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In the spectator models of the nucleon with scalar and axial-vector diquarks, we show the effect of Pauli
coupling in the photon-quark vertex to the parton distribution functions (PDFs) of nucleon and azimuthal
asymmetry in the unpolarized semi-inclusive deep inelastic scattering (SIDIS). This anomalous coupling
gives an obvious contribution to unpolarized and polarized PDFs and also leads to a cos 2ϕh azimuthal
asymmetry proportional to the squared Pauli form factor, due to the helicity flip of the struck quark. After
determining the model parameters by fitting PDFs to the global fits, this new distribution for cos 2ϕh

asymmetry is given numerically. In the framework of transverse momentum dependence (TMD), we find
that it is positive and of a few percent in the kinematical regime of HERMES and COMPASS
Collaborations, in the same order of magnitude as the Cahn effect.
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I. INTRODUCTION

The semi-inclusive deep inelastic scattering (SIDIS) not
only plays an essential role in studying the parton distri-
bution functions (PDF) of the nucleon, but also its
azimuthal asymmetries are important observables related
to the transverse spin of quarks inside target hadrons [1].
Two azimuthal moments are present in the unpolarized
differential cross sections, with the angular dependence of
cosϕh and cos 2ϕh, respectively (here and afterwards, ϕh is
the azimuthal angle of produced hadron in the scattering
plane). Two main mechanisms for the origin of these
asymmetries are usually considered when QCD factoriza-
tion is applicable. One of them involves the convolution of
the Boer-Mulders function [2], which measures the trans-
verse polarization asymmetry of quarks inside an unpolar-
ized hadron and the spin-dependent Collins fragmentation
function (FF) of the produced hadron [3,4]. The other one is
in terms of the Cahn effect, related to the noncollinear
transverse-momentum kinematics. While the former effect
is the leading twist one, the latter is kinematically of higher
twist. These functions should be either calculated within
some phenomenological models [5–8] or be extracted
directly from experiments [9–21].

Dirac vector coupling is widely explored in the quark
electromagnetic and chromomagnetic current, but the
tensor coupling with respect to the anomalous Pauli form
factor is less recognized. These Pauli couplings can flip the
quark helicity, which is one of the important ingredients to
induce single-spin asymmetries (SSA) in SIDIS. It was
found that the Pauli couping in quark-gluon vertex from
various sources leads to a large SSA in quark-quark
scattering [22]. In the hadronic level, possible role of the
Pauli-type soft quark-gluon interaction on SSAs in SIDIS
was investigated in spectator model [23]. Within the same
model, adopting the scalar and axial-vector diquark models
for the nucleon, it was recently demonstrated that Pauli
couplings in both the quark-photon and quark-gluon
vertices produce considerable SSA in SIDIS, whose azi-
muthal dependencies are the same as that usually called the
Collins and Sivers effects [24]. Alternative approaches,
e.g., instanton background field [25], MIT bag model [26],
and single instanton approximation [27], arrive at similar
conclusions. This remarkable mechanism could be prom-
ising for our understanding of the large SSAs observed in
high-energy hadronic reactions and in SIDIS [1].
The Pauli couplings can be originated from instantons, a

small-size strong gluonic fluctuation in the QCD vacuum
[28,29]. These nontrivial topological structures of QCD
equations generate a very large quark chromomagnatic
moment, directly resulting in the Pauli coupling in quark-
gluon vertex [30]. It was revealed that this anomalous
interaction would play an important role in gluon distri-
butions in the nucleon [31], in quark-gluon plasma [32], in
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high-energy elastic pp scattering [33], and in the pp →
π0X reaction [34]. In these analyses it was suggested that
this quark-gluon interaction would cause the explicit
breakdown of transverse-momentum-dependent (TMD)
factorization. In addition, the instantons would also give
rise to the Pauli coupling in quark–photon vertex, as
illustrated within the nonperturbative approach [35,36].
The instanton liquid model [28,29] is widely implemented
in the qualitative calculations.
The purpose of this paper is to consider what specifical

effects the Pauli coupling of the quark-photon interaction
may have on PDFs and unpolarized SIDIS. The contribu-
tion of this interaction is expected to be complementary to
the Dirac couplings. In Sec. II we give our analytical results
of TMD PDFs in spectator models and try to extract the
model parameters from the global PDF fits. In Sec. III, we
give our new cos 2ϕh asymmetry in the framework of TMD
factorization and compare it to the Cahn effect. We
conclude briefly in Sec. IV.

