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We study the Collins function H⊥
1 of the Λ hyperon, which describes the fragmentation of a

transversely polarized quark into an unpolarized Λ hyperon. We calculate H⊥
1 for light quarks of

the Λ hyperon, in the diquark spectator model with a Gaussian form factor for the hyperon-quark-
diquark vertex. The model calculation includes contributions from both the scalar diquark and vector
diquark spectators. Using the model result, we estimate the azimuthal asymmetry A12, which appears in
the ratio of unlike-sign events to like-sign events contributed by double Collins effects, in the processes
eþe− → ΛΛ̄X and eþe− → ΛπX. The QCD evolution effects for the half kT moment of the Collins
function and the unpolarized fragmentation function D1ðzÞ are also included. The results show that the
asymmetries are sizable and measurable at the kinematical configurations of Belle and BABAR
experiments. We also find that the evolution effects play an important role in the phenomenological
analysis.
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I. INTRODUCTION

The Collins function [1] H⊥
1 ðz; k2TÞ is a novel transverse

momentum dependent (TMD) fragmentation function that
encodes the correlation between the transverse spin of the
fragmenting quark and the transverse momentum of the
unpolarized final-state hadron. As a time-reversal-odd
(T-odd) function, the Collins function can be served as a
quark spin analyzer and can also be used to explore the
nonperturbative fragmentation mechanism of hadrons. The
experimental measurements of the pion Collins function
came from several single transverse spin asymmetries in
semi-inclusive deep inelastic scattering (SIDIS) [2–8] from
the HERMES and the COMPASS Collaborations, and
the azimuthal asymmetry in the eþe− annihilating process
[9–13] from the BABAR and Belle Collaborations.
Combining the experimental data from SIDIS and eþe−
annihilating processes, one can extract the Collins function
as well as the transversity distribution function [14–17],
which makes the Collins function a useful tool to inves-
tigate the internal structure for hadrons. Recently, the
azimuthal asymmetry of charged kaon pair production

in eþe− annihilation was measured by the BABAR
Collaboration [18], making the extraction [19] of the kaon
Collins function possible. In addition, several model
calculations of the Collins functions of the pion and kaon
have been presented in Refs. [20–25] and used to make
predictions on the physical observables [22,26,27].
Although in the past a lot of experimental data and

theoretical analyses have provided information about
the Collins functions for pion and kaon mesons, knowl-
edge about the Collins function of the Λ hyperon is
much more limited. Meanwhile there is increasing interest
in the novel fragmentation mechanism of the Λ hyperon,
as it is partly responsible to the observed spin polari-
zation or spin transfer of the spin-1=2 Λ hyperon
produced in the high-energy inclusive process [28–36].
A T-odd spin-dependent TMD fragmentation D⊥

1Tðz; k2TÞ,
which describes the number density of a transversely
polarized Λ hyperon fragmented from an unpolarized
quark, is found to play an important role in this aspect and
has been studied intensively [1,37–42]. As the chiral-
odd partner of the fragmentation function D⊥

1Tðz; k2TÞ,
the Collins function of the Λ hyperon also contains
complementary information of the Λ fragmentation and
can give rise to the azimuthal asymmetries in the high
energy process. To understand the underlying mechanism
of the transversely polarized quark fragmenting to the
unpolarized Λ, we resort to a model calculation to acquire
the knowledge of the corresponding nonperturbative
quantity, which is the main goal of this work. For this
purpose, for the first time to our knowledge, we calculate
the Λ Collins function for the up, down, and strange
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quarks, using a spectator model [43,44]. The spectator
model has been applied to calculate the Collins functions
of the pion and kaon mesons [20], as well as the twist-3
collinear fragmentation function of the pion [45,46], with
a pseudoscalar pion-quark coupling and Gaussian form
factors at the pion-quark/antiquark vertex. In these cases
the quark or antiquark is taken as the spectator system.
The calculation presented in Ref. [20] showed that the
model resulting pion Collins function is in reasonable
agreement with the available parametrization [47].
Recently, the spectator model has also been extended
to calculate the fragmentation function D⊥

1T of the Λ
hyperon in Ref. [48]. In this case the spectator system is a
diquark, and the calculation includes contributions from
both the scalar diquark and vector diquark.
The Collins function can enter the description in

