
 

Anomaly inflow on QCD axial domain-walls and vortices
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We study the chiral effective theory in the presence of quantum chromodynamics (QCD) vortices. Gauge
invariance requires novel terms from vortex singularities in the gauged Wess-Zumino-Witten action, which
incorporate anomaly-induced currents along the vortices. We examine these terms for systems with QCD
axial domain-walls bounded by vortices (vortons) under magnetic fields. We discuss how the baryon and
electric charge conservations are satisfied in these systems through interplay between domain-walls and
vortices, manifesting Callan-Harvey’s mechanism of anomaly inflow.

DOI: 10.1103/PhysRevD.97.114003

I. INTRODUCTION

Among various states realized on the phase diagram of
matter out of quarks and gluons, which are fundamental
particles in quantum chromodynamics (QCD), the region at
high baryon density has been only poorly understood, and
there are still diverging theoretical candidates for the true
ground state (see Refs. [1–5] for comprehensive reviews of
possible phases). If the baryon density is asymptotically
high, we could perform QCD-based calculations to identify
the ground state as the color-superconducting state [6–8].
We have learned the properties of high-temperature QCD

matter from relativistic heavy-ion collision experiments, and
such activities are going to be continued toward new regimes
with larger baryon density in the Beam Energy Scan
program. Besides, more and more experimental data are
expected from the neutron star observation, which will be a
promising probe into dense QCD matter. Interestingly, in
both the heavy-ion collisions and the neutron star cores,
dense matter is exposed to strong magnetic fields. As
reviewed in Ref. [9], many interesting and exotic phenom-
ena, mostly topological currents, are anticipated from the
quantum anomaly as result of the coupling between
the density and the magnetic field (see Ref. [10] for the
implication to the heavy-ion phenomenology). In the con-
text of neutron star physics, in which the magnetic field
strength is of the order 1013 − 1015 Gon the surface [11] and
stronger inside, magnetic effects on color-superconducting
quark matter have been studied [12–18]. Recently, in
addition to possible topological currents, an important

aspect of the chiral anomaly has been pointed out in
Ref. [19]; the ground state structure as the chiral soliton
lattice can be beautifully formulated for quark matter if the
magnetic field is sufficiently strong (see Ref. [20] for a
related discussion of the interplay between inhomogeneous
quark matter and topological currents).
Various QCD phases are characterized by various

condensates leading to the spontaneous breaking of global
symmetries. Then, according to the broken symmetries, the
physical vacuum has degeneracy, and the Nambu-Goldstone
bosons are the dominant degrees of freedom for low-energy
states. For manifold which can wrap nontrivially over
configuration space, we can expect topologically stable
solitons [21]. Owing to the rich variety of QCD phases,
many different types of topological solitonsmay be present in
nuclear and quark matter [22]. In this work we will specifi-
cally consider the domain-wall and the vortex or vorton.
On the one hand, the domain-wall is a two-dimensional

object that is an interface between different energy minima.
Some theoretical considerations hypothesize the presence
of π0 domain-walls in high-density nuclear matter. (It is
also possible to think of three-dimensional pionic profiles,
which are exemplified in a scenario of the Skyrme lattice
[23].) Similarly, the η domain-wall can stably exist in the
color-flavor locked (CFL) color-superconducting phase
[24,25]. It is important to note that a layered structure of
the domain-walls is triggered by the anomaly-induced
baryon charge on these axial domain-walls. Thus, keeping
the total baryon charge, such a special configuration can
reduce the system energy. We also mention another aspect
of the anomaly; an anomaly-induced axial current at finite
density [26] and magnetic moment on axial domain-walls
[27] may cause spontaneous magnetization, which may be
a microscopic origin of the strong magnetic field on
magnetars (see also Refs. [28,29]).
We note that, as argued in Ref. [19], the periodically

layered structure of the axial domain-walls is a QCD
counterpart of “chiral soliton lattice” [30–33], which refers

*fuku@nt.phys.s.u-tokyo.ac.jp
†imaki@nt.phys.s.u-tokyo.ac.jp

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 97, 114003 (2018)

2470-0010=2018=97(11)=114003(10) 114003-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.114003&domain=pdf&date_stamp=2018-06-06
https://doi.org/10.1103/PhysRevD.97.114003
https://doi.org/10.1103/PhysRevD.97.114003
https://doi.org/10.1103/PhysRevD.97.114003
https://doi.org/10.1103/PhysRevD.97.114003
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


to special spin-aligned systems with breaking of parity and
translational symmetry. The mathematical connection lies
in the similarity between the Dzyaloshinskii-Moriya inter-
action in chiral materials [34] and the Wess-Zumino-Witten
(WZW) action in QCD. This in turn means that the
anomaly-induced phenomena suggested in the QCD con-
text may be testable in analogous chiral materials.
The vortex, on the other hand, is a one-dimensional

topological defect with a winding U(1) phase. One example
is the nuclear vortex in superfluid nuclear matter, which
could be continuously connected to the CFL vortex
associated with Uð1ÞB breaking [35]. Another example
is the η vortex in the CFL phase, which spontaneously
breaks Uð1ÞA by diquark condensate. Since these vortices
carry angular momenta [36], rotating CFL matter, as may
be realized in the neutron star cores [37], would form a
lattice of these vortices. Like the anomaly-induced baryon
charge on the domain-walls, we can also anticipate
anomaly-induced currents on the vortices, such as an
electric current along the η vortex or an axial current along
the baryon superfluid vortex [26,27]. Remarkably, such
topological currents are nondissipative and persistent,
which is unusual in the sense that the Bloch theorem,
which forbids any persistent current in the ground state, is
evaded [38].
In this work we will consider a vortex ring. Such a closed

