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In order to explore the possible physical quantities for judging different structures of the newly observed
resonance d�ð2380Þ, we study its electromagnetic form factors. In addition to the electric charge monopole
C0, we calculate its electric quadrupole E2, magnetic dipole M1, and magnetic octupole M3 form factors
on the base of the realistic coupled ΔΔþ C8C8 channel d� wave function with both the S- and D-partial
waves. The results show that the magnetic dipole moment and electric quadrupole deformation of d� are
7.602 and 2.53 × 10−2 fm2, respectively. The calculated magnetic dipole moment in the naive constituent
quark model is also compared with the result of D12π picture. By comparing with partial results where the
d� state is considered with a single ΔΔ and with a D12π structures, we find that in addition to the charge
distribution of d�, the magnetic dipole moment and magnetic radius can be used to discriminate different
structures of d�. Moreover, a quite small electric quadrupole deformation indicates that d� is more inclined
to a slightly oblate shape due to our compact hexaquark dominated structure of d�.
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I. INTRODUCTION

Since the dibaryon statewas proposedmore than 50 years
ago, the existence of the dibaryon has become one of the hot
topics in particle and nuclear physics.Among those states,H
particle and d� states were involved most. In particular, the
d� state has intensively been studied by variousmodels from
the hadronic degrees of freedom to the quark degrees of
freedom more than half century. Its mass prediction was
ranged from a fewMeV to several hundred MeV. Searching
such a state has also been considered as one of the aims in
several experimental projects. However, no confidential
results were released until 2009. Since then, a series of
experimental studies for d� was carried out in the study of
ABC effect by CELSIUS/WASA and WASA@COSY
Collaborations. [1–4]. Various double-pion and single-pion
decays of d�, including invariant mass spectra, Dalitz plots,
Argon plots, in the pn and pA reactions, the analyzing
power of the neutron-proton scattering and etc., have been
carefully measured and analyzed. It was found that the
results cannot be explained by the contribution either from

the intermediate Roper excitation or from the t-channel ΔΔ
contribution, except introducing an intermediate new reso-
nance. Then, the discovery of a new resonancewith amass of
about 2370–2380 MeV, a width of about 70–80 MeV, and
the quantum numbers of IðJPÞ ¼ 0ð3þÞ was announced
[1–4]. Since the baryon number of the resonance is 2, it is
believed that such a state is just the d� state which has been
hunted for several decades, and, in general, can be explained
by either “an exotic compact particle” or “a hadronic
molecule state.”
It should be emphasized that the threshold (or cusp) effect

may not be so significant in the d� case as that in the XYZ
particle case due to the fact that the observed mass of d� is
about 80 MeV below the ΔΔ threshold and about 70 MeV
above theΔπN threshold [5–7]. In addition, if d� does exist,
it contains at least 6 light quarks, and it is also different from
the XYZ particles which contain heavy flavor.
Following the reports of Refs. [1–4], many theoretical

models for the structure of d� have been developed or
proposed. Up to now, there are mainly two structural
schemes which attract considerable attention of physicists.
One of them assumes that the d� state has a compact
structure, and may be an exotic hexaquark dominated state
whose mass is about 2380–2414 MeV and width about
71 MeV, respectively [8–15]. The other one, in order to
explain the upper limit of the single-pion decay width of d�

[16], proposes that the d� state is basically a molecular-like
hadronic state with a α½ΔΔ� þ ð1 − αÞ½D12π� mixing struc-
ture (α ¼ 5=7) [17], which originates from a three-body
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ΔNπ resonance assumption, where the pole position of the
resonance locates around ð2363� 20Þþið65� 17Þ MeV
[18,19], and a D12π molecular-like model, where the mass
and width of the resonance are pre-fixed to be 2370 MeV
and 70 MeV, respectively [20]. Although the experimental
data can be explained by using either scheme, the described
structures of d� are quite different. Therefore, it is necessary
to seek other physical observables which would have
distinct values for different interpretations so that with
the corresponding experimental data one would be able to
justify which one is more reasonable.
It is well known that with the help of the electromagnetic

probe, electromagnetic form factors become indispensable
physical quantities in revealing the internal structure of a
complicated system. For example, the electromagnetic form
factors of a nucleon provide us the charge and magnetic
distributions inside the nucleon. This fact exhibits the
structure of the nucleonwhere a three quark core is surround
by the pion cloud. It also tells that the charge and magnetic
radii of the nucleon can be extracted by the slopes of the
charge and magnetic distributions of the nucleon at Q ¼ 0
(with Q being the momentum transfer) Refs. [21–24]. The
accurately measured charge radius of the proton does justify
the structure of the nucleon. Furthermore, in a spin-1 system,
for instance a deuteron or a vector ρ-meson, the charge,
magnetic and quadrupole form factors can also reveal its
intrinsic structures, such as its charge and magnetic dis-
tributions and the quadrupole deformation (see, for example,
Refs. [25–31] for the deuteron and Refs. [32–38] for the ρ
meson, respectively). Consequently, the electromagnetic
form factors might also be discriminating quantities for
studying the inner structure of the higher spin particle. In
particular, for the d� state, if there is a considerably large
hidden color component (HCC) in it, we found that,
although such a component does not contribute to its
hadronic strong decay in the leading-order calculation, it
can play a rather important role in the charge distribution
calculation [12–14,39]. The resultant charge distribution of
d� with a compact 6-quark structure is quite different from
that having a D12π (or ΔπN) structure [39]. Therefore, we
believe that the charge distribution of d� can serve as one of
the criteria for judging its structure.
In general, a spin-3 particle has 2Sþ 1 ¼ 7 electromag-

netic form factors, C0 (charge monopole form factor), C2
(or E2, electric quadrupole form factor), C4, and C8 for
electric form factors and M1, M3, and M5 for magnetic
form factors. Therefore, in order to understand the structure
of d�, the spin-3 particle, except the charge distribution
(namely, the charge monopole form factorC0) calculated in
our previous paper [39], we are going to study the other
lower rank form factors of d�, such as its electric quadru-
pole E2, magnetic dipole M1, and magnetic octupole M3
form factors, with a compact ΔΔþ C8C8 coupled-channel
structure on the base of our chiral SU(3) constituent
quark model.

