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We study the eTe™ — VP and e*e™ — TP processes in the perturbative QCD approach based on k;
factorization, where the P, V and T denotes a light pseudoscalar, vector, and tensor meson, respectively. We
point out in the case of eTe~™ — TP transition due to charge conjugation invariance, only three channels are
allowed: e*e™ — a57T, ete™ — K3*KT and the V-spin suppressed ete™ — K3°K° + K3°K°. Cross
sections of ete™ — VP and eTe™ — TP at /s = 3.67 GeV and /s = 10.58 GeV are calculated and the
invariant mass dependence is found to favor the 1/s* power law. Most of our theoretical results are
consistent with the available experimental data and other predictions can be tested at the ongoing BESIII

and forthcoming Belle-II experiments.
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I. INTRODUCTION

The exclusive processes of e'e™ annihilating into two
mesons provide an opportunity to investigate various time-
like meson form factors. The form factor dependence on the
collision energy /s sheds light on the structure of partonic
constituents in the hadron [1,2]. It means that these proc-
esses can be used to extract the relevant information on the
structure of hadrons in terms of fundamental quark and
gluon degrees of freedom. Another reason to study the e e~
process is its similarity with annihilation contributions in
charmless B decays. In two-body charmless B decays,
annihilation diagrams are power-suppressed. However it
has been observed that in quite a few decay modes
annihilations are rather important [3—5]. Large annihilation
diagrams will very presumably give considerable strong
phases and as a consequence sizable CP asymmetries
are induced [6,7]. This fact has an important impact in
the CP violation studies of B meson decays. The ete™ —
VP, TP processes, where the P, V, and T denotes a light
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pseudoscalar, vector, and tensor meson, respectively, have
the topology with annihilation diagrams in B decays, and
thus they can provide an ideal laboratory to isolate power
correction effects.

It is anticipated that hard exclusive processes with hadrons
involve both perturbative and nonperturbative strong inter-
actions. Factorization, if it exists, allows one to handle the
perturbative and nonperturbative contributions separately.
The short-distance hard kernels can be calculated perturba-
tively. With the nonperturbative inputs determined from
other sources, hard exclusive processes provide an effective
way to explore the factorization scheme. The factorization
theorem ensures that a physical amplitude can be expressed
as a convolution of hard scattering kernels and hadron
distribution amplitudes. However if one directly applies the
collinear factorization to the eTe™ — VP, TP, the amplitude
diverges in the end point region x — 0. Here x is the
momentum fraction of the involved quark.

A modified perturbative QCD approach based on kr
factorization, called PQCD approach for brevity, is proposed
[6-11] and has been successfully applied to many reactions
[5,12-27]. In this approach, the transverse momentum of
partons in the meson is kept to kill endpoint divergences.
Then the physical amplitude is written as a convolution of
the universal nonperturbative hadronic wave functions and
hard kernels in both longitudinal and transverse directions.
Double logarithms, arising from the overlap of the soft and
collinear divergence, can be resumed into Sudakov factor,
while single logarithms from ultraviolet divergences can be
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handled by renormalization group equation (RGE). With
Sudakov factor taken into account, the applicability of
perturbative QCD can be brought down to a few GeV. In
this work, we will study the ete™ — VPand ete™ — TPin
the perturbative QCD (PQCD) approach [6—11] based on k7
factorization.

The rest of this paper is organized as follows. In Sec. II,
we first collect the input parameters including decay
constants and light-cone wave functions. Then we present
the PQCD framework and give factorization formulas for
the timelike form factors. Numerical results and detailed
discussions are presented in Sec. III. The last section
contains the conclusion.

II. PERTURBATIVE QCD CALCULATION

A. Notations

We consider the eTe™ — V(T)P, in which V(T) is a
vector (tensor) meson with momentum P; and polarization
vector €, (polarization tensor ¢,,), and P denotes a
pseudoscalar meson with momentum P, in the center of
mass frame. The collision energy is denoted as Q = /5.
In the standard model, such processes proceed through
a virtual photon or a Z° boson. At low energy with
\/s ~a few GeV, the amplitude is dominated by a photon.
In this case the hadron amplitude is parameterized in terms
of a form factor:

(V(P1,er)P(P,)|jS™|0) = Fyp(s)euapesPiPs. (1)

Notice that in Eq. (1) the vector meson is transversely
polarized. We have adopted the convention €'} = 1 for
the Levi-Civita tensor.