loop of vortex string is often referred to as a vorton. This
special configuration could emerge at the edge of the
domain-wall disk or just on its own. Here, we make a
historical remark about the idea of the superconducting
string [39] that invoked serious investigations on the
cosmic string and possible vortons of the cosmic string
during the phase transitions in the early Universe [40]. Now
wewould emphasize that the “QCD vorton” could exist as a
stable object, especially in the CFL phase with kaon
condensation [41]. There is a nonzero charge and a
persistent superconducting current confined in the vortex
core [42]. Because this persistent current is accompanied
by finite angular momentum, the vorton is stabilized by the
angular momentum conservation [43]. Moreover, a crucial
difference of the CFLK0 vorton from the cosmic string is
that the vorton forms a domain-wall due to the small mass
of the Nambu-Goldstone boson [44]. This complements a
picture of the domain-wall disk surrounded by the vortex
string, and its shape is sometimes described as the “drum
vorton” in the literature [41,45].
To investigate anomalous effects onQCDvortices,wewill

utilize the chiral effective theory. Because the low-energy
dynamics is uniquely determined by the symmetry-breaking
pattern, the formulation by the chiral effective theory is quite
robust and does not require any microscopic details of
nuclear or quark matter. The indispensable ingredient
in theory is the WZW action to reproduce the quantum
anomaly with low-energy degrees of freedom [46,47].
The best-known example of the WZW action is the

description of the π0 → γγ decay process [48] (see
Ref. [49] for this process at high density). The full con-
struction of the WZWaction is discussed in Ref. [50], and it
has been applied to the chiral magnetic effect in the hadronic
phase [51].
We will find in this work that, in the presence of vortex

singularities, the gauged WZW action requires new terms
involving derivative commutators; otherwise, gauge invari-
ance is violated and the charge conservation law is
apparently broken. These terms turn out to incorporate
anomalous currents absorbed or emitted by the vortex,
which is microscopically carried by zeromodes sitting on
the vortex.
As a concrete physical setup, we will examine two

different kinds of finite-size axial domain-walls and vor-
tices, namely, the π0 vortex and the η vortex, coupled with
external magnetic fields. We will also argue that, with
increasing magnetic fields, axial vortices absorb or emit the
baryon and the electric charges onto the domain-wall.
Interestingly, such a balance between the anomaly effect on
the domain-wall in bulk and that on the vortex at edge has a
clear interpretation as Callan-Harvey’s mechanism of the
anomaly inflow [52] once the axion vortex string is
replaced with the π0 vortex or the η vortex.
This paper is organized as follows: In Sec. II, we will

derive the chiral effective theory with the WZW action in
the presence of the vortices. In Sec. III, we will investigate
two concrete systems with the axial vortices and apply the
fully gauge-invariant WZW action to see how the charge
conservation is satisfied. In Sec. IV, we address the
microscopic origin of the vortex currents in terms of quark
degrees of freedom along the vortices. The final section V is
devoted to the conclusion.

II. TOPOLOGICAL CURRENT
AND CONSERVATION LAW

We introduce the chiral effective theory and the WZW
action. In Sec. II A we extend the WZW action to a fully
gauge-invariant form including vortex singularities. In
Sec. II B we explicitly derive an extra contribution to the
topological current from the gauge-invariant WZW action
and discuss how the conservation law is satisfied on axial
vortices.

A. Chiral effective theory and currents

The two-flavor chiral effective theory is characterized
by the chiral Lagrangian given in terms of triplet Σ of
pseudoscalar Nambu-Goldstone bosons or pions πi’s.
The nonanomalous part of the leading-order action is
Sχ ¼

R
d4xLχ , where

Lχ ¼
f2π
4
trðDμΣ†DμΣþMΣ† þ ΣMÞ; ð1Þ
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with DμΣ ¼ ∂μΣþ ieAμ½Q;Σ� and Q ¼ diagð2
3
;− 1

3
Þ in

flavor space of u- and d-quarks [53]. The differentiation
of this action with respect to the electromagnetic field Aμ

yields an electric current,

jμem;χ ¼ −
δSχ
δeAμ

¼ −if2π
2

tr

�
τ3

2
½ΣDμΣ† − ðDμΣ†ÞΣ�

�
: ð2Þ

In the above expression we chose a convention to take the
derivative with −eAμ for notational brevity. In physics
language, jμem;χ represents the electric current associated
with π� flows. Here, we introduce several notations which
we will frequently use in later discussions. Vector fields
made with Σ are commonly referred to as Lμ and Rμ,
defined by

Lμ ¼ Σ∂μΣ†; Rμ ¼ ð∂μΣ†ÞΣ; ð3Þ

with which we can further construct second-order tensors

Lμν ¼ Σ∂μ∂νΣ†; Rμν ¼ ð∂μ∂νΣ†ÞΣ: ð4Þ

We note that Lμν and Rμν are symmetric tensors if the
derivatives are commutative without vortex singularities.
Besides the nonanomalous current jem;χ , anomalous

coupling between Σ and external gauge fields leads to
the topological current induced by quantum anomaly.
This anomalous coupling is captured by the WZW action
[46,47]. The five-dimensional compact form of the WZW
action is well known as [47]

