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We study the implications of the spontaneous and explicit Z(3) center symmetry breaking for the
Polyakov loop susceptibilities. To this end, ratios of the susceptibilities of the real and imaginary parts, as
well as of the modulus of the Polyakov loop are computed within an effective model using a color group
integration scheme. We show that the essential features of the lattice QCD results of these ratios can be
successfully captured by the effective approach. Furthermore we discuss a novel scaling relation in one of
these ratios involving the explicit breaking field, volume, and temperature.
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I. INTRODUCTION

Understanding deconfinement and chiral symmetry
restoration, as well as exploring their far-reaching conse-
quences [1–3] remain challenging in the study of heavy ion
collisions. A robust description of the phenomenon is
necessary for reliably analyzing many observables of
experimental interests, such as fluctuation observables,
transport coefficients or the production rate of photon
and dilepton [1,4,5].
Although lattice QCD (LQCD) provides first-principles

calculations of many of these quantities [5–11], phenom-
enological models [2,12–26] remain essential for gaining
physical understandings and extending results to large
baryon chemical potential.
In the limit of infinitely heavy quarks, deconfinement

can be identified with the spontaneous breaking of the
Z(3) center symmetry [27,28]. The Polyakov loop [29–32]
serves as an order parameter for the phase transition. In
some effective models [16–20] a potential is constructed
to describe its behavior. It is possible to constrain the
parameters of the potential using the LQCD results on the
thermodynamic pressure [33,34] and the Polyakov loop
[35] in a pure gauge theory. In particular, the latter dictates
the locations of the minimum of the potential at different
temperatures.
There is another class of independent observables which

are sensitive to theZ(3) center symmetry—the susceptibilities
of the real and imaginary parts, as well as of the modulus
of the Polyakov loop [36]. These quantities measure the

fluctuations of the order parameter field. To describe them
in an effective model, not only the location, but also the
curvatures around the minimum of the Polyakov loop
potential have to be adjusted [37].
In a pure gauge theory, ratios of these susceptibilities

have been demonstrated [36] to be excellent probes of
deconfinement. They display a θ-function like behavior
across the transition temperature Td, with well-defined low
temperature limits deducible from general theoretical con-
straints and the Z(3) symmetry.
In a recent study [38] these ratios have been computed in

numerical simulations of LQCD with 2þ 1 light flavors.
Unfortunately, the task of extracting useful information
from these quantities is more involved than originally
thought. Most importantly, many pertinent features of
the ratios are smoothed out in the presence of dynamical
fermions, as well as after prescribing a renormalization. In
addition, the results are still marred by issues of renorm-
alization scheme dependence and it is far from clear how to
connect them to calculations made in an effective model.
Despite these difficulties, we stress that there are strong

theoretical motivations for studying and understanding
these ratios. For one thing, the widely used order parameter,
i.e., the renormalized Polyakov loop computed by LQCD,
is a renormalization scheme dependent quantity [35,39].
This calls into question the physical relevance of the
deconfinement features deduced from it, for example,
the transition temperature Td [10,11] extracted from its
inflection point. It is therefore crucial to study the decon-
finement phenomenon from the perspective of these addi-
tional observables, and investigate whether a coherent
picture can be obtained. They can also be used to signal
the strength of the explicit symmetry breaking field.
In this paper we compute the susceptibility ratios within

an effective model. This allows a transparent study of
how aspects of center symmetry breaking, explicit and
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spontaneous, manifests in the ratio observables. The
approach also provides some simple explanations to many
features of the LQCD results.
The article is organized as follows: In Sec. II we review

the derivation of the Polyakov loop susceptibilities using
the color group integration approach. The method is
illustrated by computing one of the ratios, RA, in the
presence of explicit symmetry breaking field for a Gaussian
model. In Sec. III we present the effective Polyakov loop
potential for this study and analyze the explicit breaking
field and volume dependence of the model susceptibility
ratios. A novel scaling relation for RA is also presented.
In Sec. IV, we compare the model results with LQCD
calculations. In Sec. V we present the conclusion.

