressed-
quarks’ spin, S, and orbital angular momentum, L, add
to form JP ¼ 3=2þ is frame-dependent: L, S are not
independently Poincaré invariant. Techniques have been

developed [84] that enable one to project a Faddeev wave
function onto the light front, generating an object which
always has a probability interpretation. However, since
angular momentum and spin are not individually Poincaré
invariant, then the angular momentum and spin computed
on the light front are distinct from the quantities obtained in
nonrelativistic quark models.
A connection with typical nonrelativistic treatments

can be drawn by working with χ evaluated in the bound-
state’s rest frame, which is where one would start when
developing a nonrelativistic limit. The rest-frame χ may
then be decomposed into a sum of six terms, each one
representing a distinct L − S coupling from the following
list:

2Sþ1LJ¼3
2
→ ð4S3

2
; 2P3

2
; 4P3

2
; 2D3

2
; 4D3

2
; 4F3

2
Þ: ð28Þ

(We shall subsequently omit the subscript J ¼ 3
2
.) In order

to achieve this decomposition, we first use the structures
explained in Appendix A to write

χα1α2α3;δμ ðp1; p2; p3Þ ¼
X128
n¼1

xnðzÞ½Xn�α1α2α3;δμ ðẑÞ; ð29Þ

and then define the following array of rest-frame angular
momentum strengths:

4S ¼ N−1
X
n∈4S

Z
d4p
ð2πÞ4

d4q
ð2πÞ4 jxnðp; q; PÞj

2; ð30aÞ

2P ¼ N−1
X
n∈2P

Z
d4p
ð2πÞ4

d4q
ð2πÞ4 jxnðp; q; PÞj

2; ð30bÞ

etc., where each sum runs only over those basis vectors
which describe the specified rest-frame L-S coupling, and

N ¼
X128
n¼1

Z
d4p
ð2πÞ4

d4q
ð2πÞ4 jxnðp; q; PÞj

2:

(This procedure is a three-body analogy of that employed
elsewhere [85] to display the angular momentum content
of the four lightest ðI ¼ 1=2; JP ¼ 1=2�Þ baryon isospin
doublets.)
Computed using Eq. (30), our values for the rest-frame

three-body angular-momentum fractions in the 3=2þ
baryon ground-states and their first positive-parity excita-
tions are depicted in Fig. 3: unsurprisingly in a Poincaré-
covariant treatment, every possible partial wave is present,
although the F-wave is small. Notably, although the
S-wave component is largest in each ground-state light-
quark system, they also possess large net P-wave fractions,
part of which enhancement owes to the presence of
significantly more P-wave basis elements in Eq. (29) than
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S-wave contributions. Notwithstanding this, the P-wave
component decreases steadily with increasing current-
quark mass so that heavy-quark ground states are predomi-
nantly S-wave in nature. Analogous evolution is seen with
the S- and D-wave fractions in vector mesons constituted
from degenerate valence partons [86].
The structure of the positive-parity excitations is quite

different (Fig. 3, lower panels): P-waves dominate in the
lightest system, but D-waves grow in strength with increas-
ing current-quark mass, dominating in the Ω0

sss and heavier
systems. Here, as with other observables, s-quark systems
define a “boundary”: they are neither truly light nor heavy,
and therefore provide a benchmark for comparisons between
the impacts of strong and weak mass generation [33].
In connection with light-quark baryons, these observa-

tions are semiquantitatively in agreement with those in
Ref. [60] even though a different measure of angular-
momentum content was employed. That study did not
consider heavy baryons.

C. Character of the first positive-parity excitations

At this point it is worth answering a question; viz. in the
Poincaré-covariant treatment of these bound-states, may
one interpret the first positive-parity excitation in each
channel as a radial excitation or are these states more
properly understood as even-parity ðL; SÞ (D-wave) exci-
tations? Comparing the two rightmost panels in Fig. 3, it is
evident that the P-wave fractions in the ground- and
excited-states are quite similar, whereas the S-waves are
much diminished and the D-waves greatly enhanced in the
excited states.