SIDIS, eþe− annihilation, and inclusive hadron produc-
tion in the hadron collision. To test the feasibility of
measuring the Λ Collins function in experiments, we will
study the unpolarized eþe− → ΛΛ̄X and eþe− → ΛπþX
processes, in which only fragmentation functions are
involved. In this process, the convolution of two
Collins functions can generate at leading order (in the
expansion of 1=Q) an azimuthal asymmetry with a
cosðϕ1 þ ϕ2Þ or cos 2ϕ0 modulation [49,50], depending
on the chosen reference frame. However, hard gluon
radiation eþe− → qq̄g also gives rise to a Collins-like
asymmetry [50,51], which is the dominant background
contribution. Thus, to access the Λ hyperon Collins
function in eþe− annihilation, one has to separate the
false asymmetry from the true double Collins effects.
To do this, we exploit the fact that QCD radiative
corrections can be canceled by making ratios of the
asymmetries in unlike-sign events over that in like-sign
events [10,14,16]. Using this methodology, we will
calculate the cosðϕ1 þ ϕ2Þ angular dependent asymmetric
ratio (denoted by A12) in the processes eþe− → ΛΛ̄X and
eþe− → ΛπX, which can be measured by the Belle and
BABAR experiments. The asymmetry A12 can be
expressed as the product of the half kT moments of

two Collins H⊥ð1=2Þ
1 . We also take into account the QCD

evolution effect of H⊥ð1=2Þ
1 as the energy scale at those

experiments is much larger than the model scale.
The remaining content of this paper is organized as

follows. In Sec. II, we calculate the T-odd Collins function
H⊥

1 in the diquark spectator model by including both the
scalar diquark and the vector diquark spectators. The QCD
evolution effect of the half kT moment of Collins function

H⊥ð1=2Þ
1 ðzÞ is also studied. In Sec. III, we numerically

estimate the azimuthal asymmetry A12 for the processes
eþe− → ΛΛ̄X and eþe− → ΛπX at the energy scale around
the Belle and BABAR kinematics including the QCD

evolution effects of both H⊥ð1=2Þ
1 ðzÞ and D1ðzÞ. We sum-

marize this work in Sec. IV.

II. MODEL CALCULATION OF THE COLLINS
FUNCTION FOR Λ HYPERON

In this section, we calculate the Collins function
H⊥

1 ðx; k2TÞ, which describes the number density of an
unpolarized Λ hyperon fragmented from a transversely
polarized quark [52],

DΛ=q↑ðz;PΛTÞ −DΛ=q↑ðz;−PΛTÞ

¼ ΔDΛ=q↑ðz;P2
ΛTÞ

ðk̂ × PΛTÞ · Sq
zMΛ

; ð1Þ

where PΛT is the transverse momentum of the Λ hyperon
with respect to the quark momentum k, Sq is the spin
vector of the fragmenting quark, and z and MΛ are the
light-cone momentum fraction and the mass of the pro-
duced Λ hyperon, respectively. Either H⊥

1 or ΔDΛ=q↑

may be referred to as the Collins function defined in
Refs. [52–54]. The relation between them is

ΔDΛ=q↑ðz; k2TÞ ¼
2jPΛT j
zMΛ

H⊥q
1 ðz; k2TÞ ¼

2jkT j
MΛ

H⊥q
1 ðz; k2TÞ;

ð2Þ

where kT is related to PΛT by kT ¼ −PΛT=z.
The Collins function can be calculated from the follow-

ing trace:

ϵαρT kTρ
MΛ

H⊥
1 ¼ 1

4
Tr½ðΔðz; kT ; SΛÞ þ Δðz; kT ;−SΛÞÞiσα−γ5�:

ð3Þ

Here, the quark-quark fragmentation correlation function
Δðz; kT ; SΛÞ is defined as [55,56]

Δðz; kT ; SΛÞ ¼
1

2z

Z
dkþΔðk; PΛ; SΛÞ

≡X
X

Z
dξþd2ξT
2zð2πÞ3 eik·ξ

× h0jUnþ
ðþ∞;ξÞψðξÞjPΛ; SΛ;Xi

× hPΛ; SΛ;Xjψ̄ð0ÞUnþ
ð0;þ∞Þj0i

����
ξ−¼0

; ð4Þ

with k− ¼ P−
Λ
z . The Wilson line U is used to ensure gauge

invariance of the operator [57,58]. The final state
jPΛ; SΛ;Xi describes the outgoingΛ hyperon with momen-
tum PΛ and spin SΛ together with the intermediate
unobserved states. In this paper we perform the calculation
in a diquark spectator model [43,44], which includes both
the spin-0 (scalar diquark) and the spin-1 (vector diquark)
spectator systems [55,59]. The quark fragmentation process
(taking up quark as an example) can be modeled as
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u → ΛðudsÞ þDðd̄ s̄Þ, with D denoting a diquark. The
matrix element appearing in the right-hand side of Eq. (4)
has the following form:

hPΛ; SΛ;Xjψ̄ð0Þj0i

¼
8<
:

ŪðPΛ; SΛÞϒs
i

=k−mq
scalar diquark;

ŪðPΛ; SΛÞϒμ
v

i
=k−mq

εμ vector diquark:
ð5Þ

Here ϒD (D ¼ s or v) is the hyperon-quark-diquark vertex
and εμ is the polarization vector of the spin-1 vector
diquark. In our work, the vertex structure is chosen as
follows [44,48]:

ϒs ¼ 1gs; ϒμ
v ¼ gvffiffiffi

3
p γ5

�
γμ þ Pμ

Λ
MΛ

�
; ð6Þ

where gD (D ¼ s or v) is the suitable coupling for the
hyperon-quark-diquark vertex. In this work we assume that
gs and gv are the same: gs ¼ gv ¼ gD, and we adopt the
Gaussian form for gD:

gDðk2Þ ¼
g0D
z
e

−k2

λ2zαð1−zÞβ ð7Þ

where g0D, λ, α and β are the model parameters.
In the diquark model, the nonvanishing Collins function

comes from the one-loop corrections that provide the
necessary imaginary phases in the scattering amplitude
[60,61]. At one-loop level, there are four diagrams that can
generate imaginary phases, as shown in Fig. 1. In Figs. 1(b)
and 1(d), the notation Γ is used to depict the gluon-diquark

vertex, and we apply the following rules for the vertex
between the gluon and the scalar diquark (Γs) or the vector
diquark (Γv):

Γρ;a
s ¼ igTað2k − 2PΛ − lÞρ; ð8Þ

Γρ;μν;a
v ¼ −igTa½ð2k − 2PΛ − lÞρgμν − ðk − PΛ − lÞνgρμ

− ðk − PΛÞμgρν�: ð9Þ

Here, Ta is the Gell-Mann matrix, and g is the coupling
constant of QCD. Since the Λ hyperon is colorless, it is
expected that the spectator diquark should have the same
color as that of the parent quark. The Feynman rules for the
eikonal line as well as the vertex between the eikonal line
and the gluon can be found in Refs. [20,57,62].
Following the previous work [48] in which the frag-

mentation function D⊥
1T for the Λ hyperon has been

calculated in the same model, we perform the integration
over the loop momentum l with the help of the Cutkosky
cutting rules. In the left-hand side of Figs. 1(b) and 1(d), in
principle the momentum l enters the form factor for the
hyperon-quark-diquark vertex with the form gDððk − lÞ2Þ.
To simplify the integration we choose that in any case the
form factor gD depends only on the initial quark momentum
k, since the main effect of the form factor is to introduce a
cutoff in the high kT region. The same choice has also been
used in Refs. [20,45].
The expression for H⊥

1 of the Λ hyperon, coming from
the scalar diquark component, is as follows:

(a) (b)

(c) (d)

FIG. 1. One loop corrections to the fragmentation of a quark to a Λ hyperon in the spectator model. The double lines in (c) and
(d) represent the eikonal lines. Here “H.c.” stands for the Hermitian conjugations of these diagrams.
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H⊥ðsÞ
1 ðz; k2TÞ ¼

αsg02DCF

ð2πÞ4
e

−2k2

λ2zαð1−zÞβ

z2ð1 − zÞ
1

ðk2 −m2
qÞ
ðH⊥ðsÞ

1ðaÞ ðz; k2TÞ þH⊥ðsÞ
1ðbÞ ðz; k2TÞ þH⊥ðsÞ

1ðcÞ ðz; k2TÞ þH⊥ðsÞ
1ðdÞ ðz; k2TÞÞ; ð10Þ

where

H⊥ðsÞ
1ðaÞ ðz; k2TÞ ¼

mqMΛ

ðk2 −m2
qÞ
�
3 −

m2
q

k2

�
I1; ð11Þ

H⊥ðsÞ
1ðbÞ ðz; k2TÞ ¼ MΛfmqð2I2 −AÞ −MΛðB − 2I2 þ 2AÞg; ð12Þ

H⊥ðsÞ
1ðcÞ ðz; k2TÞ ¼ 0; ð13Þ

H⊥ðsÞ
1ðdÞ ðz; k2TÞ ¼

MΛ

z
f2ð1 − zÞðmqCP−

h −MΛDP−
h Þ − zðMΛB −mqAÞg: ð14Þ

Similarly, using the gluon vertex given in Eq. (9), we can also calculate the expression for H⊥
1 contributed by the vector

diquark component

H⊥ðvÞ
1 ðz; k2TÞ ¼

αsg02DCF

ð2πÞ4
e

−2k2

λ2zαð1−zÞβ

z2ð1 − zÞ
1

ðk2 −m2
qÞ
ðH⊥ðvÞ

1ðaÞ ðz; k2TÞ þH⊥ðvÞ
1ðbÞ ðz; k2TÞ þH⊥ðvÞ

1ðcÞ ðz; k2TÞ þH⊥ðvÞ
1ðdÞ ðz; k2TÞÞ; ð15Þ

where

H⊥ðvÞ
1 ðaÞ ¼ mqMΛ

ðk2 −m2
qÞ
�
3 −

m2
q

k2

�
I1;

