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The spontaneous spin polarization of strongly interacting matter due to axial-vector- and tensor-type
interactions is studied at zero temperature and high baryon-number densities. We start with the mean-field
Lagrangian for the axial-vector and tensor interaction channels and find in the chiral limit that the spin
polarization due to the tensor mean field (U) takes place first as the density increases for sufficiently strong
coupling constants, and then the spin polarization due to the axial-vector mean field (A) emerges in the region
of the finite tensor mean field. This can be understood as making the axial-vector mean-field finite requires a
broken chiral symmetry somehow, which is achieved by the finite tensor mean field in the present case. It is
also found from the symmetry argument that there appear the type I (II) Nambu-Goldstonemodeswith a linear
(quadratic) dispersion in the spin polarized phase with U ≠ 0 and A ¼ 0 (U ≠ 0 and A ≠ 0), although these
two phases exhibit the same symmetry breaking pattern.
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I. INTRODUCTION

The discovery of the magnetars, the neutron stars with
strong magnetic field of Oð1015Þ G, revives the important
question about the origin of the strong magnetic field [1–4].
Recent studies have also revealed that magnetars possess not
only the poloidal magnetic field but also the toroidal one, the
strength of which is about 102 times larger than the former
[5,6]. There are several arguments about how such strong
magnetic fields are generated and survive in the evolution of
neutron stars [4], but a definite conclusion has yet to bemade.
The spontaneous spin polarization or magnetization of

the strongly interacting matter is one of the important issues
in the relation to such a strong magnetic field. In an earlier
work, Tatsumi [7] suggested the possibility of a ferromag-
netic transition in quark matter interacting via a one-gluon-
exchange (OGE) force and showed that the maximum

magnetic field can reach B ∼Oð1015–17GÞ when the
magnetar is a quark star.
In general, the ferromagnetic nature of dense matter

manifests itselfwhen a spin polarizationof charged fermions,
i.e., baryons or quarks, occurs collectively by their inter-
actions, so that the spin degrees of freedom are a key
ingredient. In the relativistic framework, we can consider
two types of spinor bilinear forms as the spin density operator
[8]: One is a spatial component of the axial-vector (AV)
current operator, ψ†Σiψð≡ − ψ̄γ5γiψÞ, and the other is that
of the tensor (T) operator, ψ†γ0Σiψð≡ − ϵijk

2
ψ̄σjkψÞ, with ψ

being the Dirac field. These two become equivalent to each
other in the nonrelativistic limit, while they are quite different
in the ultrarelativistic limit (massless limit) [8]. When the
expectation value of AV and/or T operators becomes finite,
the spin polarization is realized. In fact, the T expectation
value, hψ†γ0Σiψi, directly reflects the magnetic effect
through the electromagnetic coupling Q

2m ψ̄σμνψF
μν

(Gordon decomposition) for a particle with charge Q and
mass m, which is reminiscent of the Ising model under an
external magnetic field. On the other hand, the finite AV
expectation value, hψ†Σiψi, leads to a spin polarization,
since the spatial components of the AV current correspond to
the generators of rotations in the spinor representation of the
Lorentz group.
In the previous studies, we have entirely relied on the

mean-field approach, where we consider the AV and T
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channel interactions and make mean fields for them. As the
origin of such interactions, the AV-type interactions in quark
matter can be derived from, e.g., the perturbative OGE
interaction using the Fierz transformation, while the T-type
interactions are expected to appear via the nonperturbative
effects of QCD as seen in hadron-hadron effective inter-
actions [9]. Then, the effective models of QCD should
include both types of interactions. So far, the interplay
between the spin polarization and other phases expected
to appear in the high baryon-number density region have
been studied, which includes the coexistence of the spin
polarization and the color superconductivity [10–13] and the
spatially homogeneous [14–18] and inhomogeneous chiral
condensations [19,20]. From these studies, it is found that the
AV- and T-type mean fields are affected differently by the
dynamical chiral symmetry breaking: When the dynamical
quark mass is zero, i.e., the chiral symmetry is restored, the
AV-type spin polarized phase cannot appear, but the T-type
one can. For instance, in the Nambu—Jona-Lasinio (NJL)-
type effective models, it has been demonstrated that the AV-
type spin polarized phase can appear only in a narrow density
region just inside the chiral condensed phase [14,17,18],
while theT-type spin polarized phase can exist in even higher
density regions regardless of whether the dynamical quark
mass is finite or not [8,15–17].Aswill be shownbelow, this is
because the T-type condensation itself breaks the chiral
symmetry while theAV-type condensation respects them. So
far, we have not known the spin polarized phase of systems
including both the AV- and T-type interactions simultane-
ously, which is expected to exhibit new features of the spin
polarization. Thus, in the present study, we investigate the
interplay between them on the same footing and figure out
the phase structure in terms of the coupling strengths of AV
and T channels and of the baryon-number chemical potential
at zero temperature in the chiral limit.
The paper is organized as follows. In the next section, we