In our previous studies [8,10–15], we enlarged the Fock
space to involve the next lowest QCD allowed configura-
tion, proposed the possible structure of d� as a hexaquark
dominated state and dynamically calculated it in the
framework of the resonating group method (RGM) with
a trial wave function of the ΔΔþ C8C8 structure in the
chiral SU(3) constituent quark model. It should be stressed
that the approach can explain most of the data available on
the masses of the ground states of baryons, the scattering
and reaction data of the baryon-baryon interactions, the
binding energy of the deuteron and even H particle, etc.
[40–44]. In this way, we obtained the mass and corre-
sponding wave function of d� with the proposed structure
(refer to the Appendix for detail), and consequently, the
partial widths in various double pion and single pion decay
channels. All these calculated results consist with the data
measured by the CELSIUS/WASA and WASA@COSY
Collaborations. Therefore, in terms of resultant wave
function, it is reasonable and possible to investigate some
new observables for distinguishing the structure of d�, and
consequently to provide relevant predictions for reference
in the future experimental observation.
This paper is organized as follows. In Sec. II, the wave

function of d� in the chiral SU(3) constituent quark model
is briefly introduced. Section III is devoted to the electro-
magnetic form factors and the multipole decomposition of
the electromagnetic current of the d� resonance. Our
numerical results and a short summary will be presented
in Sec. IV.

II. WAVE FUNCTIONS OF d�ð2380Þ IN CHIRAL
CONSTITUENT QUARK MODEL

In studying possible dibaryons in 1999, a ΔΔþ C8C8

structure of the d� state with ðIðJPÞÞ ¼ ð0ð3þÞÞ, where I, J,
P are isospin, spin, and parity, respectively, was firstly
proposed [8]. With the assumption of such a structure, its
mass was predicted [8]. In recent years, a series of
sophisticated studies on the structure and decay properties
of d� has further been performed, and a compact picture for
it, an exotic hexaquark dominated state, was deduced
[8,10–14,39]. In order to get a meaningful result for a
6-quark system, those calculations were dynamically
carried out on the quark degrees of freedom by using a
chiral SU(3) constituent quark model. In this strong
interaction model, the effective quark-quark interaction
induced by the exchange of the chiral fields receives the
contributions from the pseudoscalar, scalar, and vector
chiral fields, respectively (see the Appendix). The model
parameters are determined in such a way that the stability
condition and the properties of nucleon, the mass splitting
between the nucleon and Δ, the most masses of the ground
states of baryons, the static properties of deuteron, and the
phase shifts of the nucleon-nucleon scattering can be
ensured. With these prefixed model parameters, we believe
that the model has considerable prediction power [40,41].
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In the practical calculation for d�, we use the well-
established resonating group method which has frequently
been applied to the studies of nuclear physics and hadronic
physics, especially where the clustering phenomenon exists
[45–52]. In the RGM framework, if we assume again that
the d� state has a ΔΔþ C8C8 structure, the full 6-quark
wave function reads

Ψ6q ¼ A
h
ϕ̂A
Δðξ⃗1; ξ⃗2; μAΔÞϕ̂B

Δðξ⃗4; ξ⃗5; μBΔÞηΔΔðr⃗Þ

þ ϕ̂A
C8
ðξ⃗1; ξ⃗2; μAC8

Þϕ̂B
C8
ðξ⃗4; ξ⃗5; μBC8

ÞηC8C8
ðr⃗Þ

i
C¼ð00Þ
S¼3;T¼0

;

ð1Þ

where S, T, and C represent the quantum numbers of the
spin, isospin, and color, A ¼ 1 −

P
ið∈AÞ;jð∈BÞPOSFC

ij is
the total antisymmetrization operator, POSFC

ij denotes the
exchange operator which exchanges the ith quark belong-
ing to the cluster A and jth quark pertaining to the cluster B

in the orbital, spin, flavor, and color spaces, ϕ̂AðBÞ
ΔðC8Þ is the

antisymmetrized internal wave function of the (123)(or
(456)) quark cluster A(or B) for ΔðC8Þ with ξ⃗i [i ¼ 1, 2

(4,5)] being its internal Jacobi coordinates and μAðorBÞΔðC8Þ being

an aggregate of the quantum numbers of the spin, isospin,
and color of the ΔðC8Þ cluster named A(or B) with
½S; I; C�ΔðC8Þ ¼ ½3=2; 3=2; ð00Þðð3=2; 1=2; ð11ÞÞÞ� for the
ΔðC8Þ cluster, and the meanings of other symbols can
be found in the Appendix. Clearly, C8 stands for a colored
cluster, and C8C8 represents hidden color channel.

ηΔΔðC8C8Þ is the relative wave function between A and B
clusters which will be determined by dynamically solving
the RGM equation [10,11]

hδΨ6qjH − EjΨ6qi ¼ 0 ð2Þ

of the system with the (extended) chiral SU(3) constituent
quark model.
However, the resultant two components in Eq. (1) are

not orthogonal to each other. In order to make them
orthogonal to each other and to make the calculations
simplified and feasible without missing most of the
important effect of the antisymmetrization, we effectively
rewrite Eq. (1) as an effective wave function in Eq. (3) in
terms of channel wave function which was often employed
in nuclear physics and hadronization in hadron physics
[53–55]. The way to get the detailed effective wave
function is explicitly given in the Appendix. It should
be emphasized again that this treatment is just an approxi-
mation. The inaccuracy of such effective wave function is
about 20% compared to the wave function obtained in the
rigorous RGM calculation. This is because that due to the
antisymmetrization procedure, more configurations other
than ΔΔ and C8C8 which span our model space are
generated. Considering the uncertainty of the constituent
quark model induced by the complexity of NPQCD, we
believe that the contribution from those configurations is
not so important. Then, our effective wave function is
written as

