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We study the OðN1Þ ×OðN2Þ ×OðN3Þ symmetric quantum mechanics of 3-index Majorana fermions.
When the ranksNi are all equal, this model has a largeN limit which is dominated by the melonic Feynman
diagrams. We derive an integral formula which computes the number of group invariant states for any set of
Ni. It is non-vanishing only when each Ni is even. For equal ranks the number of singlets exhibits rapid
growth with N: it jumps from 36 in theOð4Þ3 model to 595 354 780 in theOð6Þ3 model. We derive bounds
on the values of energy, which show that they scale at most as N3 in the large N limit, in agreement with
expectations. We also show that the splitting between the lowest singlet and non-singlet states is of order
1=N. For N3 ¼ 1 the tensor model reduces to OðN1Þ ×OðN2Þ fermionic matrix quantum mechanics, and
we find a simple expression for the Hamiltonian in terms of the quadratic Casimir operators of the
symmetry group. A similar expression is derived for the complex matrix model with SUðN1Þ × SUðN2Þ ×
Uð1Þ symmetry. Finally, we study the N3 ¼ 2 case of the tensor model, which gives a more intricate
complex matrix model whose symmetry is onlyOðN1Þ ×OðN2Þ × Uð1Þ. All energies are again integers in
appropriate units, and we derive a concise formula for the spectrum. The fermionic matrix models we
studied possess standard ’t Hooft large N limits where the ground state energies are of order N2, while the
energy gaps are of order 1.
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I. INTRODUCTION AND SUMMARY

In recent literature there has been considerable interest in
the quantum mechanical models where the degrees of
freedom are fermionic tensors of rank 3 or higher [1,2].
These models have solvable large N limits dominated by
the so-called melonic diagrams. Such novel large N limits
were discovered and developed in [3–11], mostly in the
context of zero-dimensional tensor models with multiple
UðNÞ or OðNÞ symmetries (for reviews, see [12–14]). The
quantum mechanical tensor models are richer: they have
interesting spectra of energy eigenstates and may have
connections with physical systems like the quantum dots.
More amibitiously, large N tensor quantum mechanics may
provide a dual description of two-dimensional black holes
[15–18], in the sense of the gauge/gravity duality [19–21].
The original motivation [1] for introducing the tensor
quantum mechanics is that they have a large N limit
similar to the one in the Sachdev-Ye-Kitaev (SYK) model
[22–25], but without the necessity of the disorder. Indeed,

as shown explicitly in [2], the 2- and 4-point functions in
the large N tensor models are governed by the same
Schwinger-Dyson equations as were derived earlier for
the SYK-like models [25–29].
At the same time, there are significant differences

between the tensor and SYK-like models. An early hint
was the different scaling of the corrections to the large N
limit [1] (see also the further work in [30–33]); more
recently, additional evidence for the differences is emerging
in the operator spectra and Hagedorn transition [34–36].
The formal structure of the two types of models is indeed
quite different: the SYK-like models containing a large
number of fermions, NSYK, have no continuous symmetries
(although an OðNSYKÞ symmetry appears in the replica
formalism), while in the tensor models one typically
encounters multiple symmetry groups. For example, in
the Gurau-Witten (GW) model [1] containing 4 Majorana
rank-3 tensors, the symmetry is OðNÞ6; there is evidence
[30,34] that this model is the tensor counterpart of a
4-flavor generalization of the SYK model introduced in
[29]. A simpler tensor quantummechanics with a single rank-
3 Majorana tensor hasOðNÞ3 symmetry [2] and is the tensor
counterpart of the basic SYK model with real fermions. The
quantum mechanics of complex rank-3 fermionic tensor,
which has SUðNÞ2 ×OðNÞ ×Uð1Þ symmetry [2], is the
tensor counterpart of the variant of SYK model where real
fermions are replaced by complex ones [37].
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The absence of disorder and the presence of the
continuous symmetry groups in the tensor models endows
them with a number of theoretical advantages, but also
makes them quite difficult to study. In the tensor models
any invariant operator should be meaningful and be
assigned a definite scaling dimension in the large N limit.
While the simplest scaling dimensions coincide with those
in the corresponding SYK-like models, the operator spec-
trum in tensor models is much richer: the number of
2k-particle operators grows as 2kk! [34–36].
Beyond the operator spectrum, it is interesting to inves-

tigate the spectrum of eigenstates of the Hamiltonian.
While this spectrum is discrete and bounded for finite
N, the low-lying states become dense for large N leading to
the (nearly) conformal behavior where it makes sense to
calculate the operator scaling dimensions. In the SYK
model, the number of states is 2NSYK=2, and numerical
calculations of spectra have been carried out for rather large
values of NSYK [38,39]. They reveal a smooth distribution
of energy eigenvalues, which is almost symmetric under
E → −E; it exhibits little sensitivity to the randomly chosen
coupling constants Jijkl. Such numerical studies of the SYK
model have revealed various interesting physical phenom-
ena, including the quantum chaos.
The corresponding studies of spectra in the GWmodel [1]

and the OðNÞ3 model [2] have been carried out in [40–46],
but in these cases the numerical limitations have been more
severe – the number of states grows as 2N

3=2 in the OðNÞ3
model and as 22N

3

in the GW model. This is why only the
N ¼ 2 GW model and N ¼ 2, 3 OðNÞ3 models have been
studied explicitly so far.1 Furthermore, in the tensor models
the states need to be decomposed into various representations
of the symmetry groups. As a result, the details of the energy
spectrum in theOðNÞ3 tensor model are quite different from
those in the corresponding SYK model with NSYK ¼ N3

fermion species.
The goal of this paper is to improve our understanding of

energy spectra in the tensor models. We will mostly focus
on the simplest tensor model withOðNÞ3 symmetry [2] and
its generalization to OðN1Þ ×OðN2Þ ×OðN3Þ, where the
Majorana tensor degrees of freedom are ψabc with
a ¼ 1;…; N1; b ¼ 1;…; N2; c ¼ 1;…; N3, and anticom-
mutation relations

fψabc;ψa0b0c0 g ¼ δaa
0
δbb

0
δcc

0
: ð1:1Þ

The Hamiltonian is taken to be of the “tetrahedral”
form [2,10]

H¼ g
4
ψabcψab0c0ψa0bc0ψa0b0c−

g
16

N1N2N3ðN1−N2þN3Þ;
ð1:2Þ

and we have added a shift to make the spectrum traceless. In
Sec. II we discuss some essential features of this model,
including its discrete symmetries. In Sec. III we will derive
lower bounds on the energy in each representation of
SOðN1Þ × SOðN2Þ × SOðN3Þ. We will show that, in the
melonic large N limit where gN3=2 ¼ J is kept constant, the
most stringent bounds (3.25) scale as JN3, in agreement with
expectations for a systemwithN3 degrees of freedom.On the
other hand, the splitting between lowest states in different
representations is found to be of order J=N. Another
derivation of this fact, based on effective action consider-
ations, is presented in Sec. IV. While this gap vanishes in the
large N limit, we expect the splitting between states in the
same representation to vanishmuch faster, i.e. as c−N

3

, where
c is a positive constant. Such small singlet sector gaps are
needed to account for the large low-temperature entropy,
which is given by the sum over melonic graphs and, there-
fore, has to be of order N3.
If the global symmetry of the quantummechanical model

is gauged, this simply truncates the spectrum to the
SOðN1Þ × SOðN2Þ × SOðN3Þ invariant states. In Sec. V
we derive integral formulae for the number of singlets as
functions of the ranks Ni. They lead to the conclusion that
the singlets are present only when all Ni are even. The
absence of singlets when some of Ni are odd can often be
related to anomalies, which we discuss in Sec. V B. For the
OðNÞ3 model, the number of singlet states is shown in
Table 1; it exhibits rapid growth from 2 for N ¼ 2, to 36 for
N ¼ 4, to 595 354 780 for N ¼ 6. Thus, even though the
Oð4Þ3 model is out of reach of complete numerical
diagonalization because it has 64 Majorana fermions, in
contrast to the SYK model with NSYK ¼ 64, it is far from
the nearly conformal large N limit. Indeed, since the
spectrum is symmetric under E → −E [34], the number
of distinct singlet eigenvalues with E < 0 cannot exceed
18. Therefore, there are significant gaps in the singlet
spectrum of the Oð4Þ3 model. On the other hand, the
presence of the vast number of singlet states for the Oð6Þ3
model suggests that the low-lying singlet spectrum should
be dense for N ¼ 6 and higher. For large N the number of
singlets grows as exp ðN3 log 2=2 − 3N2 logN=2Þ. Since
all of these states must fit in an energy interval of order N3,

TABLE I. Number of singlet states in the OðNÞ3 model.

N No. of singlet states

2 2
4 36
6 595 354 780

1In [46] the exact values of the 140 singlet energies in the
Oð2Þ6 GW model were found to square to integers. Due to the
discrete symmetries of the GW model, there are only 5 distinct
E < 0 eigenvalues (the singlet spectrum also contains 50 zero-
energy states). For these reasons the singlet spectrum of the
Oð2Þ6 GW model exhibits significant gaps.
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it is plausible that the gaps between low-lying singlet states
vanish as c−N

3

.
TheOðN1Þ ×OðN2Þ ×OðN3Þ tensor model (1.2) may be

viewed as N3 coupled Majorana N1 × N2 matrices [47,48].
As discussed in Sec. VI A, for N3 ¼ 1 we find a one-matrix
model with OðN1Þ ×OðN2Þ symmetry, which is exactly
solvable because the Hamiltonian may bewritten in terms of
a quadratic Casimir. Whenwe setN3 ¼ 2we find a complex
N1 × N2 matrix model with OðN1Þ ×OðN2Þ × Uð1Þ sym-
metry. It may be studied numerically for values ofN1 andN2

as large as 4 and reveals a spectrum which is integer in units
of g=4. In Sec. VI C we explain why this fermionic matrix
model is again exactly solvable and derive a concise
expression (6.23) for its spectrum. When both N1 and N2

are even, so that the spectrumcontains singlet states,we show
that theground state is a singlet. In Sec.VI Bweapply similar
methods to another complex matrix model, which was
introduced in [49] and has SUðN1Þ × SUðN2Þ ×Uð1Þ. It
is theN3 ¼ 1 case of the complex tensor quantummechanics
with SUðN1Þ × SUðN2Þ ×OðN3Þ ×Uð1Þ symmetry [2].
We show that the Hamiltonian of this model may be
expressed in terms of the symmetry charges. The solvable
matrix models presented in Sec. VI have standard ‘t Hooft
limits whenN1 ¼ N2 ¼ N is sent to infinity while λ ¼ gN is
held fixed. Then the low-lying states have energies ∼λN2,
while the splittings are of order λ. So, in contrast to the
melonic largeN limit, the energy levels do not become dense
in the ‘t Hooft limit of thematrixmodels. Nevertheless, these
fermionic matrix models are nice examples of exactly
solvable ‘t Hooft limits.