Sð0ÞWZW ¼ i
80π2

Z
D
d5xϵμ̄ ν̄ ρ̄ σ̄ τ̄trðLμ̄Lν̄Lρ̄Lσ̄Lτ̄Þ; ð5Þ

in the absence of gauge fields. The indices with bar,
μ̄; ν̄; ρ̄; σ̄; τ̄, run over five-dimensional spacetime denoted
by D. The fifth coordinate x4 ∈ ½0; 1� is chosen such that
∂D ¼ Dðx4 ¼ 1Þ ¼ M, whereM stands for physical four-
dimensional spacetime.
Anomaly-induced electric current can be derived from

the action (5), as discussed below. Under an infinitesimal
Uð1Þem rotation, i.e., Σ → Σþ iζ½Q;Σ� and Aμ →
Aμ − ∂μζ=e, the action (5) varies up to the linear order
in ζ as

δSð0ÞWZW ¼ −
Z
M

d4xð∂μζÞXμ −
Z
D
d5xð∂ μ̄ζÞY μ̄: ð6Þ

We note that the above decomposition of Xμ and Y μ̄ is not
unique. The most convenient choice for our discussions is
as follows:

Xμ ¼ −
1

48π2
ϵμνρσtrðLνLρLσÞ; ð7Þ

Y μ̄ ¼ −
1

16π2
ϵμ̄ ν̄ ρ̄ σ̄ τ̄trðLν̄Lρ̄Lσ̄ τ̄Þ: ð8Þ

We made this choice such that Y μ̄ would be vanishing for
symmetric Lσ̄ τ̄.
We can modify the WZW action to make it gauge

invariant up to the linear order as

Sð1ÞWZW ¼ Sð0ÞWZW −
Z
M

d4xeAμXμ −
Z
D
d4xeAμ̄Y μ̄: ð9Þ

Yet this action is not fully gauge invariant beyond the
leading order. We can reiterate the above procedures to the

next order to obtain Sð2ÞWZW with corrections to Xμ and Y μ̄,
which is in fact fully gauge invariant. Hereafter we will
denote the fully gauge-invariant WZW action by SWZW.
In contrast, the baryon current cannot be obtained in the

same way, since Σ is not sensitive to Uð1ÞB rotation.
Instead, we identify the baryon current via the Gell-Mann–
Nishijima formula, Q ¼ I3 þ B=2 [54], where I3 and B
represent the isospin and the baryon number, respectively.
The isospin part corresponds to nonanomalous jem;χ in
Eq. (2), whereas B arises from anomaly within the
framework of the chiral effective theory. Accordingly,
we should equate B=2 and the anomalous part in Q.
Further imposing the baryon conservation law [55], we
can construct the gauged WZW action as

SWZW ¼ Sð0ÞWZW −
Z
M

d4x
�
αμ þ

e
2
Aμ

�
jμB;bulk

−
Z
D
d5x

�
αμ̄ þ

e
2
Aμ̄

�
jμ̄B: ð10Þ

Here a spurious gauge field αμ ¼ ðμB; 0⃗Þ implements the
coupling of the baryon chemical potential [56–58] with the
topological currents given by

jμB;bulk ¼ −
1

24π2
ϵμνρσ

× ftrðLνLρLσÞ − 3ieð∂νAρÞtr½QðLσ þ RσÞ�
− 3ieAνtr½QðLρLσ − RρRσÞ�g ð11Þ

in the four-dimensional part of the action and

jμ̄B ¼ −
1

8π2
ϵμ̄ ν̄ ρ̄ σ̄ τ̄

× ftrðLν̄Lρ̄Lσ̄ τ̄Þ − ieð∂ ν̄Aρ̄Þtr½QðLσ̄ τ̄ þ Rσ̄ τ̄Þ�
− ieAν̄tr½QðLρ̄Lσ̄ τ̄ − Lσ̄ τ̄Lρ̄ − Rρ̄Rσ̄ τ̄ þ Rσ̄ τ̄Rρ̄Þ�g

ð12Þ

in the five-dimensional part. We denote the ordinary four-
dimensional current as jB;bulk, for it represents the current
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flowing not on vortices but in bulk. Here the first terms in
Eqs. (11) and (12) come from Xμ in Eq. (7) and Y μ̄ in
Eq. (8) in the leading order. The four-dimensional current
jμB;bulk is well known, which traces back to Ref. [46],

whereas the five-dimensional jμ̄B is a novel contribution
in this work. One can immediately see that the five-
dimensional current jμ̄B would vanish unless Σ has a
singularity, i.e., ½∂ μ̄; ∂ ν̄�Σ† ≠ 0 [59].
Finally, let us define the total baryon charge out of these

currents. The baryon charge inferred from the ordinary
four-dimensional current is

QB;bulk ¼
Z

d3x⃗j0B;bulk; ð13Þ

and another charge contribution from the five-dimensional
current is

QB;zm ¼
Z

d3x⃗
Z

1

0

dx4j0B: ð14Þ

As we will discuss later, QB;zm appears from the zeromode
contribution along vortices. By construction, the anomaly-
induced electric charge is given by half of the baryon
charge. In this paper, therefore, we will focus on baryon
conservation only, from which the electric charge con-
servation naturally follows.