For a tensor meson, its polarization tensor €, can be
constructed via the polarization vector

1 -
€u<0) =—/(|P|.0,0,E7),
my

6(4) = —=(0.F1.-1.0). @)

Using the Clebsch-Gordan coefficients [28], one has

6 (2) = €, ()6, ().
(1) = \@[e,,(i)ey(m +6,(0)e, ()],
6,u(20) = \/;[e,mey(—) T eu(-)e,(+)]

+ \/geﬂ<o>ey<o>. (3)

In the calculation it is convenient to introduce a new
polarization vector &:

€u(A)q”

&) ="

mr, (4)
where ¢ = P{ + P, is the four momentum of the virtual
photon and ¢*> = 5. Then Eq. (3) becomes

1 0

5/4(:‘:1) = szeﬂ(i)’

2 2
,(0) = \@mf%%em ©)

£,(+2) =0,

where 7 = 1 —m2/Q?, with m; as the mass of the tensor
meson. Here the mass of the pseudoscalar meson has been
neglected. The new vector ¢ plays a similar role with the
ordinary polarization vector €, regardless of some dimen-
sionless constants.

Then like Eq. (1), one can define the 7P form factor as

(T(P,2)P(Py)|ji|0) = FTPeuvaﬂgy(/l)P?Pg’ (6)

in which the final state tensor meson is also transversely
polarized.

Using the form factors in Eqgs. (1), (6), one can derive the
cross sections for ete™ — VP, TP

2
o(ete” = VP) = TR P PO(s).  (7)
nol i 2
+ - Tp) — Zem Foo|23/2 . (8
olete = 17) =25 (LY | P0R(s), (8

with the fine structure constant a.,, = 1/137, and

(my(ry + mP)T {1 B (my(ry — mp)?
s s

D(s) = [1 - } 9)

B. Decay constants and light cone wave functions

Decay constants for a pseudoscalar meson and a vector
meson are defined by:

(P(P)|G21,759110) = =ifppy, (10)

(V(p.€)|a2r,9:110) = fymye,,

<V(p7€>|zl20-/wa|0> = _ifg(eupu_evpy)' (11)

Tensor meson decay constants are defined as [29]

(T(P,2)]j,,(0)[0) = frm3elt)”,
. . A)* A)*
(T(P.4)]j55(0)[0) = —ifFmp (el P, — " P,).  (12)

The interpolating currents are chosen as
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TABLE 1.

Decay constants of the relevant light mesons (in units of MeV).

f= fx fp f fo fo e

fo fg Sa p fk; f%

131 160 209+2 165+9 195+3 145£10 21745 185+10 231+4 200+£10 107+£6 105+21 118£5 77+14

l0) =3 @ (0)7,iD,a(0) + 3,0 iB,42(0).  (13)

J55(0) = 3,(0)6,,iD541 (0), (14)

with the covariant derivative Bﬂ = 5” -D
B, +ig,A%%/2 and D, = 9, — ig,A8/2.

The pseudoscalar and vector decay constants can be
determined from various reactions, 7~ — e[,
(m=,K=p~,K*7)u, and V° — eTe™ [28]. For tensor mes-
ons, their decay constants can be calculated in QCD sum
rules [30,31] and we quote the recently updated results
from Ref. [29]. Results for decay constants are collected in
Table L.

The light-cone distribution amplitudes (LCDAs) are
defined as matrix elements of nonlocal operators at the
lightlike separations z, with z> =0, and sandwiched
between the vacuum and the meson state. The two-particle
LCDAs of a pseudoscalar meson, up to twist-3 accuracy,
are defined by [32]

T~ -

(P(P)]a25(2)q1,(0)]0)
N ﬁ/ ' e P[5 g (x) + mors(x)

+ moys (Y — 1)¢£(x)]a/}’ (15)

where n, v are two lightlike vectors. The final-state P meson
is moving on the n direction with v the opposite direction. x
is the momentum fraction carried by the quark ¢,. The
chiral enhancement parameter mg = m}/(m, +m,,), is
used in our work as m§ =14 +0.1 GeV, m§ = 1.6 +
0.1 GeV [33,34].

