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We revisit the evaluations for the spacelike and timelike ρπ transition form factors FρπðQ2Þ andGρπðQ2Þ
with the inclusion of the next-to-leading order (NLO) QCD contributions in the framework of the kT-
factorization theorem. The infrared divergence is regularized by the transversal momentum carried by
external valence quarks, and ultimately absorbed into the meson wave functions. In the region of
Q2 ≤ 2 GeV2, where the perturbative QCD factorization approach is applicable, the NLO contribution can
bring no larger than 35% enhancement to the spacelike form factor FρπðQ2Þ. For the timelike form factor
derived under the kinematic exchanging symmetry, this contribution is also under control when the
momentum transfer squared is large enough. We also prolong our prediction into the small Q2 region by
taking the lattice QCD results into account, and subsequently obtain the coupling gρπγ ¼ Gρπð0Þ ¼ 0.596.

DOI: 10.1103/PhysRevD.97.113002

I. INTRODUCTION

The rho-pion transition form factor carries the informa-
tion of momentum redistribution between all the constitu-
ents in initial and final states, when a photon is hitting on
one constituent and the bound state does not fall apart [1].
This physical quantity, in principle, is evoluted in the whole
momentum transfer squared extent, but actually, from the
traditional QCD based approaches, we can only calculate it
in the intermediate and large energy regions due to the color
confinement [2–5], while in the small energy scope, it can
be investigated only in lattice QCD [6–9] and measured in
experiments [10].
The perturbative QCD (PQCD) approach was initially

proposed to calculate pion electromagnetic form factor [11]
with the well done resummation technique eliminating end-
point divergence [12], And recently, this work has stepped
forward to next-to-leading-order (NLO) QCD corrections
[13,14]. The result turns out that the convergency of

perturbative expansion is very good in the corresponding
energy region. The basic idea is to keep the transversal
momentum of external valence quarks in the denominates
of internal propagates, and drop the transversal momentum
emerging in the numerator, because these terms bring the
gauge dependence, which should be compensated with the
soft gluon correction (three-parton distribution amplitude
contribution) [15] due to the gauge invariant matrix element
at subleading power correction [16], the infrared regulators
obtained in this way are single logs of transversal momen-
tum squared and are absorbed completely into the defi-
nition of nonperturbative meson wave function.
Factorization of the similar exclusive process, called

rho-pion transition, is also derived both in the light-cone
collinear approach [17] and in the PQCD approach [18] up
to subleading twist. Following the leading-order calculation
of spacelike form factor [5], we focus on the NLO
correction in this paper, and use the kinematic exchanging
symmetry between positive and negative energy axes to
study the timelike form factor. By taking into account the
lattice result in the small energy region, where PQCD is
invalid, we interpolate the form factor in the whole energy
interval and try to determine the rho-pion coupling gρπγ . We
note here that only the vector current Jμ;jλj¼1 accompanied
by the transversal polarized rho meson gives nonzero
contribution to rho-pion transition; the residual γ5 existing
in the hadron matrix element makes it very different from
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the pion form factor, as the spacelike and timelike rho-pion
matrix element have the same expression in terms of
corresponding form factors.
This paper is organized as follows. In the following

section we briefly summarize the LO prediction of the
rho-pi form factor from the PQCD approach. In Sec. III, the
NLO correction to the form factor is calculated, along with
the discussion of infrared divergence. Numerics is per-
formed in Sec. IV; we parametrize the rho-pion form factor
in the full spacelike energy region with the lattice result at
small energy points. Section V contains the conclusion.

II. RHO-PION FORM FACTOR
AT LEADING ORDER

Distinguishing by the momentum transfer carried by
vector current, timelike and spacelike rho-pion transitions
at LO are plotted in Fig. 1. There are three other diagrams
for each type of form factor, with the virtual photon current
located on the other three quark/antiquark lines. We
definitely take M1 as ρþ and ρ− for Figs. 1(a) and 1(b),
respectively; and M2 is π− for both diagrams, M1 carries
the “positive” momentum p1 ¼ Qffiffi

2
p ð1; γ2ρ; 0Þ, while M2

carries the “negative” momentum p2 ¼ Qffiffi
2

p ðγ2π; 1; 0Þ along
the light cone, with the dimensionless γ2ρ;π ≡M2

ρ;π=Q2. The
antiquark d̄ in initial ρ− and final π− carries momentum
k1 ¼ ðx1pþ

1 ; 0;k1TÞ and k2 ¼ ð0; x2p−
2 ;k2TÞ, respectively,

while in the final ρþ the momentum fraction x1 is carried by
quark u, and kT represents the transversal momentum. In
this convention, momentum transfer squared in timelike and
spacelike transition isQ2¼ðp1þp2Þ2 and q2¼ðp1−p2Þ2,
respectively, and Q2 ¼ −q2 in the large momentum limit.
The related meson wave functions are written as

