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We derive the kT resummation for doubly heavy-flavored Bc meson decays by including the charm quark
mass effect into the known formula for a heavy-light system. The resultant Sudakov factor is employed in the
perutrbative QCD study of the “golden channel” Bþ

c → J=ψπþ. With a reasonable model for the Bc meson
distribution amplitude, which maintains approximate on-shell conditions of both the partonic bottom and
charm quarks, it is observed that the imaginary piece of the Bc → J=ψ transition form factor appears to be
power suppressed, and the Bþ

c → J=ψπþ branching ratio is not lower than 10−3. The above improved
perturbative QCD formalism is applicable to Bc meson decays to other charmonia and charmed mesons.
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I. INTRODUCTION

A Bc meson is the ground state of the doubly heavy-
flavored b̄c system in the StandardModel [1], different from
the heavy-light one represented by a B meson and from the
heavy-heavy one represented by quarkonia J=ψ and ϒ in
many aspects. Its weak transition can occur through the
bottom quark decay with the spectator charm quark as
displayed in Fig. 1(a), the charm quark decay with the
spectator bottom quark in Fig. 1(b), and the pure weak
annihilation channel in Fig. 1(c). Hence, Bc meson decays
contain rich heavy quark dynamics in both the perturbative
and nonperturbative regimes, which is worth a thorough
exploration with high precision. It is certainly a challenge to
develop an appropriate theoretical framework for analyzing
Bc meson decays. A framework available in the literature is
the perturbative QCD (PQCD) approach, which basically
follows the conventional one for B meson decays, with the
finite charmquarkmass being included in hard decay kernels

but neglected in the kT resummation for meson distribution
amplitudes. A rigorous resummation formalism for Bc
meson decays, which involve multiple scales, is expected
to be more complicated than for B meson decays.
In this paper, we will investigate how the charm quark

mass affects the infrared structures of theBc meson and of its
decay products and derive the corresponding kT resumma-
tion in the PQCD approach. The derivation depends on the
power counting for the ratio mc=mb, mb (mc) being the
bottom (charm) quark mass. Taking the limit mb → ∞ but
keeping mc finite, we treat a Bc meson as a heavy-light
system, the decays of which can be analyzed in the conven-
tional PQCD approach toBmeson decays mentioned above.
Taking the limitmb,mc → ∞ but fixing the ratiomc=mb, we
treat a Bc meson as a heavy-heavy system, the decays of
which may be studied in a formalism for heavy quarkonium
decays. Here, we will adopt the power counting rules
proposed in Ref. [2] and regard a Bc meson as a multiscale
system, which respects the hierarchy mb ≫ mc ≫ ΛQCD,
ΛQCD being the QCD scale. An intermediate impact
of this power counting is that the large infrared logarithms
lnðmb=mcÞ, in addition to the ordinary ones lnðmb=ΛQCDÞ,
appear in the perturbative evaluation of the Bc meson
distribution amplitude and need to be resummed.
The Sudakov factor from the kT resummation with the

charm quark mass effect is then employed in the PQCD
study of the “golden channel” Bþ

c → J=ψπþ. We focus
on the bottom quark decay of a Bc meson because the
charm quark decay is believed to suffer from significant
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long-distance contributions, i.e., final-state interactions,
though perturbative results for the Bc → BðsÞX modes have
been presented in the literature [3,4]. Besides, the available
models for the Bc meson distribution amplitude vary
dramatically from a simple δ function [5,6] to a compli-
cated Gaussian type [3]. We will propose a kinematic
constraint on the Bc meson distribution amplitude, which
allows both the partonic bottom and charm quarks to be off
shell only at a power-suppressed level. It is then shown,
with a reasonable model for the Bc meson distribution
amplitude, that the imaginary piece of the Bc → J=ψ
transition form factor, supposed to be a real object [7],
is indeed power suppressed. It is also found that the Bþ

c →
J=ψπþ branching ratio is not lower than 10−3, in agreement
with those obtained in other approaches.
In Sec. II, we discuss the kinematic constraint on the

charm quark momentum distribution in a Bc meson. The
one-loop correction to the Bc meson distribution amplitude,
which generates the double logarithm αsln2ðmb=mcÞ, αs
being the strong coupling, is calculated in Sec. III. The
result hints at how the kT resummation for Bc meson decays
is modified from the known formula for Bmeson decays. In
Sec. IV, we predict the Bþ

c → J=ψπþ branching ratio in the
improved PQCD framework, including the contributions
from both factorizable and nonfactorizable emission dia-
grams. It is then stressed in the Conclusion that the
formalism developed here is ready for the extension to
Bc meson decays to other charmonia like ηc, χcJ
ðJ ¼ 0; 1; 2Þ;…, and charmed mesons.