II. THE RANK-3 TENSOR MODEL
AND ITS SYMMETRIES

The OðN1Þ ×OðN2Þ ×OðN3Þ tensor model is specified
by the action

S ¼
Z

dt

�
i
2
ψabc∂tψ

abc −H

�
; ð2:1Þ

where H is given in (1.2). Sometimes it will be convenient
to use capital letters A;B;… to denote the multi-index, i.e.

A ¼ ða; b; cÞ. It is easy to see that the Hamiltonian (1.2) has
a traceless spectrum2:

X
i

diEi ¼ 0;
X
i

di ¼ 2½N1N2N3=2�; ð2:2Þ

where di is the degeneracy of eigenvalue Ei.
We can make some general restrictions on the possible

values of the energies. Operators ψ obeying the anti-
commutation relation (1.1) may be represented as the
Majorana γ-matrices in N1N2N3–dimensional Euclidean
space. They have entries which, in our conventions, are
integers divided by

ffiffiffi
2

p
. As a result, the Hamiltonian is an

integer matrix times g=16. It is a well-known mathematical
fact that such matrices cannot have rational eigenvalues.
Therefore, in units of g=16, the energy eigenvalues have to
be either integer or irrational numbers. The explicit results
we will find are in agreement with this.
The discrete symmetries of the theory depend on

whether some of the ranks are equal. In a OðN1Þ ×
OðNÞ2 theory, N1 ≠ N, we may study interchange of the
two OðNÞ groups, which acts as ψabc → ψacb. The invari-
ant operators can be divided into even or odd under the
interchange. The Hamiltonian (1.2) is odd [34], which
implies that the energy spectrum is symmetric
under E → −E.
Let us construct the operator which implements the

interchange ψabc → ψacb:

P23 ¼ 2N
2ðN1þ1Þ=2 Y

a;b¼c

ψabc
Y
a;b>c

�
ψabc þ ψacbffiffiffi

2
p

�
: ð2:3Þ

This operator has the following properties

P†
23P23 ¼ 1; P†

23 ¼ �P23;

P†
bcψ

abcPbc ¼ ð−1ÞN2ðN1þ1Þ=2þ1ψacb: ð2:4Þ

Due to the last relation one can check

P†
bcHPbc ¼ P†

bc

�
g
4
ψabcψab0c0ψa0bc0ψa0b0c −

g
16

N1N2N3ðN1 − N2 þ N3Þ
�
Pbc

¼ g
4
ψacbψac0b0ψa0c0bψa0cb0 −

g
16

N1N2N3ðN1 − N2 þ N3Þ

¼ −
g
4
ψabcψab0c0ψa0bc0ψa0b0c þ g

16
N1N2N3ðN1 − N2 þ N3Þ ¼ −H; ð2:5Þ

where we have renamed the repeated indices in the second line and used the anticommutation relations (1.1) in the third line.
Let us consider any state that is an eigenvector of the P23, it exists because P23 is either Hermitian or anti-Hermitian

P23jλi ¼ λjλi; 1 ¼ hλjλi ¼ hλjP†
23P23jλi ¼ jλj2hλjλi ¼ jλj2: ð2:6Þ

2One can easily compute trðψabcψab0c0ψa0bc0ψa0b0cÞ ¼ 1
4
N1N2N3ðN1 − N2 þ N3Þ working with ψabc as with a set of gamma matrices.
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The energy of such state is equal to zero. Indeed,

E ¼ hλjHjλi ¼ −hλjP†
bcHPbcjλi

¼ −jλj2hλjHjλi ¼ −E; E ¼ 0 ð2:7Þ
Let us now discuss the case when all three ranks are

equal and we have OðNÞ3 symmetry. Then the invariant
operators form irreducible representations of the group S3
which interchanges the 3OðNÞ groups. The Hamiltonian is
in the sign representation of degree 1: it is invariant under
the even permutations and changes sign under the odd ones.
Therefore, the symmetry of the Hamiltonian is the alter-
nating group A3, which is isomorphic to Z3. Two types of
eigenstates are possible: the ones that are invariant under Z3

are nondegenerate, but the ones which pick up a phase
e�2πi=3 are doubly degenerate.
The SOðNiÞ symmetry charges are

Qaa0
1 ¼ i

2
½ψabc;ψa0bc�;

Qbb0
2 ¼ i

2
½ψabc;ψab0c�;

Qcc0
3 ¼ i

2
½ψabc;ψabc0 �: ð2:8Þ

In addition, each OðNiÞ group contains Z2 parity sym-
metries which are axis reflections. Inside OðN1Þ there are
parity symmetries Pa0 : for a given a0, Pa0 sends ψa0bc →
−ψa0bc for all b, c and leaves all ψabc; a ≠ a0 invariant. It is
not hard to see that the corresponding charges are

Pa0 ¼ 2N2N3

Y
bc

ψa0bc ð2:9Þ

One can indeed check that

ðPa0 Þ†ψabcPa0 ¼ ð−1Þδa;a0þN2N3ψabc: ð2:10Þ
Similarly, there are Z2 charges inside OðN2Þ and OðN3Þ. A
product of two different parity symmetries within the same
OðNiÞ group is a SOðNiÞ rotation. Therefore, it is enough
to consider one such Z2 parity symmetry within each group
and OðNiÞ ∼ SOðNiÞ × Z2.
The antiunitary time reversal symmetry T is a general

feature of systems of Majorana fermions; it commutes with
them and, therefore, with the Hamiltonian (1.2):

T −1ψabcT ¼ ψabc: ð2:11Þ
The action of T on the eigenstates depends on the total
number of the Majorana fermions N1N2N3 and is well
known in the theory of topological insulators and super-
conductors [50]. If the total number of fermions is divisible
by 8, the operator T acts trivially, so the ground state may
be nondegenerate. Otherwise T acts nontrivially and one
finds that the ground state must be degenerate.

III. ENERGY BOUNDS FOR THE
OðN1Þ × OðN2Þ × OðN3Þ MODEL

Since the Hilbert space of the model is finite dimen-
sional, it is interesting to put an upper bound on the
absolute value of the energy eigenvalues in each repre-
sentation of the symmetry group. In this section we address
this question in two different ways. We first derive a basic
linear relation between the Hamiltonian, a quadratic
Casimir operator, and a square of a Hermitian operator
which is positive definite. This gives bounds which are
useful for the representations where the quadratic Casimir
of one of the orthogonal groups is near its maximum
allowed value. We also find that the bounds are exactly
saturated forN3 ¼ 2, but are not stringent when equal ranks
become large. Then in Sec. III B we derive more refined
bounds which are more stringent in the large N limit and
give the expected scaling of the ground state energy.
Furthermore, we derive a finite multiplicative factor which
corrects the refined bound and allows us to deduce the
ground state energy in the large N limit.

A. Basic bounds

To derive an energy bound we introduce the Hermitian
tensor

Abc;b0c0 ¼ i
2
½ψabc;ψab0c0 � ¼ iψabcψab0c0 − i

N1

2
δbb

0
δcc

0

ðAbc;b0c0 Þ† ¼ −iψab0c0ψabc þ i
N1

2
δbb

0
δcc

0

¼ iψabcψab0c0 − i
N1

2
δbb

0
δcc

0 ¼ Abc;b0c0 : ð3:1Þ

If we think of bc as a combined index which takes N2N3

values, then Abc;b0c0 are the generators of the transforma-
tions in OðN2N3Þ ⊃ OðN2Þ ×OðN3Þ. The quadratic
Casimir of OðN2N3Þ ⊃ OðN2Þ ×OðN3Þ,

COðN2N3Þ
2 ¼ 1

2
Abc;b0c0Abc;b0c0 ; ð3:2Þ

and the quadratic Casimir of the OðN1Þ symmetry,

COðN1Þ
2 ¼ 1

2
Qaa0

1 Qaa0
1 ð3:3Þ

are related by

COðN2N3Þ
2 þ COðN1Þ

2 ¼ N1N2N3

8
ðN1 þ N2N3 − 2Þ: ð3:4Þ

Therefore, for the states which appear in the model, we find
the upper bound:

COðN1Þ
2 ≤

1

8
N1N2N3ðN1 þ N2N3 − 2Þ: ð3:5Þ
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This bound is saturated only if COðN2N3Þ
2 ¼ 0 so that the

state is invariant under SOðN2N3Þ.
The Hamiltonian may be written as

H ¼ −
g
4
Abc;b0c0Abc0;b0c þ g

16
N1N2N3ðN2 − N3Þ: ð3:6Þ

Now we note the inequality

COðN2N3Þ
2 � 1

2
Abc;b0c0Abc0;b0c ¼ 1

4
ðAbc;b0c0 � Abc0;b0cÞ2 ≥ 0

ð3:7Þ
Combining this with (3.4) we get

2

g
H

(
≤ 1

8
N1N2N3ðN1 þ N2 − N3 þ N2N3 − 2Þ − COðN1Þ

2 ;

≥ COðN1Þ
2 − 1

8
N1N2N3ðN1 − N2 þ N3 þ N2N3 − 2Þ:

ð3:8Þ
In an analogous fashion we can also derive the bounds in
terms of C2:

2

g
H

(
≤ 1

8
N1N2N3ðN2 þ N3 − N1 þ N1N3 − 2Þ − COðN2Þ

2 ;

≥ COðN2Þ
2 − 1

8
N1N2N3ðN2 − N3 þ N1 þ N1N3 − 2Þ

ð3:9Þ
and similarly in terms of COðN3Þ

2 .
An interesting special case, which we will consider in

Sec. VI, is N3 ¼ 2 where we find a complex N1 × N2

matrix model. For the singlet states where COðN1Þ
2 ¼

COðN2Þ
2 ¼ 0 the most stringent bound we get from (3.8)

and (3.9) is

jHj ≤ g
8
N1N2ðN1 þ N2Þ: ð3:10Þ

In Sec. VI we will show that these bounds are saturated by
the exact solution for even N1, N2. For N1 ¼ N2 ¼ N we
have a N × N matrix quantum mechanics which possesses
a ’t Hooft large N limit where gN ¼ λ is held fixed. In this
limit, the ground state energy is E0 ¼ − λ

4
N2, which has the

expected scaling with N for a matrix model.
More generally, if at least one of the ranks is even (we

will call it N3), we may introduce the operators [44]

c̄abk ¼
1ffiffiffi
2

p ðψabð2k−1Þ þ iψabð2kÞÞ;

cabk ¼
1ffiffiffi
2

p ðψabð2k−1Þ − iψabð2kÞÞ;

fcabk; ca0b0k0 g ¼ fc̄abk; c̄a0b0k0 g ¼ 0;

fc̄abk; ca0b0k0 g ¼ δaa0δbb0δkk0 ; ð3:11Þ
where a ¼ 1; 2;…; N1, b ¼ 1; 2…; N2 and k ¼ 1;…; N3

2
.