B. Charge conservation

If there is no singularity in Σ, the current conservation is
satisfied in a simple way. That is, we see jμ̄B ¼ 0 in a reason
mentioned right below Eq. (12) and

∂μj
μ
B;bulk ¼ −

1

8π2
ϵμνρσ

× ftrðLμLνLρσÞ− ieð∂μAνÞtr½QðLρσ þRρσÞ�
− ieAμtr½QðLνLρσ −LρσLν −RνRρσ þRρσRνÞ�g;

ð15Þ

which vanishes identically. Therefore, QB;bulk by itself is
conserved.
The situation would be, however, far more complicated

when Σ has a singularity leading to ½∂μ; ∂ν�Σ† ≠ 0. Such a
singularity is typically associated with the topological
winding of vortex configurations. In the presence of a
vortex flux, ½∂μ; ∂ν�Σ† is nonzero proportional to the Dirac
delta function at the vortex position. Then, we must
conclude,

∂μj
μ
B;bulk ≠ 0; ð16Þ

and QB;bulk alone is no longer a conserved charge.

Let us see how this naive violation of the charge
conservation law is cured by the five-dimensional contri-
bution. By construction, the WZW action in Eq. (10)
possesses local gauge symmetry in D. Then, we can adapt
gauge rotations in D in order not to affect M, which
leads to

∂ μ̄j
μ̄
Bðx; x4Þ ¼ 0: ð17Þ

Conversely, if we apply gauge rotations on ∂D ¼ M at
x4 ¼ 1, we find

∂μj
μ
B;bulkðxÞ ¼ j4Bðx; x4 ¼ 1Þ: ð18Þ

We can give a plain interpretation for Eq. (18) that the
current j4B injected from D provides a source of the baryon
charge in M. We can rewrite Eq. (18) in a form of the
current conservation by introducing the zeromode current,
jμB;zm, as

jμB;zmðxÞ ¼
Z

1

0

dx4jμBðx; x4Þ: ð19Þ

We will discuss the meaning of the “zeromode” later in
Sec. IV. Then, using Eq. (17), we can rewrite the source
term as

j4Bðx4 ¼ 1Þ ¼
Z

1

0

dx4∂4j4B ¼ −∂μj
μ
B;zm: ð20Þ

We note that j4Bðx4 ¼ 0Þ ¼ 0 follows from Eq. (17). Finally
we arrive at the baryon charge conservation law in the
following concise form:

∂μðjμB;bulk þ jμB;zmÞ ¼ 0: ð21Þ

In fact, QB;zm in Eq. (14) is nothing but the charge
associated with jμB;zm, and obviously the total baryon
charge,

QB ¼ QB;bulk þQB;zm; ð22Þ

is the conserved quantity regardless of the presence of vortex
singularities. As we will demonstrate in the next section,
jμB;zm corresponds to the baryon current carried by the vortex
zeromode. Then, the nonconservation problem of jμB;bulk in
bulk is resolved with jμB;zm localized on vortex cores.
Let us make one remark on jμB;zm. The zeromode current

(19) is unique only up to divergenceless terms. In fact,
Eq. (19) implies that jμB;zm may depend on the extension
from M to D, but it is clear from Eq. (20) that any
difference caused by this would be irrelevant once the
divergence is taken.
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III. QCD AXIAL DOMAIN-WALLS AND
VORTICES WITH MAGNETIC FIELDS

So far, we have seen the general theory of conservation
law in systems involving vortex singularities. In this section
we address two concrete examples of such vortex configu-
rations in QCD. One is the π0 domain-wall and surrounding
vortex as discussed in Sec. III A, and the other is the η
domain-wall and surrounding vortex as discussed in
Sec. III B. In both cases a finite baryon number is anoma-
lously induced with coupling to external magnetic fields.

A. π0 domain-wall and vortex

As argued in Ref. [19], in extreme environments with
sufficiently strong magnetic fields such as the neutron star
cores, nuclear matter would form π0 domain-wall layers.
Once the π0 domain-wall layers develop inside the neutron
star, the edge of the π0 domain-wall is a π0 vortex string as
illustrated in Fig. 1.
In the QCD vacuum the chiral condensate spontaneously

breaks chiral symmetry as SUð2ÞL × SUð2ÞR → SUð2ÞV in
the massless two-flavor case. External magnetic fields
would explicitly break a part of chiral symmetry as
SUð2ÞL × SUð2ÞR → Uð1ÞA × Uð1ÞV, where this Uð1ÞA
symmetry has nothing to do with ηmeson in the anomalous
sector (which will be considered in Sec. III B) but corre-
sponds to π0. Therefore, in strongly magnetized quark
matter, nonanomalous Uð1ÞA symmetry is spontaneously
broken by the chiral condensate. In this sense quark matter
with strong magnetic fields could be regarded as a “chiral
superfluid,” which accommodates axial vortices as topo-
logical defects. If we consider a small but nonzero quark
mass and place a ring of π0 vortex in the system as in Fig. 1,
the minimal surface area surrounded by the π0 vortex string
should form a π0 domain-wall to minimize the energy cost
by topological winding. Let us calculate jμB;bulk and j