H⊥ðvÞ
1 ðbÞ ¼ 1

3

�
2MΛ½MΛð3I2 − 3A − BÞ þ 2mqI2� − 2k · PðI2 − 2AÞ þ ð3m2

q − k2Þ
4k2

I1 þ
k2 −m2

q

2
ðI2 − 3AÞ

�
;

H⊥ðvÞ
1 ðcÞ ¼ 0;

H⊥ðvÞ
1 ðdÞ ¼ MΛ

z
½2ð1 − zÞðmqCP−

h −MΛDP−
h Þ − zðMΛB −mqAÞ�

þ 1

3MΛ

�
4MΛðmqMΛ þ k · PÞA −

2MΛ

z
½ð2mqMΛ þ k · PÞCP− −M2

ΛDP−�

þ
�
MΛðk2 −m2

qÞCP− þ 2k · PðmqCP− −MΛDP−Þ þ zmqI1
2

þ k2 −m2
q

2
ðmqCP− −MΛDP−Þ

	�
:

Here A, B, C, and D are functions of k2, mq, mD, and MΛ,

A ¼ I1
λðMΛ; mDÞ

�
2k2ðk2 −m2

D −M2
ΛÞ

I2
π
þ ðk2 þM2

Λ −m2
DÞ
�
; B ¼ −

2k2

λðMΛ; mDÞ
I1

�
1þ k2 þm2

D −M2
Λ

π
I2

�
;

CP−
Λ ¼ I34

2k2T
þ 1

2zk2T
ð−zk2 þ ð2 − zÞM2

Λ þ zm2
DÞI2; DP−

Λ ¼ −I34
2zk2T

−
1

2zk2T
ðð1 − 2zÞk2 þM2

Λ −m2
DÞI2:

The functions Ii in the above equations are defined as

I1 ¼
Z

d4lδðl2Þδððk − lÞ2 −m2
qÞ ¼

π

2k2
ðk2 −m2

qÞ; ð16Þ

I2 ¼
Z

d4l
δðl2Þδððk − lÞ2 −m2

qÞ
ðk − PΛ − lÞ2 −m2

D
¼ π

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðMΛ; mDÞ

p ln

�
1 −

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðMΛ; mDÞ

p
k2 −M2

Λ þm2
D þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λðMΛ; mDÞ
p

�
; ð17Þ
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I34 ¼ π ln

ffiffiffiffiffi
k2

p
ð1 − zÞ
mD

; ð18Þ

with λðMΛ;mDÞ¼ðk2−ðMΛþmDÞ2Þðk2−ðMΛ−mDÞ2Þ.
In the assumption of the SU(6) spin-flavor symmetry of

octet baryons, the Collins function of the Λ hyperon for
light quarks satisfies the following relations between
different quark flavors and diquark types [63–65]:

H⊥u→Λ
1 ¼ H⊥d→Λ

1 ¼ 1

4
H⊥ðsÞ

1 þ 3

4
H⊥ðvÞ

1 ;

H⊥s→Λ
1 ¼ H⊥ðsÞ

1 ; ð19Þ

where u, d, and s denote the up, down, and strange quarks,
respectively. The contributions to the Collins function H⊥

1

from the scalar diquark and the vector diquark are given in
Eqs. (10) and (15).
It is necessary to point out that the Collins function

should obey the following positivity bound [24,66], which
is a useful theoretical constraint,

jkT j
MΛ

jH⊥
1 ðz; k2TÞj ≤ D1ðz; k2TÞ: ð20Þ

After performing the integration over k2T, we can obtain the
following approximated relation:

2jH⊥ð1=2Þ
1 ðzÞj ≤ D1ðzÞ; ð21Þ

where H⊥ð1=2Þ
1 ðzÞ is the half kT moment of the Collins

function defined as

H⊥ð1=2Þ
1 ðzÞ ¼ z2

Z
d2kT

jkT j
2MΛ

H⊥
1 ðz; z2k2TÞ ð22Þ

and D1ðzÞ ¼ z2
R
d2kTD1ðz; z2k2TÞ is the collinear unpo-

larized fragmentation function. In this work we would like
to check whether the Collins function of the Λ hyperon in
our model satisfies the positivity bound, particularly, the
weaker version (21).
For the unpolarized fragmentation function D1ðzÞ of the