In this basis the OðN1Þ ×OðN2Þ × UðN3=2Þ symmetry is
manifest. The Hamiltonian becomes [44]

H ¼ g
2
ðc̄abkc̄ab0k0ca0bk0ca0b0k − c̄abkc̄a0bk0cab0k0ca0b0kÞ

þ g
16

N1N2N3ðN2 − N1Þ: ð3:12Þ

It is invariant under the charge conjugation symmetry
which interchanges cabk with c̄abk.
For any even N3, using the basis (3.11) we define the

oscillator vacuum state by the condition cabkj0i ¼ 0. Since
this condition is invariant under OðN1N2Þ, so is j0i.
Furthermore, all the states that are created by operators that
areOðN1N2Þ invariant are alsoOðN1N2Þ invariant and have
energy g

16
N1N2N3ðN2 − N1Þ. The number of such states is

estimated to be the dimension of the maximal representation
for theOðN3Þ group dimmax ∼ðN1N2ÞN2

3
=8 (see Appendix A

for details). The relation (3.4) also simplifies the search for
the singlets. For example, we can first forget about the group
nature of the third index in the approach of [44] and impose
the vanishing of theCasimir of the third group afterwards. By
studying the charges underUð1Þ ∈ UðN3=2Þwe find that the
singlet statesmust haveN1N2N3=4 creation operators acting
on j0i.
Specifying the bound (3.8) to the equal ranks N1 ¼

N2 ¼ N3 ¼ N, we find

COðNÞ1
2 −

1

8
N3ðN þ 2ÞðN − 1Þ

≤
2

g
H ≤

1

8
N3ðN þ 2ÞðN − 1Þ − COðNÞ1

2 : ð3:13Þ

When the bound (3.5) is saturated, the corresponding state
must have zero energy. This shows that all the states
invariant under OðN2Þ ⊃ OðNÞ2 ×OðNÞ3 have E ¼ 0.
For the singlet states (3.13) gives

4

g
jHj ≤ 1

4
N3ðN þ 2ÞðN − 1Þ: ð3:14Þ

For N ¼ 2, exact diagonalization gives that the ground
states is a singlet with energy E0 ¼ −2g; this saturates the
bound (3.14). For N ¼ 3, exact diagonalization gives a
ground state with energy − 5

4

ffiffiffiffiffi
41

p
g ≈ −8.0039g, which is in

the (2,2,2) representation of Oð3Þ3. Since for the 2 of
SOð3Þ, C1 ¼ 3=4, the bound (3.13) is E0 ≥ − 33

2
g. This is

satisfied and is far from being saturated.
In the large N limit, J ¼ gN3=2 is held fixed. Thus, we

obtain a bound on the lowest singlet energy E0, which is
E0 ≥ −cJN7=2, where c is a positive constant. Since we
expect the ground state energy to be of order N3, this bound
is not very informative at large N. A better bound at large N
will be derived in the next section.

B. Refined bounds

In this section we present another approach to deriving
energy bounds for the OðN1Þ ×OðN2Þ ×OðN3Þ invariant
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states, which gives a more stringent bound in the large N
limit than the ones in the previous section.
Consider an arbitrary singlet density matrix ρ; this means

a density matrix invariant under the OðN1Þ ×OðN2Þ ×
OðN3Þ rotations. For example, it can be ρs ¼ jsihsj, where
jsi is an singlet state, or if we have some representation R
of the OðN1Þ ×OðN2Þ ×OðN3Þwith an orthonormal basis
jeii; i ¼ 1… dimR we can define the projector on this
subspace of the Hilbert space

ρR ¼ 1

dimR

XdimR

i¼1

jeiiheij; ρR ¼ 1; ρ2R¼ 1

dimR
ρR:

ð3:15Þ

It is easy to see, that this density matrix is invariant under
rotations OTρRO¼ρR for any O ∈ OðN1Þ ×OðN2Þ×
OðN3Þ. We can calculate the mean value of the energy for
this density matrix as

E ¼ tr½ρRH� ¼ g
4
tr½ρψabcψab0c0ψa0bc0ψa0b0c�

−
g
16

N1N2N3ðN1 − N2 þ N3Þ: ð3:16Þ

For a fixed a, b, cwe can act by the rotationmatrices (that act
trivially on the singlet density matrix ρs) and make the
interchangement a ↔ 1, b ↔ 1, c ↔ 1. This argument
gives us that

E¼ g
4
N1N2N3tr½ρRh�−

g
16

N1N2N3ðN1−N2þN3Þ;
h¼ψ111ψ1b0c0ψa01c0ψa0b01; ð3:17Þ

where we sum over the repeated indexes. From now on we
consider the density matrix to be of the form (3.15). Now we
can estimate the trace in the formula (3.17). With the use of
Cauchy—Schwarz inequality, we have

tr½ρRh�2 ≤ tr½ρRh†h�

¼ 1

2
tr½ρRψab1ψa1cψ1bcψ1b0c0ψa01c0ψa0b01�: ð3:18Þ

Because the density matrix ρR is a singlet we can rotate
indexes back to get

tr½ρRh�2 ≤
1

2N1N2N3

tr½ρRq†abcqabc�;

qabc ¼ ψab0c0ψa0bc0ψa0b0c: ð3:19Þ
We can express it in the following way�
tr½ρRh� −

1

4
ðN1 − N2 þ N3Þ

�
2

≤
1

2N1N2N3

tr½ρRq2abc� þ
1

16
ðN1 − N2 þ N3Þ2 ð3:20Þ

The square of the operator qabc can be expressed as a sum
of Casimir operators due to the virtue of the anticommu-
tation relations. That gives us the bound on the energies of
states in representation R:

jERj ≤
g
16

N1N2N3ðN1N2N3 þ N2
1 þ N2

2 þ N2
3

− 4 −
8

N1N2N3

X3
i¼1

ðNi þ 2ÞCR
i Þ1=2; ð3:21Þ

where CR
i is the value of Casimir operator in the repre-

sentation R. For the singlet states this gives

jEj ≤ g
16

N1N2N3ðN1N2N3 þ N2
1 þ N2

2 þ N2
3 − 4Þ1=2:

ð3:22Þ

Since Ci ≥ 0 this bound applies to all energies. Let us note
that for N3 ¼ 2 the square root may be taken explicitly:

jEjN3¼2 ≤
g
8
N1N2ðN1 þ N2Þ; ð3:23Þ

which is identical to the earlier result (3.10). In Sec. VI we
will show that this is saturated when N1, N2 are even and
the ground state is a singlet.
For the case when N1 ¼ N2 ¼ N3 ¼ N and N > 2 the

bound (3.22) is more stringent than the earlier bound
(3.14):

jEj ≤ Ebound ¼
g
16

N3ðN þ 2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
N − 1

p
ð3:24Þ

In the large N limit, Ebound → JN3=16, which is the
expected behavior of the ground state energy; in the
melonic limit it scales as N3. We may expand (3.21) for
large N to find

jERj≤
g
16

N3ðNþ2Þ
ffiffiffiffiffiffiffiffiffiffiffi
N−1

p

×

�
1−

4

ðNþ2ÞðN−1ÞN3

X3
i¼1

CR
i þ…

�
: ð3:25Þ

The discussion of the splittings between nonsinglet and
singlet states in Sec. IV will be in agreement with the
scaling of the second term.
We can try to estimate how close the singlet ground state

jvaci comes to the bound (3.24) by using the exact
propagator GðtÞ ¼ hTψabcðtÞψdefð0Þi in the large N limit.
To do it let us consider the two states

j1i ¼ ψ111jvaci; j2i ¼ ∂tψ
111jvaci; ð3:26Þ

where we have introduced ∂tψabc ¼ i½H;ψabc�. We can
introduce the angle θ between these states
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cos2 θ ¼ jh1j2ij2
h1j1ih2j2i ¼ 2

jhvacjψ111∂tψ
111jvacij2

hvacjð∂tψ
111Þ2jvaci

¼ 2
jhvacjψabc∂tψ

abcjvacij2
N1N2N3hvacjð∂tψ

abcÞ2jvaci ;

ð3:27Þ

where we have rotated back the indexes back by using the
fact that the jvaci is a singlet state. One can notice
H ¼ iψabc∂tψ

abc, while hvacjð∂tψ
abcÞ2jvaci is just equal

to the bound (3.22), then

cos2 θ ¼ E2
0

E2
bound

; ð3:28Þ

where Ebound is the bound on the singlet ground state
energy (3.24). The other way to estimate this angle θ can be
done in the following way. We shift the Hamiltonian, such
that the ground state has the zero energy ðH − E0Þjvaci ¼
0 and calculate the expectation value for the energy for the
state j1i:

hEi1¼
h1jðH−E0Þj1i

h1j1i ¼ 2hvacjψ111ðH−E0Þψ111jvaci

¼ 2ihvacjψ111∂tψ
111jvaci; ð3:29Þ

at the same time the second moment of the energy is

hE2i1 ¼
h1jðH −E0Þ2j1i

h1j1i ¼ 2hvacjψ111ðH −E0Þ2ψ111jvaci

¼ −2g2hvacjð∂tψ
111Þ2jvaci:

ð3:30Þ

Where we have used the fact that ∂tψabc ¼ i½H;ψabc�.
After that we can notice that (3.27) can be rewritten as

cos2 θ ¼ hEi21
hE2i1

: ð3:31Þ

If cos θ ¼ 1, it means that hEi21 ¼ hE2i1 that can be true
only if and if ψ111jvaci is an eigenstate of the Hamiltonian.
It would give that the propagator is

GðtÞ ¼ hψabce−iHtψa0b0c0 i ∝ δaa
0
δbb

0
δcc

0
e−iΔEjtj:

But as we know the solution for the propagator in the large
N limit is a conformal propagator. From this we deduce that
the bound can not be saturated. Nevertheless we can
estimate the angle cos2 θ. Indeed, in the large N limit
the propagator can be calculated numerically or approxi-
mated by a conformal one. From this we can calculate the
hEi1 and hE2i1. We assume t > t0 ¼ 0, a ¼ a0, b ¼ b0,
c ¼ c0 and insert the full basis jEni of eigenstates of the
Hamiltonian in the propagator to get

hψabcðtÞψabcð0Þi ¼
X
n

jhvacjψabcjEnij2e−iðEn−E0Þt

¼
Z

∞

0

dEρðEÞe−iEt;

where ρðEÞ ¼
X
n

jhvacjψabcjEnij2δðE − En þ E0Þ:

ð3:32Þ

The function ρðEÞ is known as a structure factor. From this
we can calculate

hEi1 ¼
Z

∞

0

dEEρðEÞ;

hE2i1 ¼
Z

∞

0

dEE2ρðEÞ;

cos2θ ¼ hEi21
hE2i1

: ð3:33Þ

One can use conformal propagator to estimate this angle,
which gives cos θ ≈ 0.745, while the numerical calculation
[22] gives cos θ ¼ 0.6608. From this and the formula (3.28)
we get the ground state energy in the large N limit:

E0 → − cos θEbound ¼ − cos θ
JN3

16
≈ −0.041JN3: ð3:34Þ

This answer is close to the numerical result for the ground
state energy in the SYK model [39]: E0 ≈ −0.04JNSYK.
One can make analogous calculations for the other repre-
sentations. It gives us in the large N limit the following
formula for the gap to the lowest state in a representationR:

E − E0 ¼
J cos θ
4N2

X3
i¼1

CR
i ð3:35Þ

IV. SIGMA MODEL AND ENERGY GAPS

In the large N limit the model (2.1) is dominated by
melonic diagrams. This allows one to write down a closed
system of Schwinger–Dyson equations for the Green
function Gabc

a0b0c0 ðt1 − t2Þ ¼ hTψabcðt1Þψa0b0c0 ðt2Þi and self-
energy Σabc

a0b0c0 and the bare Green function Gabc
a0b0c0;0ðωÞ ¼

iδaa0δ
b
b0δ

c
c0=ω

ðGabc
a0b0c0 ðωÞÞ−1 ¼ ðGabc

a0b0c0;0ðωÞÞ−1 − Σabc
a0b0c0 ðωÞ;

Σabc
a0b0c0 ðtÞ ¼ g2Gaβγ

a0β0γ0 ðtÞGαbγ
α0b0γ0 ðtÞGαβc

α0β0c0 ðtÞ: ð4:1Þ

For simplicity we shall introduce the multi-index
A ¼ ða; b; cÞ. We can look for a solution in the diagonal
form GAB ¼ GðtÞδAB and ΣAB ¼ ΣðtÞδAB. Then we have
the following set of equations:
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G−1ðωÞ ¼ −iω − ΣðωÞ; ΣðtÞ ¼ J2G3ðtÞ: ð4:2Þ

These equations exactly coincide with the Schwinger–
Dyson equations of the SYK model and have a conformal
solution.
It was argued in [35] that the system of equations (4.1)

can be obtained from the effective action3:

Seff ¼ − log PfðδAB∂t þ ΣABÞ

þ
Z

dt1dt2

�
−ΣABðt1 − t2ÞGABðt2 − t1Þ

−
g2

4
G4ðt1 − t2Þ

�
ð4:3Þ

This action was recently derived from two-particle irre-
ducible diagrams in [33].
In the strong coupling limit J → ∞ one can neglect the

bare Green function. Then, as first noticed in [35], the
global symmetry OðNÞ3 is promoted to the gauged
symmetry OðNÞ3. Indeed, if we neglect GAB

0 ðωÞ in (4.1)
then it is easy to see that we can generate a series of
solutions by doing a gauge transformation:

GABðt1 − t2Þ → ðOAA0 ðt1ÞÞTGA0B0 ðt1 − t2ÞOBB0 ðt2Þ
ΣABðt1 − t2Þ → ðOAA0 ðt1ÞÞTΣA0B0 ðt1 − t2ÞOBB0 ðt2Þ ð4:4Þ

where we introduce matrix O in OðNÞ3 which equals
to OAB ¼ O1

αα0O
2
ββ0O

3
γγ0 .

The effective action (5.17) is also invariant under these
transformations if one omits the term ∂t in the Pfaffian. For
finite J, the action ceases to be invariant. If we plug the
gauge transformation (4.4) into the effective action (5.17),
the potential does not change, while we will get a kinetic
term for matricesOi of order 1=J. Indeed, for the conformal
solution we have ΣAB ¼ −ð1=GÞAB and we can rewrite the
kinetic part of the action as

− log PfðδAB∂t þ ΣABÞ
¼ − log PfðδAB − ∂tGABÞ − log PfðΣABÞ: ð4:5Þ

The second term log PfðΣABÞ is invariant under gauge
transformations. Then expanding the Pfaffian in the leading
order in derivatives we get

1

2

Z
dtTr∂tGABðt; t0Þjt0→t ð4:6Þ

Making the gauge transformation (4.4) of the conformal
solution GAB ¼ δABG and plugging into (4.6) we get:

1

2

Z
dtTr

�
N3∂tGþ N2

X3
i¼1

OT
i ðtÞGðt − t0Þ∂tOiðt0Þ

þ ∂tOT
i ðtÞGðt − t0ÞOiðt0Þ

�����
t→t0

ð4:7Þ

Factors N2 come from TrðOT
1O1Þ ¼ N. Now one has to

regularize the limit t2 → t1 but this does not going to affect
N2 factors. The details are worked out in [33,51]. The
upshot is that Gðt − t0ÞOiðt0Þ becomes ∂tOiðtÞ=J up to a
normalization constant. This leads to the sigma model
action

SSM¼AN2

J

Z
dtTrð∂tOT

1∂tO1þ∂tOT
2∂tO2þ∂tOT

3∂tO3Þ:

ð4:8Þ

The spectrum of such a quantum mechanical sigma model
is well known: the Hamiltonian is proportional to the
quadratic Casimir and the eigenstates are simply represen-
tations of OðNÞ3. In our case:

Hgauge ¼
J

N2A
ðC2ðO1ðNÞÞ þ C2ðO2ðNÞÞ þ C2ðO3ðNÞÞÞ:

ð4:9Þ

We note that this has the same structure as the Casimir
correction to the energy bound (3.25). Since for the lowest
nonsinglet representations C2 ∼ N, we find the energy gap
between singlets and nonsinglets to be of the order ∼J=N.

V. COUNTING SINGLET STATES

Suppose we have a free fermionic system of N Majorana
fermions ψ I , I ¼ 1;…;M transforming under some rep-
resentation R of the gauge group G. We want to compute
the number of singlet states in such a system. In order to do
it, we use the following method. The Lagrangian in the
Euclidean space reads as:

L ¼ ψ I∂tψ
I þ ψ IAIJψ

J ð5:1Þ

where AIJ is a real gauge field in the representation R.
Since Majorana fermions anticommute with each other, AIJ
must be antisymmetric AIJ ¼ −AJI . The partition function
of the gauged system at the temperature β is

Zgauged ¼ N
Z

DψDA exp

�
−
Z

β

0

dtL

�
; ð5:2Þ

where we have put the fermionic system on a circle with the
circumference β with antiperiodic boundary conditions
ψðtÞ ¼ −ψðtþ βÞ. The normalization factor N can be
easily recovered if we study the ungauged model. The
integration over DA gives the volume of the gauge group

3For clarity, we have omitted the indices in the G4 term.
Explicitly, this term reads as Gaβγ

a0β0γ0G
αbγ
α0b0γ0G

αβc
α0β0c0G

abc
a0b0c0 .
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and the integral over the fermion variables will yield just the
dimension of the Hilbert space because the Hamiltonian of
the ungauged theory is equal to zero Hungauge ¼ 0. In this
case the total number of states is simply 2M=2:

Zungauged ¼ 2M=2

Z
DA

¼ N
Z

DψDA exp

�
−
Z

β

0

dtψ∂tψ

�
: ð5:3Þ

From now on, we will put β ¼ 1. If we fix Lorentz gauge
∂tA ¼ 0withA in theCartan subalgebra, the Faddeev-Popov
determinant gives the Haar measure, while the path integral
over Majoranna fermions gives the partition function of the
system with Hamiltonian H ¼ −ψ IAIJψ

J. Therefore the
(5.2) can be rewritten as

Zgauged ¼
Z

DATrðexp ð−ψ IAIJψ
JÞÞ; ð5:4Þ

The expression under the trace is an operator of rotations and
can be interpreted as a character of the group acting in the
Hilbert space of fermions. By the virtue of the representation
theorywe know that the integral of the character over a group
is equal to the number of the trivial representations, i.e. the
number of the singlet states. Therefore, Zgauged equals the
number of singlet states. If we insert in (5.2) a Wilson line in
some representation R0, it gives the character of this
representation:�

TrR0 exp

�I
Adt

��
¼ No: of states in the representationR0: ð5:5Þ

One can compute the partition function because the
integral over ψ in both (5.2) and (5.3) is Gaussian; therefore,
the problem boils down to computing the Pfaffian:

Zgauged ¼ 2M=2

Z
DA

Pfð∂t þ AÞ
Pfð∂tÞ

: ð5:6Þ

As discussed above, we fix A to be a constant matrix in the
Cartan subalgebra. The Faddeev–Popov determinant then
yields the normalized Haar measure dλNG on the gauge group
G [52]: Z

G
dλNG ¼ 1: ð5:7Þ

Also, sinceA is antisymmetric, the eigenvalues ofA are pairs
of pure-imaginary numbers iλa;−iλa,a ¼ 1;…; bN=2c. The
ratio of the Pfaffians is

Pfð∂t þ AÞ
Pfð∂tÞ

¼
YM=2

a¼1

cosðλa=2Þ: ð5:8Þ

There are different ways to derive this formula. One is to
compute the ratio of determinants:

Detð∂tþAÞ
Detð∂tÞ

¼
YM=2

a¼1

Y∞
n¼−∞

ð2πiðnþ 1
2
Þþ iλaÞð2πiðnþ 1

2
Þ− iλaÞ

ð2πiðnþ 1
2
ÞÞ2

¼
YM=2

a¼1

cosðλa=2Þ2: ð5:9Þ

After that we note that if we go to the Fourier space, both ∂t
and A are real antisymmetric matrices, so the ratio of
Pfaffians must be a real smooth function of λa. Therefore,
taking the square root of Eq. (5.9) we get Eq. (5.8).
Alternatively, we can calculate the Pfaffian of ∂t þ A in
Fourier space. The result is the following formula:

No. of singlet states ¼
Z

dλNG
YM=2

a¼1

2 cosðλa=2Þ; ð5:10Þ

where we have got the normalization by studying the
ungauged theory (5.3).
Let us apply this approach to the case when Majorana

fermions live in the fundamental representation of several
orthogonal groups. It is important to distinguish between
SOð2nÞ and SOð2nþ 1Þ. The Cartan subalgebra in the
SOð2nÞ algebra consists of the block diagonal matrices
with 2 × 2 blocks �

0 xi
−xi 0

�
; ð5:11Þ

where xi is a rotation phase ranging from 0 to 2π.
Geometrically it means that for a fixed SOð2nÞ trans-
formation, there is a basis in which this transformation
looks like a set of rotations in independent two-planes. In
the SOð2nþ 1Þ case the last column/row is zero. It
corresponds to a fixed one-dimensional subspace. Non-
normalized Haar measure in these two cases reads as:

dλSOð2nÞ ¼
Yn
i<j

sin

�
xi − xj

2

�
2

sin

�
xi þ xj

2

�
2

dx1…dxn;

ð5:12Þ

dλSOð2nþ1Þ ¼
Yn
i<j

sin

�
xi − xj

2

�
2

sin

�
xi þ xj

2

�
2

×
Yn
j¼1

sin

�
xj
2

�
2

dx1…dxn: ð5:13Þ

Now we discuss the case where the gauge group is the
product of three orthogonal groups SOðN1Þ × SOðN2Þ×
SOðN3Þ, so that the gauge field decomposes as

A ¼ A1 ⊗ 1 ⊗ 1þ 1 ⊗ A2 ⊗ 1þ 1 ⊗ 1 ⊗ A3: ð5:14Þ

For even Ni in Eq. (5.10) eigenvalues λa are given by xiþ
yj þ zk, −xi þ yj þ zk, xi − yj þ zk and xi þ yj − zk, with
i ¼ 1;…; bN1=2c, j ¼ 1;…; bN2=2c, k ¼ 1;…; bN3=2c.