II. COLOR GROUP INTEGRATION

A. Formalism

In this work we compute the various susceptibility
observables using a color group integration scheme
[37,40,41]. The partition function in this approach is
expressed as

Z ¼
Z

dxdye−VT
3U½x;y�; ð1Þ

where ðx; yÞ stands for the real and imaginary.1 part of the
Polyakov loop.
This form of the partition function can be motivated from

the Ginzburg-Landau approach for studying phase tran-
sition [42], where the order parameters are promoted to
field degrees of freedom. The Landau functional may
contain in general a potential term U½x; y� and various
gradient terms. The group integration approach makes a
further simplification to use spatially homogeneous order
parameter fields as the field variables. Under this approxi-
mation the gradient terms can be neglected and the func-
tional integration over configurations becomes standard
integrations. The actual Polyakov loop potential ðU½x; y�Þ
of choice will be presented in Sec. III.
Expectation value of an arbitrary operator within this

approach is computed via

hÔi ¼ 1

Z

Z
dxdyOðx; yÞe−VT3U½x;y�: ð2Þ

Thus, e.g., the expectation value of the Polyakov loop
can be readily obtained from

hli ¼ hxi þ ihyi: ð3Þ
Staying within the real sector and considering explicit

symmetry breaking along the real axis imply hyi ¼ 0.

However, fluctuations of the order parameter can be
explored along the longitudinal (real) and transverse
(imaginary) directions, as well as that of its absolute value:

T3χL ¼ VT3ðhx2i − hxi2Þ; ð4Þ
T3χT ¼ VT3ðhy2i − hyi2Þ; ð5Þ

T3χA ¼ VT3

 
hðx2 þ y2Þi −

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q �
2
!
: ð6Þ

From these, two independent ratios are derived:

RA ¼ χA=χL ð7Þ
RT ¼ χT=χL: ð8Þ

Note that χA ≠ χL þ χT and RA ≠ 1þ RT .
In the large volume limit, it can be shown that the two

susceptibilities in Eqs. (4)–(5) approach the mean-field
results

T3χL → ðC−1Þ11
T3χT → ðC−1Þ22; ð9Þ

where C is the correlation matrix [37,43], defined as

C ¼
 ∂2U

∂x∂x
∂2U
∂x∂y

∂2U
∂y∂x

∂2U
∂y∂y

!
: ð10Þ

This gives a transparent interpretation of the susceptibil-
ities as the inverse of curvatures of the effective Polyakov
loop potential. Note that all of these quantities are to be
evaluated at ðx; yÞ → ðx0; y0Þ, determined from the gap
equations

∂U½x; y�
∂x ¼ 0 ¼ ∂U½x; y�

∂y : ð11Þ

On the other hand, χA in Eq. (6) cannot be determined
within amean-field approach, due to the inability to calculate

Oð1=VÞ corrections for the quantity
D ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p E

2
[36].

Nevertheless, the quantity can be readily computed in the
current color group integration scheme.

B. Gaussian model with an explicit symmetry
breaking field

The Gaussian model has proved useful for understanding
the low temperature behavior of the susceptibility ratios in a
pure gauge system. Inserting a potential of the form

U0 ¼ αðx2 þ y2Þ ð12Þ
in Eq. (1), the following nontrivial manifestations of the
Gaussian limit can be derived [36]:

1In this study we shall stay exclusively in the real sector and
there is no ambiguity in identifying the longitudinal and trans-
verse directions with the real and imaginary axes, respectively.
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RA ¼ 2 − π=2 ≈ 0.43

RT ¼ 1: ð13Þ
These low temperature relations have been verified by

lattice calculations in a pure gauge theory.
To investigate how these ratios behave in QCD with

dynamical quarks, we extend the discussion to include
finite explicit symmetry breaking. To this end, we perform
a substitution

U0 → U0 − hx: ð14Þ
It is straightforward to derive an exact expression for

RA.
2 The result reads,

RA ¼ 2þ 2ξ2 −
π

2
e−ξ

2

× F 2; ð15Þ

with

F ¼ ð1þ ξ2Þ × I0½ξ2=2� þ ξ2 × I1½ξ2=2�; ð16Þ
where InðxÞ is the modified Bessel function of the first kind
of the nth order, and

ξ ¼ h ×

ffiffiffiffiffiffiffiffiffi
VT3

p

2
ffiffiffi
α

p : ð17Þ

Especially we extract the following important limits:

RA ¼
( ð2 − π=2Þ × ð1þ ξ2Þ ξ ≪ 1

1 − 1
4ξ2

ξ ≫ 1
: ð18Þ

This generalizes Eq. (13) to the case of a finite explicit
symmetry breaking.