formulate a mean-field Lagrangian with AV and T mean
fields and its thermodynamic potential at finite baryon-
number density and at zero temperature. In the Sec. III, after
discussion of the relation between the spin polarization and
the chiral symmetry, we search out the potential minimum to
find the phase structure in the space of coupling constants. In
Sec. IV, we demonstrate the change of phase structure with
the chemical potential, employing a chiral model, and show
that there appear two kinds of Nambu-Goldstone modes
depending on the finiteness of the AV mean field. The last
section is devoted to a summary and outlook.

II. MEAN-FIELD APPROXIMATION
AND THERMODYNAMIC POTENTIAL

AT T = 0 AND μ ≠ 0

In this section, we briefly explain our formalism, which
holds the flavor SUð2Þ and the color SUð3Þ symmetry. In
addition, we consider only the spin-isospin saturated quark
matter. We start with a general Lagrangian density including
the spatial parts of AV and T fields,

L ¼ ψ̄ði∂ −mÞψ þ Aiψ̄γ5γiψ þ Uijψ̄σijψ −
A2
i

gA
−
U2

ij

gU
;

ð1Þ
where ψ is the quark field, m is the quark mass, gA;U is the
effective coupling constants of the AV and T channels,
Ai ¼ gAhψ̄γ5γiψi, and Uij ¼ gUhψ̄σijψi. This Lagrangian
is applicable for effective strong interactions included in, e.g.,
the NJL model, linear sigma model, and quark-quark
interactions with screened gluons. In the isospin saturated
system, the isospin dependent terms do not contribute to the
mean field, and we omit them in the above Lagrangian.
Here, we assume only the third components of the mean

fields, A3ð¼ AÞ and U12ð¼ UÞ, to be nonzero and obtain
the Dirac equation for the spinor uðk; sÞ with momentum
k ¼ ðkx; ky; kzÞ and spin s,

½α · kþmþ ΣzAþ βΣzU�uðk; sÞ ¼ εk;suðk; sÞ: ð2Þ
The single-particle energy εk;s is obtained as a solution of
the characteristic equation for ε,

ðε2 − E2
kÞ2 − 2ε2ðA2 þU2Þ − 8mAUε − 2m2ðA2 þ U2Þ

þ ðA2 −U2Þ2 − 2ðA2 −U2Þðk2z − k2t Þ ¼ 0; ð3Þ

where Ek¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þm2

p
and kt¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2xþk2y

q
is the magnitude of

the transverse momentum normal to the polarization direc-
tion z. Since the above equations include the quarkmass, it is
easy to extend the present formulation to involve the chiral
condensation in the same mean-field approximation.
Nevertheless, we are interested in the high density region
where the chiral condensation has already gone and intend to
make discussion about the chiral symmetry transparent, so
we take the chiral limit m→0 in the following calculations.
The thermodynamic potential is given by

Ω½A;U; μ� ¼ ΩF½A;U; μ� þ ΩD½A;U; μ� þ A2

gA
þU2

gU
; ð4Þ

whereΩF is the contribution from the matter component up
to the Fermi surfaces and ΩD is the contribution from the
Dirac sea, given, respectively, by

ΩF½A;U; μ� ¼ Nd

X
s¼�1

Z
k
ðεk;s − μÞθðμ − εk;sÞ; ð5Þ

ΩD½A;U; μ� ¼ −Nd

X
s¼�1

Z
k
εk;s; ð6Þ

where the abbreviated notation
R
k ≡

R
dk3 is used,Nd is the

degeneracy factor, μ is the chemical potential. The single-
particle energies εk;s in the chiral limit are given by

εp;s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ k2t þ A2 þ U2 þ 2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2zA2 þ k2t U2 þ A2U2

qr
:

ð7Þ
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Note that the splitting of the energy spectrum by s ¼ �1
corresponds to the spin polarization due to the mean fields,
and the magnitude of the mean fields is determined mainly
by the matter contribution ΩF as many-body effects, unlike
the chiral condensation that comes from the Dirac sea
contribution.
Although the above formulation can be applied to both

hadronic and quark matters, we use Nd ¼ 6 (two flavors
times three colors) and μ to be the quark chemical potential
from now on. Also, from results of the preceding studies in
which the spin polarization due to the AVor T mean fields
is favored at higher densities where the chiral condensation
already diminishes, we will neglect the Dirac sea contri-
bution ΩD of the thermodynamic potential in what follows.

A. Fermi surfaces

Since the single-particle energies, Eq. (7), are split and
deformed by the mean fields, we take care of the topology
of Fermi surfaces in the calculation of ΩF, especially for
the s ¼ −1 branch. The modification of the Fermi surface
for s ¼ −1 is classified for values of A, U, and μ in Fig. 1,
and corresponding Fermi surfaces are shown in Fig. 2.

FIG. 1. ①-⑥ correspond to different topologies of Fermi
surfaces for s ¼ −1 as shown in Fig. 2, and the Fermi surface
for s ¼ 1 becomes finite only in the region of ⑦: A < −U þ μ.

FIG. 2. Cross sections of Fermi surfaces in the ky − kz plane for s ¼ −1. The ordinate is kz, and the abscissa is ky. In the top row from
left to right, ① → ③, and in the bottom row from left to right, ④ → ⑥. Note that the Fermi surface is symmetric under the rotation around
the kz axis, so the last one is a doughnut in full three dimensions.
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B. Thermodynamic potential ΩF from Fermi seas

The integral of ΩF in the transverse direction (y ¼
k2x þ k2y) can be done analytically:

Z
k
εk;sθðμ− εk;sÞ

¼ 1

4π2

Z
dkz

Z
y2

y1

dy
2
εk;s

¼ 1

8π2

Z
z2

z1

dkz

�
ε2k;s
6

þyþk2z þA2−U2

2

�
εk;s

þ s
k2zðA2−U2Þ

U

×ln
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

yU2þA2ðk2z þU2Þ
q

þ sU2þUεk;s
����y2

y1
: ð8Þ

The integral ranges z1;2 and y1;2 are determined in accordance
with the Fermi surfaces for s ¼ �1, and details of the
calculations are given in Appendix A.

III. PHASE STRUCTURE AND DISCUSSION

The present study aims to figure out the phase structure
in the space of coupling strengths and the chemical
potential by searching out the minimum points of the
thermodynamic potential ΩðA;UÞ. To this end, it is
heuristic to start with an argument on the properties of
the mean fields: The spin polarization by A ≠ 0 never
occurs at U ¼ 0 in the chiral limit; that is, the Ω½A;U� is
always stable against A fluctuations at the origin in the
A − U space. This is because in a general AV-type mean
field, appearing in the form of a mean-field interaction term
Aiaψ̄γ5γiτaψ with τa¼0;1;2;3 being the identity or Pauli
matrices in the isospin space, can be eliminated by a local
chiral transformation ψ → eiγ5Aiaτaxiψ through the deriva-
tive term [21], which costs zero energy in the chiral limit
(by the redefinition of the spinor field). In other words, only
in the case in which the chiral symmetry is broken, the net
expectation value of the AV mean field can be generated.1

In the present case, a finite U breaks the time reversal
symmetry like in an external magnetic field and the L − R
symmetry as well; thus, it can invoke a finite A for
sufficiently strong couplings. From these observations,
we set the strategy to get the phase structure as follows:
We first find out the minimum point, Umin, of the potential
on the U axis (A ¼ 0) and then check if the second order
derivative (curvature) in the A direction is negative
∂2Ω=∂A2 < 0 or positive ∂2Ω=∂A2 > 0 at the minimum
point. In the former case, the phase with ðA ≠ 0; U ≠ 0Þ
can be realized, while in the latter case, a possible phase
corresponds to ðA ¼ 0; U ≠ 0Þ, which, however, can be a

local minimum. We have checked such situations and
found no global minimum away from the U axis in the
present approximation.
As shown below, there exist some key points of the

coupling constants, which determine the topology of
the Fermi surfaces and signs of the potential curvatures
on the U axis. We give these relations at Nd ¼ 6 in the
following:
(1) For gU > gUcrit ≡ 4π2

Ndμ
2 ¼ 6.57974

μ2
, the potential curva-

ture to the U direction becomes negative,
∂2Ω½A;U�=∂U2 < 0, at U ¼ A ¼ 0.