We use the following form for leading twist LCDAs
derived from the conformal symmetry:

3/

where No=3 and r=2x—1. C?/z(i = 1,2) are Gegenbauer
polynomials, with the definition

x(1=x)[1+afC}? (1) + a5 CY* (1), (16)

c*n)y=3t, == -1). (17)

\SRRON]

The Gegenbauer moments at y=1GeV are used as [33,34]:

ak=0.06+003, a¥¥=025+0.15. (18)

In this paper, we will study the collision at /s = 3.67
and 10.58 GeV, and then it is plausible to adopt the
asymptotic forms for twist-3 DAs for simplicity:

P _ fP T o fP
¢P(x) _Zm’ ¢P(x) _2\/2TC(1 —2)C>. (19)

As for the # — ' mixing, we use the quark flavor basis

with the mixing scheme [35,36]:
n n cos¢p —sing n
()o@ () = (g s )G ) e
" s singg - cosgp / \ 7
The mixing angle is ¢ = 39.3° £ 1.0° [35,36] and

1 _
Ny = —= (uit + dd),

V2

Their decay constants are defined as:

Ny = S5. (21)

i

V2

(Of3y#yss|ng(P)) = if (P

(22)

(Olay*ysnln,(P)) =—=f.P*,

In the following calculation, we will assume the same wave
functions for the nn and s5 as the pion’s wave function,
except for the different decay constants [35,36] and the
chiral scale parameters [37]:

fo=(107£0.02)f,,  f, = (1342£0.06)f,.
mi =107 GeV,  mj =192 GeV. (23)

Similar with pseudoscalar mesons, the two-particle
LCDAs for transversely polarized vector mesons up to
twist-3 are parametrized as [38,39]:

(V(p.er)|g2p(2)q14(0)[0)
1 1 .
= e | s e )+ e o
+ mvieﬂw,{,ysy"e”Tn” Ua¢]\; (x)]a[)" (24)

The twist-2 LCDA can be expanded as:
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_ 3fy
- V2N¢

oh(x) x(1=x)[1+af €} (1) + a3y (1)),

(25)
with Gegenbauer moments at y =

1 GeV [40,41]:

af‘K* =0.04 £0.03, af;) = af-w = atﬁ =0,
a3 =011£0.09, a3, = a3, =0.15+0.07,
az; = 006200 (26)

As for the twist-3 LCDAs,
asymptotic forms:

we will also use the

3fy
(X) 8\/2]V—C[ +(2X—1)2],
14 3fV

For a generic tensor meson, the LCDASs up to twist-3 can
be defined as [22]:

<T(l’vi1>|%ﬂ( )q1(0)]0)
= e | X )+ madrd
+mTl€ﬂU/’”y5yﬂ§yn/) o—¢%('x)]a/)" (28)

These LCDAs are related to the ones given in [29]:

W) =50 ) = s T,
#0) = g ) (29)

The asymptotic forms will be used in the calculation:

¢ (x) = 30x(1 —x)(2x = 1), (30)

g4 (x) = 20x(1 — x)(2x — 1), =5(2x— 1)3.

(31)

In the above, we have only discussed the longitudinal
momentum distributions. It is reasonable that the transverse
momentum also plays an important role. Thus we will
include the transverse momentum dependent parton distri-
butions (TMDs) of the final-state light mesons. Following
Ref. [1], we assume no interference between the longitudinal
and transverse distributions, and thus one can use the
following Gaussian forms to factorize the wave functions
[42,43]:

¢V ()

w(x.b) = $(x) x exp (— 4’;) (32)
X — X 2
w(x.b) = $(x) x exp [— %] @)

In the above equation ¢(x) is the longitudinal momentum
distribution amplitude, and the exponential factor describes
the transverse momentum distribution. The parameters £ and
a characterize the shape of the transverse momentum
distributions. The parameter f is expected at the order of
Aqep and related with the root of the averaged transverse
momentum square (k2)!/2. If we choose (k%)!/? =
0.35 GeV, p*> =4 GeV~2. According to Ref. [43], the size
parameter a follows a~' ~ \/8zf,,, where f,, is the decay
constant of the related hadron.