μ
B;zm in

this setup.
First, we flash theoretical descriptions following

Ref. [25]. It is convenient to use the following para-
metrization with χ, θ, ϕ:

Σ ¼ cos χeiτ3θ þ iτ1 sin χeiτ3ϕ; ð23Þ

instead of conventional π0, π�, where τi’s are Pauli
matrices in two-flavor space. With this parametrization
the nonanomalous Lagrangian (1) takes the form of

Lχ ¼
f2π
2
½ð∂μχÞ2 þ cos2χð∂μθÞ2 þ sin2χð∂μϕ − eAμÞ2

− 2m2
πð1 − cos χ cos θÞ�; ð24Þ

wheremπ represents the π0 mass. We can easily see that this
Lagrangian allows for a π0 domain-wall. If we anticipate
cos χ ≃ 1 holds away from the edge of the domain-wall for
some reason, the Lagrangian (24) is reduced to the sine-
Gordon model. The one-dimensional classical solution in
the sine-Gordon model is well known to be

θðzÞ ¼ 4 arctanðemπzÞ; ð25Þ

which has a smooth jump of θ by 2π around z ∼ 0. Hence,
we shall call this special solution the π0 domain-wall.
As we already pointed out in the beginning of this

section, the π0 domain-wall and vortex are topologically
stabilized when strong magnetic fields are imposed [25]. In
physics language, the strong magnetic field makes π� as
massive as the imposed magnetic scale, which means
cos χ ¼ 1 and sin χ ¼ 0 are energetically favored. Thus,
for strongly magnetized quark matter, the sine-Gordon
model is the genuine effective theory.
This π0 domain-wall accompanies a π0 vortex string

along the edge. Since θ jumps by 2π at the domain-wall, θ
increments by 2π along any small loop around the vortex
(see Fig. 1). This winding on the vortex gives rise to a
singularity, i.e., ½∂i; ∂j�θ ¼ 2πδð2Þðx⊥Þ, where x⊥ repre-
sents a transverse coordinate perpendicular to and centered
at the vortex. It should be noted that sin2 χ ¼ 1 on the
vortex to avoid singularity behavior of the θ kinetic term.
This implies that π� must be present around the π0 vortex.
Next, let us evaluate the anomaly-induced baryon charge

from the WZW action. The currents jμB;bulk in Eq. (11) and
jμB;zm in Eq. (19) are associated with the π0 domain-wall and
the π0 vortex, respectively. We can readily compute jμB;bulk
under the minimization condition of the kinetic energy,
which concludes that ∂μϕ ¼ eAμ. Then only the second
term in Eq. (11) remains finite, yielding

jμB;bulk ¼
e
8π2

ϵμνρσFνρ∂σθ: ð26Þ

The baryon density topologically induced by the anomaly
is thus expressed as

j0B;bulk ¼
e
4π2

B⃗ · ∂⃗θ: ð27Þ

Alternatively, we can write down the integrated baryon
number, QB;bulk of Eq. (13), without even using the

FIG. 1. π0 domain-wall and surrounding π0 vortex string at the
edge. With increasing magnetic field piercing the domain-wall,
more baryons are attached on the domain-wall according
to Eq. (28).
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energy- minimization condition. In this case only the first
term in Eq. (11) contributes to the spatial integration.
Ultimately we find [60]

QB;bulk ¼
1

2π

I
vortex

dϕ: ð28Þ

We can confirm the consistency between Eqs. (27) and (28)
using ∂μϕ ¼ eAμ and Δθ ¼ 2π. From this argument we
understand that the integer baryon number populates on
the π0 domain-wall for quanta 2π=e of the piercing
magnetic flux.
We can also evaluate jμB;zm in Eq. (19), and the condition

∂μϕ ¼ eAμ makes the final result as simple as

jμB;zm ¼ −
1

4π
ϵμνρσ∂νϕδ

ð2Þ
ρσ ðx⊥Þ: ð29Þ

Here, δð2Þρσ ðx⊥Þ represents the two-dimensional Dirac delta
function on the xρ-xσ plane centered at the vortex position.

For example, if a vortex sits along the z-axis, δð2Þxy ðx⊥Þ ¼
−δð2Þyx ðx⊥Þ ¼ δðxÞδðyÞ and δð2Þxx ðx⊥Þ ¼ δð2Þyy ðx⊥Þ ¼ 0. Then
the spatial volume integration of Eq. (29) amounts to

QB;zm ¼
Z

d3xj0B;zm ¼ −
1

2π

I
vortex

dϕ; ð30Þ

which exactly cancels Eq. (28) to conform to the con-
servation law in the whole system. We have confirmed the
balance between the bulk and the zeromode contributions
to satisfy the conservation law. It is intriguing to argue that
the balanced relation holds not only for the static case but
also for more dynamical circumstances, as it should. To see
this, let us imagine a physical setup with growing magnetic
field with time. Such a time-dependent magnetic field
should generate an eddy electric field via Faraday’s law,
and Eq. (26) leads to [61]

j⃗B;bulk ¼ −
e
8π2

E⃗ × ∂⃗θ: ð31Þ

Because E⃗ is along the polar angular direction and θ has
spatial variation perpendicular to the π0 domain-wall, the
current is directed along the radial coordinate on the π0

domain-wall, i.e., either inward to or outward from the π0

vortex string where the baryon charge is absorbed or
emitted.