SPECTRA OF EIGENSTATES IN FERMIONIC TENSOR … PHYS. REV. D 97, 106023 (2018)

106023-9



Variables xi, yj, zk are rotation phases for SOðN1Þ, SOðN2Þ
and SOðN3Þ respectively. In the case when one of the Ni is
odd we have to add a zero eigenvalue to this list.With the use
of the Eq. (5.10) we can write the explicit form of the
character of the representation and decompose it in terms of
characters of the irreducible representations. For example,
for the Oð2Þ3 model the number of singlets is given by the
integral

16

ð2πÞ3
Z

π

−π
dx

Z
π

−π
dy

Z
π

−π
dz cos

�
xþ yþ z

2

�

× cos

�
xþ y − z

2

�
cos

�
x − yþ z

2

�
cos

�
−xþ yþ z

2

�
;

ð5:15Þ

whose evaluation gives 2.
For the OðNÞ3 model the number of singlets for various

even N is given in Table I. For odd N it is not hard to see
that the integral which gives the number of singlets
vanishes; this is related to the fact that each group exhibits
an individual anomaly, which we discuss in the next
section.4 In the next Sec. VAwe will show that the number
of singlets grows as exp ðN3 log 2=2 − 3N2 logN=2Þ for
large even N.
Using similar methods, the number of singlets can be

calculated in the OðNÞ6 GW model for low values of N,
and the results are presented in Table II. The fact that there
are 140 states for N ¼ 2 is in agreement with the direct
construction of singlet states in [46].

We may similarly calculate the number of singlets for the
OðN1Þ ×OðN2Þ ×OðN3Þ models. It is non-vanishing only
if all Ni are even. When N2 ¼ N3 ¼ 2, while N1 is even,
there are 2 singlets. For the cases where N3 ¼ 2, while N1

and N2 are even, some answers are listed in Table III. We
note that the growth of the number of singlets for the
OðNÞ2 ×Oð2Þ model is much slower than for the OðNÞ3
model. For low values of N it is not hard to write down
explicit expressions for all the singlet states in the oscillator
basis; see Appendix B 3. For example, for the Oð4Þ2 ×
Oð2Þ model we find that the 4 singlet energies are �16g
and �4g. The fact that the singlet spectrum is nondegen-
erate is related to the absence of discrete symmetries of the
Hamiltonian in the minimal tensor model of [2]; this is in
contrast to the OðNÞ6 GW model where the singlet
eigenvalues have degeneracies [46].

A. Number of singlets for large N

In this section we will estimate the number of singlets in
the SOðNÞ3 model in the large N limit, assuming N to be
odd N ¼ 2M. For general N, the number of singlets is
given by the following integral:

singlet states ¼ 1

V3

Z
π

−π
½dx�½dy�½dz�

YM
i;j;k¼1

16 cos

�
xi þ yj þ zk

2

�
cos

�
−xi þ yj þ zk

2

�
cos

�
xi − yj þ zk

2

�
cos

�
xi þ yj − zk

2

�

×
YM
i<j

sin2
�
xi − xj

2

�
sin2

�
xi þ xj

2

�
sin2

�
yi − yj

2

�
sin2

�
yi þ yj

2

�
sin2

�
zi − zj

2

�
sin2

�
zi þ zj

2

�
ð5:16Þ

Where V is the volume of SOðNÞ. When N is large, cosine functions oscillate very rapidly, so the integral localizes near
xi ¼ yj ¼ zk ¼ 0. Near this point the integrand is positive, so we can exponentiate it:

TABLE II. Number of singlet states in the OðNÞ6 Gurau–
Witten model.

N No. of singlet states

2 140
3 63 358
4 114 876 653 804 156 708

TABLE III. Number of singlet states in the OðN1Þ ×OðN2Þ ×
Oð2Þ model.

ðN1; N2Þ No. of singlet states

(4,4) 4
(6,4) 4
(6,6) 4
(8,4) 6
(8,6) 8
(8,8) 18
(10,4) 6
(10,6) 8
(10,8) 20
(10,10) 24

4Direct diagonalization of the Hamiltonian for N ¼ 3 [41,42] reveals that there are no nondegenerate eigenvalues, consistent with
this. There are 8 ground states with energy − 5

4

ffiffiffiffiffi
41

p
g ≈ −8.00391g; they transform in the spinorial (2,2,2) representation. Substituting

the value Ci ¼ 3=4 into the bound (3.21) for the energy gives −11.53g, which is quite close to the actual value.
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No.of singlet states¼
Z

π

−π
½dx�½dy�½dz�exp

�
4
X∞
n¼1

XM
i;j;k¼1

ð−1Þnþ1

n
tn cosðnxiÞcosðnyjÞcosðnzkÞ

�

×
YM
i<j

sin2
�
xi−xj

2

�
sin2

�
xiþxj

2

�
sin2

�
yi−yj

2

�
sin2

�
yiþyj

2

�
sin2

�
zi− zj
2

�
sin2

�
ziþ zj

2

�
ð5:17Þ

Notice that we have introduced a “regulator” t which we have to send to one: t → 1. Similar integrals count operators in
theories with trifundamental fields [36]. In such cases t ¼ e−1=T , where T is the temperature. So we are interested in the
infinite temperature limit. This case has been studied in detail in [36]. Here we perform a similar analysis. As usual, we will
encode the saddle-point configuration of the angles x, y, z using the density function ρðxÞ (obviously it is the same function
for the three SOðNÞ groups). Moreover this function is symmetric ρðxÞ ¼ ρð−xÞ. It would be convenient to work with the
normalized density

R
π
−π dxρðxÞ ¼ 1. The effective action now reads as:

S½ρ� ¼ 1

2
N3

Z
π

−π
dxdydzρðxÞρðyÞρðzÞ

X∞
n¼1

ð−1Þnþ1tn

n
cosðnxÞ cosðnyÞ cosðnzÞ

þ 1

4
N2

Z
π

−π
dxdx0ρðxÞρðx0Þ log sin

�
x − x0

2

�
4

þ 1

4
N2

Z
π

−π
dydy0ρðyÞρðy0Þ log sin

�
y − y0

2

�
4

þ 1

4
N2

Z
π

−π
dzdz0ρðzÞρðz0Þ log sin

�
z − z0

2

�
4

ð5:18Þ

In the infinite temperature limit the saddle-point density is nonzero only on a small interval ½−x0; x0� where x0 ∼
ffiffiffi
2
N

q
. The

leading contribution is coming from the first term and it equals to 1
2
N3 log 2. But this yields simply the dimensions of the

Hilbert space, which is 2
1
2
N3

. The subleading term is coming from the second term in (5.18). Fortunately, we will not need
the exact value of x0 because of the logarithmic behavior:

Z
x0

−x0
dxdx0ρðxÞρðx0Þ log sin

�
x − x0

2

�
4

∼ 4

Z
x0

−x0
dxdx0ρðxÞρðx0Þ logðx − x0Þ ∼ 4

Z
x0

−x0
dxdx0ρðxÞρðx0Þ log x0

¼ 4 log x0 ∼ −2 logN: ð5:19Þ

Therefore the subleading term is − 3
4
N2 logN. So, in total we have

No. of singlet states ∼ exp

�
N3

2
log 2 −

3N2

2
logN þOðN2Þ

�
: ð5:20Þ

B. Anomalies

Since we are studying fermions on a compact space S1

there is a potential global anomaly associated with π1ðGÞ.
And indeed it is well known that π1ðSOðNÞÞ ¼ Z2.
Corresponding “large” gauge transformation has a simple
description: the gauge transformation matrix is the identity
matrix, apart from one 2 × 2 block�

cosð2πtÞ − sinð2πtÞ
sinð2πtÞ cosð2πtÞ

�
: ð5:21Þ

It is easy to see that after such transformation one chosen
rotation phase xi will be shifted by 2π: xi → xi þ 2π. It
does not matter which xi to pick up, since an even number
of 2π-rotation blocks gives, in fact, a trivial element in
π1ðSOðNÞÞ. It has been known for some time [53] that a
theory of a single Majorana fermion in the fundamental

representation of SOðNÞ is suffering from this Z2 anomaly.
It is instructive to see it using our machinery. The Pfaffian
in this case reads as:

YN=2

i¼1

cosðxi=2Þ: ð5:22Þ

Under the shift xj → xj þ 2π it changes sign. Therefore the
theory is not invariant under large gauge transformations. In
our case of OðN1Þ ×OðN2Þ ×OðN3Þ group it means that
at least two out of three Ni should be even, otherwise we
will have an odd number of anomalous multiplets. Since
this anomaly is associated with only one group wewill refer
to it as “individual anomaly.” It is easy to see that this
anomaly is always Z2 (in other words, it squares to one),
even if we add more gauge groups.
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If the gauge group is a product SOð2n1Þ × SOð2n2Þ
there is a new anomaly mixing these two groups. For each
group in the product, the large gauge transformation
consists of identical 2 × 2 blocks:

�
cosðπtÞ − sinðπtÞ
sinðπtÞ cosðπtÞ

�
: ð5:23Þ

Since there are two gauge groups, at t ¼ 1 overall −1 will
cancel. Now all phases xi and yj are shifted by π:
xi → xi þ π, yj → yj þ π. The Pfaffian reads as:

Yn1
i¼1

Yn2
j¼1

cos

�
xi þ yj

2

�
cos

�
xi − yj

2

�
: ð5:24Þ

Under the large gauge transformation the Pfaffian acquires
ð−1Þn1n2 . This anomaly means that for G ¼ SOð2n1Þ×
SOð2n2Þ × SOðN3Þ, N3 can be odd only if the product
N1N2 is even. We will call this anomaly “mixed anomaly.”
This anomaly is not always Z2 as we will see shortly.
We do not find any more anomalies: using the long exact

sequence in homotopy groups one can show that the
fundamental group of SOð2n1Þ × SOð2n2Þ=Z2

5 is equal
to Z2 × Z2 × Z2 or Z4 × Z2 depending on n1 and n2.
Using the above explicit descriptions of the individual
anomalies and the mixed anomaly we see that:

(i) If n1 and n2 are both even, then the square of the
mixed anomaly gives a trivial gauge transformation.
Indeed, for each gauge group the number Ni of 2π-
rotation blocks (5.21) is even. Therefore, this is the
case of Z2 × Z2 × Z2.