C. PQCD calculation

In the PQCD scheme, a form factor can be written as the
convolution of a hard scattering kernel with universal
hadron wave functions. In small-x region, the parton
transverse momentum ky is at the same order with the
longitudinal momentum. Once k; is introduced in the hard
kernel, a transverse momentum dependent (TMD) wave
function is requested. Then the form factor is factorized as:

1
F(Q?%) _A dxldxz/dszldszzq)Ml(xhle,Phﬂ)H(xbxz,kT1,sz, Q. )@y, (X2, Kz, Po,pt)

1 d*b; d*b
:A dxlde/ 1 2 PMI(Xl,bl,Pl, )H<x1’-x27b1,b27 Q?H)PMZ(X27b27P27M)‘ (34)

(2m)* (27)?

Equation (34) is the Fourier form in the impact parameter b space. Here @), (x;, K7;, P;, ) and Py (x;. by, P,
the hadron wave functions, relying on k; and b respectively.

u) are both

Double logarithms arising from the overlap of soft and collinear divergences, can be resumed into Sudakov factor

[44,45]:
PM,(xivbivPiwu) = exp[—
The Sudakov factor s(&,b;, Q), E =x; or 1 —

s(x;, b, Q) —s(1
x;, is given as [46,47]:

—x;, b;, Q)]PM,(xi’bivﬂ)‘ (35)
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A g A@ 7§ A
=—ygln( = —==1) —=—
G0 0) 26, 1 n<b> * 4% <b ) 26

()] C)
—|=————In n{=~|+
Apt - 4p 2 b

where the notations have been used:

R £0 ] 5 1
g=1In |:7 , b=1In . 37
\/EAQCD bAQCD ( )
The running coupling constant is given as
‘ 1 InIn(p? /A2
a5 b2 (1*/ Ngep) (38)

T 7ﬂ1 IOg(ﬂQ/A%)CD) _ﬁ_? lnz(MZ/AZQCD) ’

and the coefficients A®) and g, are

33-2, 153-19n,

p=" =
4 67 22 10 8 o

AV =— AC)=—"_" _— —pi1 . (39
3’ o ~3 7 t3hin(5 (39)

Here n is the number of the quark flavors and yg is the
Euler constant.

Apart from the double logarithms, single logarithms
from ultraviolet divergence emerge in the radiative correc-
tions to both the hadronic wave functions and hard kernels.
These are summed by the renormalization group (RG)
method:

0 0
[ua—ﬁﬂ(g)a—g] Py, (5351 Piop) = 27, Py (311, Piok)

(40)
0 0
[ﬂa—ﬂ‘i‘/”(g) 8_9] H(xy, %2, by, by, O, )
:4qu('xl’x2’b]7b2a Q?ﬂ) (41)
Here the quark anomalous dimension is y, = —a,/z. In

terms of the above equations, we can get the RG evolution
of the hadronic wave functions and hard scattering ampli-
tude as

v di
Py (k1.1 Piop) = oxp [—2 / f‘m(asm))}
1/b; M

X 7_DM[ (x;.b;, 1/D;), (42)
tdﬁ _
H(xlvx27b17b27 Q’/’t) = eXp _4/ HYQ(QS(M))
u
XH(XI,Xz,bl,bz,Q,t), (43)

G- A, 5 In(2b) +1 In(2g) +1
48 b q
Ap,

[In?(29) — 1n*(2B))], (36)

843

where 7 is the largest energy scale in the hard scattering.
Then from Eqs. (35) and (42), the large-b behavior of P can
be summarized as

PM,»(xh b;, P;, u) = exp[=S(x;, b;, Q,ﬂ)]PM,»(xh b;, 1/b;),

(44)
with
S(x;, b;, O, ) = s(x;,b;, Q) + s(1 = x;, b;, Q)
= ;’b%ws(m). (45)

Furthermore, QCD loop corrections for the electromag-
netic vertex can induce another type of double logarithms

V(T) V(T)
P P
(a) (b)
P P
V(T) V(T)
(© (d
v
P
P
%
(e) ()