To gain some familiarity with the ratioRA, we examine the
quantity as a function of temperature: (1) at fixed volume
but for differenth, and (2) at fixedh but for different values of
the volume. In this numerical study, we fix α ¼ 1, h0 ¼ 1,
and V0 ¼ ð6.9 fmÞ3. The results are shown in Fig. 1. As
expected, the RA ratio interpolates between the two known
limits [36]: from the Z(3)-symmetric phase ðRA ¼ 2 − π=2Þ
to the Z(3)-broken phase ðRA ¼ 1Þ. At a fixed volume,
increasing the breaking strength h makes the ratio approach
unity at lower temperature. The quantity also exhibits a
strong volume dependence, as seen in Fig. 1 right.
All the results presented in Fig. 1 originate from the single

expression Eq. (15). In the Gaussian model, the breaking
field h always enters via a combination of volume V and the
parameter α dictated by Eq. (17). This leads to a difficult
situation that asV → ∞,RA → 1, regardless of thevalue ofh
and temperatures. To obtain useful information from this
quantity, it is necessary to work in a finite volume setting.
Alternatively, one can study RA as function of the scaling
variable ξ. We shall revisit some of these issues for the full
effective model in Sec. III.

III. POLYAKOV LOOP SUSCEPTIBILITY RATIOS
WITHIN AN EFFECTIVE MODEL

A. Effective Polyakov loop potential

The Gaussian model discussed above, though general-
ized to include an explicit symmetry breaking field, does
not describe the spontaneous Z(3) symmetry breaking.3

To examine the susceptibility ratios in a setting that is
relevant to QCD, a Polyakov loop potential [37], capable of
handling the latter aspect will be employed:

FIG. 1. The ratio RA in the Gaussian model as a function of temperature at fixed volume (left) and at fixed explicit symmetry breaking
strength (right). We adopt the following scheme in presenting our results: different colors (and line types) correspond to different
explicit breaking strengths; while different symbols denote different volumes. In this numerical study, we fix α ¼ 1, h0 ¼ 1, and
V0 ¼ ð6.9 fmÞ3.

2A more general case of a double-Gaussian model is consid-
ered in the Appendix B. 3The Gaussian model gives RT ¼ 1 for all temperatures.
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UG ¼ −
A
2
× l̄lþ B × lnMHðl; l̄Þ

þ C
2
× ðl3 þ l̄3Þ þD × ðl̄lÞ2: ð19Þ

Here MHðl; l̄Þ is the SU(3) Haar measure

MHðl; l̄Þ ¼ 1 − 6l̄lþ 4ðl3 þ l̄3Þ − 3ðl̄lÞ2; ð20Þ

The temperature dependent model parameters ðA; B;
C;DÞ are given in Ref. [37] and will not be repeated here.
Note that to implement the color group integration scheme
in Eq. (1), we use

l ¼ xþ iy

l̄ ¼ x − iy: ð21Þ

The potential UG in Eq. (19) is particularly suited for the
current study. Most importantly, the known susceptibilities
at zero explicit breaking are reproduced by construction.
This is not the case for other commonly used Polyakov loop
potentials [16–18]. For example, the polynomial potential
introduced in Ref. [16] leads to the result RT > 1 for
T > Tc, which is another manifestation of the “negative
susceptibility” problem discussed in Ref. [14,22]. Imposing
the Haar measure to the potential [17,18] effectively
restricts the Polyakov loop to the target region and thus
improves the theoretical description. In fact, the present
model builds on this observation and further constrains the
curvatures of the potential using the available LQCD results
[36] on the susceptibilities in a pure gauge theory.
Furthermore, we consider a linear explicit breaking term

h × x. The functional form of the breaking field h is known
within the approximation of a one-loop expansion of the
fermionic determinant [43,44]. As we aim at understanding
the ratios on the qualitative level, we shall employ the
following basic form for h ¼ c × h0, with

h0 ¼ 2hqðT;mlÞ þ hqðT;msÞ ð22Þ
where

hqðT;mÞ ¼ 6

π2T3

Z
∞

0

dkk2
�
e−EðkÞ=T þ e−2EðkÞ=T

1þ e−3EðkÞ=T

�

EðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
: ð23Þ

For quark masses we choose ml ¼ 5 MeV for up and
down quarks and ms ¼ 100 MeV for the strange quarks.4