(ii) If only one of ni, say n1, is odd, then the mixed
anomaly squares to the individual anomaly of
SOð2n1Þ, since this group will have an odd number
of 2π rotation blocks. Therefore, the anomalies
form Z4 × Z2.

(iii) Finally, when both n1 and n2 are odd, then the mixed
anomaly squares to the sum of the individual
anomalies. This is again Z4 × Z2.

VI. SOLUTION OF SOME FERMIONIC
MATRIX MODELS

When N3 ¼ 1 or N3 ¼ 2 the OðN1Þ ×OðN2Þ ×OðN3Þ
symmetric tensor model (1.2) simplifies and becomes a
fermionicN1 × N2 matrix model. In this section we discuss
the solution of these models. For the OðN1Þ ×OðN2Þ real
matrix model the Hamiltonian may be expressed in terms of
the quadratic Casimir operators, which shows that all the
states within the same group representation have the same
energy. This also applies to the SUðN1Þ × SUðN2Þ ×Uð1Þ
symmetric complex fermionic matrix model, which was

considered in [49,54] (see also [55]), and will be further
discussed in Sec. VI B. However, the OðN1Þ ×OðN2Þ ×
Uð1Þ complex fermionic matrix model is more complicated
in that there are energy splittings within the same repre-
sentation of the symmetry group. Nevertheless, as we show
in Sec. VI C this model is solvable.

A. The OðN1Þ × OðN2Þ model

Setting N3 ¼ 1 in the OðN1Þ ×OðN2Þ ×OðN3Þ sym-
metric tensor model (1.2) we find a real matrix model with
OðN1Þ ×OðN2Þ symmetry:

H ¼ g
4
ψabψab0ψa0bψa0b0 −

g
16

N1N2ðN1 − N2 þ 1Þ: ð6:1Þ

Using the SOðN1Þ and SOðN2Þ charges

Qaa0
1 ¼ i

2
½ψab;ψa0b�; Qbb0

2 ¼ i
2
½ψab;ψab0 � ð6:2Þ

the Hamiltonian may be expressed in terms of the quadratic
Casimirs:

H ¼ −
g
2
CSOðN2Þ
2 þ g

16
N1N2ðN2 − 1Þ

¼ g
2
CSOðN1Þ
2 −

g
16

N1N2ðN1 − 1Þ: ð6:3Þ

This shows that, under the interchange of N1 and N2,
H → −H; therefore, for N1 ¼ N2 the spectrum is sym-
metric around zero. The sum of this Casimir operators is
fixed:

CSOðN1Þ
2 þ CSOðN2Þ

2 ¼ 1

2
Qaa0

1 Qaa0
1 þ 1

2
Qbb0

2 Qbb0
2

¼ 1

8
N1N2ðN1 þ N2 − 2Þ: ð6:4Þ

This shows that there are no states which are singlets under
both SOðN1Þ and SOðN2Þ. The irreducible representations
ðr1; r2Þ which appear in the spectrum must satisfy the
condition (6.4). In Appendix B 1 we list these representa-
tions for a few low values of N1 and N2. The complete lists
of the energies and degeneracies are shown in Table IV.
For OðNÞ ×OðNÞ with even N, we find that the ground

state is a singlet underOðNÞ1 and transforms in the SOðNÞ2

TABLE IV. Spectra of the OðN1Þ ×OðN2Þ models.

ðN1; N2Þ (2,2) (2,3) (2,4) (3,3) (3,4) (4,4) (5,5)
4
g Edegeneracy −12 −16 −26 −38 −68 −1210 −20224

12 32 08 38 −236 −664 −101024
62 620 −454 −4800

454 4800
664 101024
1210 20224

5One has to divide byZ2 because g1 × g2 acts on ψ in the same
way as ð−g1Þ × ð−g2Þ.
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representation whose Young diagram is a N
2
× N

2
square. The

ground state has energy E0 ¼ −gN2ðN − 1Þ=16, while the
first excited state is in the fundamental ofOðNÞ1 which has
quadratic Casimir N − 1. Therefore, the energy gap

E1 − E0 ¼
g
2
ðN − 1Þ: ð6:5Þ

In the ’t Hooft large N limit, g ∼ 1=N and the gap stays
finite. Therefore, unlike the SYK and tensor models, the
matrix model cannot exhibit quasiconformal behavior.

B. The SUðN1Þ × SUðN2Þ × Uð1Þ model

In [2] a class of complex tensor quantum mechanical
models with SUðN1Þ × SUðN2Þ ×OðN3Þ ×Uð1Þ sym-
metry was introduced. We will use the Hamiltonian

H ¼ gψ̄abcψ̄a0b0cψab0c0ψa0bc0 þ gðN1 − N2ÞQ
þ g
4
N1N2N3ðN1 − N2Þ; ð6:6Þ

where ψabc with a ¼ 1;…; N1, b ¼ 1;…; N2 and c ¼
1;…; N3 are complex fermions with anti-commutation
relations fψ̄abc;ψa0b0c0 g ¼ δaa0δbb0δcc0 . The second and
third terms were added to the Hamiltonian to make it
traceless and invariant under the charge conjugation sym-
metry, which interchanges ψabc and ψ̄abc. This means it is
invariant under Q → −Q, where Q is the Uð1Þ charge:

Q ¼ ψ̄abcψabc −
1

2
N1N2N3: ð6:7Þ

If we set N3 ¼ 1 we obtain a complex matrix model with
SUðN1Þ × SUðN2Þ × Uð1Þ symmetry6

H ¼ gψ̄abψ̄a0b0ψab0ψa0b þ gðN1 − N2ÞQ
þ g
4
N1N2ðN1 − N2Þ; ð6:8Þ

which is the subject of this section. Note that the index
contraction in the first term is different from those in (6.20);
the SUðN1Þ × SUðN2Þ ×Uð1Þ symmetry fixes it uniquely.
This matrix model has some features in common with the
OðN1Þ ×OðN2Þ from the previous section. In both of them
the energy is completely fixed by the quadratic Casimir
operators of the symmetry group factors. Also, neithermodel
contains states invariant under the entire symmetry group.
The SUðNiÞ charges with i ¼ 1, 2 are

Qα
1 ¼ ψ̄abðTα

1Þaa0ψa0b;

Qα
2 ¼ ψ̄abðTα

2Þbb0ψab0 ;

α ¼ 1; 2;…; N2
i − 1; ð6:9Þ

where we used the Hermitian SUðNiÞ generators Tα
i , i ¼ 1,

2, α ¼ 1;…; N2
i − 1, normalized in the standard fashion:

TrðTα
1T

β
1Þ ¼ TrðTα

2T
β
2Þ ¼

1

2
δαβ: ð6:10Þ

Using the completeness relation (no sum over i):

ðTα
i Þaa0 ðTα

i Þbb0 ¼
1

2

�
δab0δa0b −

1

Ni
δaa0δbb0

�
: ð6:11Þ

we find that the quadratic Casimirs of SUðN2Þ and
SUðN2Þ:

CSUðN1Þ
2 ¼ Qα

1Q
α
1 ¼

1

2
ψ̄abψ̄a0b0ψab0ψa0b þ

1

2
ðN1 − N2ÞQ

−
1

2N1

Q2 þ 1

8
N1N2ð2N1 − N2Þ;

CSUðN2Þ
2 ¼ Qα

2Q
α
2 ¼ −

1

2
ψ̄abψ̄a0b0ψab0ψa0b þ

1

2
ðN2 − N1ÞQ

−
1

2N2

Q2 þ 1

8
N1N2ð2N2 − N1Þ:

ð6:12Þ

Adding them, we obtain the constraint

CSUðN1Þ
2 þ CSUðN2Þ

2 ¼ N1 þ N2

2N1N2

�ðN1N2Þ2
4

−Q2

�
: ð6:13Þ

To have the singlets of SUðN1Þ and SUðN2Þ, we need the
RHS to vanish. This means that there are only two
SUðN1Þ × SUðN2Þ singlet states: the ones with Q ¼
� N1N2

2
. These are the oscillator vacuum j0i, which is

annihilated by all ψab, and the state j00i ¼ Q
a;bψ̄abj0i,

which is annihilated by all ψ̄ab.
The absence of singlets for other values of Q may be

seen explicitly as follows. The states with charge−N1N2

2
þm

have the form

ψ̄a1b1 ψ̄a2b2…ψ̄ambm j0i; ð6:14Þ

but there is no way to contract the indices of SUðN1Þ and of
SUðN2Þ; in contrast to theOðNÞ case, the tensor δa1a2 is not
available. If N1 ¼ N2 ¼ N there seems to be a state at level
N obtained by contracting (6.14) with ϵa1…aNϵb1…bN , but
this state vanishes due to the Fermi statistics.
Using (6.12) we can express the Hamiltonian (6.8) in

terms of the Casimirs:

H ¼ g

�
2CSUðN1Þ

2 þ 1

N1

Q2 −
1

4
N2

1N2

�
: ð6:15Þ

Therefore, all the states in the same representation of
SUðN1Þ × SUðN2Þ ×Uð1Þ are degenerate, which makes
this matrix model very simple. In Table V we list the
spectra of the Hamiltonian (6.8) for a few different values
of N1 and N2.

6This Hamiltonian is related to that in Sec. IV of [49] by
changing the coefficients of the second and third terms.