II. TMD PARTON DISTRIBUTIONS IN
SPECTATOR MODELS

In this work, we employ the parton model of nucleon by
using the spectator model with scalar and axial-vector
diquarks [37], as depicted in Fig 1. We introduce a Pauli
coupling besides the conventional Dirac coupling at the
vertex between the struck quark and the virtual photon [35]:

Vγ
μ ¼ F q

Dγ
μ −

F q
P

2mq
σμνqν ð1Þ

with mq being the constitute quark mass. The F q
D and F q

p

are Dirac and Pauli form factors as a function of photon
virtuality Q2 ¼ −q2, respectively. The perturbative and
nonperturbative QCD contributions to the Dirac and
Pauli form factor have been calculated with several
methods (see [35,38] and references therein). It should
be noted that the nonperturbative interaction enters into the
model only through above quark-photon vertex. It does not
affect the kinematical relationships of involved momenta,
but it would influence the virtualities of internal lines of
hard scattering. As a matter of fact, it can be easily checked

that the Pauli coupling F q
PQ=mq present in Eq. (1) is very

moderately dependent on Q2 and roughly follow the order
of the usual Diral vector coupling F q

D in the instanton
liquid model because of the small instanton size (see
Eq. (44) hereafter in Sec. III). So it is naively expected
this new vertex does not break the TMD factorization
between the hard and soft part of SIDIS, and the standard
treatment of the convolution between TMD PDFs and FFs
can be still used here in the factorization framework
[39,40]. Moreover, in our previous calculation of the
SSA in SIDIS induced by the Pauli couplings [24], terms
which obviously violate order counting in TMD factori-
zation are not present. There we also found that the Pauli
coupling in quark-gluon vertex from instanton liquid model
does provide appropriate regularization of the loop inte-
grals from final state interaction. In Ref. [26], the Sivers
function resulting from this Pauli coupling is successfully
calculated by the correlator in terms of gauge links,
adopting the same instanton model as ours and the quark
wave functions from the MIT bag model. A rigorous proof
of the TMD factorization theorem with regard to the Pauli
couplings would follow the framework recently proposed
within the scalar diquark model in our interested kinemati-
cal range and is waiting for future exploration [41].
The nucleon-quark-diquark vertices are chosen to be

Vs ¼ igs1; Va
μ ¼ i

gaffiffiffi
2

p γ5γ
μ; ð2Þ

where the gs and ga are couplings in the proton-quark-scalar
diquark vertex andproton-quark-axial-vector diquark vertex,
respectively. Then the amplitudes of the Born diagram
presented in Fig. 1 are straightforwardly written as

iAλ
s;s0 ¼

−i
r2 þm2

q
ūðqþ r; s0ÞϵλμðqÞ

�
F q

Dγ
μ −

F q
P

2mq
σμνqν

�

× ð=rþmqÞuðP; sÞ ð3Þ

iAλ;λa
s;s0 ¼

−i
r2 þm2

q
ūðqþ r; s0ÞϵλμðqÞ

�
F q

Dγ
μ −

F q
P

2mq
σμνqν

�

× ð=rþmqÞ
γ5ffiffiffi
2

p =εDðP − r; λaÞuðP; sÞ ð4Þ

for the scalar and axial-vector diquark models, respectively.
Here, the λ and λa are helicities of the photon and axial-vector
diquark, respectively. The s and s0 label the helicities of the
initial and final quarks, respectively. The helicity amplitudes
are obeying the relations

Aλð;λaÞ
s;s0 ¼ −ð−1Þs−s0

�
A−λð;−λaÞ

−s;−s0

��
: ð5Þ

Following the approach of Hoyer and Jarvinen [23], we
work in a coordinate system where the target proton is at
rest (laboratory frame) and the virtual photon momentum is

FIG. 1. Diagrammatic representation of the DIS process in our
calculation. The blob represents the interaction vertices with both
Dirac and Pauli couplings.
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along theþz axis; e.g., the momenta of photon, proton, and
struck quark read [23]

q ¼ ðqþ; q−; 0⊥Þ ≃ ð2ν;−xM; 0⊥Þ
P ¼ ðPþ; P−; 0⊥Þ ≃ ðM;M; 0⊥Þ
r ¼ ðrþ; r−; r⊥Þ ≃ ðxM; xM; r⊥ cosϕ; r⊥ sinϕÞ; ð6Þ

with ν ¼ Q2=2xM being the photon energy, M the proton
mass, and x the Bjorken variable, respectively. Here, we
describe a generic four-vector k as k ¼ ðkþ; k−; k⊥Þ and its
square k2 ¼ ðkþk− þ k−kþÞ=2þ k2⊥. We use k⊥ as the
magnitude of k⊥. The polarization vectors of the photon
and axial-vector diquark are defined as

ϵλðqÞ ¼ 1ffiffiffi
2

p ð0; 0;−λ;−iÞ ð7Þ

ϵDðP − r; λaÞ ¼
1ffiffiffi
2

p
�
2ðλarx þ iryÞ
ð1 − xÞM ; 0;−λa;−i

�
; ð8Þ

where the transversality condition, e.g., ðP − rÞ·
ϵDðP − r; λaÞ ¼ 0, is respected. For simplicity, we define