II. KINEMATIC CONSTRAINT ON Bc MESON
DISTRIBUTION AMPLITUDE

Consider the BcðP1Þ → J=ψðP2Þ transition at the maxi-
mal recoil, where

P1 ¼
mBcffiffiffi
2

p ð1; 1; 0TÞ; P2 ¼
mBcffiffiffi
2

p ð1; r2J=ψ ; 0TÞ ð1Þ

in the light-cone coordinates label the Bc and J=ψ meson
momenta, respectively, with rJ=ψ ¼ mJ=ψ=mBc

and mBc

(mJ=ψ ) being the Bc (J=ψ) meson mass. This transition
involves multiple scales the same as in the B → D�
transition, which has been studied in Ref. [2]: mb from

the initial-state Bmeson,mc from the final-stateD� meson,
and both the B and D� bound states contain the non-
perturbative dynamics characterized by a low hadronic
scale Λ. Following the argument in Ref. [2], the scaling of
the energetic J=ψ momentum P2 ∼ ðmb;m2

c=mb; 0TÞ ∼
mcðmb=mc;mc=mb; 0TÞ hints that the components of a
collinear gluon momentum in such a multiscale system also
obeys the power counting

lμ ∼
�
mb

mc
Λ;

mc

mb
Λ;Λ

�
; ð2Þ

with a tiny invariant mass squared l2 ∼OðΛ2Þ. A valence
charm quark in the J=ψ meson, after emitting such a
collinear gluon, can acquire the virtuality of order
P2 · l ∼mcΛ. The momentum parametrizations for the
two valence charm quarks participating in the hard sub-
process should be symmetric under their exchange. Denote
the spectator charm quark momentum as k2 ¼ x2P2 and
another as P2 − k2 ¼ ð1 − x2ÞP2 with the momentum
fraction x2, and assume both of them to be off-shell at
most by OðmcΛÞ: k22−m2

c¼OðmcΛÞ and ðP2−k2Þ2−m2
c¼

OðmcΛÞ. To satisfy these two conditions simultaneously,
we choose a charm quark mass mc ≈mJ=ψ=2 ∼ 1.5 GeV
for mJ=ψ ¼ 3.097 GeV, and the momentum fraction x2 ¼
1=2� δ can deviate from its central value by δ ∼OðΛ=mcÞ.
That is, the J=ψ distribution amplitude takes a substantial
value in the above range of x2 with δ ∼ 0.3 for
Λ ∼ 0.5 GeV, due to the effect of collinear gluon emis-
sions. The model for the J=ψ meson distribution amplitude,
proposed in Ref. [8] and widely employed in the PQCD
analyses, does exhibit these features.
Next, we discuss the kinematic constraint on the shape of

the Bc meson distribution amplitude. Label the momentum
of the spectator charmquark in theBcmesonbyk1 and that of
the bottom quark byP1 − k1. The approximate on-shell-ness
of the partons, k21 ∼m2

c and ðP1 − k1Þ2 ∼m2
b, implies that the

zeroth component of k1 is of order k01 ∼mc. A Bc meson at
rest is dominated by soft dynamics, for which themomentum
of a soft gluon is characterized by the power counting [2]

lμ ∼ ðΛ;Λ;ΛÞ; ð3Þ

(a) (b) (c)

FIG. 1. Diagrams for Bc meson decays.
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with a tiny invariant mass squared l2 ∼OðΛ2Þ. The spectator
charm quark, after emitting such a soft gluon, then reaches
the virtuality of order k1 · l ∼mcΛ. Parametrize the charm
quark momentum by k1 ¼ x1P1, x1 being a momentum
fraction, and require the virtuality k21 −m2

c ¼ OðmcΛÞ.
Given the bottom quark mass mb ≈mBc

−mc ∼ 4.8 GeV
formBc

¼ 6.276 GeV,we find that theBcmesondistribution
amplitude takes a substantial value around the momentum
fraction x1 ∼mc=mb ∼ 0.3 within the width of about
Λ=mb ∼ 0.1. It can be verified, following the above dis-
cussion, that the bottom quark in the Bc meson acquires the
virtuality of ðP1 − k1Þ2 −m2

b ∼OðmbΛÞ, consistentwith the
soft gluon emission effect.
We then investigate the virtuality of the hard particles in

the kinematic regions specified for the partonic bottom and
charm quarks. First, the invariant mass of the hard gluon
emitted by the spectator quark is written as

ðk1 − k2Þ2 ≈ −
mbmc

2
þOðmbΛÞ; ð4Þ

with the insertion ofmBc
≈mb þmc andmJ=ψ ≈ 2mc up to

the first powers in mc and in Λ. The first term on the right-
hand side of Eq. (4), being OðmbmcÞ, indicates that the
hard gluon tends to be spacelike for the chosen mass scales
mb, mc, and Λ. The hard bottom quark, to which the hard
gluon attaches, remains spacelike with the virtuality