FIG. 1. Feynman diagrams for e*e™ — VP, TP. In the first
four panels, a hard momentum transfer occur through the highly
virtual gluon. In the last two panels, the neutral vector meson is
generated by a photon.
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a,In’x;. They are usually factorized from the hard ampli-
tude and resummed into the jet function S,(x;) to further
suppress the endpoint contribution. It should be pointed out
that Sudakov factor from threshold resummation is uni-
versal and independent on the flavors of internal quarks,
twist, and topologies of hard scattering amplitudes and the
specific process [48—52]. The following approximate para-
metrization is proposed in [53] for the convenience of
phenomenological applications

21+2cr(3/2 + C)

Sil% Q) == 010

(1 =x)°,  (46)

in which the ¢ is a parameter depending on Q.
Reference [54] proposed a parabolic parametrization of
the Q? dependence:

c(Q?) =0.040> - 0.510 + 1.87. (47)
The threshold resummation modifies the end point behav-
ior of the hadron wave functions, rendering them vanish
faster in this region.

Taking into account all the above ingredients, one can
obtain the analytic results of the first four diagrams in Fig. 1
in k; factorization:

1 )
F,= 167[CFQA dxldeA b1db1b2db2E<fa)h(3?1’x2,b1,bz)Sz(xz){rl[M(a)(xl,bl)—4511)(?51,171)}45/24(962’172)}’ (48)

1 oo
Fb = 167TCFQ/ dxldX2/ bldblbzdsz(tb)h(X2,)_C1,bz,bl)St()_Cl)
0

0

X {7131[¢lp(a)(x1, by) + @7 (x1. by)|5 (X2, by) = 2r29] (x1, by )5 (x5, b3) },

(49)

1 0
FC = —167TCFQ/ dxldx2/ bldbledeE(tc)h(}_CZ’xl’bZ’bl)St(xl)
0 0

x {rx (@7 (1, by) = @0y, b)) (32, b2) + 2ragT (31, b)) (2, b2) ),

1 &)
Fy=168C1Q [ "dvidrs | budbibadbyB(ta)h(xy 5ouby. o) () (9 (1. b1) + 1) 5 2)

0

where E(7;) and h are given as

E(x1,X5,b1, by, 0.1;) = ay(t;) exp[=S;(x1, by, Q. t;) = Sy(x2. by, 0. 1;)].

(50)

(51)

(52)

i\ 2
h(xl»xz’bl’bb Q) = (%) Hél)(\/xlszbl)[g(bl - bz)Hél)(\/X_szl)Jo(\/x_szz)

+0(by = b1)H (v/5300,) o (v/%20b1 ).

where J, and HE)I) are both Bessel functions. We take ¥ =
1 — x for short and define r; = m;/Q, with the index i = 1,
2 for the cases of final state meson is vector(tensor) or
pseudoscalar meson. The factorization scale ¢ is chosen as
the largest mass scale involved in the hard scattering:

t, = max(y/x,0,1/by,1/b,),
tp, = max(vV% 0, 1/by,1/by),
t. = max(y/x10,1/by,1/b,),
max(v%,Q. 1/by.1/b). (54)

If the final state meson is not a strange meson, the
distribution amplitudes are completely symmetric or anti-
symmetric under the interchange of the quark and antiquark’s
momentum fraction x and 1 — x. Then one can obtain

g

(53)

Fo(VP) = Fy(VP),  F,(VP)=F.(VP); (55)

F,(TP) = —F,(TP),  F,(TP)=—F,(TP). (56)

The contributions from a photon radiated from the
interaction point into a vector meson, shown as the last
two panels in Fig. 1, might be sizable. Although these
diagrams are suppressed by a.n, they are enhanced by
the almost on-shell photon propagator (1/m?) compared
with the gluon propagator in the first four diagrams (~1/s)
[55-58]. These two amplitudes can be calculated in
collinear factorization due to the absence of endpoint
singularities in these two diagrams. In particular, they
are equal after integrating out the momentum fractions:
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_ 1271'Ofgmfpfv

Fe:Ff mvs

(1+db). (57)

Finally, the form factors for the explicit channels of
ete™ — VP process are combinations of the six amplitudes
F .

a—f-

Fyor = Fppe =3 [Falpm) + Fyfpr)], (59
Fypo =3 Falpm) + Fy(pm)] + ¢lF.(pm) + Fy o)), (59)
Frk- = 2 IFu(K'K) + Fy(K'K)]

~JIFKK) + F(KK)L (60)