Aλð;λaÞ
s;s0 ¼ gs;a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mqþ

p 1 − x
r2⊥ þ B2

Rðm2
qÞ
I λð;λaÞ
s;s0 ; ð9Þ

with B2
Rðm2

qÞ ¼ ð1 − xÞm2
q þ xm2

D − xð1 − xÞM2 and mD

being the diquark mass. After some algebraic calculation,
in the limit of qþ ¼ Q2=xM → ∞ at fixed k, r, the helicity
amplitudes for the scalar diquark model are found to be

Iλþ;þ≃
�
F q

D−
F q

P

2mq
DQ

�
r⊥eþiψδλ;þ1þ

F q
P

2mq
DRr⊥e−iψδλ;−1

ð10Þ

Iλþ;− ≃ −
F q

P

2mq
r2⊥e2iψδλ;þ1 þ

�
F q

D þ F q
P

2mq
DR

�
DRδλ;−1;

ð11Þ
with DQ ¼ xM −mq and DR ¼ xM þmq. For the axial-
vector diquark model, the full set of amplitudes is

Iþ;þ
þ;þ ≃ −

�
F q

D þ F q
P

2mq
DR

�
DR −

F q
P

2mq

x
1 − x

r2⊥ ð12Þ

Iþ;−
þ;þ ≃

F q
P

2mq

x
1 − x

r2⊥eþ2iψ ð13Þ

I−;þ
þ;þ ≃

F q
P

2mq

1

1 − x
r2⊥e−2iψ ð14Þ

I−;−
þ;þ ≃ −

F q
P

2mq

x
1 − x

r2⊥ ð15Þ

Iþ;þ
þ;− ≃

F q
P

2mq
DRr⊥eþiψ ð16Þ

Iþ;þ
−;þ ≃ −ðF q

D þ F q
PÞ

x
1 − x

r⊥e−iψ ð17Þ

Iþ;−
−;þ ≃

�
F q

D þ F q
P

2mq
ðxDR −DQÞ

�
r⊥eþiψ

1 − x
ð18Þ

Iþ;−
þ;− ≃ 0: ð19Þ

The differential cross section of unpolarized and longi-
tudinal polarized DIS is given in terms of the amplitude at
tree order in Fig. 1(a),

dσ
dxdyd2r⊥

¼ 1

Q4

Xðλa;λ0aÞ
λ;λ0;s;s0

n
Lλ;λ0Aλð;λaÞ

s;s0

�
Aλ0ð;λ0aÞ

s;s0

��

− Sk
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ε2

p
λLλ;λ0Aλð;λaÞ

s;s0

�
Aλ0ð;λ0aÞ

s;s0

��o

¼ 16e2g2s;a
xy2

y2

2ð1 − εÞ
�
1þ γ2

2x

��
1 − x

r2⊥ þ B2
Rðm2

qÞ
�

2

×
h
N þ − εN − þ Sk

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ε2

p
N k

i
; ð20Þ

with the Bjorken variables y being the fraction of the beam
energy carried by the virtual photon. The depolarization
factor ε is the ratio of longitudinal and transverse photon
flux,

ε ¼ 1 − y − 1
4
γ2y2

1 − yþ 1
2
y2 þ 1

4
γ2y2

; ð21Þ

with γ ¼ 2xM=Q. Above we have used the leptonic tensor
in the helicity basis:

Lλ;λ0 ¼ 4e2Q2

y2
y2

2ð1 − εÞ
�
1þ γ2

2x

�
fδλ;λ0 − εe−2iλτδλ;−λ0g:

ð22Þ

Here, τ is the azimuthal angle of the lepton l1⊥ ¼ l2⊥ ¼
ðl⊥ cos τ; l⊥ sin τÞ. After some formalism manipulation, we
have for the scalar diquark model,