h0jūð0Þjdðz1Þljρ−ðp1; ϵTÞi ¼
1ffiffiffiffiffiffiffiffiffi
2NC

p
Z

1

0

dx1eix1p1z1f=p1=ϵTϕT
ρ ðx1Þ þmρ=ϵTϕv

ρðx1Þþmρiϵμνρσγμγ5ϵνTn
ρvσϕa

ρðx1Þglj; ð1Þ

hπ−ðp2Þjd̄ðz2Þjuð0Þlj0i ¼
iffiffiffiffiffiffiffiffiffi
2NC

p
Z

1

0

dx2eix2p2z2γ5f=p2ϕπðx2Þ þmπ
0ϕ

P
π ðx2Þþmπ

0ð=v=n − 1ÞϕT
π ðx2Þglj; ð2Þ

hρþðp1; ϵTÞjūðz1Þjdð0Þlj0i ¼
1ffiffiffiffiffiffiffiffiffi
2NC

p
Z

1

0

dx1eix1p1z1f=ϵT=p1ϕ
T
ρ ðx1Þ þmρ=ϵTϕv

ρðx1Þþmρiϵμνρσγ5γμϵνTn
ρvσϕa

ρðx1Þglj; ð3Þ

where ϕπ and ϕT
ρ denote the twist-2 distribution amplitudes (DAs), ϕP;T

π and ϕv;a
ρ are twist-3 DAs, dimensionless vectors

n ¼ ð1; 0; 0TÞ and v ¼ ð0; 1; 0TÞ, and Nc is the number of colors. The rho-pion transition matrix element is then formulated
in terms of form factor associated with the antisymmetry tensor,

hπ−ðp2ÞjJμ;jλj¼1ðp1 − p2Þjρ−ðp1; ϵTÞi ¼ ieF ρπðQ2ÞϵμνρσϵνTnρvσpþ
1 p

−
2 ; ð4Þ

hρþðp1; ϵÞπ−ðp2ÞjJμ;jλj¼1ðp1 þ p2Þj0i ¼ ieGρπðQ2ÞϵμνρσϵνTvρnσpþ
1 p

−
2 ; ð5Þ

where Jμ ¼ 2
3
eūγμu − 1

3
ed̄γμd is the electromagnetic current.

We derive the spacelike rho-pion transition form factor up to subleading twist in three terms corresponding to different
Dirac structures of initial and final meson states,

FLO
ρπ ðQ2Þ ¼ 64π

9
αsðμfÞ

Z
1

0

dx1dx2

Z
∞

0

b1db1b2db2 exp½−Sρπðxi; bi; Q; μÞ�

× fmρðϕv
ρðx1Þ − ϕa

ρðx1ÞÞϕA
π ðx2Þhðx2; x1; b2; b1Þ

þ x1mρðϕv
ρðx1Þ − ϕa

ρðx1ÞÞϕA
π ðx2Þhðx1; x2; b1; b2Þ

þ 2mπ
0ϕ

T
ρ ðx1ÞϕP

π ðx2Þhðx1; x2; b1; b2ÞgStðx1ÞStðx2Þ; ð6Þ

in which, due to the chiral enhancement and end-point effect, the third term with twist-2 rho DAs and twist-3 pion DAs
gives the dominant contribution, showing ≥ 90%, which is why in the following we concentrate only on this term for the
NLO gluon radiative correction. StðxÞ is the threshold resummation function parametrized in the simple power-function

(a) (b)

FIG. 1. Feynman diagrams for timelike (a) and spacelike (b)
rho-pion transition at leading order (LO).
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formula [19–22]; Sρπ is the kT Sudakov factor for the transversal momentum [12,23,24]. The hard function hðx1; x2; b1; b2Þ
is obtained from the Fourier transfer of propagators on transversal components.

The timelike rho-pion form factor GðLOÞ
ρπ ðQ2Þ can be obtained in a similar way by substituting x1 ↔ −x1, which

subsequently leads to the replacement hðx1; x2; b1; b2Þ → h0ðx1; x2; b1; b2Þ.

hðx1; x2; b1; b2Þ ¼ K0ð
ffiffiffiffiffiffiffiffiffi
x1x2

p
Qb2Þ½Θðb1 − b2ÞI0ð

ffiffiffiffiffi
x1

p
Qb2ÞK0ð

ffiffiffiffiffi
x1

p
Qb1Þ þ b1 ↔ b2�;

h0ðx1; x2; b1; b2Þ ¼ K0ði
ffiffiffiffiffiffiffiffiffi
x1x2

p
Qb2Þ½Θðb1 − b2ÞI0ði

ffiffiffiffiffi
x1

p
Qb2ÞK0ði

ffiffiffiffiffi
x1

p
Qb1Þ þ b1 ↔ b2�: ð7Þ

We emphasize the exchanging symmetry of the internal
propagators between the spacelike and timelike one [5],
which is the basic argument we used to derive the NLO
timelike rho-pion form factor.