jd�ðSd� ¼ 3;Md� Þi ¼ ½jΔΔiSd�¼3;Md� χ
S;0
ΔΔ�Sd�¼3;Md� þ ½jΔΔiSd�¼3;MS

χD;m
ΔΔ �Sd�¼3;Md� þ ½jC8C8iSd�¼3;Md� χ

S;0
C8C8

�Sd�¼3;Md�

þ ½jC8C8iSd�¼3;MS
χD;m
C8C8

�Sd�¼3;Md�

¼
X

ch¼ΔΔ;C8C8

X
pw¼S;D

½jchiSd�¼3;MS
χpw;ml
ch ðr⃗Þ�Sd�¼3;Md� ð3Þ

with ch ¼ ΔΔ and C8C8 denoting the constituents of the
component, Md� representing the magnetic quantum
number of spin Sd� , pw ¼ l ¼ 0 and 2 representing the
S and D partial waves (pw) between the two clusters,
respectively, and ml being its magnetic quantum number.
Again these four channel wave functions are orthogonal to
each other. In comparison with our previous calculations
for the strong decay and charge distribution where the
contribution from the D-wave is ignored because it is
negligibly small, here we include the relative D-wave in
the calculations of the higher multipole form factors, such
as E2, and M3 since those values are closely related to the
matrix elements of the high-rank operators. The relative
wave functions in Eq. (3), with χS;0ch ðr⃗Þ ¼ ϕS

chðjrjÞY00ðΩrÞ

and χD;ml
ch ðr⃗Þ ¼ ϕD

chðjrjÞY2ml
ðΩrÞ, are displayed in Fig. 1,

respectively. The probabilities of S- and D-waves in the
ΔΔ and C8C8 channels are determined by

Ppw;ml
ch ¼

Z
d3rjχpw;ml

ch ðr⃗Þj2; ð4Þ

and their magnitudes are shown in Table I. From Fig. 1
and Table I, one sees that comparing with corresponding
D-waves, the S-wave in both ΔΔ, and C8C8 channels
are overwhelmingly dominant, and the D-waves are
negligibly small. The probability of the S-wave in the
C8C8 channel is about 2 times larger than that in the
ΔΔ channel which is essential for our understanding
of the partial widths in the double-pion and single-
pion decays of d�, and consequently of a narrow total
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width in our assumption of the compact structure of d�
[10–15,39].

III. MULTIPOLE DECOMPOSITION AND
ELECTROMAGNETIC FORM FACTORS OF d�

d�ð2380Þ is a spin-3 particle, it has 2sþ 1 ¼ 7 form
factors. In general, a traceless rank-3 tensor, ϵαβγ , can be
employed to describe the spin-3 field. Clearly, ϵααβ ¼ 0,
ϵαβγ ¼ ϵβαγ , and pαϵαβγ ¼ 0.
In the one-photon exchange approximation, the general

form of the electromagnetic current of the 3þ particle can
be written as [39]

J μ ¼ ðϵ�Þα0β0γ0 ðp0ÞMμ
α0β0γ0;αβγϵ

αβγðpÞ ð5Þ

with the matrix element

Mμ
α0β0γ0;αβγ ¼ ½G1ðQ2ÞPμ½gα0αðgβ0βgγ0γ þ gβ0γgγ0βÞ þ permutations�

þG2ðQ2ÞPμ½qα0qα½gβ0βgγ0γ þ gβ0γgγ0β� þ permutations�=ð2M2
d�Þ

þG3ðQ2ÞPμ½qα0qαqβ0qβgγ0γ þ permutations�=ð4M4
d� Þ

þG4ðQ2ÞPμqα0qαqβ0qβqγ0qγ=ð8M6
d�Þ þG5ðQ2Þ½ðgμα0qα − gμαqα0 Þðgβ0βgγ0γ þ gβ0γgβ0γÞ þ permutations�

þG6ðQ2Þ½ðgμα0qα − gμαqα0 Þðqβ0qβgγ0γ þ qγ0qγgβ0β þ qβ0qγgγ0β þ qγ0qβgγβ0 Þ þ permutations�=ð2M2
d� Þ

þG7ðQ2Þ½ðgμα0qα − gμαqα0 Þqβ0qβqγ0qγ þ permutations�=ð4M4
d� Þ�; ð6Þ

where Md� is the mass of d�ð2380Þ, P ¼ p0 þ p (with p0
and p being the momenta of the outgoing and incoming d�,
respectively), and GiðQ2Þ, i ¼ 1; 2;…; 7, are the seven
electromagnetic form factors which depend on the mo-
mentum transfer square Q2 ¼ jq⃗j2. The gauge invariant
condition

qμM
μ
α0β0γ0;αβγ ¼ 0 ð7Þ

should also be fulfilled, as well as the time-reversal invari-
ance. In general, the physical form factors, such as the charge
monopoleC0, electric quadrupoleE2, hexadecapoleC4, and
tetrahexacontapole C6 form factors, as well as the magnetic
dipole M1, octupole M3 and dotriacontapole M5 form
factors, can be constructed by the combinations of the seven
electromagnetic form factors GiðQ2Þ, i ¼ 1; 2;…7.
The multipole decompositions of the electromagnetic

currents, as well as the electromagnetic form factors of a
particle with spin-2 or with arbitrary spin, have been

explicitly discussed in Refs. [56–59]. According to those
analysis, in the quark degrees of freedom, the time
component of the photon-d� electromagnetic current, in
the instantaneous approximation, is J0 ¼ P

6
i¼1 j

0
i with j0i

denoting the time component of the photon-quark electro-
magnetic current for the i-th quark. The electric charge lth
multipole form factor of d� reads

GE
l ðQ2Þ ¼ ð2Md� Þl

e

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r ð2lþ 1Þ!!
l!Ql IElðQ2Þ; ð8Þ

with e being the unit of charge and

IElðQ2Þ ¼ hd�j
X6
i¼1

Z
d3r½d3X�eijlðQjr⃗i − R⃗jÞYl0ðΩriÞjd�i

¼ 3hd�j
Z

d3r½d3X�½e3jlðQjr⃗3 − R⃗jÞYl0ðΩr⃗3−R⃗
Þ

þ e6jlðQjr⃗6 − R⃗jÞYl0ðΩr⃗6−R⃗
Þ�jd�i; ð9Þ

0 1 2 3 4
r(fm)

0

0.25
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rφ
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2
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FIG. 1. Channel wave functions in the d� system. The black
solid, red dotted, blue dashed, and pink dotted-dashed curves
describe the contributions from the S- and D-waves in the ΔΔ
channel, and the S- andD-waves in theC8C8 channel, respectively.