Additional information can be gleaned by studying the
wave function of each system. Therefore, in Fig. 4 we
depict the S-wave component of each ground-state 3=2þ
baryon, defined as follows:

W4;SðxÞ ¼
X
n∈4S

jxnðx; 0; 0; 0; 0Þj2: ð31Þ

(Recall Eq. (A9).) Not one of the functions drawn possesses
a node on x > 0. Furthermore, we have checked each one
of the 128 components of the ground-state baryon rest-
frame-projected Faddeev wave functions and found that
none possesses a node.
The curves in Fig. 4 should be compared with those

derived from the wave functions of the first positive-parity
excitations. For each of the uuu, sss, ccc, bbb positive-
parity excitations, we have checked all 128 components of
the associated rest-frame-projected Faddeev wave function

FIG. 3. Baryon rest-frame three-body angular-momentum fractions, Eq. (30): Upper panels—ground state J ¼ 3=2þ: left, complete
decomposition; and right, gross features. Lower panels—same for the first positive-parity excitation of each state.

FIG. 4. S-wave component of the rest-frame projected Faddeev
wave function for each JP ¼ 3=2þ baryon, Eq. (31), normalized
to unity at x ¼ 0.
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and learnt that with every component there is always at
least one kinematic configuration for which it exhibits a
single node. Choosing the kinematic configuration z ¼
ðx; 0; 0; 0; 0Þ, then Fig. 5 depicts that individual function of
largest magnitude within each partial wave projection
which possesses a node. There are no configurations z
for which any one the 128 amplitudes possesses more than
one node on x > 0. Drawing upon experience with quan-
tum mechanics and studies of excited-state mesons using
the Bethe-Salpeter equation [35,53,87–89], these features
are indicative of a first radial excitation.
Combining this information, a picture of the first

positive-parity excitations emerges. In our Poincaré-
covariant treatment in RL truncation, they are neither
purely radial nor purely D-wave excitations; but, instead,
they are a more intricate combination of both. It is reported

[90] that a similar picture emerges when these systems are
analyzed using the quark-diquark approximation to the
Faddeev equation described in Ref. [85].
In nonrelativistic quark models [1], one typically finds

that the first positive-parity excitation in the triply-heavy
sector is primarily a radial excitation, with small D-wave
admixtures. However, that weighting is reversed in the
second positive-parity excitation, the splitting between these
states is small, and it decreases with increasing constituent
quark mass. It is possible, therefore, that the ordering is
decided by fine details of the interaction. Notwithstanding
that, regarding the first postive-parity excitation, at this point
there is an apparent quantitative contrastwith our results; and
whether it is real and significant may only be judged after,
e.g., predictions for decays and transitions are also compared.

D. Spacetime extent

We return now to Fig. 4 and remark that, in accordance
with expectations, the momentum-space range of a ground-
state baryon’s Faddeev wave function increases as the
current-mass of the valence constituents grows, an effect
which corresponds to the system contracting in configuration
space. To be quantitative, we define l2

x to be the full width at
half maximum of a given curve in Fig. 4 and associate a
configuration space size via s ¼ 1=lx, using which con-
ventions one finds:

sΩsss
¼ 0.85sΔþþ ; ð32aÞ

sΩccc
¼ 0.73sΔþþ ; ð32bÞ

sΩbbb
¼ 0.41sΔþþ : ð32cÞ

Moving to Fig. 5, it is evident that the same thing happens in
the excited states, with approximately the same strength.
(N.B. The x-axis scale in the lower panels covers a domain
that is twice as large as that in the upper panels.)