N sþ ¼
X
λ

fjAλþ;þj2 þ jAλþ;−j2g

≃
�
F q

D −
F q

P

2mq
DQ

�
2

r2⊥ þ
�
F q

D þ F q
P

2mq
DR

�
2

D2
R

þ
�
F q

P

2mq

�
2

r2⊥ðr2⊥ þD2
RÞ

⟶
F q

P∼0ðF q
DÞ2ðr2⊥ þD2

RÞ ð23Þ
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N s
− ¼ Re

X
λ

fAλþ;þðA−λþ;þÞ� þAλþ;−ðA−λþ;−Þ�ge−2iλτ ≃ −
�
F q

P

2mq

�
2

2xMDRr2⊥ cos 2ðψ − τÞ ð24Þ

N s
k ¼ −

X
λ

λfjAλþ;þj2 þ jAλþ;−j2g ≃ −
�
F q

D −
F q

P

2mq
DQ

�
2

r2⊥ þ
�
F q

D þ F q
P

2mq
DR

�
2

D2
R −

�
F q

P

2mq

�
2

r2⊥ðr2⊥ −D2
RÞ

⟶
F q

P∼0ðF q
DÞ2ðD2

R − r2⊥Þ: ð25Þ

For the axial-vector diquark model, we have

N aþ ¼
X
λ;λa

fjAλ;λaþ;þj2 þ jAλ;λaþ;−j2g ≃
��

F q
D þ F q

P

2mq
DR

�
DR þ F q

P

2mq

x
1 − x

r2⊥
�
2

þ r2⊥
ð1 − xÞ2

�
ðF q

D þ F q
PÞ2x2 þ

�
F q

D þ F q
P

2mq
ðxDR −DQÞ

�
2

þ
�
F q

P

2mq

�
2

ðð1þ 2x2Þr2⊥ þ ð1 − xÞ2D2
RÞ
�

⟶
F q

P∼0ðF q
DÞ2

�
D2

R þ 1þ x2

ð1 − xÞ2 r
2⊥
�

ð26Þ

N a
−¼Re

X
λ;λa

n
Aλ;λaþ;þðA−λ;−λaþ;þ Þ�þAλ;λaþ;−ðA−λ;−λaþ;− Þ�ge−2iλτ≃−

�
F q

P

2mq

�
2 r2⊥
1−x

h
ð1−xÞD2

RþDRDQþ
r2⊥
1−x

xð1þxÞ
i
cos2ðψ −τÞ

ð27Þ

N a
k ¼ −

X
λ;λa

λfjAλ;λaþ;þj2 þ jAλ;λaþ;−j2g ≃ −
��

F q
D þ F q

P

2mq
DR

�
DR þ F q

P

2mq

x
1 − x

r2⊥
�
2

þ r2⊥
ð1 − xÞ2

�
ðF q

D þ F q
PÞ2x2 þ

�
F q

D þ F q
P

2mq
ðxDR −DQÞ

�
2

þ
�
F q

P

2mq

�
2

ðr2⊥ − ð1 − xÞ2D2
RÞ
�

⟶
F q

P∼0ðF q
DÞ2

�
1þ x2

ð1 − xÞ2 r
2⊥ −D2

R

�
: ð28Þ

As expected, the distributions N s;a
þ andN s;a

k return back to

the results of the conventional diquarkmodels [6]whenF q
P is

approaching zero. Besides, an asymmetric term N s;a
− with

definite angular distribution is generated by thephoton-quark
Pauli couplings. If we use the Trento convention [42], which
uses the angle ϕh between the hadron h and lepton planes,

ϕh ¼ ψ − τ; ð29Þ

then the angular dependence of N s;a
− is cos 2ðψ − τÞ ¼

cos 2ϕh, which is identical to those of the Cahn and Boer-
Mulders effect. Its physical origin is, however, quite different
from the original cos 2ϕh azimuthal asymmetries in SIDIS.
As can be seen in Eqs. (24) and (27), the magnitudes ofN s;a

−
are proportional to the squared Pauli form factor ðF q

PÞ2,
which is from the nonperturbative contribution and could be
explicitly calculated by various phenomenological models,
e.g., the instanton liquid model for the nontrivial topological
structure of theQCDvacuum [35]. It should be noted that the

Pauli couplingsF q
P introduced in Eq. (44) areQ

2 dependent,
which will be discussed in detail in Sec. III.
In our above calculation, we neglect the form factors

which are introduced to smoothly suppress the contribution
of high transverse momentum. Here, we introduce conven-
tional dipolar form factors in the photon-quark couplings:

F q
D;P⇒F q

D;P

r2−m2
q

ðr2−Λ2
s;aÞ2

¼F q
D;P

r2⊥þB2
Rðm2

qÞ
ðr2⊥þB2

RðΛs;aÞÞ2
ðx−1Þ:

ð30Þ

We can read the unpolarized and helicity parton distribu-
tion functions (PDFs) from Eqs. (23), (25), (26), and (28),

fs1ðx; r⊥Þ ¼
g2sð1 − xÞ3
ð2πÞ3

N sþ
2ðr2⊥ þ B2

RðΛ2
sÞÞ4

ð31Þ

fa1ðx; r⊥Þ ¼
g2að1 − xÞ3
ð2πÞ3

N aþ
2ðr2⊥ þ B2

RðΛ2
aÞÞ4

ð32Þ
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gs1Lðx; r⊥Þ ¼
g2sð1 − xÞ3
ð2πÞ3

N s
k

2ðr2⊥ þ B2
RðΛ2

sÞÞ4
ð33Þ

ga1Lðx; r⊥Þ ¼
g2að1 − xÞ3
ð2πÞ3

N a
k

2ðr2⊥ þ B2
RðΛ2

aÞÞ4
; ð34Þ

which return back to the results of the conventional diquark
model [23] when F q

P → 0. We can also define a new
distribution function like the Cahn effect, using Eqs. (24)
and (27), as