(2) For gU ≥ gU1 ≡ 24π
Ndμ

2 ¼ 12.5664
μ2

,Umin ≥ μ, whereUmin

is the minimum point of the potential on the U axis.
(3) For gU ≥ gU2 ≡ 12.069141

μ2
, Umin ≥ Ucri ¼ 0.959993μ,

which is determined by ∂U∂2
AΩ½0; Ucri� ¼ 0.

(4) gA1 ¼ 12.4077
μ2

. Only if gA ≥ gA1 ≡ 74.4462
Ndμ

2 ¼ 12.4077
μ2

, the
potential curvature can be negative, ∂2Ω=∂A2 < 0

at A ¼ 0.
(5) When gA2¼12.5664

μ2
, ∂2Ω=∂A2¼0 at U¼μ and A¼0.

From these points, we obtained the boundary of the spin
polarized phases as shown in Fig. 3. Its detailed derivation
is given in Appendix C. The phase structure is summarized
as follows: The normal phase ðA ¼ U ¼ 0Þ appears for
small tensor couplings gU ≤ gUcrit. For gU > gUcrit, the T
mean field always becomes finite, but the finiteness
of the AV mean field depends on the strength of
the coupling gA, which is bounded from below, i.e.,

FIG. 3. Phase structure in the plane of axial-vector and tensor
couplings, gA and gU, normalized by the chemical potential μ.
The shaded region bounded from below by the solid curve
corresponds to the ðA ≠ 0; U ≠ 0Þ phase. The other region is
separated by the dotted line (gU ¼ gUcrit): gU > gUcrit corresponds
to the ðA ¼ 0; U ≠ 0Þ phase, and gU ≤ gUcrit corresponds to the
normal one ðA ¼ U ¼ 0Þ. Characteristic points are indicated by
α ¼ ðgU2; gA1Þ and β ¼ ðgU1; gA2Þ.

1Impacts of the axial anomaly to the axial-vector mean field at
finite densities is neglected in this study.
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gA > gA1 ¼ 12.4077=μ2. In strong coupling regions where
gA, gU ≥ 12.5664=μ2, the two spin polarized phases are
separated by the straight line gA ¼ gU.

IV. APPLICATION TO AN EXTENDED
NJL MODEL

In the microscopic description of the strong interaction,
perturbative vector-vector-type interactions, such as the
single-gluon exchange interaction, do not generate T-type
interactions even after the Fierz transformation, while effec-
tive models of the strong interaction are able to accommodate
them as nonperturbative effects, e.g., the instanton induced
interaction [22,23]. For an application, we employ an
extended NJL model as an effective chiral model [8,24],

L ¼ ψ̄∂ψ − Gs½ðψ̄ψÞ2 þ ðψ̄iγ5τaψÞ2�
−GA½ðψ̄γμψÞ2 þ ðψ̄γ5γμτaψÞ2�
−GU½ðψ̄σμνψÞ2 þ ðψ̄iγ5σμντaψÞ2�: ð9Þ

Using the Fierz transformation [25], we can single out the
relevant interaction terms (exchange channels) which are to
be mean fields, showing only the spatial components of AV
and T terms explicitly,

L ¼ ψ̄∂ψ þ gA
2
ðψ̄γ5γiψÞ2 þ

gU
2
ðψ̄σijψÞ2 þ � � � ; ð10Þ

where gA
2
¼ − 1

2
Gs −GA and gU

2
¼ − 1

8
Gs −GU. Taking the

mean-field approximation as A ¼ A3 ¼ gAhψ̄γ5γ3ψi and
U ¼ U12 ¼ gUhψ̄σ12ψi for the spin polarization to the
z direction, with the other mean fields being vanished
consistently as A1 ¼ A2 ¼ U13 ¼ U23 ¼ 0, then we come
back to the mean-field Lagrangian (1), and the discussions
above can be reused. Here, we note that in general one
can take an arbitrary relative angle between these directed
mean fields, i.e., taking A1 ≠ 0 and A2 ≠ 0 in addition
to A3 and U12, which breaks all rotational symmetries, but