Λ hyperon needed in the comparison, we apply the result
from the same model in Ref. [48] as

DΛ
1 ðzÞ ¼

g02D
4ð2πÞ2

e−
2m2

q

Λ2

z4L2

�
zð1− zÞððmq þMΛÞ2 −m2

DÞ

× exp

�
−2zL2

ð1− zÞΛ2

�
þ ðð1− zÞΛ2

− 2ððmq þMΛÞ2 −m2
DÞÞ

z2L2

Λ2
Γ
�
0;

2zL2

ð1− zÞΛ2

��
:

ð23Þ
To obtain this result, the mass differences among the up,
down, and strange quarks are neglected, and the SU(6)
spin-flavor symmetry is also applied,

Du→Λ
1 ¼ Dd→Λ

1 ¼ Ds→Λ
1 ≡DΛ

1 ; ð24Þ
that is, the light quarks fragment equally to Λ for the
unpolarized fragmentation function D1.
In Table I, we list the parameters [48] used to calculate

the Λ Collins function. The values of the parameters
were obtained by fitting the model result of DΛ

1 in the
same model to the de Florian-Stratmann-Vogelsang
(DSV) parametrization for DΛ

1 [67] at the model scale
Q2

0 ¼ 0.23 GeV2. The strong coupling constant αs at this
scale is chosen as 0.817.
In Fig. 2, we plot the numerical result of H⊥ð1=2Þ

1 ðzÞ
(multiplied by a factor of 2) of the Λ hyperon (solid lines),
compared with the unpolarized Λ fragmentation function
DΛ

1 ðzÞ (dashed lines) in the same model. The left panel
shows the result for the up/down quarks, while the right
panel depicts the result for the strange quark. The shaded
areas correspond to the error bands caused by the uncertainty
of the model parameters. From the curves, one can find that

the size ofH⊥ð1=2Þ
1 ðzÞ for the up and down quarks is around

several percent. Particularly, the sign of H⊥ð1=2Þ
1;Λ=u ðzÞ is

negative in the small z region (0 < z < 0.5), while it turns
to be positive in the large z region (0.5 < z < 1). That is,
there is a node in the z dependence of theΛCollins function
for the up and down quarks. This is different from theCollins
function of the pion for which no node appears.We also find

thatH⊥ð1=2Þ
1 ðzÞ for the strange quark is consistent with zero.

Finally, our model result of H⊥
1 for the up and down quarks

does not always satisfy the positivity bound; i.e., in the large
z region (z > 0.82) the positivity bound is violated.We note
that similar violations of the positivity bound were also
observed in Refs. [48,68,69]. An explanation was given in
Ref. [70], stating that the violation may arise from the fact
that T-odd TMD distributions or fragmentation functions

TABLE I. Values of the parameters used in the spectator diquark model [48]. The values of the last three parameters are fixed.

mD [GeV] λ [GeV] g0D mq [GeV] α β

0.745þ0.03
−0.028 5.969þ0.274

−0.260 1.982þ0.119
−0.111 0.36 (fixed) 0.5 (fixed) 0 (fixed)
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are evaluated to OðαsÞ, while in model calculations T-even
TMD functions are usually truncated at the lowest order.
Since the energy scale in experiments is much higher than

themodel scale, it is important to include theQCD evolution
of fragmentation functions to obtain reliable results for
physical observables. In Refs. [71,72], the evolution equa-
tion for the twist-3 fragmentation function ĤðzÞ has been
studied. This fragmentation function is proportional to the
first kT moment of Collins function via the relation

ĤðzÞ ¼ z2
Z

d2kT
k2T
MΛ

H⊥
1 ðz; k2TÞ ¼ 2MΛH

⊥ð1Þ
1 ðzÞ: ð25Þ

The evolution kernel for ĤðzÞ has a rather complicated form.
Following Ref. [73], in this work we only consider the
homogenous terms [72] in the kernel, which have the same
form of the evolution kernel for the transversity distribution
function h1:

Ph1
qq ¼ CF

�
2z

ð1 − zÞþ
þ 3

2
δð1 − zÞ

�
: ð26Þ

We assume that the evolution of the half kT moment of

Collins function H⊥ð1=2Þ
1 is the same as that of Ĥ. We apply

the evolution package QCDNUM [74] and customize the
code to include the kernel in Eq. (26) to perform the

evolution of H⊥ð1=2Þ
1 ðzÞ. In Fig. 3, we plot the half kT

moment of the Λ Collins function H⊥ð1=2Þ
1 ðzÞ. The left and

right panels show the results for the up/down quarks and the
strange quark at three different energy scales. The solid
lines depict the model results at the initial scale
Q2