ðP1 − k2Þ2 −m2
b ≈ −

m2
b

2
: ð5Þ

The hard charm quark, to which the hard gluon attaches, is
also spacelike with the virtuality

ðP2 − k1Þ2 −m2
c ≈ −mbmc þOðmbΛÞ: ð6Þ

We conclude that, as both the partonic bottom and charm
quarks are only off-shell a bit, the imaginary piece in the
Bc → J=ψ transition form factor appears to be power
suppressed. This observation is easily understood: the
J=ψ meson mass is below the DD̄ threshold, so the Bc →
J=ψ transition hardly occurs through an intermediate state.
The Bc meson wave function with an intrinsic kT

dependence is parametrized in a Gaussian form as

ϕBc
ðx; kTÞ ¼

fBc

2
ffiffiffiffiffiffiffiffi
2Nc

p π

2β2Bc

NBc
exp

�
−

1

8β2Bc

�jkT j2 þm2
c

x

þ j − kT j2 þm2
b

1 − x

��
; ð7Þ

in which kT ð−kTÞ is the transverse momentum carried by
the charm (bottom) quark,Nc is the number of colors, βBc

is
the shape parameter, and NBc

is the normalization constant.
The Bc meson distribution amplitude is given by

ϕBc
ðx; bÞ ¼ fBc

2
ffiffiffiffiffiffiffiffi
2Nc

p NBc
xð1 − xÞ exp

�
−
ð1 − xÞm2

c þ xm2
b

8β2Bc
xð1 − xÞ

�

× exp½−2β2Bc
xð1 − xÞb2�; ð8Þ

with the impact parameter b being conjugate to kT . The
normalization constant NBc

is fixed by the relation

Z
1

0

ϕBc
ðx; b ¼ 0Þdx≡

Z
1

0

ϕBc
ðxÞdx ¼ fBc

2
ffiffiffiffiffiffiffiffi
2Nc

p ; ð9Þ

where the decay constant fBc
¼ 0.489� 0.005 GeV has

been obtained in lattice QCD by the TWQCD
Collaboration [9]. Figure 2, in which the behavior of
ϕBc

ðxÞ is plotted for the different shape parameters βBc
,

indicates that the peak of ϕBc
ðxÞ shifts toward larger x and

becomes broader with the increase of βBc
. Note that data for

Bc meson decay branching ratios are not yet available, so it
is difficult to determine βBc

unambiguously. However, the
kinematic constraint derived above hints that βBc

¼
1.0 GeV seems to be a reasonable choice. On the other
hand, the existent models [3,10] of the Bc meson distri-
bution amplitude roughly correspond to the range [0.6, 1.0]
GeV of the parameter βBc

.

III. kT RESUMMATION FOR Bc MESON DECAYS

A theoretical challenge from the Bc → J=ψ transition is
to derive the kT resummation for energetic charm quarks
with a finite mass. To proceed, we construct a transverse
momentum–dependent J=ψ meson wave function in the kT
factorization theorem [11,12] and then perform the pertur-
bative evaluation according to the wave-function definition
as a hadronic matrix element of a nonlocal operator. The
double logarithms attributed to the overlap of the collinear
and soft radiative corrections are expected to differ from
those in B meson decays into light mesons, which have
been elaborated in Ref. [13]. According to the one-loop

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

x

B
c

x

FIG. 2. Behavior of ϕBc
ðxÞ for the different shape parameters

βBc
¼ 0.8 GeV (black-solid curve), 1.0 GeV (red-dashed curve),

and 1.2 GeV (blue-dotted curve).
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analysis in Ref. [14], the only source of the double
logarithms is the correction to the quark-Wilson-line vertex
as displayed in Fig. 3(a), in which the loop momentum does
not flow into a hard subprocess. When the gluon in Fig. 3(a)
attaches to the lower piece of the Wilson lines, the loop
momentum flows through a hard subprocess. Since the
region with small parton momenta dominates in the kT
factorization, the large collinear gluon momentum induces
power suppression on the hard kernel [12], such that this
one-loop diagram does not generate the double logarithm.
The similar vertex diagram with the gluon being radiated
by the spectator charm quark either in the J=ψ meson
[Fig. 3(b)] or in the Bc meson [Fig. 3(c)] may produce the
double logarithms. Nevertheless, their effects ought to be
weaker, due to the lack of phase space for collinear gluons
from less energetic quarks.
The loop integral corresponding to Fig. 3(a) is written as