III. NEXT-TO-LEADING ORDER CORRECTION
TO THE RHO-PION FORM FACTOR

In this section we consider the NLO gluon radiative
correction to the rho-pion transition form factor; we first
calculate the correction to the spacelike form factor in the
framework of kT dependent factorization, and use the
kinematic exchanging symmetry to derive the NLO

timelike form factor. Considering the Sudakov effect on
the q̄q bound states, here being rho and pion mesons, our
calculation is based on the following hierarchy [13,14]:

Q2 ≫ x1Q2 ∼ x2Q2 ≫ x1x2Q2 ≫ k21T ∼ k22T: ð8Þ

A. Spacelike rho-pion form factor at NLO

The NLO hard kernel in the kT-factorization theorem is
defined by taking the difference between full amplitude and
effective amplitude, where the wave functions in the latter
one absorb all infrared (IR) divergence at a certain order of
strong coupling,

Hð1Þðx1; k1T; x2; k2T; Q2Þ ¼ Gð1Þðx1; k1T; x2; k2T; Q2Þ

−
Z

dx01d
2k01TΦ

ð1Þ
I ðx1; k1T ; x01; k01TÞHð0Þðx01; k01T; x2; k2T; Q2Þ

−
Z

dx02d
2k02TH

ð0Þðx1; k1T; x02; k02T; Q2ÞΦð1Þ
F ðx02; k02T ; x2; k2TÞ: ð9Þ

Φð1Þ
I ,Φð1Þ

F presents theOðαsÞ initial and final wave function
with the integrated loop momentum flowing in, respec-
tively. When the loop moment does not flow in, Hð0Þ is
exactly the LO hard kernel in our interesting

Hð0Þðx1; k1T; x2; k2T;Q2Þ ¼ 64παsðμÞ
9

2mπ
0ϕ

T
ρ ðx1ÞϕP

π ðx2Þ
ðk1 − k2Þ2ðp2 − k1Þ2

:

ð10Þ
In the case of the loop momentum flowing in, the
momentum constituted in Hð0Þ should redistribute, which
leads to the modified momentum fraction δðx01 − x1 þ
lþ=pþ

1 Þδðk01T − k1T þ lTÞ and δðx02 − x2 þ l−=p−
2 Þ×

δðk02T − k2T þ lTÞ.

1. Full amplitudes at NLO

The full amplitudes at NLO, according to the degree of
complexity, include the self-correction, vertex correction,
and box and pentagon correction; or in other words, the
calculation corresponds to the two-point, three-point, four-
point integral, respectively. We define the dimensionless
ratios

δ1 ¼
k21T
Q2

; δ2 ¼
k22T
Q2

; δ12 ¼
−ðk1 − k2Þ2

Q2
: ð11Þ

In this way, the soft and collinear divergences are both
regulated by ln δi, and their overlap singularity is regulated
by double log ln2 δi. The ultraviolet (UV) poles, which are
not the focal point in this paper, are processed in dimen-
sional regulation (regulated by 1=ε) and redefined in the
MS scheme.
The simplest correction includes the quark and gluon

self-energy correction, as shown in Fig. 2, whose ampli-
tudes are reducible since the integral momentum does not
pollute the hard kernel.

Gð1Þ
2aþ2bþ2cþ2d

¼ −
αsCF

4π

�
2

ε
þ ln

4πμ2

δ2Q2eγE
þ ln

4πμ2

δ1Q2eγE
þ 4

�
Hð0Þ;

ð12Þ

Gð1Þ
2e ¼ −

αsCF

4π

�
1

ε
þ ln

4πμ2

x1Q2eγE
þ 2

�
Hð0Þ; ð13Þ
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Gð1Þ
2fþ2gþ2hþ2i ¼

αsCF

4π

�
5

3
Nc −

2

3
Nf

�

×

�
1

ε
þ ln

4πμ2

δ12Q2eγE
þ 2

�
Hð0Þ; ð14Þ

where μ is the renormalization scale, γE is the Euler
constant, and Nf is the number of quark flavors.
Calculating the vertex diagrams depicted in Fig. 3 results

in the following results:

Gð1Þ
3a ¼ αsCF

4π

�
1

ε
þ ln

4πμ2

Q2eγE
− 2 ln δ1 ln x1 − 2 ln δ1

− 2 ln x1 −
π2

3
þ 3

2

�
Hð0Þ; ð15Þ

Gð1Þ
3b ¼ −

αs
8πNc

�
1

ε
þ ln

4πμ2

x1Q2eγE
þ 2

�
Hð0Þ; ð16Þ

Gð1Þ
3c ¼ −

αs
8πNc

�
1

ε
þ ln

4πμ2

δ12Q2eγE
− ln

δ12
δ1

ln
δ12
δ2

þ ln
δ212
δ1δ2

þ 3

2
−
π2

3

�
Hð0Þ; ð17Þ

Gð1Þ
3d ¼ αsNc

8π

�
3

ε
þ 3 ln

4πμ2

δ12Q2eγE
þ ln

δ12
δ2

þ 2 ln
δ12
δ1

þ 11

2

�
Hð0Þ; ð18Þ

Gð1Þ
3e ¼ αsNc

8π

�
3

ε
þ 3 ln

4πμ2

x1Q2eγE
þ ln

�
x1
δ2

��
1 − ln

x1
δ12

�

þ 1

2
ln

x1
δ12

−
2

3
π2 þ 11

2

�
Hð0Þ: ð19Þ

We give a discussion about Gð1Þ
3b here. Contrasting to the

amplitudes of other diagrams, which can be understood by
the general IR analysis, the calculation of Fig. 3(b) does
not generate IR divergence. To explain this “anomaly,”
we should go back to the perturbative QCD factorization
[18]; this IR piece is kinematic forbidden due to the initial
and final spin structure we are interested in. Because the
box and pentagon correction is UV safe, we sum up all the
UV terms to see the coefficient αs=4πð11 − 2Nf=3Þ, which
agrees with the universality of the wave function in
Refs. [13,14].

(a) (b) (c)

(d) (e)

FIG. 3. Vertex corrections to Fig. 1(b).

(a) (b) (c)

(e)(d) (f)

(g) (h) (i)

FIG. 2. Self-energy corrections to Fig. 1(b).
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The corrections from the box and pentagon diagrams in
Fig. 4 are arranged as

Gð1Þ
4b ¼ αs

8πNc

�
ln δ1 ln δ2 − ln δ1 ln x1 − ln x1ð1 − ln x1Þ

þ ln δ2 þ
π2

6

�
Hð0Þ; ð20Þ

Gð1Þ
4c ¼ 0; ð21Þ

Gð1Þ
4d ¼ −

αs
8πNc

�
ln
δ12
δ1

�
ln
x1
δ2

þ 1

�
þ π2

6

�
Hð0Þ; ð22Þ

Gð1Þ
4f ¼ −

αs
8πNc

�
ln

δ12
x1δ1

ln
δ12
δ2

þ π2

4
−
1

2

�
Hð0Þ: ð23Þ

We do not write down the results of reducible Figs. 4(a) and
4(e) since they cancel with their partner effective diagrams
exactly. Figure 4(c) gives collinear logarithm ln δ1 at first
sight, but this IR piece is power suppressed by Λ2

QCD=Q
2

[14]. We do not write down the adjoint correction to
another LO kernel, obtained with replacing x1 → x2, k1T →
k2T from Hð0Þ, in Eq. (23) for Fig. 4(f). We found that all
double logs in Figs. 3(c) and 4(b), 4(d), and 4(f) cancel each
other due to the soft dynamics, rather different from the
cases for the collinear light-cone wave functions.
As a brief sum-up here, we provide the final results for

the NLO calculation of the full diagrams by adding together
all the self-energy, vertex, box, and pentagon diagrams, to
show explicitly the elimination of the infrared (soft)
divergences at quark level,

Gð1Þ ¼ αsCF

8π

�
21

2

�
1

ϵ
þ ln

4πμ2

Q2eγE

�
− 4 ln x1 ln δ1 − 8 ln δ1

− 2 ln x2 ln δ2 − 4 ln δ2 þ
9

4
ln x1 ln x2 þ

1

4
ln2x1

−
43

8
ln x1 −

11

8
ln δ12 þ

139

8
−
5

3
π2
�
Hð0Þ: ð24Þ

The residual single logs represented by the collinear
divergence, as we see, are absorbed into the wave function
absolutely.

2. Effective diagrams at NLO

In this section, we present the calculation of effective
diagrams in terms of the convolution integration between
NLO initial and final meson wave functions and the LO
hard kernel. To reproduce the collinear divergence in full
amplitude, we focus on the hadronic matrix elements of the
wave function accordingly, denoting the leading transversal
Fock states of the ρ meson and subleading valence Fock
states with the pseudoscalar current of the π meson.