the stationary condition for the thermodynamic potential
should prefer phases with the maximal residual symmetry,
i.e., A1 ¼ A2 ¼ 0.
Now, we demonstrate the change of phase structure with

the chemical potential by numerical calculations. In Fig. 4,
we plot the mean fields and the baryon-number density as
functions of the quark chemical potential μ, where numerical
values of the coupling constants are fixed so as to reproduce
the magnetic field expected at the core of magnetars [26,27],
gA ¼ 73.70 GeV−2 and gU ¼ 45.35 GeV−2, which are of
the sameorder of the coupling constants used inRefs. [14,17]
and are an order ofmagnitude larger than inRefs. [15,16,18].
We will give details of the magnetic-field estimation around
(22) in the last section. Since only the quark chemical
potential brings the energy scale into the system, all
quantities can be scaled by it. Therefore, as the μ increases,
the corresponding trajectory in the phase diagram (Fig. 3)
should be a straight line, i.e., gA=gU ¼ 73.7=45.35 ¼ 13=8.
The numerical result implies that the phase boundaries
correspond to continuous phase transitions, and as discussed
above, the AV mean field starts to get finite inevitably at a
point where the T mean field is already finite.

A. Low energy modes

Once the phase structure is determined, the effective
degrees of freedom are low energy excitations. Here, we
discuss theNambu-Goldstonemodes upon the spin polarized
phases. The symmetry G of the system under the strong
interaction and at a finite quark chemical potential is given by

G ¼ SOð3Þrot ⊗ SUð2ÞA ⊗ SUð2ÞV ⊗ Uð1ÞB ⊗ SUð3Þc;
ð11Þ

where SOð3Þrot represents the spatial rotation, SUð2ÞA;V is
the axial and vectorial decomposition of the chiral flavor
SUð2ÞL;R rotations, Uð1ÞB is the baryon-number symmetry,
and SUð3Þc is the color gauge symmetry. The generators of
the broken symmetries can be read off from the trans-
formation of the order parameters: For SUð2ÞA chiral
rotations, i.e.,ψ→ei

1
2
γ5τaπ

a
ψ where τa¼1;2;3 the Pauli matrices

in the isospin space,

½γ5τa; γ0σ12� ≠ 0; ½γ5τa; γ0γ5γ3� ¼ 0; ð12Þ
and for the spatial rotations of the spinor, i.e., ψ → eiΣkθkψ
where Σk¼1

2
σijϵ

ijk with ϵ123¼1 being the antisymmetric
tensor,

½Σ3; γ0σ12� ¼ 0; ½Σ1;2; γ0σ12� ¼ 2iγ0σ13;23; ð13Þ

½Σ3; γ0γ5γ3� ¼ 0; ½Σ1;2; γ0γ5γ3� ¼ ∓2iγ0γ5γ2;1: ð14Þ

The commutations for the other generators ofG arevanishing.
Thus, in the spontaneous spin polarized phases, the residual
symmetry H becomes

0.35 0.40 0.45 0.50 0.55

0.5

1.0

1.5

μ (GeV)

ρB /ρ0 ×10−1

U/μ
A/μ

FIG. 4. The baryon-number density ρB=ρ0, the axial-vector
mean field A=μ, and the tensor mean field U=μ as functions
of quark chemical potential μ for gA¼73.70ðGeV−2Þ and
gU¼45.35ðGeV−2Þ. ρ0¼0.15 fm−3 is the normal nuclear density.
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H ¼ SOð2Þrot ⊗ SUð2ÞV ⊗ Uð1ÞB ⊗ SUð3Þc; ð15Þ

whereSOð2Þrot reflects the invariance under a rotation around
the z axis. Note that the above symmetry breaking pattern is
the same for the two spin polarizedphases, i.e., for the (A ¼ 0,
U ≠ 0) and (A ≠ 0, U ≠ 0) phases.
Now, we examine the expectation values of commutators

among generators of the broken symmetries, i.e., the
generators of spatial rotations, and those of the SUð2ÞA,
defined, respectively, by