ϕð1Þ ¼ −
i
4
g2CFμ

2ϵ
f

Z
d4−2ϵl
ð2πÞ4−2ϵ

× tr

�
γ5=nþ

=̄kþ =lþmc

ðk̄þ lÞ2 −m2
c
γν=n−γ5

�
1

l2
nν

n · l
; ð10Þ

with k̄≡ P2 − k2, the eikonal vertex nν, and the eikonal
propagator 1=n · l. The dimensionless vector nwith nþ > 0
represents the direction of the Wilson lines, which is
allowed to be away from the light cone [14]. The projectors
γ5=nþ and =n−γ5, arising from the insertion of the Fierz
identity for factorizing the fermion flow, work for the
selection of the logarithm lnðmb=mcÞ up to corrections in
powers of mc=mb. A straightforward calculation leads to

ϕð1Þ ¼ αs
4π

CF

�
1

ϵ
þ ln

4πμ2f
m2

ceγE
− ln2

ζ2

k2T
þ ln2

m2
c

k2T

þ ln
ζ2

m2
c
þ 2 −

2π2

3

�
; ð11Þ

with the factorization scale μf, the Euler constant γE, and
the variable ζ2 ≡ 4ðn · k̄Þ2=n2. It is found that the infrared
logarithms in the above expression reproduce those in the
pion case [15], as mc is replaced by kT. The double
logarithms can be understood in the way that the soft
divergence is regularized by the quark virtuality kT, and the
collinear divergence is regularized by the charm quark mass
mc, giving

−ln2
ζ2

k2T
þ ln2

m2
c

k2T
¼ − ln

ζ2m2
c

k4T
ln

ζ2

m2
c
: ð12Þ

The partial cancellation between the two double logarithms
implies that the resummation effect in the case of energetic
massive quarks is smaller than in the case of light quarks [16].
The aforementioned lack of phase space for the collinear

gluons in Figs. 3(b) and 3(c) can be understood by means of
the contour integration. Take Fig. 3(b), the loop integrand of
which contains a denominator ðk2 − lÞ2 −m2

c from the
anticharm quark propagator, as an example. To get a non-
vanishing contribution from the contour integration over the
minus component l− of the loop momentum, some poles of
l− have to be located in the upper half-plane, and some have
to be located in the lower half-plane. This is possible only
when the coefficients of l− in the denominators of the
corresponding loop integrand are not of the same sign.
Hence, the plus component lþ must take a value in the range
0 < lþ < kþ2 for our gauge choice nþ > 0 as stated below
Eq. (10). In the dominant region with small parton momenta,
i.e., with small kþ2 , the phase space for lþ is then limited,
implying a weaker double logarithmic effect.
We will not attempt a complete one-loop computation

and an exact next-to-leading-logarithm resummation asso-
ciated with an energetic massive quark in the present work.
Instead, we will infer an approximate Sudakov exponent
from the implication of Eq. (11). It has been known that the
kT resummation for an energetic light quark yields the
Sudakov exponent in the b space [13,17],

sðQ; bÞ ¼
Z

Q

1=b

dμ
μ

�Z
μ

1=b

dμ̄
μ̄
Aðαsðμ̄ÞÞ þ BðαsðμÞÞ

�
; ð13Þ

at the next-to-leading-logarithm accuracy, where the uni-
versal anomalous dimension AðαsÞ given to two loops is
responsible for the collection of the double logarithms, the
factor BðαsÞ given to one loop is for the collection of single
logarithms, and Q is related to the major light-cone
component of the quark momentum through the variable
ζ. The μf-independent logarithms in Eq. (11) can be cast
into two pieces,

−
�
ln2

ζ2

k2T
− ln

ζ2

k2T

�
þ
�
ln2

m2
c

k2T
− ln

m2
c

k2T

�
; ð14Þ

(a) (b) (c)

FIG. 3. OðαsÞ effective diagrams for the J=ψ and Bc mesons wave functions, which are relevant to the Sudakov factor scðQ; bÞ.
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which are of the same form. This hints that the above
infrared logarithms may be organized into the Sudakov
exponents with the different upper bounds Q and mc;
namely, the Sudakov exponent scðQ; bÞ for an energetic
charm quark up to next-to-leading-logarithm might be
expressed as the difference

scðQ; bÞ ¼ sðQ; bÞ − sðmc; bÞ;

¼
Z

Q

mc

dμ
μ

�Z
μ

1=b

dμ̄
μ̄
Aðαsðμ̄ÞÞ þ BðαsðμÞÞ

�
: ð15Þ

This observation applies to the organization of the double
logarithms in Figs. 3(b) and 3(c).
At last, the μf-dependent logarithm lnðμ2f=m2

cÞ in
Eq. (11) means that the J=ψ (as well as Bc) meson
distribution amplitude is defined at the scale mc and that
the renormalization-group evolution for the Bc → J=ψ
transition runs from μf ¼ mc to the hard scale of the
process. We summarize the exponents of the total evolution
factors for the Bc and J=ψ meson distribution amplitudes as

SBc
¼ scðx1P−

1 ; b1Þ þ
5

3

Z
t

mc

dμ̄
μ̄
γqðαsðμ̄ÞÞ;