ΦT
ρ ðx1; k1T ; x01; k01TÞ ¼

Z
dy−

2π

d2yT
ð2πÞ2 e

−ix0
1
pþ
1
y−þik0

1T·yT

· h0jq̄ðyÞγT=vW†
yðn1ÞIn1;y;0W0ðn1Þ

× qð0Þjūðp1 − k1Þdðk1Þi; ð25Þ

ΦT
π ðx02; k02T ; x2; k2TÞ ¼

Z
dzþ

2π

d2zT
ð2πÞ2 e

−ix0
2
p−
2
zþþik0

2T·zT

· h0jq̄ðyÞγ5W†
zðn2ÞIn2;z;0W0ðn2Þ

× qð0Þjūðp2 − k2Þdðk2Þi; ð26Þ
where y ¼ ð0; y−; yTÞ and z ¼ ðzþ; 0; zTÞ are light-cone
coordinates of the antiquark field. Wilson lines are defined
with a little bit straying from the light cone, n21, n

2
2 ≠ 0,

Wyðn1Þ ¼ P exp
�
−igs

Z
∞

0

dλn · Aðyþ λn1Þ
�
; ð27Þ

Wzðn2Þ ¼ P exp

�
−igs

Z
∞

0

dλv · Aðzþ λn2Þ
�
; ð28Þ

in which P is the path-ordering operator and their nonzero
order terms redistribute the momentum between the meson
institutes. Wilson lines at two different points are connected

(a) (b) (c)

(e)(d) (f)

FIG. 4. Box and pentagon corrections to Fig. 1(b).
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by a vertical link at infinity [25]. In this way, we can evade
the light cone singularity (lkn=v) by the scalar regulators
ξ21 ≡ 4ðn1 · p1Þ2=jn21j and ξ22 ≡ 4ðn2 · p2Þ2=jn22j. This rap-
idity singularity had been investigated by the joint resum-
mation [26] and the result shows that the scheme
dependence is small, so in this paper we fix ξ21 ¼ ξ22 ¼
Q2 to minimize the scheme dependence.1

We first consider the second term in the right-hand side
(rhs) of Eq. (9), where the NLO wave function of the initial
state meson can be obtained from Eq. (25) with the first-
order expansion of Wilson line in Eq. (27). Effective
Feynman diagrams of the NLO wave function ΦT

ρ with
the eikonal propagator indicated in double lines are
depicted in Fig. 5, and we calculate the convoluted integral

Φð1Þ
ρ ⊗ Hð0Þ ≡

Z
dx01d

2k0
1TΦ

T;ð1Þ
ρ ðx1;k1T ; x01;k

0
1TÞHð0Þðx01;k0

1T ; x2;k2TÞ; ð29Þ

and one by one,

Φð1Þ
ρ;a ⊗ Hð0Þ ¼ Φð1Þ

ρ;b ⊗ Hð0Þ ¼ −
αsCF

8π

�
1

ε
þ ln

4πμ2f
δ1Q2eγE

þ 2

�
Hð0Þ; ð30Þ

Φð1Þ
ρ;c ⊗ Hð0Þ ¼ 0; ð31Þ

Φð1Þ
ρ;d ⊗ Hð0Þ ¼ αsCF

4π

�
1

ε
þ ln

4πμ2f
k21Te

γE
− ln2

ξ21
k21T

þ ln
ξ21
k21T

þ 2 −
π2

3

�
Hð0Þ; ð32Þ

Φð1Þ
ρ;e ⊗ Hð0Þ ¼ αsCF

4π

�
ln2

x1ξ21
k21T

þ 2π2

3

�
Hð0Þ; ð33Þ

Φð1Þ
ρ;f ⊗ Hð0Þ ¼ αsCF

4π

�
1

ε
þ ln

4πμ2f
k21Te

γE
− ln2

x21ξ
2
1

k21T
þ ln

x21ξ
2
1

k21T
þ 2 −

π2

3

�
Hð0Þ; ð34Þ

Φð1Þ
ρ;g ⊗ Hð0Þ ¼ αsCF

4π

�
ln2

x21ξ
2
1

k21T
−
π2

3

�
Hð0Þ; ð35Þ

Φð1Þ
ρ;h ⊗ Hð0Þ ¼ αsCF

2π

�
1

ε
þ ln

4πμ2f
δ12Q2eγE

�
Hð0Þ; ð36Þ

with the factorization scale μf. We can also see that the double log ln2 kT disappears ultimately due to the same reason as in
the full amplitudes. We naively consider the reducible Fig. 5(c) as 0 because it also reproduces the result of quark diagram
Fig. 4(e) exactly. Their summation gives

(a) (b) (c) (d) (e)

(f) (g) (h) ( j)

(a) (b) (c) (d) (e)

(f) (g) (i)

FIG. 5. The effective diagrams for the initial ρ meson wave function.