0 ¼ 0.23 GeV2, while the dashed and dotted lines show
the results at Q2 ¼ 1 GeV2 and Q2 ¼ 10.522 GeV2 after

applying the evolution equation for H⊥ð1=2Þ
1 ðzÞ. From the

curves, we can see that the evolution effect forH⊥ð1=2Þ
1 ðzÞ is

significant; i.e., the evolution changes the shape and the
size of the fragmentation functions at different Q values. It

drives the peaks of H⊥ð1=2Þ
1 ðzÞ to the lower z region with

FIG. 2. Left panel: theH⊥ð1=2Þ
1 ðzÞ (multiplied by 2) (solid line) for the up quark compared withD1ðzÞ (dashed line) for the up quark at

the model scale. Right panel: the H⊥ð1=2Þ
1 ðzÞ (multiplied by 2) (solid line) and D1ðzÞ (dashed line) for the strange quark at the model

scale. The shaded areas correspond to the uncertainty on the model parameters.

FIG. 3. The Collins function of the Λ hyperon at three different energy scales: Q2
0 ¼ 0.23 GeV2 (solid lines), Q2 ¼ 1 GeV2 (dashed

lines), and Q2 ¼ ð10.52Þ2 GeV2 (dotted lines). Left panel: zH⊥ð1=2Þ
1 ðzÞ for the up and down quarks; right panel: zH⊥ð1=2Þ

1 ðzÞ of the
strange quark. The bands show the uncertainties from the errors of the parameters.
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increasing Q. At a higher scale, the node of H⊥ð1=2Þ
1 ðzÞ for

the up or down quark also moves to the lower z region. The
similar tendency also appeared in the transversity distri-
bution function of the nucleon for the up quark in Ref. [55].
To demonstrate the evolution effects of fragmentation

functions in the azimuthal asymmetries, in Fig. 4 we also

plot the ratio H⊥ð1=2Þ
1 ðz;Q2Þ=DΛ

1 ðz;Q2Þ for the up quark at
three scales. We find that, in the region 0.2 < z < 0.7, the

ratio H⊥ð1=2Þ
1;Λ=u ðz;Q2Þ=DΛ

1 ðz;Q2Þ increases with the increas-
ing z at any energy scale.

III. ASYMMETRIES IN THE e+ e−
ANNIHILATION PROCESS

Using the Λ Collins function calculated in Sec. II, in this
section, we numerically estimate the azimuthal asymme-
tries in the processes

eþ þ e− → h1 þ h2 þ X; ð27Þ

in the case the final state hadronsh1 andh2 areΛΛ̄ orΛπ at the
energy scale of Belle and BABAR experiments. In these

processes, the two leptons eþ (with momentum l) and e−

(withmomentum l0) annihilate into a photonwithmomentum
q ¼ ðlþ l0Þ; the photon then produces a quark-antiquark
pair, which fragments into the final state hadron pair andother
unobserved states. In the unpolarized process, the double
Collins effect shows up at the leading order in the differential
cross section (in the 1=Q expansion). There are two different
reference frames adopted in experimental analysis (for further
details and definitions, see Refs. [10,15,17,50]). The first one
is the second-hadronmomentum frame, in which the z axis is
along the momentum of h2 [49] and ϕ0 is defined as the
azimuthal angle of theΛ hyperon in the centre-of-mass (c.m.)
frame of the incoming eþe− pair. In this frame a cos 2ϕ0

azimuthal asymmetry appears from the convolutionof the two
Collins functions. The second one is a thrust reference frame,
inwhich the jet thrust axis is used as the ẑ and the eþe− → qq̄
scattering defines the x̂z plane. In this frame a cosðϕ1 þ ϕ2Þ
asymmetry arises, where ϕ1 and ϕ2 stand for the azimuthal
angles of the twohadrons around the thrust axis in theCollins-
Soper frame.
However, perturbative calculations [50,51] show that the

hard gluon radiation process eþe− → qq̄g also contributes
the same azimuthal angular dependence as the double Collins
effect does and should be separated in order to obtain the pure
Collins effect. As suggested in Refs. [10,14,16], the QCD
radiative corrections can be canceled by making the ratio of
the asymmetry in unlike-sign eventsAU (h1 and h2 are unlike
sign) to that in like-sign events AL (h1 and h2 are like sign).
For the cosðϕ1 þ ϕ2Þ asymmetry, the ratio in the process
eþe− → ΛΛ̄þ X can be cast to