SJ=ψ ¼ scðx2Pþ
2 ; b2Þ þ scðð1 − x2ÞPþ

2 ; b2Þ

þ 2

Z
t

mc

dμ̄
μ̄
γqðαsðμ̄ÞÞ; ð16Þ

with the hard scale t, and the quark anomalous dimension γq¼
−αs=π, that governs the aforementioned renormalization-
group evolution. The coefficient 5=3 in the first line of
Eq. (16) differs from the coefficient 2 in the second line,
since we have employed the effective heavy quark field for
the bottom quark in the definition of the Bc meson
distribution amplitude, as exhibited by the horizontal
double line in Fig. 3(c). For the numerical analysis below,
we insert the one-loop running coupling constant αs into
Eq. (16) in order to match the expected next-to-leading-
logarithm accuracy of our resummation formula.

IV. B+
c → J=ψπ + DECAY

After the pioneering paper on Bc meson decays by
Bjorken in 1986 [18], numerous investigations in different
formalisms have been devoted to this subject, but the

predictions vary in a wide range. For example, the Bþ
c →

J=ψπþ branching ratio was predicted to be between orders
of 10−4 and 10−2 [19–23]. In particular, it takes the values
1.2 × 10−3 in the QCD factorization approach [20] and
ð1.4 ∼ 2.5Þ × 10−3 [21], 2.33þ0.63þ0.16þ0.48

−0.58−0.16−0.12 × 10−3 [22],
and 2.6þ0.6þ0.2þ0.8

−0.4−0.2−0.2 × 10−3 [23] in the conventional
PQCD approach. These results manifest the sensitivity to
the hadronic inputs in the theoretical frameworks for Bc
meson decays. However, the current data, appearing only as
the ratios of the decay rates because of experimentally
complicated background, such as

RJ=ψ
K=π ≡ BrðBc → J=ψKþÞ

BrðBc → J=ψπþÞ ; ð17Þ

cannot be used to discriminate the branching-ratio predic-
tions. The factorizable emission diagrams in Figs. 4(a) and
4(b) dominate the Bþ

c → J=ψKþ and Bþ
c → J=ψπþ modes,

so the associated uncertain Bc → J=ψ transition form
factor cancels in the ratio. This explains why the various
formalisms lead to similar RJ=ψ

K=π in agreement with the latest
measurement [24], although they give quite distinct values
for the individual branching ratios.
In this section, we calculate the Bc → J=ψ transition

form factor and the Bþ
c → J=ψπþ branching ratio in the

improved PQCD approach developed in Sec. III. The
relevant weak effective Hamiltonian Heff is written as [25]

Heff ¼
GFffiffiffi
2

p V�
cbVud½C1ðμÞO1ðμÞ þ C2ðμÞO2ðμÞ� þ H:c:;

ð18Þ

where C1;2ðμÞ are the Wilson coefficients evaluated at the
renormalization scale μ and the local four-quark operators
are

O1 ¼ d̄αγμð1 − γ5Þuβ c̄βγμð1 − γ5Þbα;
O2 ¼ d̄αγμð1 − γ5Þuα c̄βγμð1 − γ5Þbβ; ð19Þ

with the color indices α and β and the Fermi constantGF ¼
1.16639 × 10−5 GeV−2. For the Cabibbo-Kobayashi-
Maskawa matrix elements Vcb and Vud, we employ the
Wolfenstein parametrization at leading order with the

(a) (b) (c) (d)

FIG. 4. Leading-order diagrams for the Bþ
c → J=ψπþ decay in the PQCD approach.
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parameters A ¼ 0.811 and λ ¼ 0.22506 [26]. The momenta
of the Bc and J=ψ mesons have been chosen in Eq. (1),
from which the pion momentum is given by P3 ¼
mBc

=
ffiffiffi
2

p ð0; 1 − r2J=ψ ; 0TÞ, for the vanishing pion mass.
The momenta of the spectator quarks in the involved
hadrons are parametrized as

k1 ¼ ðx1Pþ
1 ; x1P

−
1 ;k1TÞ;

k2 ¼ ðx2Pþ
2 ; x2P

−
2 ;k2TÞ;

k3 ¼ ðx3Pþ
3 ; x3P

−
3 ;k3TÞ: ð20Þ

The Bc, J=ψ , and π meson distribution amplitudes have
the structures

ΦBc
ðx; bÞ≡ iffiffiffiffiffiffiffiffi

2Nc
p ðPBc

þmBc
Þγ5ϕBc

ðx; bÞ; ð21Þ

ΦπðxÞ≡ iffiffiffiffiffiffiffiffi
2Nc

p γ5½Pπϕ
A
π ðxÞ þmπ

0ϕ
P
π ðxÞ

þmπ
0ð=n=v − 1ÞϕT

π ðxÞ�; ð22Þ
ΦL

J=ψ ðxÞ≡ 1ffiffiffiffiffiffiffiffi
2Nc

p ½mJ=ψ=ϵLJ=ψϕ
L
J=ψðxÞ þ =ϵLJ=ψPJ=ψϕ

t
J=ψ ðxÞ�;