We shall also allow for an arbitrary prefactor c to
manipulate the strength of h.
We stress that it is not the intention of this paper to model

the breaking strength with a PNJL-type model. The h0
introduced here only serves as a reference scale from which

wemeasure the Z(3) breaking strengths of other approaches.
In fact, an attempt will be made to infer the magnitude of the
prefactor c from the LQCD results on the ratio observables.
In a previous study [43] we have calculated the critical

strength of the breaking field, hcrit., for the phase transition
to turn from the first order to the second order, that is, the
critical end point (CEP) for the Z(3) transition5:

hcrit ≈ 0.144: ð24Þ

The breaking field h0 in Eq. (22) exceeds this limit for all
temperatures of interest, meaning that a crossover transition
is expected. This is evident in the ratio observables
computed in the full model, as shown in Fig. 2.
Starting with the ratio RA, shown in Fig. 2 left, we first

notice the similarity between the full model results and
those from the Gaussian model. Indeed, the RA ratio
interpolates between the two known theoretical limits: ð2 −
π=2 ≈ 0.43Þ and 1. The expected behaviors from varying
the breaking strength and the volume are also verified.
Turning now to the ratio RT , shown in Fig. 2 right, the

immediate observation is the volume independence of the
quantity. This is evident from the fact that results with
different symbols (but same color) all fall on the same line.
This suggests that the finite volume V0 ¼ ð6.9 fmÞ3 we
selected is sufficiently large. Indeed, we have checked that
the ratioRT approaches themean-field value, dependent only
on the intensive variables T and h. Increasing the breaking
strength h makes the ratio deviates from the known
Z(3)-symmetric limit ðRT ¼ 1Þ at lower temperature.
On the other hand, the value ofRT at large temperatures is

not dictated by the Z(3) symmetry. Instead, it can be related
to the color screening properties of the QCD medium. The
key observation is that the real and the imaginary parts of
the Polyakov loop have very distinct transformation property
under A0 → −A0 (related to R-Parity [45]): the former is
even (color magnetic) while the latter is odd (color electric).
In fact, it has been argued in Ref. [46] that the imaginary-
imaginary correlator can be used as a gauge invariant way to
define a non-Abelian (color) electric screening mass.
Generally susceptibilities can be computed by a spatial

integration of the (connected) correlators [47,48]

χL;T ¼
Z

d3zhlðzÞlð0Þic; ð25Þ

for lðzÞ ¼ fReðLðzÞÞ; ImðLðzÞÞg and LðzÞ is the Polyakov
loop field. We thus expect χL;T to be sensitive to the color
screening properties of the medium.6 Further research on
this topic will be reported elsewhere.

4The case of a (2þ 1)-PNJL model is addressed in Sec. IV.

5We correct a typographical mistake in Ref. [43].
6Note the difference between susceptibilities and screening

masses, the latter are obtained from the long distance jzj → ∞
behavior of the correlators.
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Before proceeding to compare the effective model
calculations with LQCD (see Sec. IV), we first discuss
an interesting observation of RA ratio, namely, a scaling
relation inspired by the Gaussian model.

B. Scaling relation of RA

The Polyakov loop potential UG employed in Eq. (19) is
clearly non-Gaussian. Nevertheless, we can consider a
generalized double-Gaussian approximation to the potential:

U1 ¼ α1x2 þ α2y2 − h̃x; ð26Þ

where the model parameters α1, α2, and h̃ are constructed to
match

α1 ¼
1

2T3χð0ÞL

α2 ¼
1

2T3χð0ÞT

h̃ ¼ hþ l0

T3χð0ÞL

; ð27Þ

with

χð0ÞL ¼ χLðT; h ¼ 0; V → ∞Þ
χð0ÞT ¼ χTðT; h ¼ 0; V → ∞Þ
l0 ¼ hliðT; h ¼ 0; V → ∞Þ: ð28Þ

These coefficients can also be expressed in terms of the
model parameters of UG: (A, B, C,D). See Appendix A for
details.