SPECTRA OF EIGENSTATES IN FERMIONIC TENSOR … PHYS. REV. D 97, 106023 (2018)

106023-13



C. The OðN1Þ × OðN2Þ × Uð1Þ model

Setting N3 ¼ 2 in the OðN1Þ ×OðN2Þ ×OðN3Þ sym-
metric tensor model (1.2) we find a complex matrix model
with OðN1Þ ×OðN2Þ ×Uð1Þ symmetry. This model has
some features in common with the SUðN1Þ × SUðN2Þ ×
Uð1Þ model discussed in the previous section; they possess
the same 2N1N2 dimensional Hilbert space. However, in the
present model the symmetry is broken toOðN1Þ ×OðN2Þ ×
Uð1Þ by the Hamiltonian. Although themodel is still exactly
solvable, it is quite interesting in that the energy is not
completely fixed by the quadratic Casimir operators of
OðN1Þ ×OðN2Þ ×Uð1Þ. Also, as we have seen in Sec. V,
for even N1 and N2 the model contains singlet states.
To construct theHilbert space,wedefine theoperators [44]

ψ̄ab¼
1ffiffiffi
2

p ðψab1þiψab2Þ; ψab¼
1ffiffiffi
2

p ðψab1−iψab2Þ;

fψ̄ab;ψ̄a0b0g¼fψab;ψa0b0g¼0; fψ̄ab;ψa0b0g¼δaa0δbb0 ;

ð6:16Þ

where a ¼ 1; 2;…N1 and b ¼ 1; 2…N2. In this basis, the
Oð2Þ charge is

Q ¼ 1

2
½ψ̄ab;ψab� ¼ ψ̄abψab −

1

2
N1N2;

½Q; ψ̄ab� ¼ ψ̄ab; ½Q;ψab� ¼ −ψab; ð6:17Þ
while the SOðN1Þ and SOðN2Þ charges are

Qaa0
1 ¼ iðψ̄abψa0b − ψ̄a0bψabÞ;

Qbb0
2 ¼ iðψ̄abψab0 − ψ̄ab0ψabÞ: ð6:18Þ

Squaring these charges,we find the following expressions for
quadratic Casimirs:

COðN1Þ
2 ¼ 1

2
Qaa0

1 Qaa0
1 ¼ ψ̄abψ̄ab0ψa0bψa0b0 þ ψ̄abψ̄a0b0ψab0ψa0b

þðN1−1Þ
�
Qþ1

2
N1N2

�
;

COðN2Þ
2 ¼ 1

2
Qbb0

2 Qbb0
2 ¼ ψ̄abψ̄a0bψab0ψa0b0 − ψ̄abψ̄a0b0ψab0ψa0b

þðN2−1Þ
�
Qþ1

2
N1N2

�
: ð6:19Þ

Setting k ¼ 1 in (3.12), we find that the traceless form of
the Hamiltonian is

H ¼ g
2
ðψ̄abψ̄ab0ψa0bψa0b0 − ψ̄abψ̄a0bψab0ψa0b0 Þ

þ g
8
N1N2ðN2 − N1Þ: ð6:20Þ

This Hamiltonian exhibits the charge conjugation sym-
metry which acts as ψ̄ab ↔ ψab. This means that states
with opposite eigenvalues of Q have the same energy.
There is a “Clifford vacuum” state, which satisfies

ψabj0i ¼ 0; Qj0i ¼ −
N1N2

2
j0i;

Hj0i ¼ g
8
N1N2ðN2 − N1Þj0i: ð6:21Þ

There is also the conjugate vacuum j00i ¼ Q
abψ̄abj0i

which satisfies

ψ̄abj00i ¼ 0; Qj00i ¼ N1N2

2
j00i;

Hj00i ¼ g
8
N1N2ðN2 − N1Þj00i: ð6:22Þ

Both of these states are invariant not only under
OðN1Þ ×OðN2Þ, but under the enhanced symmetry
OðN1N2Þ. It is interesting to note that the states j0i and
j00i saturate the energy bound (3.21). Indeed, substituting

N3 ¼ 2, COðN3Þ
2 ¼ Q2 ¼ ðN1N2Þ2=4, COðN1Þ

2 ¼ COðN2Þ
2 ¼ 0

into that equation we find jEj ≤ g
8
N1N2jN2 − N1j. In fact,

the bound obtained from (3.8) completely fixes the energy
to be g

8
N1N2ðN2 − N1Þ because the states are OðN1N2Þ

invariant and COðN1N2Þ
2 ¼ 0.

The states with vanishingOð2Þ chargeQ are obtained by
acting on j0i with N1N2

2
creation operators ψ̄ab. Then, to

insure that the state is also a singlet under
SOðN1Þ × SOðN2Þ, we have to contract the indices using
the invariant tensors ϵa1;…aN1

, δa1a2 and ϵb1;…bN2
, δb1b2 .

Some states invariant under SOðN1Þ × SOðN2Þ ×Oð2Þ are
listed in Appendix B 3.
For low values ofN1 andN2 it is possible to construct the

complete spectrum via direct numerical diagonalization. If
N1 ¼ N2 or if one or both Ni are equal to 2, the spectrum is
symmetric under E → −E due to the fact that the inter-
change of two OðNÞ groups send H → −H. For all other
values of Ni the spectrum is not symmetric under E → −E.
The results for some low values of N1, N2 are shown in
Table VI. For the Oð4Þ2 ×Oð2Þ model the spectrum is
plotted in Fig. 1.
A remarkable feature of the spectra is that all the

eigenvalues of 4H=g are integers. This suggests that this
fermionic matrix model is exactly solvable for any N1 and
N2. This is indeed the case, as we now show. The Hilbert

TABLE V. Spectra of the SUðN1Þ × SUðN2Þ ×Uð1Þ symmet-
ric matrix models.

ðN1; N2Þ (1,2) (1,3) (2,2) (2,3)
2
g Edegeneracy −12 −16 −43 −512

12 32 010 −316
43 112

320
94
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space can be constructed by repeatedly acting with ψ̄ab on
the vacuum state j0i. One can group the a, b indices into a
multi-index A, ranging from 1 to N1N2. The commutation
relations are invariant under the action of SUðN1N2Þ on the
Hilbert space, which preserves the commutation relations.
Let us notice that the first term of Hamiltonian (3.12) is

invariant under SUðN1Þ ×OðN2Þ × Uð1Þ, while the second
under OðN1Þ × SUðN2Þ ×Uð1Þ groups. Therefore, the full
Hamiltonian is invariant only under the action of OðN1Þ ×
OðN2Þ× group. The complete Hilbert space is transformed
under the SUðN1N2Þ group that can be split into SUðN1Þ ×
SUðN2Þ representations. In each representation R under
SUðN2Þ, operators Qα

2 act by matrices ðTα
2ÞR in the

corresponding representation R. In turn, these representa-
tions can be split into SOðN1Þ × SOðN2Þ irreducible
representations. Since the Hamiltonian has only SOðN1Þ ×
SOðN2Þ symmetry, all the states in such a representation
are degenerate (of course, not all the states in a given
SUðN1Þ × SUðN2Þ representation are in general
degenerate).
Now we take the difference between Eq. (6.19), and also

use the difference of equations (6.12), to find the following
nice expression for the Hamiltonian:

H ¼ −
g
2

�
2CSUðN1Þ

2 − 2CSUðN2Þ
2 − CSOðN1Þ

2 þ CSOðN2Þ
2

þ N2 − N1

N1N2

Q2 þ ðN2 − N1ÞQ
�

¼ −
g
2

�
4CSUðN1Þ

2 − CSOðN1Þ
2 þ CSOðN2Þ

2 þ 2

N1

Q2

þ ðN2 − N1ÞQ −
1

4
N1N2ðN1 þ N2Þ

�
; ð6:23Þ

where we used (6.13) to obtain the second line from the
first. Due to the CSOðNiÞ

2 terms, the spectrum is not
symmetric under SUðN1Þ × SUðN2Þ.
Using (6.23) we can show that the lowest singlet

saturates the energy bound (3.23), i.e. it is a ground state.
For a singlet, Q and the quadratic Casimir operators of
SOðN1Þ and SOðN2Þ vanish. To minimize the energy we
should take a state which has the greatest possible value of

CSUðN1Þ
2 allowed by (6.13). Thus, it has CSUðN1Þ

2 ¼
ðN1þN2ÞN1N2

8
and CSUðN2Þ

2 ¼ 0, i.e. it is invariant under
SOðN1Þ × SUðN2Þ ×Oð2Þ. Substituting this into (6.23)

TABLE VI. Spectra of the OðN1Þ ×OðN2Þ ×Oð2Þ models,
which were obtained by a direct matrix diagonalization of the
Hamiltonian (3.12) whose spectrum is traceless. If both N1 and
N2 are even, the ground state is nondegenerate and is therefore a
singlet.

ðN1; N2Þ (2,2) (2,3) (3,3) (2,4) (3,4) (4,4)
4
g Edegeneracy −81 −132 −206 −241 −346 −641

014 −76 −1618 −162 −2824 −4855
81 −32 −1216 −1216 −248 −40106

−122 −860 −823 −2276 −36256
122 −442 −416 −2040 −32810
32 0228 0140 −1814 −28256
76 442 416 −16152 −243250
132 860 823 −14168 −201024

1216 1216 −1240 −164985
1618 162 −10170 −123072
206 241 −8240 −88932

−6194 −43584
−4384 012874
−2270 43584
0248 88932
2640 123072
4384 164985
676 201024
8312 243250

10216 28256
1432 32810
16128 36256
18168 40106
2064 4855
2610 641
2824
306
382

FIG. 1. Spectrum of the Oð4Þ2 ×Oð2Þ model. There are four singlet states, and the stars mark their energies.
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we see that this state has E ¼ − g
8
ðN1 þ N2ÞN1N2, i.e. it

saturates the bound (3.23). This value of Casimir corre-
sponds to the rectangular Young diagram bN1=2c × N2 for
SUðN1Þ. Similarly, the singlet state with the highest

possible energy, E ¼ g
8
ðN1 þ N2ÞN1N2, has CSUðN2Þ

2 ¼
ðN1þN2ÞN1N2

8
and CSUðN1Þ

2 ¼ 0, i.e. it is invariant under
SUðN1Þ × SOðN2Þ ×Oð2Þ.
To calculate the energies of all states, we need to first

decompose the Hilbert space into SUðN1ÞL × SUðN2ÞR
representations and then, in turn, decompose these repre-
sentations into SOðN1ÞL × SOðN2ÞR representations. To
find which SUðN1ÞL × SUðN2ÞR representations ðL;RÞ we
have in the Hilbert space, we need to compute the following
integral over SUðN1ÞL × SUðN2ÞR:
multiplicityðL;RÞ

¼
Z

dU1dU2 exp

�X∞
n¼1

ð−1Þnþ1

n
TrUn

1TrU
n
2

�

× TrLU1TrRU2 ð6:24Þ
We can always put U1 and U2 in a diagonal form:
U1 ¼ diagðw1;…; wN1

Þ, U2 ¼ diagðq1;…; qN2
Þ. wi and

qi are corresponding SU holonomies, i.e. jwij ¼ jqij ¼ 1
and w1…wN1

¼ q1…qN2
¼ 1.

Actually, it is not necessary to compute the above
integral for various representations. It is very well-known
that characters of SUðN1Þ representations are Schur poly-
nomials TrLU1 ¼ χLðwÞ which form a basis in the space of
symmetric functions of N1 variables. This space also
contains the so-called power series polynomials TrUn

1 ¼
pnðwÞ ¼ wn

1 þ � � � þ wn
N1
. A conversion from power series

pn to χL can be easily done on a computer. For example,

ð6:25Þ

This suggests the following simple procedure yielding
the list of all representations directly. One expands the
exponent

exp

�X∞
n¼1

ð−1Þnþ1

n
xnTrUn

1TrU
n
2

�

¼ exp

�X∞
n¼1

ð−1Þnþ1

n
xnpnðwÞpnðqÞ

�
ð6:26Þ

in power series in x. Then at each level xk we have a
polynomial in plðwÞ and pmðqÞ. It can be reexpressed in
terms of Schur polynomials. This gives the list of repre-
sentations under SULðN1Þ × SURðN2Þ at level k, i.e. for
states where there are k raising operators ψ̄ acting on the
vacuum.