Csðx; r⊥Þ ¼ −
g2sð1 − xÞ3
ð2πÞ3

N s
−

2ðr2⊥ þ B2
RðΛ2

sÞÞ4
ð35Þ

Caðx; r⊥Þ ¼ −
g2að1 − xÞ3
ð2πÞ3

N a
−

2ðr2⊥ þ B2
RðΛ2

aÞÞ4
: ð36Þ

In the above equations, gs;a are the normalization factors
determined by

Z
1

0

dx
Z

∞

0

d2r⊥fs;a1 ðx; r⊥Þ ¼
Z

1

0

dxfs;a1 ðxÞ ¼ 1: ð37Þ

The r⊥-integrated results fs;a1 ðxÞ, gs;a1L ðxÞ and Cs;aðxÞ are
given in the Appendix.
After determining the parameters of the model by fitting

the known unpolarized and polarized distribution functions
fu;d1 ðxÞ and gu;d1 ðxÞ, we can predict the numerical results of
our model for the cos 2ϕh asymmetry. To perform the fit,
we need to relate the functions fs;a1 ðxÞ and gs;a1 ðxÞ, in terms
of diquark types in the model, to the functions fu;d1 ðxÞ and
gu;d1 ðxÞ with regard to quark flavors in the global fits. We
write them generally as [6,7]

fu1 ¼ c2sfs1 þ c2aðuÞf
aðuÞ
1 ð38Þ

fd1 ¼ c2aðdÞf
aðdÞ
1 ; ð39Þ

which should be generalized to the case of gu;d1 and Cu;d.
Here, we discriminate the two isospin states of the vector
diquark, namely aðuÞ for the udðI3 ¼ 0Þ diquark and aðdÞ
for the uuðI3 ¼ 1Þ diquark. We have c2s ¼ 3=2, c2aðuÞ ¼ 1=2

and c2aðdÞ ¼ 1 under the SU(4) symmetry. However, since

SU(4) symmetry is no longer strictly preserved in the
spectator model of the nucleon, we treat these coefficients
instead as free parameters. We have checked that the results
are not sensitive to the values of the masses of constituent

quark mq and ud diquark maðuÞ
D , so we fix them to be

mq ¼ 0.30 GeV and maðuÞ
D ¼ 1.5 GeV. We have, in total,

nine free parameters for the model.
In order to reproduce the parametrizations of PDFs

extracted from experimental data, we have to choose a
proper scale Q2

0 at which the diquark models are probably
appropriate. Following the arguments in Refs. [6,7], a very
low scale Q2

0 seems to be favored, so the lowest possible
value of the scale is used in the literature, e.g., 0.3 GeV2 [6]
and 0.078 GeV2 [7]. Only a few PDFs of the global fit are
at hand in such a low Q2 range, and most of them are
usually applicable above 1.0 GeV2, e.g., CT14 [43],
MMHT2014 [44], NNPDF [45], and ABM11 [46]. We
fit our model parameters to the leading-order GRV1998
[47] and GRSV2000 [48] parametrization at Q2

0 ¼
0.26 GeV2 for fu;d1 and gu;d1 , respectively. We assign a
constant relative error of 5.0% to fu;d1 based on compar-
isons with HERAPDF [49] and IMParton [50,51] under the
same Q2. We allocate a relative error of 20.0% to gu;d1 in
view of DNS2005 [52] and DSSV2010 [53] (see
Refs. [54,55] for a detailed comparison of various gu;d1 ).
The fit results are shown in Figs. 2 and 3 for fu;d1 and gu;d1 ,

respectively. The extracted parameters are shown in Table I.
In Fit-I, we use the conventional model, in which there is no
Pauli coupling in the photon-guark vertex, e.g., setting
F q

P ¼ 0 in the fit. We achieve a good agreement except for
the gd1 . The fitted gd1 goes to positive values in the range of
around x ¼ 0.6, while it is negative in the full x range in
GRSV2000. This conclusion has been found before in
Ref. [6]. In Fit-II, we use the full model with F q

P at

FIG. 2. The unpolarized PDF fu;d1 in our model. The red and
blue lines are for u– and d–quark, respectively. The dashed and
dash-dotted lines are from GRV1998 [47] and IMParton [50,51],
respectively. The shadow bands correspond to the relative error of
5.0% to GRV1998. The dotted and solid curve are the results of
Fit-I and Fit-II, respectively. The dash-dot-dotted curves re-
present result of Fit-II with setting the Pauli coupling in
photon-guark vertex to be zero (F q

P ¼ 0).

PARTON DISTRIBUTIONS AND cos 2ϕh ASYMMETRY … PHYS. REV. D 97, 114010 (2018)

114010-5



Q2
0 ¼ 0.26 GeV2 as a free parameter. In spite of the high χ2

because we choose small relative errors for fu;d1 , the
agreement is acceptable for all the PDFs and the overall
χ2 is promoted significantly. The fit of fu1 is as good as that
in Fit-I, and the fd1 is slightly improved. Though the
description of gu1 becomes a little worse in Fit-II, and
the gd1 is much better from x ¼ 0.3 to 0.7. The contribution
of the Pauli coupling is significant above x ¼ 0.3, as can be
seen in Figs. 2 and 3, when we turn it off in the fit results of
Fit-II.
In Fig. 4, we give the predicted distributions xCu;dðxÞ

at Q2
0 ¼ 0.26 GeV2 in our model. The magnitude of the

u–quark distribution is much bigger than that of the
d–quark, though their shapes are close to one another.
The maximum for both distributions is around x ≃ 0.4.