It is clear that the approximation scheme operates by
constructing local double-Gaussian potential along the line
of minima of UG

7 The advantage of performing such an
expansion is that it allows a direct computation of the ratio
RA with an equation analogous to the single Gaussian limit
studied previously in Eq. (15). The generalized equation
reads

RAðξ; RTÞ ¼ 1þ RT þ 2ξ2 −
2

π
RTe−2ξ

2 ½F ðξ; RTÞ�2; ð29Þ

where F can be obtained with an integral involving the
modified Bessel function. (Details in the Appendix B)
According to this equation, the functional dependence in
ðT; h; VÞ of RA can be uniquely determined by the scaling
variable ξðT; h; VÞ and RTðT; hÞ, via

ξ ¼ h̃ ×

ffiffiffiffiffiffiffiffiffi
VT3

p

2
ffiffiffiffiffi
α1

p

RT ¼ α1
α2

: ð30Þ

This translates to the following: Provided that the gener-
alized Gaussian approximation is valid, all the data point
of RAðT; h; VÞ will collapse on a single universal line
when plotted against ξ, with the choice a “physical”

FIG. 2. The Polyakov loop susceptibility ratio RA (left) and RT (right) for the full model Eq. (19). We adopt the same presentation
scheme as in Fig. 1 for the results. The volume independence of RT is evident: results with different symbols (but same color) all fall on
the same line. In this study, h0 is given in Eq. (22), and V0 ¼ ð6.9 fmÞ3. The “PNJL” line denotes the result of a PNJL model for 2þ 1
light flavors described in Sec. IV. Also shown are the LQCD results at flow time f ¼ f0 extracted from Ref. [38].

7This technique is quite general and can be applied to any
potential. Note that it does not replace the real work of
constructing a physical potential, since the Gaussian-model
parameters need to be extracted from the latter. And unlike the
full potential, symmetry information is lost. Lastly, higher order
loop susceptibilities are not expected to be well-captured within
this approximation.
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RT ¼ RTðT; hÞ. A direct numerical computation confirms
that it is indeed the case, and the result is shown in Fig. 3 left.
While the observation is theoretically interesting, it also

indicates a rather limited information contained in this
observable. For example, the key information about the
magnitude of the explicit breaking field can as well be
extracted from RT . Nevertheless, Eq. (29) may serve as a
useful diagnostic for analyzing RA.

IV. COMPARISON WITH LQCD RESULTS
AND A PNJL MODEL

As discussed in the Introduction, the renormalized
Polyakov loop computed by LQCD is a renormalization
scheme dependent quantity [38,39]. It obscures the physi-
cal relevance of the derived deconfinement features, e.g.,
the Td extracted from the inflection point, and complicates
the comparison of LQCD results with those obtained in an
effective approach.
One of the original motivations for introducing the

susceptibility ratios as probe of deconfinement is the
removal of both the cutoff and the scheme dependence.
The assumption is that if the Polyakov loop susceptibilities
are renormalized the same way as the Polyakov loop,
the multiplicative renormalization factor will be canceled
against each other.
Contrary to this expectation, recent studies [38,39] report a

substantial cutoff dependence in these ratios in QCD with
2þ 1 light flavors. This is evident from the Nτ-dependence
observed in the “bare data” of RA and RT in Ref. [38]. This
seems to suggest that renormalizing the Polyakov loop alone
does not guarantee the renormalization of the susceptibilities.
In the effective model, the behavior of RT is largely

determined by the explicit breaking field h. It is possible,
therefore, that the cutoff dependence observed in RT can be

associated with the cutoff dependence of h. In fact, it is
non-trivial to obtain a continuum extrapolation of the
explicit breaking strength h from LQCD that is suitable
for comparison with effective model [43,49–52].
Furthermore, if we mimic the Nτ-dependence of the ratio

observables as a change of prefactor in h in the effective
model, we can reproduce the same trend in the ordering of
curves of RT and RA, namely, from top to bottom for RA in
increasing Nτ and the reverse order for RT. (See Figs. 17
and 18 of Ref. [38].) This suggests that the two sets of
“bare” data are connected, and the connection may be due
to h.
Using the gradient flow method [38,39], it is possible to