ð23Þ
with the dimensionless vectors n ¼ ð0; 1; 0TÞ and v ¼
ð1; 0; 0TÞ and the longitudinal polarization vector for the
J=ψ meson

ϵLJ=ψ ¼ 1ffiffiffi
2

p
rJ=ψ

ð1;−r2J=ψ ; 0TÞ: ð24Þ

Owing to the experimental status stated before, we adopt
the shape parameter βBc

¼ 1 GeV for the Bc meson
distribution amplitude inferred from the kinematic con-
straint. The light-cone pion distribution amplitudes ϕA

π

(twist 2) and ϕP
π and ϕT

π (twist 3) have been parametrized
as [27–29]

ϕA
π ðxÞ ¼

fπ
2

ffiffiffiffiffiffiffiffi
2Nc

p 6xð1 − xÞ½1þ aπ2C
3=2
2 ð2x − 1Þ

þ aπ4C
3=2
4 ð2x − 1Þ�; ð25Þ

ϕP
π ðxÞ¼

fπ
2

ffiffiffiffiffiffiffiffi
2Nc

p
�
1þ

�
30η3−

5

2
ρ2π

�
C1=2
2 ð2x−1Þ

−3

�
η3ω3þ

9

20
ρ2πð1þ6aπ2Þ

�
C1=2
4 ð2x−1Þ

�
; ð26Þ

ϕT
π ðxÞ ¼

fπ
2

ffiffiffiffiffiffiffiffi
2Nc

p ð1 − 2xÞ
�
1þ 6

�
5η3 −

1

2
η3ω3

−
7

20
ρ2π −

3

5
ρ2πaπ2

�
ð1 − 10xþ 10x2Þ

�
; ð27Þ

with the decay constant fπ ¼ 0.130 GeV; the Gegenbauer
moments aπ2 ¼ 0.115� 0.115 and aπ4 ¼ −0.015; the
parameters η3 ¼ 0.015 and ω3 ¼ −3 [27,28]; the mass
ratio ρπ ¼ mπ=mπ

0 , m
π
0 ¼ 1.4 GeV being the pion chiral

mass; and the Gegenbauer polynomials Cν
nðtÞ,

C1=2
2 ðtÞ ¼ 1

2
ð3t2 − 1Þ; C1=2

4 ðtÞ ¼ 1

8
ð3− 30t2 þ 35t4Þ;

C3=2
2 ðtÞ ¼ 3

2
ð5t2 − 1Þ; C3=2

4 ðtÞ ¼ 15

8
ð1− 14t2 þ 21t4Þ:

ð28Þ

The J=ψ meson distribution amplitudes ϕL
J=ψ (twist 2) and

ϕt
J=ψ (twist 3) have been derived as [8]

ϕL
J=ψ ðxÞ¼ 9.58

fJ=ψ
2

ffiffiffiffiffiffiffiffi
2Nc

p xð1−xÞ
�

xð1−xÞ
1−2.8xð1−xÞ

�
0.7
; ð29Þ

ϕt
J=ψ ðxÞ¼10.94

fJ=ψ
2

ffiffiffiffiffiffiffiffi
2Nc

p ð1−2xÞ2
�

xð1−xÞ
1−2.8xð1−xÞ

�
0.7
; ð30Þ

with the decay constant fJ=ψ ¼ 0.405� 0.014 GeV.
The Bþ

c → J=ψπþ decay amplitude is decomposed into

AðBc → J=ψπÞ ¼ V�
cbVudðfπF þMÞ: ð31Þ

The factorizable emission diagrams, i.e., Figs. 4(a) and
4(b), give the factorization formula

F ¼ 8πCFm2
Bc

Z
1

0

dx1dx2

Z
∞

0

b1db1b2db2ϕBc
ðx1; b1Þðr2J=ψ − 1Þ

× f½rJ=ψðrb þ 2x2 − 2Þϕt
J=ψðx2Þ − ð2rb þ x2 − 1ÞϕL

J=ψðx2Þ�haðx1; x2; b1; b2ÞEfðtaÞ
þ ½r2J=ψðx1 − 1Þ − rc�ϕL

J=ψ ðx2Þhbðx1; x2; b1; b2ÞEfðtbÞg; ð32Þ

where the ratios rb ¼ mb=mBc
and rc ¼ mc=mBc

and bi are the impact parameters conjugate to the transverse momenta kiT .