VII. EPILOGUE

We described a unified study of an array of mesons and
baryons constituted from light and heavy quarks, using a
symmetry-preserving rainbow-ladder truncation of the
relevant bound-state equations in relativistic quantum field
theory: the gap-, Bethe-Salpeter- and Faddeev-equations. In
particular, we computed the spectrum and leptonic decay
constants of ground-state pseudoscalar and vector mesons:
q0q̄ and Q0Q̄, with q0, q ¼ u, d, s, Q0, Q ¼ c, b; and the
masses of JP ¼ 3=2þ qqq,QQQ ground state baryons and
their first positive-parity excitations. Analysing the results,
we showed that equal spacing rules provide sound esti-
mates for masses and decay constants; and subsequently
used this property to compute masses of 3=2þccb, cbb
baryons, and a range of related single- and doubly heavy
baryons. Within errors, the results agree with those
obtained using lattice-regularized QCD.

FIG. 5. Upper four panels—Δ0
uuu; and lower four panels—Ω0

ccc.
Working with the rest-frame-projected Faddeev wave functions
of the bound-states indicated, evaluated at z ¼ ðx; 0; 0; 0; 0Þ,
each panel depicts jχnðzÞj2 for the largest-magnitude three-
dressed-quark angular-momentum component within each partial
wave that possesses a zero. (The x-weightings are chosen
individually for visual effect.) The Faddeev wave function is
normalized such that the dominant S-wave component is unity at
z ¼ ð0; 0; 0; 0; 0Þ.
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We also analyzed the internal structure of the ground and
first positive-parity excited states of qqq, QQQ baryons by
studying their rest-frame three-body dressed-quark angular-
momentum fractions and the pointwise behavior of their
Faddeev wave functions. This revealed that each system has
a complicated angular momentum structure. For instance,
the ground states are all primarily S-wave in nature, but each
possesses P-,D- and F-wave components, with the P-wave
fraction being large in the u and s-quark states; and,
somewhat surprisingly, the first positive-parity excitation
in each channel has a large D-wave component, which
grows with increasing current-quark mass, but also exhibits
features consistent with a radial excitation. Additionally, the
pointwise behavior of the Faddeev wave functions indicates
that the configuration space extent of such bound states
decreases as the mass of the valence-quark constituents
increases.
On the strength of our results, we judge that, in addition

to its other known strengths, the coherent rainbow-ladder
(RL) truncation of all relevant bound-state equations can
produce realistic results for the masses and wave functions
of 3=2þ baryons involving heavy quarks, both the ground-
states and first positive-parity excitations. This claim can be
tested, e.g., by computing decay rates and transition form
factors involving these baryons, the matrix elements for
which are straightforward to evaluate consistently within
the RL truncation. This work has begun.
An important next step is the kindred analysis of 1=2þ

heavy-quark baryons, for which RL truncation should be
realistic. Naturally, 1=2− and 3=2− heavy-quark bound
states are also of interest; but, based on experience with
mesons, RL truncation is unlikely to be reliable in these
odd-parity channels because it ignores some crucial effects
driven by dynamical chiral symmetry breaking (DCSB).
Reliable predictions for such systems will require either
extension to baryons of the DCSB-improved kernels used
efficaciously in the meson sector—a challenging task, or
use of simpler, phenomenologically motivated changes to
RL truncation, designed to mimic the impact of DCSB
effects. These efforts, too, are underway.
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APPENDIX A: FADDEEV AMPLITUDE

With P ¼ p1 þ p2 þ p3, we introduce two relative
momenta:

q ¼ 1p
2
ðp1 − p2Þ; p ¼ 1p

6
ðp1 þ p2 − 2p3Þ; ðA1Þ

which are momentum-space Jacobi coordinates for a three
body system. In terms of these variables, one can proceed to
hyperspherical coordinates by defining a hyperradius and
hyperangle:

x ¼ q2 þ p2; zx ¼
q2 − p2

q2 þ p2
: ðA2Þ

Notably, the hyperradius is a Poincaré-invariant average of
the dressed-quark relative momenta:

x ¼ 1

3
½ðp1 − p2Þ2 þ ðp2 − p3Þ2 þ ðp3 − p1Þ2�: ðA3Þ

Given that the Faddeev amplitude carries four distinct
spinor indices and must satisfy the positive-energy Rarita-
Schwinger equation, it can be written as a direct product of
two Dirac matrices