renormalize the susceptibilities and the ratio observables.
We have selected LQCD results with the “f ¼ f0” flow
time to compare with our effective model calculations.
They are presented in Fig. 2. We note that a reasonable
agreement can be attained if we choose an explicit breaking
field of strength ≈ð1 − 2Þ × h0 and a physical volume
of V0 ≈ ð6.9 fmÞ3.
It is straightforward to extend this study to incorporate

effects from the spontaneous chiral symmetry breaking. For
this purpose, we study a (2þ 1)-PNJL model, combining
the NJL model in Refs. [53,54] and the Polyakov loop
potential UG in Eq. (19). The computation is similar to the
one presented in Sec. II, and we simply show the major
results in Figs. 2 and 3. (Details in Appendix C.)
These results can be readily understood by studying an

effective Z(3) breaking strength for the PNJL model. It can
be computed via Eq. (22), except for using the constituent
quark masses in lieu of the current ones. The behavior of
such an effective breaking strength compared to h0, i.e., the
prefactor cPNJLðTÞ for the PNJL model, is shown in Fig. 4.
It is evident that the PNJL model leads to a substantially
smaller explicit Z(3) breaking, and the observables RT and

FIG. 3. Left: The RA ratio for the full model plotted as a function of the scaling variable ξ (Eq. (30). Model results at various ðh; VÞ
collapse into a single line determined by the generalized Gaussian formula in Eq. (29). Right: Results of the Polyakov loop computed in
the model and the LQCD results from Ref [38]. The “PNJL” line denotes the result of a PNJL model for 2þ 1 light flavors described in
Sec. IV.
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RA behave accordingly. However, the LQCD results of ratio
observables seem to indicate a stronger breaking strength
(≈ð1 − 2Þ × h0). This suggests that a naive implementation
of the coupling between quarks and the Polyakov loop may
be inadequate and a more sophisticated treatment including
the backreaction of dynamical quarks on the gauge sector,
which could modify the Polyakov loop potential UG, may
be necessary.
Furthermore, there is still substantial “flow time” depend-

ence in these observables, reflecting a further renormaliza-
tion prescription dependence.8 In particular, the large flow
time (f ¼ 3f0) result of RT shows a relatively low value
ð≈0.7Þ at low temperatures, instead of the expected Z(3)-
symmetric limit of unity. It is still possible to describe such
RT within our effective model, though it requires a rather
large h. This also naturally explains the observation that
RA → 1 at large flow time. We however find this situation
unsatisfactory, since it is more natural to expect the physical
breaking field h to be free of the renormalization scheme
dependence. And it is this quantity that we hope to extract
from the LQCD.
For reference we also compute the Polyakov loop in the

effective model and compare with the LQCD result. This is
shown in Fig. 3 right. Unlike the case of the ratio
observables, we see that the effective model essentially
fails to describe the LQCD result. Similar discrepancy has
been reported by the matrix model [13]. This may again be
due to the scheme dependence and we shall explore this
topic in more detail in a future publication.

V. CONCLUSION

This study has demonstrated how features of deconfine-
ment emerge in the ratios of Polyakov loop susceptibilities
within an effective model. For the ratio RA, we find a
characteristic volume dependence along with temperature
and the explicit Z(3) symmetry breaking strength h. In a
Gaussian approximation scheme, all these can be subsumed
into a single scaling equation. For the ratio RT , we find a
minimal volume dependence, which makes it a robust
probe of the strength of the explicit breaking term.
On a qualitative level, the effective model is capable of

describingmany features of the LQCD results. These include
the low and high temperature limits of the ratios, and the
connection betweenRA andRT , possibly viah. Nevertheless,
it is important to bear in mind that the LQCD results, which
we compare our model results to and estimate the effective
strength of h from, still suffer from a renormalization scheme
dependence. This is an urgent issue to be tackled to achieve a
meaningful comparison of effective approaches with LQCD,
and will be pursued in future works.
It would also be interesting to investigate how the

susceptibility observables behave at large baryon densities
[55] and react to other external fields, e.g., a magnetic field
[56,57]. Since the curvatures dictate how reluctant the system
is to deviate from the equilibrium position in the presence of
external disturbances, we expect these susceptibilities would
be crucial to successfully describing the system.
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APPENDIX A: MODEL PARAMETERS IN THE
DOUBLE-GAUSSIAN MODEL