TABLE I. Probabilities of various components of d�.

Channel ΔΔ C8C8

Partial wave S D S D
Probability Ppw:

ch ð%Þ 31.19 0.50 68.31 ∼0.002
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where ½d3X� ¼ d3ρ1d3ρ2d3λ1d3λ2, ρ1, ρ2, λ1, and λ2 are the
conventional Jacobi variables in the two clusters, and jl
represents the lth spherical Bessel function.
The multipole decomposition of the space component

of the electromagnetic current in the momentum space
gives [58,59]

hd�jρMðq⃗Þjd�i ¼ e
Xþ∞

l¼0

ilτl=2
lþ 1

C̃l−1
2l−1

GMlðQ2ÞYl0ðΩqÞ; ð10Þ

where ρMðq⃗Þ denotes the magnetic density of the system

with τ ¼ Q2

4M2
d�
, and

C̃k
n ¼

� n!!
k!!ðn−kÞ!! ; n ≥ k ≥ −1;

0; otherwise:
ð11Þ

If we only consider the quark-photon coupling, we can

write the magnetic density as ρMðr⃗Þ ¼ P
6
i¼1 ∇⃗ ·ðj⃗iðrÞ × r⃗iÞ

with j⃗iðrÞ and r⃗i being the current and position vectors for

the ith quark in the coordinate space, and ρMðq⃗Þ ¼P
6
i¼1 ∇⃗ ·½ðeiσ⃗i × q⃗Þ × q⃗� ¼ 2

P
6
i¼1 eiσ⃗i · q⃗ with σ⃗i, ei,

and q⃗ being the Pauli matrix, the charge for the ith quark
and the transferred momentum, respectively. Then, we have

hd�jρMðq⃗Þjd�i ¼
X6
i¼1

hd�jρMi ðq⃗Þjd�i

¼ 6i
2mq

hd�j½e3σ⃗3 · q⃗þ e6σ⃗6 · q⃗�jd�i: ð12Þ

By assuming that the form factors are the functions of the
momentum transfer square Q2 in the one-photon exchange
approximation, we have [58,59]

GM1ðQ2Þ ¼ −
Z

dΩqY�
10ðΩqÞ

1

2

i

e
ffiffiffiffiffiffiffiffiffiffi
τðQÞp

×

ffiffiffiffiffiffi
3

4π

r
hd�jρMðq⃗Þjd�i; ð13Þ

for M1 and

GM3ðQ2Þ ¼ þ
Z

dΩqY�
30ðΩqÞ

i

2eτðQÞ ffiffiffiffiffiffiffiffiffiffi
τðQÞp

×

ffiffiffiffiffiffi
7

4π

r
5

4
hd�jρMðq⃗Þjd�i; ð14Þ

for M3, respectively.

IV. NUMERICAL RESULTS AND DISCUSSIONS

By using the wave functions of d� in Eq. (3), the charge
monopoleC0, electric quadrupoleC2, magnetic dipoleM1,

and magnetic octupole M3 form factors for d� are calcu-
lated. It should be mentioned that since the charge
monopole form factor (or the charge distribution) of d�
has already been discussed explicitly in our previous paper
[39], we do not reiterate the relevant result in detail in this
work. It is shown that the charge distribution receives the
dominant contribution from the S partial wave, namely the
S − S matrix elements of the ΔΔ and C8C8 components.
Based on the fact that the slope of the charge distribution is
related to the root-mean-square radius (rms) of the d�
system, it is found that compared to the D12π (or ΔπN)
structure, as well as to a single ΔΔ structure, a compact
hexaquark dominated structure for d�, which is deduced
from our coupled ΔΔþ C8C8 channel RGM calculation,
has a much smaller rms [39].
The magnetic dipole form factor GM1ðQ2Þ of d� is

plotted in Fig. 2. This form factor respectively receives the
contributions from the S − Smatrix elements of theΔΔ and
C8C8 components, which are described by the blue-dashed
and red-dotted curves in Fig. 2. Other contributions from
the S −D matrix element (the off-diagonal matrix element
between the S-wave and D-wave functions) and the D −D
matrix element (the diagonal matrix element between
D-wave functions) are negligibly small compared to the
S − S components. These features can also be corroborated
by the purple-dotted-dashed and pink-double-dotted-
dashed curves in Fig. 2. Clearly, the major contribution
cames from the S-wave of the C8C8 component, however
the contribution from the S-wave of the ΔΔ component is
also sizable. This is because that the probability of theC8C8

component is almost twice of that of the ΔΔ component.
For a comparison, the calculated magnetic dipole form

factor of d� with a single channel ΔΔ structure is
demonstrated by the green double-dashed-dotted curve
also in Fig. 2. Furthermore, the magnetic dipole momentum
of d�, μd� , can be extracted from the magnetic dipole
form factor at zero momentum transfer GM1ðQ2 ¼ 0Þ. The

0 0.5 1 1.5
Q

2
(GeV

2
)