R12 ≡ AU
12

AL
12

¼
1þ 1

4
cosðϕ1 þ ϕ2Þ hsin2 θi

h1þcos2 θiPU

1þ 1
4
cosðϕ1 þ ϕ2Þ hsin2 θi

h1þcos2 θiPL

≃ 1þ 1

4
cosðϕ1 þ ϕ2Þ

hsin2 θi
h1þ cos2 θi ðPU − PLÞ

≡ 1þ cosðϕ1 þ ϕ2ÞA12ðz1; z2Þ; ð28Þ

with PU and PL having the form

PU ¼
P

qe
2
q½ΔNDΛ=q↑ðz1ÞΔNDΛ̄=q̄↑ðz2Þ þ ΔNDΛ̄=q↑ðz1ÞΔNDΛ=q̄↑ðz2Þ�P

qe
2
q½D1;Λ=qðz1ÞD ¯1;Λ=q̄ðz2Þ þD1;Λ̄=qðz1ÞD1;Λ=q̄ðz2Þ�

; ð29Þ

PL ¼
P

qe
2
q½ΔNDΛ=q↑ðz1ÞΔNDΛ=q̄↑ðz2Þ þ ΔNDΛ̄=q↑ðz1ÞΔNDΛ̄=q̄↑ðz2Þ�P

qe
2
q½D1;Λ=qðz1ÞD1;Λ=q̄ðz2Þ þD1;Λ̄=qðz1ÞD1;Λ̄=q̄ðz2Þ�

; ð30Þ

and A12ðz1; z2Þ the asymmetry appearing in the ratio with a cosðϕ1 þ ϕ2Þ azimuthal angular dependence

A12ðz1; z2Þ ¼
1

4

hsin2 θi
h1þ cos2 θi ðPU − PLÞ: ð31Þ

Here for Λ pair production we define like-sign events as ΛΛ and unlike-sign events as Λ̄Λ. The asymmetry in the Λπ
production can be defined similarly by using Λπþ as “like-sign” events and Λ̄πþ as “unlike-sign” events.

FIG. 4. The ratio H⊥ð1=2Þ
1;Λ=u ðz;Q2Þ=DΛ

1 ðz;Q2Þ at three different
energy scales: Q2

0 ¼ 0.23 GeV2 (solid lines), Q2 ¼ 1 GeV2

(dashed lines), and Q2 ¼ ð10.52Þ2 GeV2 (dotted lines).
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Note that in Eqs. (29) and (30),

ΔNDh=q↑ðzÞ ¼
Z

d2kTΔNDh=q↑ðz; k2TÞ

¼
Z

d2kT
2jPhT j
zMh

H⊥q
1 ðz; k2TÞ ¼ 4H⊥ð1=2Þq

1 ðzÞ:

ð32Þ

Thus the product half kT moments of the Collins function
appear in the A12 asymmetry.
In principle one may also adopt the cosð2ϕ0Þ method to

study the ratio of unlike-sign events to like-sign events.
However, in this case, only in the Gaussian model [14,75]
for the kT dependence of H⊥

1 can the asymmetry be

expressed as the product of two H⊥ð1=2Þ
1 ðzÞ. Thus in the

following we choose to estimate the asymmetry A12.
In the following we calculate the asymmetry A12 instead

of calculating directly the azimuthal angular dependence
appearing in the cross section. Since our model in Ref. [48]
does not distinguish favored fragmentation functions and
disfavored fragmentation functions for D1, in a practical
calculation we rescale them with (1þ z) for favored
fragmentation and (1 − z) for disfavored fragmentation
functions according to the assumption in Refs. [10,76].
For the Collins functions, the Schäfer-Teryaev sum rule
shows that [77]

X
h

Z
1

0

dzH⊥ð1Þ
1ðq→hÞðzÞ ¼ 0 with

H⊥ð1Þ
1 ðzÞ ¼ πz2

Z
∞

0

dk2T
k2T
2M2

h

H⊥
1 ðz; k2TÞ: ð33Þ

We adopt the same assumption in Ref. [20] that the sum
rule holds in a strong sense; i.e., for the Λ hyperon, it
satisfies

H⊥ð1=2Þ
1ðu→Λ̄Þ ¼ −H⊥ð1=2Þ

1ðu→ΛÞ: ð34Þ

The other disfavored Collins functions are related to the
above result by isospin and charge symmetries.
Using the framework setting above, we estimate the

azimuthal asymmetry A12 in the process eþe− → ΛΛ̄X at
Q ¼ 10.52 GeV, which is the scale of the Belle measure-
ment [10] and which is also close to the kinematics
available at BABAR. As the energy scales in these experi-
ments are much higher than the model scale, we need to take
into account the QCD evolution effects of the fragmentation
functions. To study the impact of the evolution effect, we
adopt two different ways to calculate the azimuthal asym-
metry A12 in eþe− → ΛΛ̄X. One is to assume that all the
fragmentation functions do not evolve with the energy
scale, which is an extreme condition. The other is to apply