It is known that the above formula is related to the transition form factor ABc→J=ψ
0 ðq2 ¼ 0Þ [30–32] with q ¼ P1 − P2. As

pointed out in the Introduction, the PQCD approach is applicable to the evaluation of the nonfactorizable emission
diagrams, i.e., Figs. 4(c) and 4(d). The corresponding factorization formula is expressed as
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M ¼ −
32ffiffiffi
6

p πCFm2
Bc

Z
1

0

dx1dx2dx3

Z
∞

0

b1db1b3db3ϕBc
ðx1; b1ÞϕA

π ðx3Þðr2J=ψ − 1Þ

× f½ðr2J=ψ − 1Þðx1 þ x3 − 1ÞϕL
J=ψðx2Þ þ rJ=ψðx2 − x1Þϕt

J=ψðx2Þ�hcðx1; x2; x3; b1; b3ÞEfðtcÞ
þ ½ð2x1 − ðx2 þ x3Þ þ r2J=ψ ðx3 − x2ÞÞϕL

J=ψ ðx2Þ þ rJ=ψðx2 − x1Þϕt
J=ψ ðx2Þ�hdðx1; x2; x3; b1; b3ÞEfðtdÞg: ð33Þ

In the above expressions, the hard functions ha;b;c;d are defined by

haðx1; x2; b1; b2Þ ¼ ½θðb2 − b1ÞI0ð
ffiffiffiffiffi
βa

p
b1ÞK0ð

ffiffiffiffiffi
βa

p
b2Þ þ ðb1 ↔ b2Þ�K0ð

ffiffiffi
α

p
b1Þ; ð34Þ

hbðx1; x2; b1; b2Þ ¼ ½θðb2 − b1ÞI0ð
ffiffiffiffiffi
βb

p
b1ÞK0ð

ffiffiffiffiffi
βb

p
b2Þ þ ðb1 ↔ b2Þ�K0ð

ffiffiffi
α

p
b2Þ; ð35Þ

hc;dðx1; x2; x3; b1; b3Þ ¼ ½θðb3 − b1ÞI0ð
ffiffiffi
α

p
b1ÞK0ð

ffiffiffi
α

p
b3Þ þ ðb1 ↔ b3Þ�K0ð

ffiffiffiffiffiffiffiffi
βc;d

p
b3Þ; ð36Þ

with the factors α and βa;b;c;d and the hard scales ta;b;c;d,

α ¼ −½ðx1 − x2Þðx1 − x2r2J=ψÞ�m2
Bc
; ð37Þ

βa ¼ −½ð1 − x2Þð1 − x2r2J=ψ Þ − r2b�m2
Bc
; βb ¼ −½ð1 − x1Þðr2J=ψ − x1Þ − r2c�m2

Bc
; ð38Þ

βc ¼ −½ðx2r2J=ψ þ ð1 − x3Þð1 − r2J=ψÞ − x1Þðx2 − x1Þ�m2
Bc
; ð39Þ

βd ¼ −½ðx2r2J=ψ þ x3ð1 − r2J=ψ Þ − x1Þðx2 − x1Þ�m2
Bc
; ð40Þ

ta ¼ maxð
ffiffiffiffiffiffi
jαj

p
;

ffiffiffiffiffiffiffiffi
jβaj

p
; 1=b1; 1=b2Þ; tb ¼ maxð

ffiffiffiffiffiffi
jαj

p
;

ffiffiffiffiffiffiffiffi
jβbj

p
; 1=b1; 1=b2Þ; ð41Þ

tc ¼ maxð
ffiffiffiffiffiffi
jαj

p
;

ffiffiffiffiffiffiffi
jβcj

p
; 1=b1; 1=b3Þ; td ¼ maxð

ffiffiffiffiffiffi
jαj

p
;

ffiffiffiffiffiffiffiffi
jβdj

p
; 1=b1; 1=b3Þ: ð42Þ

Note that, as α and βa;b;c;d are negative, the associated Bessel functions transform as

K0ð
ffiffiffi
y

p Þ ¼ K0ði
ffiffiffiffiffi
jyj

p
Þ ¼ iπ

2
½J0ð

ffiffiffiffiffi
jyj

p
Þ þ iN0ð

ffiffiffiffiffi
jyj

p
Þ�; I0ð

ffiffiffi
y

p Þ ¼ J0ð
ffiffiffiffiffi
jyj

p
Þ ð43Þ

for y < 0. The evolution functions EfðtÞ ¼ αsðtÞCiðtÞSiðtÞ contain the Wilson coefficients