ΣkðxÞ≡ ψ†ðxÞ 1
2
σijϵ

ijkψðxÞ ¼ −ψ̄ðxÞγ5γkψðxÞ; ð16Þ

QbðxÞ≡ ψ†ðxÞ 1
2
iγ5τbψðxÞ; ð17Þ

where k ¼ 1, 2 represent spatial directions of x, y and
b ¼ 1, 2, 3 represent the SUð2Þ flavor triplet. We obtain the
expectation values of commutators,

h½Σ1ðxÞ;Σ2ðyÞ�i ¼ ihΣ3ðxÞiVδð3Þðx − yÞ
¼ −iA=gAVδð3Þðx − yÞ; ð18Þ

h½ΣiðxÞ; QaðyÞ�i ¼ h½QaðxÞ; QbðyÞ�i ¼ 0; ð19Þ

where V is the volume of the system. From the above
results, we can classify the number of NG bosons and their
dispersion relations [28,29]: In the (A ¼ 0, U ≠ 0) phase,
there appear two Nambu-Goldstone (NG) bosons (type I)
associated with broken spatial rotational symmetries, and
their dispersion relations are linear in momentum for low
energies as

p0 ¼ cjpj; ð20Þ

where c is a coefficient (sound velocity), while in the
(A ≠ 0, U ≠ 0) phase, there is only a single NG boson
(type II) associated with broken spatial rotational sym-
metries since Eq. (18) implies the broken generators Σ1 and
Σ2 are canonically conjugate, i.e., they are not independent,
and its dispersion relation can be quadratic as

p0 ¼ c̃p2 ð21Þ

with a different coefficient c̃. In addition, there must be
three NG bosons (type I) associated with the broken
SUð2ÞA flavor symmetries, which have a linear dispersion.
The Uð1ÞA symmetry is broken in reality by the quantum
effect; thus, no associated NG boson exists. These NG
bosons are relevant degrees of freedom for low energy
dynamics, e.g., in scattering processes with photons and
neutrinos [30–33].

V. SUMMARY AND OUTLOOK

We have studied the interplay between the axial-vector
and tensor mean fields for a possible spontaneous spin
polarization of the strongly interacting matter at finite
baryon-number chemical potentials and at zero temperature
in the chiral limit. It is found that as the chemical potential
increases the T mean fieldU becomes finite first at a critical
point and breaks the chiral symmetries as well as the spatial
rotation symmetries, while the AV mean field A becomes
finite only in the region of a finite U because the finiteness
of A requires the chiral symmetry to be broken. All these
phase boundaries correspond to continuous phase transi-
tions. Furthermore, we classified the Nambu-Goldstone
modes associated with broken rotational symmetries: There
appear type I (II) NG modes with a linear (quadratic)
dispersion in the phase of U ≠ 0 and A ¼ 0 (U ≠ 0
and A ≠ 0).
In relation to the magnetic field generated by these

mean fields, we can estimate its strength as a magnetic
moment densityMmag for the isospin saturated u − d quark
matter,

Mmag ¼
�
2

3
n̄u −

1

3
n̄d

�
eℏ
2mq

hψ̄σ12ψi
hψ̄γ0ψi

3ρB; ð22Þ

which amounts to Mmagμ0 ≃ 1.1 × 1018 G for the quark
mass mq ¼ 5 MeV=C2, μ0 for the vacuum permeability,
and n̄u ¼ n̄d for the fraction of u,d-quark numbers

n̄u þ n̄d ¼ 1. The spin average hψ̄σ12ψi
hψ̄γ0ψi ¼ 0.22 is extracted

from the extended NJL model (9) calculated at μ ¼
0.42 GeV in Fig. 4, which gives the baryon-number density
ρB ¼ 5.54ρ0 with ρ0 ¼ 0.15 fm−3 being the normal nuclear
density, high enough to expect the chirally restored quark
matter [25]. Although the in-medium permeability may be
far from the vacuum one, the magnetic field estimated
above is almost of the same order of magnitude expected at
the core of magnetars, where the quark matter is assumed to
develop [26,27]. Here, it should be noted that the inside of
neutron stars is isospin asymmetric due to the charge
neutrality and the beta equilibrium conditions, i.e.,
n̄d > n̄u, which may lead to a big reduction of the magnetic
field in the present study. Even in such a situation, since the
strong interaction is isospin symmetric, we can similarly
consider isovector-type spin polarizations, e.g., hψ̄τ3σ12ψi
as in Refs. [15,16], or a linear combination of isoscalar-
and isovector-type spin polarizations as in Ref. [17]. In the
isovector case, the relative sign of the spin polarization
between u and d quarks flips due to the isospin Pauli
matrix τ3; then, the charge average is replaced as
ð2
3
n̄u − 1