the evolution kernel in (26) for H⊥ð1=2Þ
1 ðzÞ and the

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evo-
lution for D1ðzÞ. For the factor hsin2 θi=h1þ cos2 θi in
Eq. (31), the mean value in each ðz1; z2Þ bin is given in
Ref. [10], and here we take 0.7 as a rough estimate.
In Fig. 5, we plot the azimuthal asymmetry A12 of the Λ

pair production in eþe− annihilation contributed by the
double Collins effect as functions of z1. The variable z2 is
integrated over 0.2 < z2 < 0.7 since the Collins function in
our model violates the positivity bound at the large z region
(z > 0.8). The dashed line in Fig. 5 shows the asymmetry
under the extreme assumption in which the evolution of the
fragmentation functions are ignored, while the solid lines
denote the asymmetry in case the evolution effects of both

D1ðzÞ and H⊥ð1=2Þ
1 ðzÞ are included. From the curves, one

can find that the azimuthal asymmetry A12ðz1Þ increases
with increasing z and is several percent in size. Similar
results were also find in the case of pion pair production in
eþe− annihilation [9,20]. Comparing the solid lines and the
dashed line, we can also see that the evolution effects

FIG. 5. The azimuthal asymmetry A12ðz1Þ for the eþe− → ΛΛ̄X
process as the function of z1 with z2 integrated out. The dashed line
represents the asymmetry assuming the fragmentation functions do
not evolvewith energy scales. The solid lines denote the asymmetry

considering the evolution effects of both D1 and H⊥ð1=2Þ
1 .

FIG. 6. The azimuthal asymmetries A12ðz1Þ for the eþe− →
ΛπX process as the function of z1 with z2 integrated out.
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significantly alter the asymmetry in the eþe− → ΛΛ̄X
process; thereby it should not be neglected.
We also estimate the azimuthal asymmetry A12 at the

energy Q ¼ 10.52 GeV in the process eþe− → Λπ þ X,
which could be measured at Belle and BABAR more easily.
In this case, we adopt the leading-order (LO) de Florian-
Sassot-Stratmann (DSS) parametrization for the unpolar-
ized fragmentation functions of the pion [78], and we
choose the parametrization of the pion Collins function
from Ref. [16] at the initial scale Q2 ¼ 2.41 GeV2. In the
calculation we consider the evolution of both the Λ and the
pion Collins functions. The result is plotted in Fig. 6. We
find that in Λπ production, the shape of the asymmetry is
similar to the case of Λ pair production, while the size of
the asymmetry at large z1 is several times larger than that of
Λ pair production.

IV. CONCLUSION

In this work, we investigated the T-odd Collins function
H⊥

1 of the Λ hyperon for light quarks. In particular, we
studied its contribution to azimuthal asymmetries A12 as the
ratio of unlike-sign events to like-sign events in eþe− →
ΛΛ̄X and eþe− → ΛπX processes. We calculated the
Collins function of the Λ hyperon in the diquark spectator
model by considering both the scalar and the vector diquark
components. In the calculation we adopted a Gaussian form
factor for the hyperon-quark-diquark vertex, and we applied
the values of the model parameters fitted from the DSV
parametrization at the initial scale Q2

0 ¼ 0.23 GeV2. The
numerical result shows that the Collins function of the Λ
hyperon for the up and down quarks dominates over that for
the strange quark. We also calculated the QCD evolution of

the half kT moment of theΛ Collins function and found that

the evolution effects significantly alterH⊥ð1=2Þ
1 ðzÞ. Applying

the model results forH⊥ð1=2Þ
1 ðzÞ, we estimated the azimuthal

asymmetry A12 contributed by the Collins effect in the
unpolarized eþe− → ΛΛ̄X process at Q ¼ 10.52 GeV in
two scenarios: one is to take into account the evolution of

both H⊥ð1=2Þ
1 ðzÞ and D1ðzÞ; the other is to neglect any scale

dependence of fragmentation functions. The asymmetry is
around several percent, and it increases with increasing z1.
We also estimated the asymmetryA12 in the process eþe− →
ΛπX and found that the shape of the asymmetry is similar to
the one in eþe− → ΛΛ̄X, while the size of the asymmetry is
larger than that in Λ pair production. Therefore it is feasible
to measure these azimuthal asymmetries through the Belle
and BABAR experiments. We also found that the evolution
effects significantly change the shape and size of the
asymmetry. Our study may provide useful information on
the Λ fragmentation function as well as the nonperturbative
origin of the azimuthal asymmetry in eþe− annihilation.
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