III. COMPARISON TO DATA
OF cos 2ϕh ASYMMETRY

The cos 2ϕh asymmetries in SIDIS off the hydrogen,
deuterium, and 3He targets have already been extensively
explored by EMC [56], ZEUS [57,58], HERMES [59,60],
COMPASS [61–64] Collaborations and at JLab [65–67].
Since both HERMES [59] and COMPASS [61]
Collaborations have measured the SIDIS off the unpolar-
ized proton for charged unidentified hadrons (h) among
final particles but under slightly differentQ2, here we try to
compare our new asymmetry in Eqs. (35) and (36) with the
parameters in Table I to these data, together with the Cahn
effect. We do not aim for a full analysis of the azimuthal
asymmetry based on all released data because it is beyond
the scope of this paper. Attempts in this direction can be
found in a series of publications [5,11–16]. For the same
reason, we also do not investigate the Boer-Mulders
distribution [2] here, for which the Collins FFs of the
production hadron should be introduced [3,4].
In the parton model, the SIDIS differential cross sections

are expressed as the convolution of TMD PDFs f1ðx; r⊥Þ
and FFs Dq

1ðzh; p⊥Þ [5,11–13],

dσ
dxdydzhdP2

hTdϕh
¼ 2πα2

Q4xy

X
q

e2qx
y2

2ð1 − εÞ
�
1þ γ2

2x

�

×
Z

d2r⊥d2p⊥δ2ðP⃗hT − zhr⃗⊥ − p⃗⊥Þ

× fq1ðx; r⊥ÞDq
1ðzh; p⊥Þ; ð40Þ

where the sum runs over the quark favor q. We denote by
PhT the transverse momentum of the final hadron h, and by
p⊥ the transverse momentum of h with respect to the
direction of the fragmenting quark. The Dq

1ðzh; p⊥Þ is well
recognized in the Gaussian form:

FIG. 3. The polarized PDF gu;d1 in our model. The red and blue
lines are for u and d quark, respectively. The dashed lines are
from GRSV2000 [48] and the shadow bands correspond to their
relative error of 20.0%. Other curves are the same with the labels
in Fig. 2.

TABLE I. Extracted parameters in two fit schemes. The † labels
the parameter with a fixed value in the fit.

Fit-I Fit-II

mq (GeV) 0.3† 0.3†

ms
D (GeV) 0.769� 0.038 0.829� 0.025

maðuÞ
D (GeV) 1.5† 1.5†

maðdÞ
D (GeV) 0.857� 0.065 0.921� 0.007

Λs (GeV) 0.683� 0.028 0.545� 0.017
ΛaðuÞ (GeV) 0.767� 0.030 0.509� 0.025
ΛaðdÞ (GeV) 0.434� 0.027 0.385� 0.006
c2s 0.445� 0.048 0.657� 0.061
c2aðuÞ 1.245� 0.060 1.112� 0.089

c2aðdÞ 0.639� 0.011 0.662� 0.012

F q
PðQ2

0Þ 0.0† 0.921� 0.117
χ2=d:o:f 8.51 4.12

FIG. 4. The distributions xCu;dðxÞ at Q2
0 ¼ 0.26 GeV2 in our

model. The solid and dashed lines are for u and d quark,
respectively.
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Dq
1ðzh; p⊥Þ ¼ Dq

1ðzhÞ
e−p

2⊥=hp2⊥i

πhp2⊥i
: ð41Þ

We adopt the unpolarized DSS FFs at leading order for
Dq

1ðzhÞ [68] with hp2⊥i ¼ 0.2 GeV2 [9,13]. The results do
not change much if the SKMA FFs [69] are used instead.
Similarly, the contribution of the distribution Cqðx; r⊥Þ to

the cos 2ϕh asymmetry can be defined as

dσ
dxdydzhdP2

hTdϕh
¼ 2πα2

Q4xy

X
q

e2qx
y2ε

2ð1 − εÞ
�
1þ γ2

2x

�

×
Z

d2r⊥d2p⊥δ2ðP⃗hT − zhr⃗⊥ − p⃗⊥Þ

× Cqðx; r⊥ÞDq
1ðzh; p⊥Þ cos 2ϕh: ð42Þ

The Cahn effect on the cos 2ϕh asymmetry can be obtained
by substituting the Cqðx; r⊥Þ with the following function
Cqcahnðx; r⊥Þ in the above definition [70,71],

Cqcahnðx; r⊥Þ ¼ 2
2ðr⊥ · hÞ2 − r2⊥

Q2
fq1ðx; r⊥Þ; ð43Þ

with h ¼ PhT=jPhT j. As the only known one of the twist-4
effects, it is at the order of r2⊥=Q2, and hence it is
controversial when we use the identical kinematical rela-
tions and factorization as the leading twist (see discussions
in Refs. [12,13]). We have to leave these debates behind at
present until these problems are completely resolved from
the theoretical side.
The extracted value of F q

PðQ2
0Þ is close to 1.0 in Sec. II.