1To eliminate the pinched singularity in the self-energy correction of the nonlightlike Wilson line, a nondipolar gauge link for the
transverse-momentum-dependent pion wave function is suggested [27,28], which is much simpler than the long dipolar wilson lines
with a complicated soft subtraction [29]. But unfortunately, the next-to-leading order pion wave function presented there is only at
leading twist, while we are interest here in the wave function at subleading twist. So in this work we do not deal with the pinched
singularity problem and only concentrate on the NLO effect with the wave function in Eqs. (25) and (26).
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X
i¼a;…;h

Φð1Þ
ρ;i ⊗ Hð0Þ ¼ αsCF

4π

�
3

ε
þ 3 ln

4πμ2f
ξ1Q2eγE

þ ð2 ln x1 þ 4Þ ln ξ21
δ1Q2

þ 2 ln
ξ21

δ12Q2
þ ln x1ðln x1 þ 2Þ þ 2 −

π2

3

�
Hð0Þ: ð37Þ

We also calculate the third term in the rhs of Eq. (9), with the wave function of the final state meson being Eq. (26).

Hð0Þ ⊗ Φð1Þ
π ¼

Z
dx02d

2k0
2TH

ð0Þðx01;k0
1T ; x2;k2TÞΦP;ð1Þ

π ðx2;k2T ; x02;k
0
2TÞ: ð38Þ

The effective Feynman diagrams for the NLO wave function of final state are similar to those shown in Fig. 5; we do not
show the details of them for conciseness, and only show the summed result

X
i¼a;…;h

Hð0Þ ⊗ Φð1Þ
π;i ¼

αsCF

8π

�
2

ε
þ 2 ln

4πμ2f
ξ2Q2eγE

þ ð2 ln x2 þ 4Þ ln ξ22
δ2Q2

þ 2 ln
ξ22

δ12Q2
þ ln x2ðln x2 þ 2Þ − π2

3

�
Hð0Þ: ð39Þ

The results of irreducible effective amplitudes in Eq. (39) are half of that in Eq. (36) due to the different spin structures in
wave functions, which lead to the different UV behavior and the half collinear divergence.

3. NLO hard correction

Before extracting the NLO form factors, we first confirm the IR cancellation between the quark diagrams and the
effective diagrams. Taking into account the jet function effect, which emerges when the internal quark is on shell in the
small x1 region [30],

Jð1ÞHð0Þ ¼ −
1

2

αsðμfÞCF

4π

�
ln2x1 þ ln x1 þ

π2

3

�
Hð0Þ; ð40Þ

we obtain the NLO hard kernel in the MS scheme with Eq. (9),

Hð1Þðμ; μf; Q2Þ → Hð1Þ − Jð1ÞHð0Þ ≡ F ð1Þ
ρπ ðμ; μf; Q2ÞHð0Þ

¼ αsðμfÞCF

8π

�
21

2
ln

μ2

Q2
− 8 ln

μ2f
Q2

þ 9

4
ln x1 ln x2 −

3

4
ln2x1 − ln2x2

−
67

8
ln x1 − 2 ln x2 þ

37

8
ln δ12 þ

107

8
−
π2

3

�
Hð0Þ; ð41Þ

where the kT independent function F ð1Þ
ρπ ðQ2Þ is the NLO correction to the spacelike rho-pion form factor.

B. Derivation of the timelike rho-pion form factor at NLO

To obtain the NLO timelike rho-pion form factor, we recall the exchanging symmetry −x1 ↔ x1 between the spacelike
and timelike form factor in the PQCD approach as we have shown at LO. We do not do the complicated NLO calculations
again; what we suggest is to take the NLO result of the spacelike form factor obtained in the above subsection, and then
make an analytic continuation to the timelike region [31,32]. We use the following continuation prescriptions,

lnQ2 → ln ð−Q2 − iϵÞ ¼ lnQ2 − iπ; ð42Þ

ln x1 ¼ ln
−x1Q2 þ k21T þ iϵ

Q2 þ iϵ
¼ ln

−x1Q2 þ k21T þ iϵ
Q2

− iπ ≡ ln x01 − iπ; ð43Þ
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ln δ12 ¼ ln
−x1x2Q2 þ jk1T þ k2T j2 þ iϵ

Q2 þ iϵ
¼ ln

−x1x2Q2 þ jk1T þ k2T j2 þ iϵ
Q2

− iπ

≡ ln δ012 − iπ; ð44Þ

and take the Fourier transformation of the transversal momentum appearing above to its conjugate coordinate space. In
order to be consistent in form with those formulas at LO, the NLO correlation function to the timelike rho-pion form factor
can be written as