3
n̄dÞ → ð2

3
n̄u þ 1

3
n̄dÞ; this replacement rather leads

to an enhancement of the magnetic field.
In the present study, we have ignored the contribution

from the Dirac sea in the thermodynamic potential.
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The four-fermion interactions employed here in an
extended NJL model are nonrenormalizable theory, so
one needs to introduce a cutoff and regularization scheme,
and results may be changed quantitatively depending on
them. However, the contribution of the Dirac sea can be
absorbed (renormalized) into parameters (coupling con-
stants of terms of the potential) in the mean-field approxi-
mation [34,35], and more importantly, in the isotropic
regularization scheme in momentum space such as the
proper-time regularization, the Dirac sea itself does not
support the spin polarization, and only the finite density
effects with deformed Fermi seas make the spin polariza-
tion possible as a many-body effect. Thus, the present result
does not change at least qualitatively.
One of the other directions of further investigations is to

figure out the finite mass effects on the spontaneous spin
polarization. As discussed above, the chiral symmetry
breaking is necessary to get a finite AV mean field.
Once the chiral symmetry breaking terms, such as the
current mass term, are introduced, they make A easer to get
finite even when U ¼ 0; thus, the present result may
change so that the ðA ≠ 0; U ¼ 0Þ phase appears for some
parameter regions. In this respect, the axial anomaly, which
breaks the Uð1ÞA chiral symmetry explicitly, may affect the
spin polarization as well [36,37]. We have also ignored the
chiral condensation responsible for the dynamical chiral
symmetry breaking, assuming very large baryon-number
densities. To find more realistic phase structure, it is
important to investigate the interplay among the spin
polarization and the other orderings, e.g., the homo-
geneous/inhomogeneous chiral condensations in the mod-
erate density region, and the color superconductivity in
high density regions.
Although the spin polarization of the dense matter is not

defined uniquely in the relativistic framework, we quantify
it by AV and T mean fields in this study. The response to
external stimulations may give other insight into the spin or
magnetic properties of the strongly interacting matter, such
as susceptibilities to external magnetic fields [18,38–41]
and spatial rotations [42–45], both of which are related to
neutron star physics.
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APPENDIX A: INTEGRATION
UP TO FERMI SURFACES

The explicit result of the integration (8) up to the Fermi
surface for s ¼ −1 is given by

Z
k
εk;−1θðμ− εk;−1Þ

¼ 2

8π2

Z
z2

z1

dkz

�
ε2k;−1
6

þ yþ k2z þA2−U2

2

�
εk;−1

−
k2zðA2−U2Þ

U

× ln
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

yU2þA2ðk2z þU2Þ
q

−U2þUεk;−1
����y2

y1
; ðA1Þ

where

y2 ¼ −A2 − k2z þU2 þ μ2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2zðA2 −U2Þ þ U2μ2

q
;

ðA2Þ

y1 ¼
h
−A2 − k2z þU2 þ μ2 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2zðA2 −U2Þ þU2μ2

q i

× θ
�
U −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðAþ μÞ

p �

× θ
�
kz − θðA−Uþ μÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA−U þ μÞðAþUþ μÞ

p �
;

ðA3Þ

z2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA −U þ μÞðAþU þ μÞ

p
θ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AðAþ μÞ
p

−U
�

þ Uμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 − A2

p θ
�
U −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðAþ μÞ

p �
; ðA4Þ

z1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA −U − μÞðAþ U − μÞ

p
θðA − U − μÞ: ðA5Þ

The integration up to theFermi surface for s¼1 is given by

Z
k
εk;1θðμ − εk;1Þ

¼ 2

8π2

Z
z3

0

dkz

�
ε2k;1
6

þ yþ k2z þ A2 − U2

2

�
εk;1

þ k2zðA2 −U2Þ
U

× ln
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

yU2 þ A2ðk2z þU2Þ
q

þU2 þ Uεk;1
����y3

0
;

ðA6Þ

where

y3 ¼
h
−A2 − k2z þ U2 þ μ2 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2zðA2 −U2Þ þU2μ2

q i

× θðμ − U − AÞ; ðA7Þ

z3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA −U − μÞðAþU − μÞ

p
θðμ −U − AÞ: ðA8Þ
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APPENDIX B: THE POTENTIAL CURVATURE WITH RESPECT TO A