Ψα1α2α3;δ
μ ðp; q; PÞ ¼ ½Dνðp; q; PÞ�α1α2 ½Dðp; qÞPμνðPÞ�α3δ

≕Dνðp; q; PÞ ⊗ Dðp; qÞPμνðPÞ; ðA4Þ

where the positive-energy Rarita-Schwinger projector is
defined as (P̂2 ¼ 1)

PμνðPÞ ¼ ΛþðP̂Þ
�
TP
μν −

1

3
γTμ γ

T
ν

�
; ðA5aÞ

Λ�ðP̂Þ ¼
1

2
ð1� γ · P̂Þ; ðA5bÞ

with TP
μν ¼ δμν − P̂μP̂ν and γTμ ¼ TP

μνγν.
If one now defines three additional orthogonal, dimen-

sionless momentum variables:

r ¼ p̂ − zpP̂ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2p

q ; t ¼ q̂ − zqP̂ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2q

q ; s ¼ t − z0rffiffiffiffiffiffiffiffiffiffiffiffi
1 − z20

p ; ðA6Þ

where zp ¼ p̂ · P̂, zq ¼ q̂ · P̂, z0 ¼ r · t, which have the
properties r2 ¼ s2 ¼ 1, r · P̂ ¼ s · P̂ ¼ r · s ¼ 0, then the
amplitude can be written

Ψα1α2α3;δ
μ ðp; q; PÞ
¼

X
a;i;j;s¼�

faijsðx; zx; zp; zq; z0Þ

× ½ΘaΓi
νðr; sÞΛsðP̂ÞC ⊗ ΘaΓjðr; sÞPμνðP̂Þ�; ðA7Þ

where the faijs are scalar functions of five arguments,
C ¼ γ4γ2 is the charge conjugation matrix, and
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Θa ¼ f1; γ5; γTβ ; γ5γTβg; ðA8aÞ

Γiðr; sÞ ¼ f1; γ · r; γ · s; γ · rγ · sg; ðA8bÞ

Γj
νðr; sÞ ¼ fγTν ; rν; sνg ⊗ Γðr; sÞ: ðA8cÞ

The sum in Eq. (A7) involves 4 × 4 × ð3 × 4Þ × 2 ¼ 384
terms, but only 128 are independent: the Faddeev amplitude
has 44 ¼ 256 spinor degrees of freedom and only 256=2 ¼
128 possess positive parity. Including the positive-energy
constraint, too, one arrives at 64 independent terms in the
sum. Turning now to the Lorentz index, μ, there are
nominally four degrees of freedom. However, the con-
straints on the Rarita-Schwinger spinor reduce this to just
two. Hence, one requires a basis with 64 × 2 ¼ 128
elements to completely represent the Faddeev amplitude.
Having arrived at this understanding, and defining
z ≔ ðx; zx; zp; zq; z0Þ, ẑ ¼ ðr; s; P̂Þ, we write

Ψα1α2α3;δ
μ ðp; q; PÞ ¼

X128
n¼1

fnðzÞ½Xn�α1α2α3;δμ ðẑÞ; ðA9Þ

where the basis elements, fXng, are those listed in
Ref. [91], Table II, which satisfy

1

8
trX̄nXn0 ¼

1

8
½X̄n�α2α1δ;α3μ ½Xn0 �α1α2α3;δμ ¼ δnn0 ; ðA10Þ

where

½X̄n�α2α1δ;α3μ ðp;q;PÞ
¼−Cα2α02Cδδ0 ½Xn�α

0
1
α0
2
α0
3
;δ0

μ ð−p;−q;−PÞC†α0
1
α1
C†α0

3
α3
: ðA11Þ

Notably, when used in connectionwith the baryon’s Faddeev
wave function, Eq. (27), these elements provide a straight-
forward connection to the rest-framewave-function’s partial-
wave decomposition in terms of dressed-quark spin, S, and
angular-momentum, L.