This is, in fact, roughly compatiblewith the calculation in the
instanton model [36], where it is found that the Q2 depend-
ence of the Pauli coupling can be parametrized very well by

F q
PðQ2Þ

F q
PðQ2

0Þ
¼

1þ ρcQ2
0

4.7mq

1þ ρcQ2

4.7mq

; ð44Þ

with the instanton size ρc ¼ 1=3 fm. As a result, our new
distribution is at the order of 1=Q4 andwould suffer the same
kinematical and dynamical problems as in the case of the
Cahn effect asmentioned above.Moreover, theF q

P decreases
very rapidly below Q2 ¼ 1.0 GeV2 and approaches a con-
stant above 2.0 GeV2. As a result, it is expected that the
strength of the new asymmetry is enlarged in thevery lowQ2.
However, the data in this Q2 range are unavailable. The
average Q2 of the HERMES [59] and COMPASS [61]
measurements are about 2.5 and 3.0 GeV2, respectively.1 In
principle, we need to evolve our distributions from Q2

0 to
the experimental one. Because the evolution of these

distributions is not firmly established [17], we simply use
the value of F q

PðQ2Þ at experimental Q2, determined by
Eq. (44) during our comparison. This leads to a reduction of
about 1 order of magnitude of Cqðx; r⊥Þ compared to that at
Q2

0. It should be mentioned here that the data of EMC [56]
and ZEUS [57,58] are measured in very high Q2, so the
contribution of both the Cahn effect and our new distribution
to the cos 2ϕh asymmetry are anticipated to be negligible.
The measured asymmetry in the experiment is defined as

Acos 2ϕh
UT ¼

R
dσ cos 2ϕhR

dσ
; ð45Þ

where the integrations are performed over the measured
kinematical ranges of x, y, zh, and PhT , which can be found
in the papers of the HERMES [59] and COMPASS [61]
Collaborations. The detailed formalism of the integrations
is found in Refs. [13,16].
Our calculated results are shown in Figs. 5 and 6,

together with the corresponding data. As can be seen,
the magnitude of the asymmetry induced by our new
distribution is of a few percent and comparable to the
Cahn effect in various kinematical ranges. The new and
Cahn asymmetry are both flavor blind and positive for the
π� inclusive production, while the Boer-Mulders effect is
flavor dependent. Our asymmetry seems to be bigger than
the Cahn effect in the kinematic range of the COMPASS
measurement, as displayed in Fig. 6. Another feature is that
our new asymmetry is more weakly dependent on the
kinematical variables than the Cahn effect. In particular, it
does not vanish when PhT is approaching zero, as the Cahn
effect does. The new asymmetry only begins to drop to zero
when z is smaller than 0.2, as can be seen in Fig. 5. We
arrive at the analogous conclusion for the identified charged
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FIG. 5. The Acos 2ϕh
UT in one of kinematic ranges (A) of the

HERMES measurement (see Table III in Ref. [59]). The solid and
dotted curves are the results of Cahn effect and our new
distribution, respectively.

1There is strong correlation between variables x and Q2 (and
thus between x and y), but we put aside this problem at present
and it should pay caution to the subfigures with the x variable in
Figs. 5 and 6.
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pions and kaons produced by SIDIS off the nucleon,
hydrogen, and deuterium targets.
It is concluded that the PhT behavior of the COMPASS

data seems to be incompatible with the corresponding
behavior of HERMES data by Barone et al.[13]. Our new
distribution in Eqs. (35) and (36) as functions of kinemati-
cal variables is unlike the Cahn effect, which is clearly
illustrated in Figs. 5 and 6, so it would be helpful for
understanding this inconsistency phenomenologically.
A reliable extract of the Cahn and Boer-Mulders effects
from experimental data should be done by considering the
effect from our distribution Cqðx; r⊥Þ.