Frg- = =5 [Fu(K'K) + Fy(K'K)]
F2RKK) FARK) (6

Frogo = Frogo = —% [FH(K*K> + Fb(K*K)]
~ S [P K) + Fy(K KL (62)

Fo = [Fylon) + Fylom)] + o [Fo(on) + Fy(on)],

(63)
Foo = 21 (gm) + Pyl (60)

18

The form factors for ete™ — V(T)y'/) are mixtures of
the 7, and 7, components:

Fv<7'),7 = COS HFV(T)WII — sin GFV(T)nS’ (65)

FV(T)n/ = Sin QF‘/(T)% + COS QFV(T)WS s (66)

where V = p°, o, ¢ and

F o, = [Falpng) + Fylpng)] + % [Felpng) + Fy(png)]:
(67)

Fp, == v [F.(pns) + F¢(pns)], (68)

6

Fun, =3 Falong) + Fy(ong )]+ 2y [Felom) + Fy(on,).
(69)

me = _T\/S[Fe(wns) +Ff(a”1s)]’

5V2
(!

(70)

[Fe(¢nq) + Ff(¢”q)]’ (71)

_ % [Fa(dny) + Fy(ny)]

— s [Pt + Fy ()]

Ffﬁm
(72)

Similarly, based on Eq. (56), form factors of the eTe™ —
TP channels can be written as:

Fu;ﬂ_ = _Faz'ﬂ+ = [Fa(aZH) + Fh(aZEH7 (73)
2 * *
Frog-= 3 [Fo(K3K) + Fy(K3K)]
1
—g[Fc(KEK) + F4(K3K)], (74)
1
Fgrgr = _g[Fa(KEK) + F(K3K))]
2
+§[FC(K§K) + F4(K3K)), (75)
1
Frso = Piono = —S[Fu(KiK) + Fy(K3K)
1
—g[Fc(KEK) + F4(K3K)). (76)

The abbreviations a,, K3 correspond to the tensor meson
a,(1320) and K%(1430), respectively.

III. NUMERICAL RESULTS AND DISCUSSIONS

Using Egs. (48)—(51), and other input parameters, we can
calculate cross sections for the processes ete™ — VP and
ete™ — TP. In Table 11, we have collected the results for
cross sections at y/s = 3.67 GeV, together with the exper-
imental data from CLEO-c collaboration [59,60] (see
Ref. [61] for BES measurements), and the results at
/s = 10.58 GeV, together with the data measured by
Belle [62] and BABAR [63] collaborations. As we have
discussed before, three different types of transverse
momentum distribution functions were used, denoted as
S1, S2, and S3, respectively. S1 denotes the calculation
without intrinsic transverse momentum distribution, S2 and
S3 are obtained with the distributions in Eqs. (32) and (33),
respectively. Theoretical errors are obtained by varying
Agcp = (0.2540.05) GeV, and the factorization scale ¢
from 0.75¢ to 1.25¢ (without changing 1/b;).

A few remarks are in order.

(i) Results at different center of mass energy /s can be

used to study the 1/s" dependence of cross sections.
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(ii)

(iif)

@iv)

)

(vi)

(vii)

From our results at /s = 3.67 and 10.58 GeV, the
averaged value is about n = 4.1 forete™ — VP and
n=39 for ete™ - TP.' This favors the 1/s*
scaling, which is consistent with the constituent
scaling rule [64,65]. The fitted result from exper-
imental data is n = 3.83 £ 0.07 and 3.75 £+ 0.12 for
ete” — K*(892)°K? and wr®, respectively [62].
From Table II, we can see that, cross sections for
many processes are large enough to be measured,
such as the ete™ — pr, pn, wn and a5zF at
Vs =10.58 GeV, and efe” — afnt, K3*KT at
/s = 3.67 GeV. We suggest the experimentalists to
measure these channels especially at BESIII [66]
and Belle-II in future.

For the channels ete™ — K**KT, there are very
poor measurements from CLEO collaboration [60],
since the charged K* meson is reconstructed by
three—body decays: K** — K%z% — 37z, with large
systematic uncertainties. Our results are larger than
the central of experimental data. We hope the future
experimental measurements can clarify this differ-
ence more clearly.