CabðtÞ ¼
1

3
C1ðtÞ þ C2ðtÞ; CcdðtÞ ¼ C1ðtÞ ð44Þ

and the Sudakov factors

SabðtÞ ¼ scðx1P−
1 ; b1Þ þ scðx2Pþ

2 ; b2Þ þ scðð1 − x2ÞPþ
2 ; b2Þ −

1

β1

�
11

6
ln

lnðt=ΛÞ
lnðmc=ΛÞ

�
; ð45Þ

ScdðtÞ ¼ scðx1P−
1 ; b1Þ þ scðx2Pþ

2 ; b1Þ þ scðð1 − x2ÞPþ
2 ; b1Þ þ sðx3P−

3 ; b3Þ þ sðð1 − x3ÞP−
3 ; b3Þ

−
1

β1

�
11

6
ln

lnðt=ΛÞ
lnðmc=ΛÞ

þ ln
lnðt=ΛÞ
− lnðb3ΛÞ

�
; ð46Þ

where the explicit expression of the Sudakov exponent sðQ; bÞ for an energetic light quark is referred to Refs. [30,31].
With the QCD scale Λð4Þ

QCD ¼ 0.25 GeV and the Bc meson lifetime τBc
¼ 0.507 ps, we obtain

BrðBþ
c → J=ψπþÞ ¼ 1.60 × 10−3. This result is consistent with 1.2 × 10−3 derived in the QCD factorization approach

[20], in which the transition form factor ABc→J=ψ
0 was treated as an input, a bit larger value of ABc→J=ψ

0 ¼ 0.6 was employed,
and the one-loop correction to the b → c decay vertex was included. Our prediction can be compared to the measured
branching ratio of the corresponding mode with the replacement of the spectator charm quark by an up quark,
BrðBþ → D̄�0πþÞ ¼ ð5.18� 0.26Þ × 10−3 [26], which receives an additional color-suppressed tree contribution. The
dependence of the quantities ABc→J=ψ

0 ð0Þ and BrðBþ
c → J=ψπþÞ on βBc

in the range [0.8, 1.2] GeV is shown in Table I. It is
clearly seen that the imaginary piece of the Bc → J=ψ transition form factor is greatly suppressed, being only 10%–20% of
the real piece, and that the Bþ

c → J=ψπþ branching ratio is unlikely to be lower than 10−3. Roughly speaking, the preferred
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range of BrðBþ
c → J=ψπþÞ from the PQCD approach can

be preliminarily read as ½0.9; 2.8� × 10−3. When the data are
available for individual branching ratios, or for the ratios of
decay rates that are more sensitive to the nonfactorizable
emission contributions, it is possible to pin down the shape
parameter βBc

and to make more precise predictions in the
PQCD approach. In the latter case, the emitted meson could
be a scalar or tensor, such that the dominant nonfactorizable
emission diagrams do not cancel in the ratios of decay rates.

V. CONCLUSION

In this paper, we have deduced the shape of the Bc meson
distribution amplitude ϕBc

ðxÞ resulting from the soft gluon
emission effect based on the parton kinematic analysis and
found that ϕBc

ðxÞ exhibits a peak around the momentum
fraction x ∼mc=mb ∼ 0.3 of the spectator charm quark
with a width of order Λ=mb ∼ 0.1. These features were then
implemented into the parametrization of ϕBc

ðxÞ in terms of
a Gaussian form with the shape parameter βBc

∼ 1.0 GeV.
We have estimated the potential imaginary piece in the
Bc → J=ψ transition form factor, which should be power
suppressed according to the specified parton kinematics
and the argument on the absence of intermediate states. It is
worth emphasizing that the resummation formula adopted
in the conventional PQCD approach to Bc meson decays

[21–23] is not appropriate. We have modified the kT
resummation by taking into account the finite charm quark
mass, the effect of which was shown to enhance the decay
rates. We point out that this modification is exact only at the
leading-logarithm level, and a precise next-to-leading-
logarithm resummation formalism for a hadronic process
involving the multiple scales mb, mc, and ΛQCD is still
urged; it demands a complete one-loop calculation for
determining the factor BðαsÞ in Eq. (13).
Given the Bc meson distribution amplitude preferred by

the kinematic constraints and the newly derived Sudakov
factor for the Bc → J=ψ transition, we have calculated, at
leading order in the strong coupling, the transition form
factor ABc→J=ψ

0 ð0Þ and the Bþ
c → J=ψπþ branching ratio in

the range [0.8,1.2] GeV of the shape parameter βBc
. It was

observed that the strong phase in ABc→J=ψ
0 ð0Þ is indeed

largely suppressed and that the predicted BrðBþ
c →

J=ψπþÞ ∼ 1.60 × 10−3 is comparable to the data
BrðBþ → D̄�0πþÞ ¼ ð5.18� 0.26Þ × 10−3. The definite
value of the shape parameter demands the input data of
some individual Bc decay channels from LHCb, with
which it is then possible to make more precise predictions
for various modes. At last, we stress that the improved
PQCD formalism developed in this work is applicable to
Bc meson decays to other charmonia and charmed
mesons.
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