B. η domain-wall and vortex

If anomalous Uð1ÞA symmetry is effectively restored in
extreme conditions to suppress instanton excitations, we
can anticipate the spontaneous breaking of Uð1ÞA and
associated vortices with respect to η mesons.
The most well-known example of extreme conditions to

accommodate η vortices is the color-flavor locked state of

quark matter at high density [8]. Instantons are expected to
be Debye screened by the density effect, and chiral
symmetry, including Uð1ÞA, is spontaneously broken by
the diquark condensates there. In this state the phase φA of
Σ ¼ jΣjeiφA is the η0 meson (which we simply call η in this
paper) and becomes an Nambu-Goldstone boson. The
effective Lagrangian for φA is given by [24,62]

Lη ¼
fη
2
½ð∂0φAÞ2 − u2ð∂⃗φAÞ2 − 2m2

ηð1 − cosφAÞ�; ð32Þ

where fη and mη are the decay constant and the mass of the
η meson. We note that u2 represents the speed of η and is
not necessarily the unity in a medium which breaks Lorentz
symmetry.
The Lagrangian (32) is of the sine-Gordon type and

admits an η domain-wall solution characterized by a jump
of φA by 2π. In the same way as the π0 domain-wall, this η
domain-wall also accompanies the η vortex string at the
edge, leading to ½∂i; ∂j�φA ¼ 2πδð2Þðx⊥Þ at the vortex core.
The rest of the discussion goes parallel to the previous

subsection. We can evaluate jμB;bulk and jμB;zm associated
with the η domain-wall and the η vortex, respectively. Then,
a straightforward computation results in the following
expression [27]:

jμB;bulk ¼
e

24π2
ϵμνρσFνρ∂σφA; ð33Þ

which is only factor 1=3 different from Eq. (26). Actually,
from the microscopic point of view, the difference between
π0 and η is only a relative sign between ūu and d̄d. We can
explain this factor difference between 2

3
e − ð− 1

3
eÞ ¼ e and

2
3
eþ ð− 1

3
eÞ ¼ 1

3
e. We find the zeromode contribution as

jμB;zm ¼ −
e

12π
ϵμνρσAνδ

ð2Þ
ρσ ðx⊥Þ: ð34Þ

Using ∂μϕ ¼ eAμ, we see that Eq. (34) is only factor 1=3
different from Eq. (29).
Before closing this subsection, let us point out an

interesting observation which motivates our analysis in
the next section. If we take the divergence of the zeromode
current, we will have a relation analogous to the anomaly;
i.e., we immediately get the following from Eq. (34):

∂μj
μ
B;zm ¼ −

e
24π

ϵμνρσFμνδ
ð2Þ
ρσ ðx⊥Þ: ð35Þ

In fact, along the vortex as dictated by δð2Þρσ ðx⊥Þ, the above is
nothing but the gauge anomaly relation for (1þ 1)-
dimensional chiral fermions with a total charge of
2
3
e − 1

3
e ¼ 1

3
e. Such formal similarity is not accidental

but is attributed to physical contents of the vortex in terms
of chiral u- and d-quarks, as we discuss in the next section.
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IV. ANOMALY INFLOW

It may appear nontrivial that our arguments in the
previous section, based on the gauged WZW action, are
related to the zeromode contributions from the fermionic
sector. To fill in this gap, we shall make a brief review on
Callan-Harvey’s mechanism of the anomaly inflow on
axion vortices following Ref. [52].
We introduce axion aðxÞ coupled to fermions as

S ¼
Z

d4xψ̄ ½iγμð∂μ þ ieAμÞ −GΦ�ψ ; ð36Þ

with Φ ¼ jΦjeiγ5a [63]. The coupling constant G will turn
out to be irrelevant in what follows. Here, we consider only
one flavor for simplicity, but generalization is straightfor-
ward. Suppose that the symmetry with respect to the a
rotation (that is, Peccei-Quinn symmetry) is spontaneously
broken to set jΦj ¼ 1. The current expectation value is
expressed by the fermion propagator as

jμðxÞ ¼ −tr½γμPðx; y → xÞ�; ð37Þ

where the concrete form of the propagator is P ¼
i=ðiγμ∂μ −GΦÞ. In the long wavelength limit, G → ∞,
we can expand the propagator in terms of 1=G, and a
nonzero contribution remains as

jμðxÞ ¼ −2e tr½γμγνγργσγ5�∂νAρ∂σa
Z

d4p
ð2πÞ4

G2

ðp2 −G2Þ3

¼ e
8π2

ϵμνρσFνρ∂σa; ð38Þ

whose divergence reads

∂μjμ ¼
e
8π2

ϵμνρσFνρ∂μ∂σa: ð39Þ

One might think that this divergence vanishes, but this is
not the case when an “axion vortex string” is present, which

causes the singularity ½∂μ; ∂σ�a ¼ 2πδð2Þμσ ðx⊥Þ, yielding

∂μjμ ¼
e
8π

ϵμνρσFμνδ
ð2Þ
ρσ ðx⊥Þ; ð40Þ

which apparently indicates violation of the gauge symmetry.
The key ingredient to resolve this apparent puzzle comes

from a zeromode in the fermionic sector, which emerges in
the presence of the axion vortex [39,63]. If the Dirac
operator, ðiγμ∂μ −GΦÞ, has a zero eigenvalue, we cannot
take the inversion in the evaluation of Eq. (37) and should
separately calculate the zeromode contribution,

jμzm ¼ ψ̄ zmγ
μψ zm: ð41Þ

Here, ψ zm represents the zeromode solution of the
Dirac equation. To help our intuitive understanding, let

us concretely specify the vortex configuration. Below we
make use of the cylindrical coordinates ðr; z;φÞ and place
an axial vortex, aðφÞ ¼ þφ, along the z-axis at r ¼ 0. Then
the zeromode equations read