-2

0

2

4

6

8

G
M

1
(Q

2 ) Total

ΔΔ: S-S

ΔΔ+C
8
C

8
: S-D

ΔΔ+C
8
C

8
: D-D

C
8
C

8
: S-S

Coupled ChannelSingle Channel ΔΔ

FIG. 2. The magnetic dipole form factor M1 of d�.
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obtained magnetic dipole moment of d� in the coupled
channel ΔΔþ C8C8 cases is about 7.602 in unit of e.
Comparing with the proton and neutron magnetic dipole
moments of 2.79 and −1.91, respectively, this value is
understandable, because the number of quarks in d� is
twice of that in the proton or neutron. Moreover, the
calculated magnetic dipole moment of d� with a single ΔΔ
structure is about 7.612 which is almost the same as that of
the d� state with a ΔΔþ C8C8 structure. The tiny differ-
ence between two magnetic dipole moments with different
structures may be due to the different amount of D-wave
contributions. In addition, it should be particularly stressed
that the contribution from the off-diagonal matrix element
between the ΔΔ and C8C8 channels vanishes since the
former has two colorless clusters and the latter has two
colored clusters, and the electromagnetic interaction is
color-independent.
In the naive constituent quark model (NCQM), it is

known that the magnetic moments of the proton and
neutron are about MN=mq ∼ 3 and −2MN=3mq ∼ −2,
respectively. These values roughly agree with the exper-
imental data of 2.79 and −1.91. In the d� case, we find that,
in the naive quark model, the contributions from the ΔΔ
and C8C8 components are all proportional to Md�=mq due
to IðJPÞ ¼ 0ð3þÞ for d� and the quantum numbers of the Δ
and C8 clusters. Consequently, the magnetic moment of d�,
which relates to its magnetic form factor at the real photon
limit, is

GNCQM
M1 ð0Þ ¼ ½PS

ΔΔ þ PS
C8C8

� 3Md�

MN
∼
3Md�

MN
¼ 7.62; ð15Þ

where we approximately take ½PS
ΔΔ þ PS

C8C8
� ∼ 1 for the

S-wave as shown in Table I, and mq ∼MN=3. This
magnetic moment is very close to the calculated value
of 7.602 obtained from GM1ð0Þmentioned above. From the
results for the proton, neutron and d�, one may believe that
the magnetic moment of a particle estimated in the naive
constituent quark model can be taken as a qualitative
reference in the study of the hadronic magnetic moment.
The absolute ratio of the calculated magnetic moment of
the ΔΔ component to that of the C8C8 component in our
approach is

RΔΔ
C8C8

¼ GΔΔ
M1

GC8C8

M1

¼ 2.37
5.20

¼ 0.4558; ð16Þ

which is almost the same as the probability ratio of the
two component PS

ΔΔ=P
S
C8C8

¼ 31.19%=68.31% ¼ 0.4566
shown in Table I. Moreover, in the naive constituent quark
model, by using the same method, we obtain the magnetic
moment of the d� state with a single ΔΔ structure as

μ̃ΔΔd� ¼ G̃ΔΔ
M1ð0Þ ∼

3Md�

MN
¼ 7.62: ð17Þ

This value is the same as that with a compact hexaquark
dominated structure, which is understandable because the
averaged magnetic moment in the ΔΔ component is the
same as that in the C8C8 component.
In addition, the magnetic moment of d� with a D12π

interpretation can also be calculated in this way. We know
that the spin of pion is zero, the contribution from the
orbital angular moment between the D12 and π systems
vanishes. Then, the magnetic moment of d� comes from the
D12 cluster only. Therefore, the obtained magnetic moment
of d� in the naive constituent quark model is

μD12π
d� ¼ GD12π

M1;d�ð0Þ ∼
2Md�

MN
¼ 5.07: ð18Þ

From the above obtained values for the different inner
structures of d�, one sees that the magnetic moment can
also serve as a quantity to distinguish between the compact
hexaquark dominated structure (or the ΔΔ structure) and
the D12π structure, but not between the ΔΔþ C8C8

compact hexaquark dominated structure and the ΔΔ
structure.
Furthermore, we know that the slope of GM1 is related to

the magnetic radius of d�. To see the different contributions
to the magnetic radius from the ΔΔ component and the
C8C8 component, we check the slopes of GΔΔ

M1ðQ2Þ and
GC8C8

M1 ðQ2Þ. They are

−
d

dQ2
GΔΔ

M1ðQ2Þ
����
Q2→0

¼5.014GeV−2¼0.195 fm2;

−
d

dQ2
GC8C8

M1 ðQ2Þ
����
Q2→0

¼6.139GeV−2¼0.239 fm2; ð19Þ

and their ratio is

R ¼
d

dQ2 GΔΔ
M1ðQ2ÞjQ2→0

d
dQ2 G

C8C8

M1 ðQ2ÞjQ2→0

∼ 0.816: ð20Þ

This ratio contains the contributions from PS
ΔΔ and PS

C8C8
,

as well as from theQ2 dependent wave functions of the ΔΔ
and C8C8 components. The obtained value is remarkably
different with the probability ratio RΔΔ

C8C8
∼ 0.4558, which

reveals a fact that although the probability of the ΔΔ
component is much smaller than that of the C8C8 compo-
nent, but the normalized magnetic radius of the ΔΔ
component is larger than that of the C8C8 component,
namely comparing with the C8C8 component, the wave
function of the ΔΔ component distributes in a wider range.
As a final result, when d� has a compact hexaquark
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dominant structure, the obtained slope of the magnetic form
factor GM1 at the zero momentum transfer is

−
d

dQ2
GM1ðQ2Þ

����
Q2→0

¼ 0.434 fm2; ð21Þ

and corresponding magnetic radius is

����� − d
dQ2

GM1ðQ2Þ
����
Q2→0

����
�
1=2

¼ 0.659 fm: ð22Þ

In addition, in the single channel ΔΔ case, we have the
magnetic radius being

����� − d
dQ2

GS
M1ðQ2Þ

����
Q2→0

�
1=2

¼ 0.896 fm: ð23Þ

Clearly, one sees that the magnetic radius of d� with a single
ΔΔ structure is apparently larger than that with a compact
hexaquark dominated structure. Therefore, we believe that
the magnetic radius of d� can serve as a physical quantity to
distinguish between the ΔΔþ C8C8 and ΔΔ structures of
d�. Moreover, we stress that the magnetic feature of d� is
consistent to the phenomenon revealed in the case of the
charge distribution of d�, and the charge radius of d� [39] is
slightly larger than its magnetic radius. These characters
also appeared in the experimental measurements for deu-
teron as has been discussed in Ref. [60].
Our calculated electric quadrupole form factor GE2 is