Gð1Þ
ρπ ðμ; μf; Q2; biÞ ¼

αsðμfÞCF

8π

��
21

2
ln

μ2

Q2
− 8 ln

μ2f
Q2

þ 9

4

�
1

2
ln

4x1
Q2b21

− γE

�
ln x2

−
3

4

�
1

2
ln

4x1
Q2b21

− γE

�
2

−
67

8

�
1

2
ln

4x1
Q2b21

− γE

�

þ 37

8

�
1

2
ln
4x1x2
Q2b21

− γE

�
− ln2x2 − 2 ln x2 þ

65π2

48
þ 107

8

�

þiπ

�
9

4

�
1

2
ln

4x1
Q2b21

− γE

�
−
27

8
ln x2 þ

25

8

��
: ð45Þ

IV. NUMERICAL ANALYSIS

A. PQCD prediction

We perform the numerical analysis in this section; the rho-pion transition form factor up to NLO is derived as

FρπðQ2Þ ¼ 64π

9
αsðμfÞ

Z
1

0

dx1dx2

Z
∞

0

b1db1b2db2 exp½−Sρπðxi; bi; Q; μÞ�

× fmρðϕv
ρðx1Þ − ϕa

ρðx1ÞÞϕA
π ðx2Þhðx2; x1; b2; b1Þ

þx1mρðϕv
ρðx1Þ − ϕa

ρðx1ÞÞϕA
π ðx2Þhðx1; x2; b1; b2Þ

þ2mπ
0ϕ

T
ρ ðx1ÞϕP

π ðx2Þ½1þ F ð1Þ
ρπ ðμ; μf; Q2Þ�hðx1; x2; b1; b2ÞgStðx1ÞStðx2Þ; ð46Þ

GρπðQ2Þ ¼ 64π

9
αsðμfÞ

Z
1

0

dx1dx2

Z
∞

0

b1db1b2db2 exp½−Sρπðxi; bi; Q; μÞ�

× fmρðϕv
ρðx1Þ − ϕa

ρðx1ÞÞϕA
π ðx2Þh0ðx2; x1; b2; b1Þ

× −x1mρðϕv
ρðx1Þ − ϕa

ρðx1ÞÞϕA
π ðx2Þh0ðx1; x2; b1; b2Þ

þ2mπ
0ϕ

T
ρ ðx1ÞϕP

π ðx2Þ½1þ Gð1Þ
ρπ ðμ; μf;Q2; biÞ�h0ðx1; x2; b1; b2ÞgStðx1ÞStðx2Þ; ð47Þ

in which the light-cone distribution amplitudes are taken up to n ¼ 2 and n ¼ 4 in the Gegenbauer expansion of the rho and
pion meson, respectively,

ϕT
ρ ðxÞ ¼

fTρffiffiffiffiffiffiffiffiffi
2NC

p xð1 − xÞ½1þ a⊥2;ρC
3=2
2 ðtÞ�; ð48Þ

ϕv
ρðxÞ ¼

fρ
2

ffiffiffiffiffiffiffiffiffi
2NC

p
�
3

4
ð1þ t2Þ þ

�
3

7
ak2;ρ þ 5ζA3

�
ð3t2 − 1Þ

�
; ð49Þ

ϕa
ρðxÞ ¼

3fρ
2

ffiffiffiffiffiffiffiffiffi
2NC

p ð1 − 2xÞ
�
1þ 4

�
1

4
ak2;ρ þ

5

3
ζA3

�
1 −

3

16
ωA
1;0

�
þ 35

4
ζV3

�
ð10x2 − 10xþ 1Þ

�
; ð50Þ

ϕA
π ðxÞ ¼

3fπffiffiffiffiffiffiffiffiffi
2NC

p xð1 − xÞ½1þ aπ2C
3=2
2 ðtÞ þ aπ4C

1=2
4 ðtÞ�; ð51Þ
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ϕP
π ðxÞ ¼

fπ
2

ffiffiffiffiffiffiffiffiffi
2NC

p
�
1þ

�
30η3 −

5

2
ρ2π

�
C1=2
2 ðtÞ − 3

�
η3ω3 þ

9

20
ρ2πð1þ 6aπ2Þ

�
C1=2
4 ðtÞ

�
: ð52Þ

To do the numerics, we first use the asymptotic DAs with
only the lowest terms; we also suggest using another set of
DAs to check the effects of high order Gegenbauer moments.

fTρ ¼ 0.160 GeV, fρ ¼ 0.216 GeV, a⊥2;ρ ¼ 0.14,

ak2;ρ ¼ 0.17 [33],
ζA3 ¼ 0.032, ζV3 ¼ 0.013, ωA

0;1 ¼ −2.1 [34],
aπ2 ¼ 0.17, aπ4 ¼ 0.22 [35,36],
fπ ¼ 0.130GeV, ρπ ¼mπ=mπ

0 ¼ 0.139=1.4, η3 ¼ 0.015,
ω3 ¼ −3.0 [37].