If we neglect the photon-enhanced amplitudes F, ,
and assume the flavor SU(3) symmetry, one has the
relations for cross sections: o(wn®):6(p=aT):
o(p°7°):6(K**KF) :6(K*°K® + K*°K) = 1:2/9:
1/9:2/9:8/9.

At /s =3.67 GeV, we have o(ete”—ptnT)=
26(ete™ —p°2Y), while the photon-enhanced contri-
bution becomes more important at /s = 10.58 GeV,
and the ratio o(e*e™ = p*aT)/o(ete” — p°z°) is
approximately 2.5.

In the SU@3) limit, we expect o(wn’)/
o(K*°K? + K*°K°) = 9/8 > 1, however our calcu-
lation has indicated that the cross section o(wz®) is
smaller than that for ete™ — K*°K? + K*K0 by a
factor of 2 to 3. One reason arises from the fact that
the decay constants ff,, is about 30% smaller than
fxSfk- The chiral scale parameter m& will further
enhance the cross sections.

On the experiment side, the ratios Ryp and Ryp are
introduced to explore the SU(3) symmetry breaking
effect in the e*e™ — K*K and eTe™ — K3K proc-
esses, with the definition

c(ete™ — K*(892)°K")
o(ete” —» K*(892)"K*)’
c(ete™ = K3(1430)°K°)
olete” — K5(1430)"K*) "

RVP =

(77)

Ryp =

In the PQCD framework, this ratio can be written as

'"We correct here the improper statement in Ref. [1].

(viii)

(ix)

114016-9

F +F,
| (FatFp)+(F+Fy) P _|1+FF] (78)
2F+Fo) = (Fo A Fy)|  |2=Eke

In SU(3) symmetry limit, the wave functions of K,
K™, and K3 is symmetric or antisymmetric under the
exchange of the momentum fractions of quark and
antiquark, and thus the relations in Eq. (55) are
obtained. Then one can drive Ryp = 4. One source
of the SU(3) symmetry breaking is that the s quark is
heavier than ¢(= u,d) quark and carries more
momentum in the final state meson, therefore the
gluon which generates §s is harder than the gg one.
In this case, the coupling constant in the 5s process is
smaller. Consequently, the amplitude |F,, + F,| will
be smaller than |F, + F,|, and thus Ryp is expected
larger than 4.

From Table II, one can obtain theoretical results
for Ryp:

RVP(\/E = 367 GeV) >~ 599,

Ryp(v/s =10.58 GeV) ~5.76. (79)
At /s = 3.67 GeV, the CLEO-c collaboration [60]
has measured the ratio:
RUP(Vs =3.67 GeV) = 235701 £12.2,  (80)
with very large error-bar. Its central value is signifi-
cantly larger, but within the errors it is consistent
with our theoretical results. Belle collaboration gives
the results at /s = 10.52, 10.58, and 10.876 GeV,
respectively [62]
RUY >43, 200, 54 (81)
Note that in the region near 10.58 GeV, Belle result is
significantly larger than our expectation, which might
come from the Y'(45) resonance contribution. Off the
T(4S) resonance, the experimental results are con-
sistent with our theoretical calculations. Especially
forete™ = wrn®, results for the Born cross sections in
Ref. [62] indicate that the contribution of Y(4S)
resonance is significant in this channel.
Due to the charge conjugation invariance, we have the
relations for the e"e™ — TP transition amplitude
given in Eq. (56). Thus only three channels are
allowed: eTe™—asnT,eTe” > K5 KT, andeTe™ —
KK+ K3 K°.

If one further assumes V-spin symmetry, the
process ete” — K30K? + K3°K° is highly sup-
pressed since F, + F, ~ —(F. + F). From Table II,
one can obtain theoretical results for Ryp:

Ryp <1074, (82)
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TABLE IIL

Gegenbauer moments for the pion/Kaon and p meson.