IV. CONCLUSION

In summary, we investigate the role of the Pauli coupling
in the photon-quark vertex to SIDIS. In the calculation, we
utilize the scalar and axial-vector diquark models for the
target nucleon. Our analytical formalism unveils that the
obvious x dependence is introduced into the PDFs by this
additional photon-quark vertex. We determine the Pauli
coupling in the scale of Q2

0 ¼ 0.26 GeV2 by fitting to the
global fit of the PDFs. The determined value of the Pauli
coupling agrees approximately with the prediction from the
instanton model. The numerical results have shown that the
Pauli coupling contributes considerably to the unpolarized
and polarized PDFs in the low-Q2.
Furthermore, we demonstrate that the Pauli coupling in

the photon-quark vertex can cause the helicity flip of the
struck quark, leading to a new positive cos 2ϕh asymmetry
in SIDIS. The magnitude of the asymmetry is proportional
to the squared Pauli coupling, which introduces a signifi-
cant Q2 dependence into its evolution. If admitting this Q2

dependence expediently from the instanton model, the
given asymmetry is at the same level as the Cahn effect
and of the order of a few percent in size within the
HERMES and COMPASS kinematics. In other words,

the magnitude of this new asymmetry is expected to be
larger than that of the Cahn effect in the range of
Q2 < 2.0 GeV since it has a stronger Q2 dependence than
the Cahn effect. So the measurement of the Q2 dependence
of the cos 2ϕh asymmetry is crucial to disentangle higher-
twist effects and our new asymmetry.
The important observation is that the cos 2ϕh asymmetry

at the low Q2 range should be explored systematically by
including the effect from our distribution, together with the
Cahn and Boer-Mulders effects. The available data of the
cos 2ϕh asymmetry in SIDIS do not yet allow a full
extraction of the Boer-Mulders function due to the present
kinematics which are still dominated by the low-Q2 region.
It is already found that the higher-twist contributions are of
great significance and strongly affect the results of the
fits [11,12]. The multidimensional data for the multiplic-
ities released by HERMES [59] and COMPASS [61]
Collaborations have large uncertainties, and they are also
not sufficient for a full determination of the Boer-Mulders
function [13]. Because the contribution of our new asym-
metry is sizable, the experimental scrutiny of the Boer-
Mulders function is more difficult. The future electron-ion
colliders are anticipated to measure the cos 2ϕh asymmetry
in the higher Q2 range where both our new asymmetry and
other high-twist contribution, e.g., the Cahn effect, are
expected to be small. We do not find any contribution of the
Pauli coupling to the cosϕh azimuthal modulation, so the
condition would be simpler there for the determination of
the Boer-Mulders function.
It has been discovered that the Pauli couplings in both

the photon-quark and photon-gluon vertices are contribut-
ing to the angular dependence of the SSA observables in
polarized SIDIS [23,24]. Our calculations here complement
earlier studies and accomplish a full picture of the influence
of the helicity nonconservation interactions on the SIDIS
measurements. The instantons are a possible underlying
mechanism for these novel interactions, and they give the
explicit Q2 dependence of the corresponding couplings.
Other optional approaches [72,73], e.g., Dyson-Schwinger
equations with the nonperturbative quark and gluon propa-
gators [74], are waiting to be extended to a nonzero photon
virtuality before a feasible comparison of different models
can be made.

ACKNOWLEDGMENTS

We gratefully acknowledge the enlightening discussions
with Professor Vicente Vento, Professor Nikolai Kochelev,
and Dr. Nikolai Korchagin at the initial stage of this work.
We thank Dr. Ruilin Zhu and Dr. Wenjuan Mao for help in
polishing the paper. We would like to thank Professor
R. Sassot for sending us the files of DSS fragmentation
functions and Dr. Rong Wang for the IMParton PDF files.
This work was supported by the National Natural Science
Foundation of China (Grant No. 11405222).

 0

 0.05

 0.1

 0.15

 0.1
xB

h-

 0

 0.05

 0.1

A
U

T
co

s(
2φ

h)

h+

 0.2  0.4  0.6  0.8
zB

COMPASS 2014

 0.2  0.4  0.6  0.8  1
Ph⊥

FIG. 6. The Acos 2ϕh
UT in kinematic range of the COMPASS

measurement [61]. The solid and dotted curves are the results of
Cahn effect and our new distribution, respectively.

XU CAO PHYS. REV. D 97, 114010 (2018)

114010-8



APPENDIX: r⊥-INTEGRATED DISTRIBUTIONS

Her we list the r⊥-integrated results fs;a1 ðxÞ, gs;a1L ðxÞ, and Cs;aðxÞ obtained in the context of our spectator diquark model:

fs1ðxÞ ¼
ð1 − xÞ3
ð2πÞ2

1

24B6
RðΛ2

sÞ
��

F q
D −

F q
P

2mq
DQ

�
2

B2
RðΛ2

sÞ þ 2

�
F q

D þ F q
P

2mq
DR

�
2

D2
R þ

�
F q

P

2mq

�
2

B2
RðΛ2

sÞð2B2
RðΛ2

sÞ þD2
RÞ
�

ðA1Þ

fa1ðxÞ ¼
1 − x
ð2πÞ2

1

24B6
RðΛ2

aÞ
	
2ð1 − xÞ2

��
F q

D þ F q
P

2mq
DR

�
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P

2mq

x
1 − x
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RðΛ2
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�
2
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�
ðF q
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�
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ðxDR −DQÞ

�
2

þ
�
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P
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2
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