In this work we concentrate on the evaluations for the
central values of the relevant form factors only and do not
consider the effects of the uncertainties, coming from the
errors of the above parameters at a certain scale and those
from their scale evolution, and from the choice of factori-
zation and renormalization scale, as well as some other
scheme dependence.

The PQCD predictions for the Q2 dependences of the
form factors FρπðQ2Þ and GρπðQ2Þ are depicted in Fig. 6,
where the dominant contribution terms at LO and NLO,
as well as the total results, are exhibited. When using the
asymptotic DAs as input, we find that the NLO correction is
less than 35% in the spacelike region Q2 ≥ 2 GeV2 (the
region that is PQCD applicable). The timelike form factor
is studied with the starting point Q2 ¼ 5 GeV2 since in the
intermediate rho-pion invariant mass region PQCD fails to
describe the resonant mesons [ωð782Þ, ωð1420Þ, and
ωð1650Þ],2 and the convergence of the NLO correction
to absolute value is not good before Q2 ≥ 10 GeV2 (if we
assume the convergence means ≤ 50%), while the NLO
correction retains the shape of strong phase. Including the

3rd term LO

3rd term NLO

LO NLO

3rd term LO

3rd term NLO

LO NLO

3rd term LO

3rd term NLO

LO NLO

3rd term

3rd term NLO

LO NLO

3rd term LO

3rd term NLO

LO NLO

3rd term LO

3rd term NLO

LO NLO

FIG. 6. Spacelike and timelike rho-pion transition form factors evaluated from PQCD with the asymptotic (left) and nonasymptotic
(right) rho and pion DAs.

2The ϕð1020Þ;ϕð1680Þ channel is mainly occupied by KK̄�.
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high Gegenbauer expansion terms brings a little bit of
change to the results when only the asymptotic DAs are
taken into account, which provides us an independent
opportunity to determine the moments if precision data
become available.

B. Interplaying with the lattice result

Benefiting from the lattice QCD predictions at the low
Q2 region [8], we are able to know the rho-pion form
factors at the whole region of Q2. Because of the same
reason for the broad resonance contribution in the inter-
mediate timelike energy, we are now only able to do the
global fit for the spacelike rho-pion form factor. In Fig. 7,
we show the spacelike result in the whole Q2 region
obtained by combining a fit of the PQCD predictions
and the lattice QCD evaluations. The reciprocal of the
square polynomial parametrization is adopted [2],

FρπðQ2Þ ¼ Aρπ

Q4 þQ2Bρπ þ Cρπ
; ð53Þ

with the use of the asymptotic (nonasymptotic) DAs; we
find numerically Aρπ ¼ 0.606ð0.676Þ, Bρπ ¼ 0.370ð0.457Þ,
Cρπ ¼ 1.016ð1.131Þ, and gρπγ� ¼ Fρπð0Þ ¼ Aρπ=Cρπ ¼
0.596ð0.598Þ, which, within the range of the possible
theoretical uncertainties, are consistent with currently
available data [10,38,39].3 As a byproduct, we can also
estimate the charged rho-pion radius in this way,
hr2ρπi ¼ 1.304ð1.449Þ GeV−2.

V. CONCLUSION

In this paper, the rho-pion transition form factors
FρπðQ2Þ and GρπðQ2Þ are studied with the inclusion of
the QCD corrections at NLO in the framework of the
PQCD factorization approach.
We first calculate all the quark diagrams of the spacelike

form factor as well as their descendent effective diagrams
that absorb all the residual collinear singularities, and then
take their difference to obtain the NLO hard corrections.
The spacelike form factor FρπðQ2Þ is then extended
analytically to the timelike one GρπðQ2Þ based on the
kinematic exchanging symmetry. When adopting the
asymptotic DAs of rho and pion mesons, the NLO con-
tribution provides an enhancement to the LO result by less
than 35% for the spacelike rho-pion form factor in the
region Q2 ≥ 2 GeV2, and the corresponding correction to
the timelike form factor also supports the perturbative
theory at the large Q2 region.
The recent lattice QCD results in the low Q2 region are

also used, together with the PQCD predictions, to do the
global fit for the spacelike form factor in the whole energy
extent, and we get the rho-pion coupling gρπγ� ¼ 0.596. The
combined fit is impossible now for the timelike form factor
due to the unclear intermediate resonances in the broad
medium energy region.
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3rd term LO

3rd term NLO

LO NLO

PQCD Lattice

3rd term LO

3rd term NLO

LO NLO

PQCD Lattice

FIG. 7. Combined fitting of the spacelike rho-pion form factor in PQCD and the lattice QCD. The left (right) plot shows the PQCD
result obtained with asymptotic (nonasymptotic) DAs.

3Very recently, a model independent method was proposed to
extract the coupling gρπγ� in the reaction γπ → ππ with the
forthcoming COMPASS data [40], which will be a potential
check of our calculation.
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