In the double-Gaussian expansion of the potential UG

UG ¼ −
A
2
× ðx2 þ y2Þ þ B × lnMH

þ C × ðx3 − 3xy2Þ þD × ðx2 þ y2Þ2;
MH ¼ 1 − 6ðx2 þ y2Þ þ 8ðx3 − 3xy2Þ − 3ðx2 þ y2Þ2;

ðA1Þ
one constructs an approximate potential U1 of the form

U1 ¼ α1x2 þ α2y2 − h̃x; ðA2Þ

FIG. 4. The ratio of the effective breaking field [Eq. (22)]
computed using the constituent quark masses obtained in a
(2þ 1)-PNJL model to the same quantity computed with the
current quark masses. This “prefactor” summarizes the effects of
chiral symmetry (within the model) on the explicit Z(3) breaking
strength.

8It was, however, reported [39] that the ratio observables
exhibit a milder flow time dependence than the susceptibility.
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such that U1 ≈UG − hx up to second order in the fields
ðx; yÞ. This means

α1 ¼
1

2T3χð0ÞL

α2 ¼
1

2T3χð0ÞT

h̃ ¼ hþ x0

T3χð0ÞL

: ðA3Þ

Here the expectation value of the Polyakov loop ðx0; y0Þ
can be obtained by solving the gap equations (in this case
we have y0 ¼ 0)

∂UGðx; yÞ
∂x ¼ 0;

∂UGðx; yÞ
∂y ¼ 0; ðA4Þ

while the susceptibilities work out to be

T3χð0ÞL ¼
�
−Aþ B

�
−

3

ðx0 − 1Þ2 −
9

ð1þ 3x0Þ2
�

þ 6x0Cþ 12Dx20

�
−1
;

T3χð0ÞT ¼
�
−Aþ B

12ð1þ x0ð4þ x0ÞÞ
ðx0 − 1Þ3ð1þ 3x0Þ

− 6x0Cþ 4Dx20

�
−1
: ðA5Þ

Finally we express the parameters ðα1; α2; h̃Þ in terms of
the parameters of UG:

α1 ¼
1

2
×

�
−Aþ B

�
−

3

ðx0 − 1Þ2 −
9

ð1þ 3x0Þ2
�

þ 6x0Cþ 12Dx20

�

α2 ¼
1

2
×

�
−Aþ B

12ð1þ x0ð4þ x0ÞÞ
ðx0 − 1Þ3ð1þ 3x0Þ

− 6x0Cþ 4Dx20

�

h̃ ¼ hþ x0 ×

�
−Aþ B

�
−

3

ðx0 − 1Þ2 −
9

ð1þ 3x0Þ2
�

þ 6x0Cþ 12Dx20

�
: ðA6Þ

APPENDIX B: EXACT EXPRESSION OF RAðξ;RTÞ
IN A GAUSSIAN MODEL

In this Appendix, we present the analytic expression
of the ratio RA in the presence of external field within

a Gaussian model. Starting with the model partition
function

ZGauss ¼
Z

dxdye−ðA1x2þA2y2−HxÞ; ðB1Þ

the ratio RA can be computed by

RA ¼
hðx2 þ y2Þi −

D	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p 
E
2

hx2i − hxi2 ; ðB2Þ

where

hOi ¼ 1

ZGauss

Z
dxdyOðx; yÞe−ðA1x2þA2y2−HxÞ: ðB3Þ

The ratio RA depends on the model parameters
fA1;A2;Hg via the following combinations

RAðA1;A2;HÞ → RAðξ; RTÞ ðB4Þ

where

ξ ¼ H

2
ffiffiffiffiffiffi
A1

p
RT ¼ A1

A2

: ðB5Þ

The exact expression reads

RAðξ; RTÞ ¼ 1þ RT þ 2ξ2 −
2

π
RTe−2ξ

2 ½F ðξ; RTÞ�2;
ðB6Þ

with

F ðξ; RTÞ ¼
1ffiffiffi
π

p
Z

∞

−∞
dxe−x

2þ2ξx ×
x2

2RT

× e
x2
2RT ×

�
K0

�
x2

2RT

�
þ K1

�
x2

2RT

��
; ðB7Þ

where Kn is the modified Bessel function of the second
kind of the n-th order.
It is instructive to study the limits of ξ ≪ 1 and ξ ≫ 1 for

a general RT :