APPENDIX B: NUMERICAL PROCEDURE

A fully numerical approach to solving the Faddeev
equation depicted in Fig. 1 presents a challenging exercise
[92]. In order to improve efficiency, we introduce incom-
plete wave functions:

3χ
α1α2α3;δ
μ ðp; q; PÞ ¼

X128
n¼1

3xnðzÞ½Xn�α1α2α3;δμ ðẑÞ;

¼ Sα1α01ðp1ÞSα2α02ðp2Þ
×Ψα1α2α3;δ

μ ðp1; p2; p3Þ; ðB1Þ

with analogous definitions for 1;2χ; and incomplete
amplitudes:

3Ψα1α2α3;δ
μ ðp; q; PÞ ¼

X128
n¼1

3fnðzÞ½Xn�α1α2α3;δμ ðẑÞ; ðB2aÞ

¼
Z
dk
Kα1α

0
1
;α2α02

ðkÞ3χα1α2α3;δμ ðp;qk;PÞ; ðB2bÞ

where qk ¼ q −
p
2k, with 1;2Ψ defined similarly, in terms

of which the Faddeev equation, Eq. (2), can be rewritten

Ψα1α2α3;δ
μ ðp; q; PÞ ¼

X
k¼1;2;3

kΨα1α2α3;δ
μ ðp; q; PÞ. ðB3Þ

We then compute projections using the orthonormal
basis introduced in Appendix A and thereby transform
Eq. (B3) into a system of linear equations:

fnðzÞ ¼ 3fnðzÞ þ 2fnðzÞ þ 1fnðzÞ ðB4aÞ
¼ 3fnðzÞ
þ
X
m

Mð1Þ
nm 3fmðz1Þþ

X
m

Mð2Þ
nm 3fmðz2Þ; ðB4bÞ

3fnðzÞ ¼
X
m

Z
dk
Knm 3xmðzkÞ; ðB4cÞ

3xnðzÞ ¼
X
m

GnmfmðzÞ; ðB4dÞ

where z1 and z2 are scalar variables corresponding to
permuted momenta ðp2; p3; p1Þ and ðp3; p1; p2Þ, respec-
tively, i.e., ðp0; q0; PÞ and ðp00; q00; PÞwith relative notations
as in Eq. (A1); zk is the kindred scalar variable associated
with ðp; qk; PÞ; and G, K, Mð1;2Þ are the following 128 ×
128 matrices:

Gnm ¼ 1

8
½X̄n�α2α1δ;α3μ ðẑÞSα1α01ðp1ÞSα2α02ðp2Þ

× ½Xm�α
0
1
α0
2
α3;δ

μ ðẑÞ; ðB5aÞ

Knm ¼ 1

8
½X̄n�α2α1δ;α3μ ðẑÞKα1α

0
1
;α2α02

ðkÞ

× ½Xm�α
0
1
α0
2
α3;δ

μ ðẑkÞ; ðB5bÞ

Mð1Þ
nm ¼ 1

8
½X̄n�α2α1δ;α3μ ðẑÞ½Xm�α2α3α1;δμ ðẑ1Þ; ðB5cÞ

Mð2Þ
nm ¼ 1

8
½X̄n�α2α1δ;α3μ ðẑÞ½Xm�α3α1α2;δμ ðẑ2Þ: ðB5dÞ

In Eq. (B4), the unknown function is the full Faddeev
amplitude, fnðzÞ in Eq. (A9), which can now be determined
iteratively. The intermediate matrices G;K;Mð1Þ;Mð2Þ
may be stored in computer memory to accelerate the
iteration process.
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