½iγα∂α þ iγ1ðcosφþ γ1γ2 sinφÞ∂r�ψ zm;L ¼ GjΦjeiaψ zm;R;

ð42aÞ

½iγα∂α þ iγ1ðcosφþ γ1γ2 sinφÞ∂r�ψ zm;R ¼GjΦje−iaψ zm;L;

ð42bÞ

where 1 and 2 of γμ refer to the transverse directions
perpendicular to the z or 3 direction. The index α runs over
0 and 3 only. We can solve these equations to get the
zeromode solutions as

ψ zm;L ¼ exp

�
−
Z

r

0

dr0GjΦjðr0Þ
�
ξðt; zÞ ð43Þ

and ψ zm;R ¼ −iγ1ψ zm;L. Here, ξðt; zÞ is a solution of the
free Dirac equation, i.e.,

γα∂αξ ¼ 0; ð44Þ

with right-handed “chirality” defined by γ0γ3ξ ¼ þξ,
which implies that ð∂0 þ ∂zÞξ ¼ 0. The exponential factor
in Eq. (43) shows that this solution is localized near the
axion vortex string and approaches δð2Þðx⊥Þ in the limit
G → ∞. Then the (1þ 1)-dimensional effective action for
the zeromode on the axial vortex takes the following form:

Szm ¼
Z

dtdzξ̄½iγαð∂α þ ieAαÞ�ξ; ð45Þ

where we retrieved the gauge field in the covariant
derivative. This (1þ 1)-dimensional theory exhibits the
gauge anomaly to conclude ∂αjαzm ¼ −ðeEz=2πÞδð2Þðx⊥Þ. It
is a straightforward exercise to reexpress this result in a
covariant manner, which finally yields

∂μj
μ
zm ¼ −

e
8π

ϵμνρσFμνδ
ð2Þ
ρσ ðx⊥Þ: ð46Þ

In this way the apparent violation of the gauge symmetry in
Eq. (40) is precisely canceled by the zeromode contribution
of Eq. (46). This means that if we take account of both the
“inflow” of Eq. (40) in bulk and the “leakage” of Eq. (46)
from the edge, the whole system conserves the charge as it
should.
Let us then reinterpret the arguments above in the

language of the effective action. As we shall see immedi-
ately, the effective action of the system involving axion
vortices is given by the following five-dimensional form:
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Saxion ¼ −
e2

8π2

Z
D
d5xϵμ̄ ν̄ ρ̄ σ̄ τ̄Fμ̄ ν̄Fρ̄ σ̄∂ τ̄a: ð47Þ

To see this, decompose this action into the four- and
five-dimensional pieces, a process that is reminiscent of
Eq. (10). That is,

Saxion ¼ −
Z
M

d4xeAμjμ −
Z
D
d5xeAμ̄jμ̄; ð48Þ

with the four-dimensional current jμ given by Eq. (38) and
the five-dimensional current jμ̄ defined by

jμ̄ ¼ e
8π2

ϵμ̄ ν̄ ρ̄ σ̄ τ̄Fν̄ ρ̄∂ σ̄∂ τ̄a: ð49Þ

The gauge invariance of the whole action assures that the
five-dimensional part in Eq. (48) cancels the gauge variance
of the other term in the presence of vortex singularity. This
five-dimensional term thus reproduces the gauge anomaly
of the chiral zeromode given by Eq. (45) [64]. This
cancellation ensures that the zeromode current, defined
in the same manner as Eq. (19), gives a divergence identical
to Eq. (46).
Now the analogy to the case with the QCD axial vortices

is clear; the five-dimensional action in Eq. (10), derived
from Eq. (5), gives the consistent effective action inclusive
of the anomalous action of fermionic zeromodes. Indeed,
for the systems we considered in Sec. III, we could
explicitly check the consistency about jμB;zm from the
zeromode construction and that from the effective action
approach. For the η vortex, Eq. (35) is immediately
reproduced from Eq. (46). Interested readers can further
consult the Appendix for the microscopic derivation of the
zeromode current.