shown in Fig. 3. In this figure, the blue-dashed and red-
dotted, purple-dotted-dashed, and pink-double-dotted-
dashed curves describe the contributions from the matrix
elements between the S- and D-waves and the D- and D-
waves of the ΔΔ component and from the matrix elements
between the S- andD-waves and theD- andD-waves of the
C8C8 component, respectively. It should be mentioned that

in this rank-2 operator case, the diagonal matrix element
between S-waves (S − S) does not contribute. The domi-
nant contribution to GE2 comes from the off-diagonal
matrix element between the S- and D-waves (S −D or
D − S) of the ΔΔ component. Since the probability of the
D-wave of the C8C8 component is much smaller than that
of the ΔΔ component as shown in Table I, the contribution
from the D-wave of the C8C8 component is negligibly

small. Moreover, we have GE2ð0Þ ¼ M2
d�
e Qd�

20, where Qd�
20

denotes the quadrupole deformation of d�. Our calculation
shows that such a deformation is about Qd�

20 ¼
2.53 × 10−2 fm2, which is much smaller than that of the
deuteron Qd

20 ¼ 0.259 fm2. This is because that the dom-
inant contribution for the electric quadrupole moment
comes from the S −D matrix element of the colorless-
cluster component, namely the ΔΔ component in d�, as
well as from that of the p − n component in the deuteron
case, however, the probability of theΔΔ component in d� is
only about 1=3 and the probability of the p − n component
in deuteron is almost 1, meanwhile the probability of the
D-wave in the ΔΔ component of d� (about 0.5%) is much
smaller than that in the p − n component of deuteron
(about 5%). These quadrupole deformations also indicate
that d� is more inclined to a slightly oblate shape.
Therefore, our d� looks a more compact and spherical-
shape due to its wave function.
It is known that the deformations of the nucleon and Δ

give the E2=M1 ratio for the γN → Δ transition amplitude,
which is one of the significant observables for judging
different models. Here, one can also consider the defor-
mation in the Δ wave function. According to the previous
analysis (see for example Refs. [61–63]), the mixing
coefficient for the component Δ4Dsð32Þþ in the Δ resonance
is about −0.11, the probability of such a configuration is
about 1.2%, and the obtained E2=M1 ≃ −1.0% for the ΔN
transition. We can check the effect of the deformation of Δ
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FIG. 3. The quadrupole form factor of d�.
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on the quadrupole moment. Our numerical calculation
shows that this effect provides a suppression of about
0.25% to the quadrupole moment of d�.
Finally, we also shown the magnetic octupole form

factor of d� in Fig. 4, where the blue-dashed, red-dotted,
and purple-dotted-dashed curves represent the contribu-
tions from the matrix elements between the S- andD-waves
of the ΔΔ and C8C8 components and between theD-waves
of the whole ΔΔþ C8C8 wave function. Still, the major
contribution comes from the S −D matrix element of the
ΔΔ component as well.

V. SUMMARY

In order to understand the internal structure of
the d� resonance discovered by CELSIUS/WASA and
WASA@COSY Collaborations, two major structural
schemes were proposed recently. One of them considers that
it has a compact exotic hexaquark dominated structure and
the other proposal believes that it is basically amolecular-like
hadronic state. These two structure models have been tested
in terms of the experimental data.Up to now, bothmodels can
explain themass, the total width, and the partial decay widths
for all the observed double pion decays of the d� resonance.
However, for a single pion decay process, although the
observed upper limit of the branching ratio can be explained
by both structure models, the ways of explanation have a
subtle difference. The result from a compact hexaquark
dominated structure model is directly calculated and is
consistent with the data. On the other side, a combined
α½ΔΔ� þ ð1 − αÞ½D12π� mixing structure was also proposed
[17], and the data can be explained as well. Therefore, we
need to seek other observable physical quantities to distin-
guish these two different structures for d�.
Here, based on the studies on the electromagnetic form

factors for the nucleon, deuteron, and evenvectormesons,we
propose that the electromagnetic form factors, including the
d� charge distribution in our former paper [39], can be the
desirable physical quantities for distinguishing different
structure approaches. In this paper, we study the M1, E2,
andM3 form factors in addition to the former reported charge
form factorC0 by employing thewave functions obtained in
the coupledΔΔþ C8C8 channel RGM calculation based on
our chiral constituent quarkmodel. It is found that in the case
with a compact ΔΔþ C8C8 structure, since the D-wave
components in both ΔΔ and C8C8 channels are negligible
small, less than 0.5% of the total wave function, its
contribution to the electromagnetic form factorM1 is rather
small in comparison with that from the S-wave component.
However, for the electromagnetic form factors E2 and M3,
the contribution of theD-wave associating with the S-wave,
namely the off-diagonal matrix elements between theD- and
S-waves, of the ΔΔ component dominates. The extracted
magnetic dipole moments of d� for the compact hexaquark
dominated (ΔΔþ C8C8) structure, the pure ΔΔ structure,
and the D12π structure are 7.602, 7.612, and 5.07,

respectively. The corresponding magnetic radii are about
0.66 fm in the case with a coupledΔΔþ C8C8 structure and
about 0.90 fm in the case with a single ΔΔ structure,
respectively. These results indicate that themagneticmoment
can be used to distinguish between the compact hexaquark
dominated structure (or the pureΔΔ structure) and theD12π
structure, but not between the compact hexaquark dominated
structure and the pure ΔΔ structure. However, the magnetic
radius can be considered as a physical quantity to discrimi-
nate the ΔΔþ C8C8 and ΔΔ structures. Moreover, a quite
small quadrupole deformation Q̂d�

20 of 2.53 × 10−2 fm2 for
the d� state with a ΔΔþ C8C8 structure indicates that,
differing with deuteron, d� is more inclined to a slightly
oblate shape, and consequently, a compact hexaquark
dominated and spherical structure. The effect of the defor-
mation of the Δ resonance provides a suppression of about
0.25% to the quadrupole moment of d�.
Combining the results for C0 in our previous paper [39],

we come to the conclusion that the charge radius and
magnetic moment of d� can be used as new physical
quantities to discriminate among different structure models.
It is expected that these theoretically predicted quantities,
especially in the low-Q region, can be measured by experi-
ments in the near future. For instance [64], at Belle II, with its
high luminosity, it might be possible to access eþ þ e− →
d� þ d̄�, and then one might extract some information about
the electromagnetic form factors ofd� in the time-like region.
Considering the photo-production process, one might access
magnetic moment information by photo-exciting the P-shell
nucleon pair with the M1 transition as well. There is another
possible chance to directly access the information of the
electromagnetic feature of d� at the low-Q region, where one
may look for a eþe− pair production process (pn → d�eþe−)
at the WASA@GSI and CBM due to the advantages of their
deuteron beam and a very good di-lepton efficiency and
triggering in the CBM experiment.
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APPENDIX: d� IN CHIRAL CONSTITUENT
QUARK MODEL

The six-quark system with [IðJPÞ ¼ 0ð3þÞ], named d�,
is studied in the quark degrees of freedom by employing the
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chiral SU(3) constituent quark model [40,41]. In this
model, the interactive Lagrangian between quark and scaler
and pseudoscalar chiral fields is written as

Lch
I ¼ −gchψ̄

�X8
a¼0

λaσa þ iγ5
X8
a¼0

λaπa

�
ψ ; ðA1Þ

and the interactive Lagrangian between quark and vector
meson fields as

Lchv
I ¼ −gchvψ̄γμλaρ

μ
aψ −

fchv
2MN

ψ̄σμνλa∂μρνaψ : ðA2Þ

Then the total Hamiltonian of the system can be formu-
lated as

H ¼
X6
i¼1

Ti − TG þ
X6
j>i¼1

ðVOGE
ij þ Vconf

ij þ Vch
ij þ Vchv

ij Þ;

ðA3Þ

with Vch
ij and Vchv

ij being the chiral field and vector meson
field induced effective interactions, respectively, between
the ith quark and the jth quark,

Vch
ij ¼

X8
a¼0

Vσa
ij þ

X8
a¼0

Vπa
ij ; ðA4Þ

and

Vchv
ij ¼

X8
a¼0

Vρa
ij ; ðA5Þ

where Vσa , Vπa , and Vρa are the potentials induced by the
scalar, pseudoscalar and vector meson fields, respectively,
Ti the kinetic energy operator for the ith quark, TG the
kinetic energy operator for the center of mass motion of the
system, VOGE and Vconf the one-gluon-exchange and con-
finement potentials, respectively. The model with vector
meson induced potentials is later renamed as the extended
chiral SU(3) constituent quarkmodel. The parameters of the
model are determined by fitting the experimental data of the
masses of the ground state baryons, the phase shifts and
cross sections of the NN scattering, the binding energy of
deuteron, etc. The detailed forms of the potentials, model

parameter determinations and resultant values of parameters
can be found in Refs. [41,42].
To investigate the properties of this six quark system

microscopically, one usually use a so-called resonating
group method (RGM). In this framework, we proposed a
trial wave function in the form of

Ψ6q ¼ A
h
ϕ̂A
Δðξ⃗1; ξ⃗2; μAΔÞϕ̂B

Δðξ⃗4; ξ⃗5; μBΔÞηΔΔðr⃗Þ

þ ϕ̂A
C8
ðξ⃗1; ξ⃗2; μAC8

Þϕ̂B
C8
ðξ⃗4; ξ⃗5; μBC8

ÞηC8C8
ðr⃗Þ

i
C¼ð00Þ
S¼3;T¼0

;

where S, T, and C represent the quantum numbers of
the spin, isospin, and color, A ¼ 1 −

P
ið∈AÞ;jð∈BÞPOSFC

ij is
the total antisymmetrization operator, POSFC

ij denotes the
exchange operator which exchanges the ith quark belonging
to the clusterA and jth quark pertaining to the cluster B in the

orbital, spin, flavor, and color spaces, ϕ̂AðBÞ
ΔðC8Þ is the anti-

symmetrized internal wave function of the (1,2,3) ((4,5,6))
quark cluster A(B) for either Δ or C8 with ξ⃗i (i ¼ 1, 2(4,5))

being its internal Jacobi coordinates and μAðBÞΔðC8Þ being an

aggregate of the quantum numbers of the spin, isospin, and
color of the ΔðC8Þ cluster named A(B) with ½S; I; C�ΔðC8Þ ¼
½3=2; 3=2; ð00Þðð3=2; 1=2; ð11ÞÞÞ� for the ΔðC8Þ cluster,
ηΔΔðC8C8Þ is the relative wave function between A and B
clusters which will be determined by the dynamical calcu-
lation of the system with the (extended) chiral SU(3)
constituent quark model.
The binding energy relative to the threshold of the ΔΔ

channel and corresponding relative wave functions between
clusters are obtained by numerically solving the bound
state RGM equation [10,11]

hδΨ6qjH − EjΨ6qi ¼ 0:

This is a standard treatment in few-body physics. There are
many studies about baryon-baryon interactions carried out
by using this RGM method [8,41,45–52].
It should be mentioned that due to the nonorthogonality

of the base functions used in the dynamical calculation, the
two components in Eq. (1) are not orthogonal to each other.
Therefore, the wave function in the current form is not
suitable for the ongoing study.
On the other hand, in terms of A, Eq. (1) can be

rewritten as

Ψ6q ¼
h
ϕ̂Δðξ⃗1; ξ⃗2; μAΔÞϕ̂Δðξ⃗4; ξ⃗5; μBΔÞηΔΔðr⃗Þ

i
C¼ð00Þ
S¼3;T¼0

þ
h
ϕ̂C8

ðξ⃗1; ξ⃗2; μAC8
Þϕ̂C8

ðξ⃗4; ξ⃗5; μBC8
ÞηC8C8

ðr⃗Þ
i
C¼ð00Þ
S¼3;T¼0

−
X

ið∈AÞ;jð∈BÞ
POSFC
ij

h
ϕ̂Δðξ⃗1; ξ⃗2; μAΔÞϕ̂Δðξ⃗4; ξ⃗5; μBΔÞηΔΔðr⃗Þ

i
C¼ð00Þ
S¼3;T¼0

−
X

ið∈AÞ;jð∈BÞ
POSFC
ij

h
ϕ̂C8

ðξ⃗1; ξ⃗2; μAC8
Þϕ̂C8

ðξ⃗4; ξ⃗5; μBC8
ÞηC8C8

ðr⃗Þ
i
C¼ð00Þ
S¼3;T¼0

; ðA6Þ
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where, on the right-hand side, the first 2 terms are direct
terms and the latter 2 terms are exchange terms. It is clear that
the direct terms have a quite simple form, but the exchange
terms are very complicated due to intricate exchange
operations. In order to make the wave functions of different
channels orthogonal to each other, to make the numerical