RA ≈
� f1 þ f2 × ξ2 ξ ≪ 1

1 − g2 × 1
ξ2

ξ ≫ 1
: ðB8Þ

where
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f1 ¼ 1þ RT −
2

π
ðE½1 − RT �Þ2

f2 ¼ 2 −
4

π

E½1 − RT �
1 − RT

× ðE½1 − RT � − RT × K½1 − RT �Þ

g2 ¼
ð2 − RTÞRT

4
: ðB9Þ

Here K, E are the complete elliptic integral of the 1st
and 2nd kind respectively, defined as

KðxÞ ¼
Z

π=2

0

dθð1 − xsin2θÞ−1=2

EðxÞ ¼
Z

π=2

0

dθð1 − xsin2θÞ1=2: ðB10Þ

For RT ¼ 0, we obtain the SU(2) [36,58] limit:

RAðξ; RT ¼ 0Þ ≈
( ð1 − 2=πÞ × ð1þ 2ξ2Þ ξ ≪ 1

1 − 2ffiffi
π

p 1
ξ e

−ξ2 ξ ≫ 1
:

ðB11Þ

A schematic plot of RAðξ; RTÞ in Eq. (B6), as a function
of ξ for a given RTðTÞ, is illustrated in Fig. 5 left, together
with the functional dependence on RT of various expansion
coefficients in Fig. 5 right.

APPENDIX C: DETAILS IN PNJL MODEL

The PNJL potential employed in this work can be written
in the form:

U½σl; σs; x; y� ¼ UNJL½σl; σs� þ UG½x; y� þ UQ½σl; σs; x; y�:
ðC1Þ

The pure gluon potential UG is given in Eq. (A1). The
UQ potential describes the coupling between quarks and
the Polyakov loop, the expression at vanishing chemical
potential reads

UQ ¼ −2
X

q¼u;d;s

β4
Z

d3k
ð2πÞ3 ½T ln gþ þ T ln g−� ðC2Þ

with

gþ ¼ ð1þ 3le−βE þ 3l�e−2βE þ e−3βEÞ
g− ¼ ð1þ 3l�e−βE þ 3le−2βE þ e−3βEÞ; ðC3Þ

and E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

q

q
.

The NJL part of the potential UNJL is taken from
Refs. [53,59]:

UNJL ¼ β4½2Gðσ2u þ σ2d þ σ2sÞ − 4KðσuσdσsÞ�

− 6
X

q¼u;d;s

β4
Z

Λ d3k
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

q

q
: ðC4Þ

The model parameters used are listed in Table I.

FIG. 5. Left: Schematic plot of RAðξ; RTÞ as a function of ξ for a given RTðTÞ. Right: RT -dependence of various expansion parameters
of RAðξ; RTÞ.

TABLE I. NJL model parameters (adopted from Refs. [53,59]).

GΛ2 KΛ5 Λ (GeV) ml (GeV) ms (GeV)

1.835 12.36 0.6023 0.0055 0.1407
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Finally,Mq are the constituent quarkmasses, related to the
current quark masses ðmu;md;msÞ and condensates via [54]

Mu ¼ mu − 4Gσu þ 2Kσdσs

Md ¼ md − 4Gσd þ 2Kσsσu

Ms ¼ ms − 4Gσs þ 2Kσuσd: ðC5Þ

The expectation values of the condensates and the
Polyakov loop are obtained by solving the gap equations

∂U
∂ϕ ¼ 0; ðC6Þ

for ϕ ¼ ðσl; σs; x; yÞ. The constituent quark masses at
T ¼ 0 work out to be:

MlðT ¼ 0Þ ¼ 0.37 GeV

MsðT ¼ 0Þ ¼ 0.55 GeV: ðC7Þ

For reference, we show the temperature dependence of
the constituent masses and the Polyakov loop in Fig. 6.
The susceptibilities can be obtained from the diagonal

elements of the inverse of the correlation matrix C:

C ¼
� ∂2U
∂ϕi∂ϕj

�
;

T3χ̃ ¼ C−1: ðC8Þ

Note that C is evaluated with ϕ that satisfies the gap
equation (C6). The susceptibility ratio RT (χ̃yy=χ̃xx) thus
constructed is shown in Fig. 2.
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