V. CONCLUSIONS

We considered a general problem of gauge invariance of
the WZW action for singular configurations which make
the order of derivatives noncommutative. This is not an
academic subject, but it provides us with insight to under-
stand how the topologically induced charges should be
conserved.
As concrete examples we discussed the π0 domain-wall

and vortex and the η domain-wall and vortex. In the
presence of an external magnetic field the baryon and
the electric charges are attached to the domain-walls due to
the anomaly coupling. We explicitly confirmed that such
induced charges are precisely canceled by singular con-
tributions from the domain-wall edge, that is, the surround-
ing vortex ring or the vorton.
Interestingly, this cancellation mechanism has the same

theoretical structure as Callan-Harvey’s mechanism of the
anomaly inflow for the axion vortex; the anomaly on the

domain-wall in bulk is canceled by another anomaly in the
(1þ 1)-dimensional fermionic sector of the vortex.
In the present work we limited ourselves to the two-

flavor case, and the three-flavor extension would be an
intriguing future problem. Then, it is known that the
genuine ground state of dense quark matter is definitely
the CFL phase if the baryon density is large enough. Since
the CFL phase is a superfluid, it accommodates topologi-
cally stable vortices. Thanks to color and flavor degrees of
freedom, many different types of vortices may appear.
Some changes in the linkage number of various vortex
entanglements could cause new topological effects, in the
same way as the chiral magnetic effect associated with the
linkage number change in terms of the magnetic fluxes
[65]. A possible realization of the vortex linkage is found in
the CFL phase with kaon condensation which supports
vortons, i.e., topologically stable vortex rings [41–43].
Mixed condensates of K0 and Kþ [66] lead to both K0

and Kþ vortices. Since a Kþ vortex carries a magnetic flux,
a nontrivial linkage between the K0 and Kþ vortices would
correspond to a situation in which a magnetic flux pierces a
vorton [42], as we considered in this work. For the
microscopic description of the charge density and currents
in such systems, the extra terms involving the derivative
commutator that we found in this work would play an
essential role. The anomaly inflow in the context of
dense QCD with vortices would certainly merit further
investigation.
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APPENDIX: MICROSCOPIC DERIVATION
OF THE ZEROMODE CURRENT

FOR THE π0 VORTEX

We begin with the fermionic action for quarks,

S ¼
Z

d4x½iq̄γμ∂μq −Gðq̄LΣqR þ q̄RΣ†qLÞ�; ðA1Þ

where q represents the quark field and G is the Yukawa
coupling constant, which we will send to infinity in the end
of the calculation. In cylindrical coordinates ðr; z;φÞ, a π0
vortex lying along the z-axis is parametrized by

Σ ¼ cos χðrÞeiτ3θðφÞ þ iτ1 sin χðrÞeiτ3ϕðt;zÞ; ðA2Þ

with θðφÞ ¼ þφ, and the boundary condition cos χ → 1 for
r → ∞ should be imposed. The zeromode equations
corresponding to Eqs. (42a) and (42b) are
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½iγα∂α þ iγ1ðcosφþ γ1γ2 sinφÞ∂r�qL
¼ Gðcos χeiτ3φ þ i sin χeiτ3ϕÞqR; ðA3aÞ

½iγα∂α þ iγ1ðcosφþ γ1γ2 sinφÞ∂r�qR
¼ Gðcos χeiτ3φ þ i sin χeiτ3ϕÞqL; ðA3bÞ

where α ¼ 0, 3. We can write down an explicit solution for
sufficiently large G as

qL ¼ exp

�
−
Z

r

0

dr0G cos χðr0Þ
�
ξðt; zÞ ðA4Þ

and qR ¼ −iγ1qL. Here, ξðt; zÞ satisfies not the free Dirac
equation but the equation with ϕ background; that is,

ðiγα∂α −Gτ1γ1eiτ3ϕÞξ ¼ 0: ðA5Þ

We note that the chirality should be flipped depending on
the quark flavors, i.e., τ3γ

0γ3ξ ¼ þξ. The exponential
factor is reduced to δð2Þðx⊥Þ in the limit of G → ∞. To
sort expressions out, it would be convenient to introduce a
new set of Dirac matrices,

Γ0 ¼ iτ1γ2γ3; Γ3 ¼ iτ1γ2γ0; Γ5 ¼ τ3:

Under the constraint, τ3γ
0γ3 ¼ þ1, we can prove the

Clifford algebra, fΓα;Γβg ¼ 2gαβ, fΓα;Γ5g ¼ 0, and

ðΓ5Þ2 ¼ 1. Then, the (1þ 1)-dimensional effective action
for the zeromode on the π0 vortex takes the form

Szm ¼
Z

dtdzξ̄ðiΓα∂α − GeiΓ5ϕÞξ; ðA6Þ

with ξ̄ ¼ ξ†Γ0. The most efficient method to infer the
current from this effective action is to rewrite this into
the bosonized form in terms of boson field σ, namely
Szm → S0zm, with

S0zm ¼ Nc

Z
dtdz

�
1

8π
∂μσ∂μσ −G cosðσ − ϕÞ

�
; ðA7Þ

where Nc is the color number of quarks [60]. The (1þ 1)-
dimensional quark current is given by jα ¼ ðNc=2πÞϵαβ∂βσ.
From the minimum of the potential G cosðσ − ϕÞ, we
should plug σ ¼ ϕ into this expression. The overall factor
Nc is eliminated by the conversion from the quark current
to the baryon current in which we are interested, and taking
account of δð2Þðx⊥Þ for the current in the original (3þ 1)-
dimensional theory, we finally arrive at

jμB;zm ¼ −
1

4π
ϵμνρσ∂νϕδ

ð2Þ
ρσ ðx⊥Þ; ðA8Þ

which is nothing but Eq. (29).
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