calculations simplified and feasible, and not to miss the
important effect of the antisymmetrization, it is better to
express the wave function approximately in a form without
the exchange operator phenomenologically, namely a form
of the direct term, but still keep the effect of the totally
antisymmetrized feature of the wave function of the system

Ψeff
6q ¼ ϕ̂A

Δðξ⃗1; ξ⃗2; μAΔÞϕ̂B
Δðξ⃗4; ξ⃗5; μBΔÞχΔΔðr⃗Þ þ ϕ̂A

C8
ðξ⃗1; ξ⃗2; μAC8

Þϕ̂B
C8
ðξ⃗4; ξ⃗5; μBC8

ÞχC8C8
ðr⃗Þ: ðA7Þ

One of the ways to realize it is carrying out a so-called projection procedure. For instance, to obtain an effective relative
wave function χΔΔðr⃗Þ between two Δ clusters in the ΔΔ component of the approximated effective wave function in the
above mentioned simpler form like the direct term, ½ϕ̂Δðξ⃗1; ξ⃗2; μAΔÞϕ̂Δðξ⃗4; ξ⃗5; μBΔÞχΔΔðr⃗Þ�, what one should do is multiplying

Eq. (A6) by ϕ̂�
Δðξ⃗1; ξ⃗2; μAΔÞϕ̂�

Δðξ⃗4; ξ⃗5; μBΔÞ and integrating over all internal Jacobi coordinates ξ⃗i (i ¼ 1, 2, 4, 5)

χΔΔðr⃗Þ ¼ hϕΔðξ⃗1; ξ⃗2; μAΔÞϕΔðξ⃗4; ξ⃗5; μBΔÞjΨ6qi

¼ ηΔΔðr⃗Þ −
	
ϕ̂Δðξ⃗1; ξ⃗2; μAΔÞϕ̂Δðξ⃗4; ξ⃗5; μBΔÞ

��� X
ið∈AÞ;jð∈BÞ

POSFC
ij ½ϕ̂Δðξ⃗1; ξ⃗2; μAΔÞϕ̂Δðξ⃗4; ξ⃗5; μBΔÞηΔΔðr⃗Þ�




−
	
ϕ̂Δðξ⃗1; ξ⃗2; μAΔÞϕ̂Δðξ⃗4; ξ⃗5; μBΔÞ

��� X
ið∈AÞ;jð∈BÞ

POSFC
ij ½ϕ̂C8

ðξ⃗1; ξ⃗2; μAC8
Þϕ̂C8

ðξ⃗4; ξ⃗5; μBC8
ÞηC8C8

ðr⃗Þ�



This effective relative wave function consists of three terms. The first term is the original relative wave function in the ΔΔ
component obtained by the dynamical calculation. The second one describes the effect of antisymmetrization (or
exchanges) in the ΔΔ component. The third one denotes the contribution of the antisymmetrization (or exchange) effect
from the C8C8 component. Clearly, this effective relative wave function includes almost all the anti-symmetrization effect of
the ΔΔ component in Eq. (1). Similarly, we can get the effective relative wave function for the C8C8 component as

χC8C8
ðr⃗Þ ¼ hϕC8

ðξ⃗1; ξ⃗2; μAC8
ÞϕC8

ðξ⃗4; ξ⃗5; μBC8
ÞjΨ6qi

¼ ηC8C8
ðr⃗Þ −

	
ϕ̂C8

ðξ⃗1; ξ⃗2; μAC8
Þϕ̂C8

ðξ⃗4; ξ⃗5; μBC8
Þ
��� X
ið∈AÞ;jð∈BÞ

POSFC
ij ½ϕ̂C8

ðξ⃗1; ξ⃗2; μAC8
Þϕ̂C8

ðξ⃗4; ξ⃗5; μBC8
ÞηC8C8

ðr⃗Þ�



−
	
ϕ̂C8

ðξ⃗1; ξ⃗2; μAC8
Þϕ̂C8

ðξ⃗4; ξ⃗5; μBC8
Þ
��� X
ið∈AÞ;jð∈BÞ

POSFC
ij ½ϕ̂Δðξ⃗1; ξ⃗2; μAΔÞϕ̂Δðξ⃗4; ξ⃗5; μBΔÞηΔΔðr⃗Þ�




Due to the orthogonality of ½ϕ̂Δðξ⃗1; ξ⃗2; μAΔÞϕ̂Δðξ⃗4; ξ⃗5; μBΔÞ�
and ½ϕ̂C8

ðξ⃗1; ξ⃗2; μAC8
Þϕ̂C8

ðξ⃗4; ξ⃗5; μBC8
Þ�, the two components

in Eq. (A7) are orthogonal to each other. These two
effective relative wave functions are also called channel
wave function in nuclear physics and hadronization in
hadron physics [53–55].
Finally, for easily carrying out analytic derivation

in later calculations, the effective relative wave functions

χΔΔðC8C8Þ can also be expended by a set of Gaussian
functions

χΔΔðC8C8ÞðrÞ¼
X4
m¼1

cΔΔðC8C8Þ
m ffiffiffiffiffiffi

4π
p exp

�
−

r2

2ðbΔΔðC8C8Þ
m Þ2

�
; ðA8Þ

where cΔΔðC8C8Þ
m and bΔΔðC8C8Þ

m can be determined in the
curve fitting process.
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