Lattice QCD

Lattice QCD (u = 1 GeV)

QCD sum rules [33,34]

a%(2 GeV) = 0.1364(154)(145) [72]

a%(2 GeV) = 0.233(29)(58) [71]

a%(4 GeV) = 0.201(114) [70]

ak(2 GeV) = 0.061(2)(4) [71]

ak (4 GeV) = 0.0453(9)(29) [70]

ak (4 GeV) = 0.175(18)(47) [70]
1

0.1896 £ 0.0294

0.25+0.15

0.3239 £ 0.0901
0.3519 £ 0.1996

0.0791 £ 0.0058

0.06 £0.03

0.0705 £ 0.0047

0.3064 £ 0.0881
0.1404 £ 0.0306

0.25+0.15
0.15 +£0.07

x)

(xi)

(xii)

This is consistent with the Belle data [62]:

REY <11, 04, 06 (83)
The theoretical uncertainties in our calculation are
mainly from the uncertainties of the meson wave
functions. The longitudinal distribution amplitudes
in exclusive B decays will give about 10%—-20%
uncertainties [43]. When the transverse momentum
distribution functions are introduced in Egs. (32)
and (33), the contribution from the large-b region
will be suppressed. This suppression makes the
PQCD approach more self-consistent. Comparing
the different results in Table II, one can observe
severe suppressions especially at /s = 3.67 GeV:
the suppression is about 50% for S2 and about 40%
for S3. Since the results depend on the explicit
form of transverse momentum distribution, more
accurate transverse momentum dependent wave
functions and more experimental results would
be valuable.

In this calculation, we have limited ourselves to the
leading-order accuracy. The next-to-leading order
(NLO) calculation is complicated [67—69] that will
be presented in a future publication. As an estima-
tion of the size of the NLO contribution, we vary
Aqcep and the factorization scale 7 in Eq. (54):
Agcp = (0.25 £ 0.05) GeV, and changing the hard
scale ¢ from 0.75 to 1.25¢ (without changing 1/b;).
We find that our results are not sensitive to these
variations. It implies that the NLO contributions are
presumably not very large.

In this calculation, we have used the LCDAs derived
from the QCD sum rules, while there have been
Lattice QCD calculations of the Gegenbauer mo-
ments of the LCDAs for the light pion/kaon and p
mesons [70-73]. These results are collected in
Table III. We evolve the lattice QCD results to
u =1 GeV, using the renormalization group equa-
tion for the Gegenbauer moments a,,:

() = an(o) ["’—(”’ R

:| (rn=r0)/Po
ag (/’l())

(xiii)

with fy=11— %N ¢, and one-loop anomalous
dimension

n+1

2 1
v, = Cr 1—m+4;}]. (85)

In the above y, is the anomalous dimension of the
local current. As a comparison the QCD sum rules
results are also given in this table. From this table,
we can see that all these results are well consistent
with each other. From a phenomenological view-
point, using the Lattice QCD results for LCDAs will
not induce sizable corrections, especially compared
to other uncertainties. However one should in
principle use the lattice QCD results when available.
In our calculation, we have included the twist-3
light-cone distribution amplitudes, which are pro-
portional to the meson mass or chiral scale param-
eter. Higher-order meson mass corrections have
been neglected. In Ref. [74], a comprehensive
analysis of the exclusive process yy* — f, has been
presented, in which the meson mass corrections have
been taken into account. On the one hand, at the
energy +/s = 3.67 GeV, meson mass corrections
might play an important role [74], while at high
energy with /s = 10.58 GeV, we expect the mass
effects are less important. On the other hand, at the
energy /s = 3.67 GeV, the perturbative QCD ex-
pansion in a; may not work well either and thus
sizable corrections are anticipated. To have a precise
prediction for the cross section of processes at /s =
3.67 GeV must take into account all these correc-
tions. In addition, it is not clear to us whether the ky
factorization are valid for higher power corrections.
Thus using the results in this work one should bear
in mind that the power corrections might be large
especially at /s = 3.67 GeV.

IV. CONCLUSION

Hard exclusive processes ete™ — VP and eTe™ — TP
at center of mass energy /s = 3.67 and 10.58 GeV are
investigated in the perturbative QCD framework in this

114016-10
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work. For the wave functions of the light mesons involved
in the factorization amplitudes, we have employed various
models of transverse momentum dependence of wave
functions. At the center of mass energy /s = 3.67 GeV,
two different transverse momentum distribution functions
can give about 50% and 40% suppressions, respectively. The
value Ry p and R;p obtained from our results are consistent
with the experimental data. We found that our theoretical
results favor the 1/s* scaling law for the cross sections. Most
of our results are consistent with the experimental data and
the others can be tested at the ongoing BESIII and forth-
coming Belle-ILL experiments.
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