We calculate the second derivative of the thermodynamic potential with respect to A,

∂2
A

Z
k
εk;sθðμ − εk;sÞ ¼

Z
k
∂2
Aεk;sθðμ − εk;sÞ −

Z
k
ð∂Aεk;sÞ2δðμ − εk;sÞ − ∂A

Z
k
εk;s∂Aεk;sδðμ − εk;sÞ; ðB1Þ

then taking the limit of A → 0 and noting that ∂Aεk;sjA→0 ¼ 0, we obtain

∂2
A

Z
k
εk;sθðμ−εk;sÞ

����
A→0

¼
Z
k
∂2
Aεk;sθðμ− εk;sÞ−μ∂A

Z
k
∂Aεk;sδðμ− εk;sÞ

����
A→0

; ðB2Þ

the second term of which cancels out with the second derivative of the density contribution,

−μ∂2
A

Z
k
θðμ − εk;sÞ ¼ μ∂A

Z
k
∂Aεk;sδðμ − εk;sÞ: ðB3Þ

Then, the first term in (B2) can be calculated analytically, for s ¼ −1, to be

Z
k
∂2
Aε−1θðμ−ε−1Þ

����
A→0

¼
Z

dz
ð2πÞ2U

Z
dρ

Uðρ−UÞ−z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðU−ρÞ2þz2

p θ
�
μ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðU−ρÞ2þz2

q �

¼ μ3

12π2U

�
U
μ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2−U2

q
þcot−1

�
Uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2−U2
p

�
þ2U3

μ3
log

�
U

μþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2−U2

p
�	

θðμ−UÞ− μ3

12πU
; ðB4Þ

while for s ¼ 1,

Z
k
∂2
Aεsθðμ − εsÞ

���
A→0

¼ 1

ð2πÞ2U
Z

dz
Z

dρ
UðρþUÞ þ z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðU þ ρÞ2 þ z2

p θ
�
μ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðU þ ρÞ2 þ z2

q �

¼ μ3

12π2U

�
U
μ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −U2

q
þ cot−1

�
Uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2 −U2
p

�
þ 2U3

μ3
log

�
U

μþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −U2

p
�	

θðμ − UÞ: ðB5Þ

Finally, the second derivative of Ω at A ¼ 0 reduces to

∂2
AΩjA→0 ¼ Nd

X
s

Z
k
∂2
Aεsθðμ − εsÞ

���
A→0

þ 2

gA

¼ Ndμ
3

6π2U

�
U
μ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −U2

q
þ cot−1

�
Uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2 −U2
p

�
þ 2U3

μ3
log

�
U

μþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − U2

p
�	

θðμ −UÞ − Nd

12π

μ3

U
þ 2

gA
: ðB6Þ

APPENDIX C: THERMODYNAMIC POTENTIAL OF U AT A= 0
AND DETERMINATION OF PHASE BOUNDARY

The thermodynamic potential at A ¼ 0 is analytically obtained as

�
Nd

24π2

�
−1
Ω½0; U� ¼

�
−μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −U2

q
ð2μ2 þ 3U2Þ − 4μ3Utan−1

�
Uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2 −U2
p

�

þU4 log

�
μþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − U2

p
U

�	
θðμ −UÞ − 2πμ3UθðU − μÞ þ U2

gU

�
Nd

24π2

�
−1
: ðC1Þ
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The potential shape is shown in Fig. 5 together with
the second derivative (B6) for some values of gA and gU.
As shown in the figure, the value of tensor mean field at
the potential minimum, Umin, increases monotonically
with gU, and zeros of the second derivative (B6) give
two intersection points with the abscissa for larger
values of gA. If the Umin lies in between these inter-
section points, the phase with U ≠ 0 and A ≠ 0 is
realized. Therefore, the phase boundary is determined
by searching out gU, for which Umin coincides with the
intersection points for a given value of gAð≥gA1Þ. For
smaller values of gAð<gA1Þ, the intersection point dis-
appears, meaning that the second derivative becomes
positive everywhere. For larger values of gU, corre-
sponding to Umin ≥ μ, the phase boundary is determined
simply by gA ¼ gU.
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