After finding the representations under SUðN1ÞL×
SUðN2ÞR, we need to decompose then in terms of
SOðN1ÞL × SOðN2ÞR representations. Recall that both
SU and SO representations are classified by Young dia-
grams. The only difference is that for SO representations
one has to subtract all the traces in each row, where indices
are symmetric. It means that if we want to extract SO
representations from a given SU representation λ, we need
to consecutively remove all possible pairs of boxes in each
row. The resulting sequence of Young diagrams give SO
representations.
Let us exhibit this method to find the spectrum of the

Oð2Þ3 model. We have the following representations under
SUð2ÞL × SUð2ÞR7:

2ð½1�; ½1�Þ þ 2ð½2�; ½2�Þ þ ð½1�; ½3�Þ þ ð½3�; ½1�Þ: ð6:27Þ

The [2] of SUð2Þ gives the spin 1 SOð2Þ representation,
whereas the [3] decomposes as ½3� ¼ 2þ 0. So we have the
following SOð2Þ × SOð2Þ representations:

2ð0; 0Þ þ 2ð1; 1Þ þ 2ð0; 0Þ þ ð0; 2Þ þ ð2; 0Þ: ð6:28Þ

The two states (0,0) coming from ([1], [3]) and ([3], [1])
have energies �2g, while all the other states have energy
zero. If we label the states by their Oð2Þ3 charges
ðQ1; Q2; Q3Þ, we find, in agreement with [43], that the
states with E ¼ �2g are (0,0,0), while the 14 zero-energy
states are

ð1; 1; 1Þ; ð0; 0; 2Þ; ð0; 2; 0Þ; ð2; 0; 0Þ; ð1; 1;−1Þ; ð1;−1; 1Þ;
ð−1; 1; 1Þ; ð−1;−1;−1Þ; ð0; 0;−2Þ; ð0;−2; 0Þ;
ð−2; 0; 0Þ; ð−1;−1; 1Þ; ð−1; 1;−1Þ; ð1;−1;−1Þ: ð6:29Þ

These states may be decomposed into irreducible repre-
sentations of the alternating group A3. For example, the
state with charges (1,1,1) is invariant under A3; the 3 states
with charges (0,0,2), (0,2,0), (2,0,0) can be combined into
an invariant combination and a dimension 2 representa-
tion; etc.
As a further check, in Appendix B 2 we calculate the

spectrum of the Oð3Þ ×Oð2Þ ×Oð2Þ model using this
method. The results for the energies and their degeneracies
agree with the direct diagonalization of the Hamiltonian,
whose results are assembled in Table VI. We also note that,
due to the charge conjugation symmetry, the energies and
representations at oscillator level n are the same as at
level N1N2 − n.

7Here we are using the notation multiplicity ð½dim�L; ½dim�RÞ
for the SUð2ÞL × SUð2ÞR representations and multiplicity
ðspinL; spinRÞ for SOð2ÞL × SOð2ÞR representations. For non-
zero spin J, the SOð2Þ representation is two-dimensional and
includes the states with SOð2Þ charge Q ¼ �J.
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APPENDIX A: THE EIGENVALUES OF THE
QUADRATIC CASIMIR OPERATOR

In this Appendix we describe the value of quadratic
Casimir operator for the representations of OðNÞ and
SUðNÞ groups in terms of Young diagrams. To extract
the irreducible representation corresponding to a Young
diagram from a generic tensor, we first fill in the boxes with
this tensor indices, then we symmetrize over the indexes in
the rows and after that antisymmetrize the indexes in the
columns. In the case of the orthogonal group we addition-
ally subtract all possible traces from the tensor.
For the representation of the group OðNÞ that is

described by the Young diagram Y with row lengths λi,
the quadratic Casimir operator is equal to

COðNÞ;Y
2 ¼

XbN=2c

i¼1

λiðλi þ N − 2iÞ ðA1Þ

The dimension of this representation reads as:

dimλ¼
1

hλ

Yk
i¼1

ðλiþN−k− i−1Þ!
ðN− iÞ!

Yi
j¼1

ðλiþλjþN− i− jÞ

ðA2Þ

where hλ is the product of all hook lengths. For each box
the hook length is defined as:

ðhook lengthÞ ¼ ðnumber of boxes to the rightÞ
þ ðnumber of boxes belowÞ þ 1 ðA3Þ

The following lemma will be useful for studying the matrix
models. Let us consider two groups Oð2nÞ and Oð2mÞ and
Young diagram Yn for group Oð2nÞ such that the length
of the rows is less then m. There is a maximal Young
diagram—a rectangular n ×m, that we shall denote as
Yn×m. We would like to consider a specific Young diagram
Ym ¼ ðYn×m=YnÞT for a group Oð2mÞ, where T stands for
transposition. Then

CYn
2 þ CYm

2 ¼ n2mþ nm2 − nm: ðA4Þ

The proof goes as follows. Let λi be the length of rows of
the diagram Yn, we introduce λ0 ¼ m, λnþ1 ¼ 0. Then

CYn
2 ¼

Xn
i¼1

λiðλi þ 2ðn − iÞÞ ðA5Þ

The value of Casimir operator of CYm
2 can be expressed as

the following. The difference λi − λiþ1 is just equal to the
number of the rows that has length n − i. Then

CYm
2 ¼

Xn
i¼0

½ðλi − λiþ1Þðn − iÞ2

þ ðn − iÞðλ2i − λ2iþ1 − λi þ λiþ1Þ� ðA6Þ

After that it is easy to see

CYm
2 ¼ mn2 þ nm2 − nm −

Xn
i¼0

λiðλi þ 2ðn − iÞÞ ðA7Þ

So eventually it gives us

CYm
2 þ CYn

2 ¼ mn2 þ nm2 − nm: ðA8Þ

Wewill call the representation with Young diagram Yn×m to
be maximal and for OðNÞ group the dimension
is dimmax ∼nm

2=2.
We will also need an explicit expression for the quadratic

Casimir of SUðNÞ. For a Young diagram Y with row
lengths λi, column lengths μj and total number of boxes b it
is given by:

CSUðNÞ;Y
2 ¼ 1

2
N

�
bN þ

X
λ2i −

X
μ2j −

b2

N

	
: ðA9Þ

APPENDIX B: EXAMPLES OF ENERGY
SPECTRA IN THE MATRIX MODELS

1. The OðN1Þ × OðN2Þ model for small N1, N2

Let us list the allowed representations for some low
values of N1 and N2. For Oð2Þ we label the representations
by the integer charge Q so that the quadratic Casimir

COð2Þ
2 ¼ Q2; for Oð3Þ by spin j so that COð3Þ

2 ¼ jðjþ 1Þ;
for Oð4Þ ∼ SUð2Þ × SUð2Þ by spins ðj1; j2Þ so that

COð4Þ
2 ¼ 2j1ðj1 þ 1Þ þ 2j2ðj2 þ 1Þ.
For the Oð2Þ ×Oð2Þ model we find 2 states with

4E=g ¼ −1 with charges ð�1; 0Þ and 2 states with 4E=g ¼
1 with charges ð0;�1Þ.
For the Oð2Þ ×Oð3Þ model we find 6 states with

4E=g ¼ −1 which have SOð3Þ spin 1 and SOð2Þ charges
�1=2; and 2 states with 4E=g ¼ 3 which have SOð3Þ spin
0 and SOð2Þ charges �3=2.
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For the Oð3Þ ×Oð3Þ model we find 8 states with
4E=g ¼ −3 which have spins ð1=2; 3=2Þ; and 8 states with
4E=g ¼ 3 which have spins ð3=2; 1=2Þ (note the appear-
ance of half-integral spins which correspond to spinorial
representations).
For the Oð2Þ ×Oð4Þ model we find 6 states with

4E=g ¼ −2 which have SOð2Þ charge zero and are in
the SOð4Þ representation ð1; 0Þ þ ð0; 1Þ; 8 states with E ¼
0 which have SOð2Þ charges �1 and are in the SOð4Þ
representation ð1=2; 1=2Þ; and 2 states with 4E=g ¼ 6
which have SOð2Þ charges �2 and are SOð4Þ singlets.
For the Oð3Þ ×Oð4Þ model we find 8 states with

4E=g ¼ −6 which have SOð3Þ spin zero and are in the
SOð4Þ representation ð3=2; 0Þ þ ð0; 3=2Þ; 36 states with
4E=g ¼ −2 which have SOð3Þ spin 1 and are in the SOð4Þ
representation ð1=2; 1Þ þ ð1; 1=2Þ; and 20 states with
4E=g ¼ 6 which have SOð3Þ spin 2 and are in the
SOð4Þ representation ð1=2; 0Þ þ ð0; 1=2Þ.
For theOð4Þ ×Oð4Þmodel we find 10 ground states with

4E=g ¼ −12 which are SOð4Þ1 singlets and are in the
SOð4Þ2 representation ð2; 0Þ þ ð0; 2Þ; 64 stateswith4E=g ¼
−6which are in SOð4Þ1 representation ð1=2; 1=2Þ and in the
SOð4Þ2 representation ð1=2; 3=2Þ þ ð3=2; 1=2Þ; etc.
For the Oð6Þ ×Oð6Þ model we find 84 ground states

with 4E=g ¼ −45 which are SOð6Þ1 singlets and are in the
SOð6Þ2 representation whose Young diagram is a 3 × 3
square. The first excited state has 4E=g ¼ −35; it trans-
forms as a vector of SOð6Þ1 and in the representation of
SOð6Þ2 whose Young diagram has 3 boxes in the first row,
3 in the second row, and 2 in the third row.
Due to the relation (A4) we can state the general

correspondence between the representations of OðN1Þ ×
OðN2Þ if N1 and N2 are even. If the state is described by
representation Y1 for the group OðN1Þ, then it has the
representation ðYN1=2×N2=2=Y1ÞT for the second group
OðN2Þ.

2. The Oð2Þ × Oð3Þ × Uð1Þ model

As was described in the main text, first we have to find
SUð2Þ × SUð3Þ representations and then decompose into
SOð2Þ × SOð3Þ irreducible representations. After that we
can directly apply the exact formula (6.23) for the energy.
Let us list the explicit form of quadratic Casimirs. For

SOð2Þ the quadratic Casimir is simply Q2, where Q is the
charge. For SUð2Þ and SOð3Þ it equals jðjþ 1Þ where j is
spin [an integer for SOð3Þ and half-integer for SUð2Þ]. For
SUð3Þ the quadratic Casimir in our normalization reads as:

CSUð3Þ
2 ðλÞ ¼ 1

2

�
l21 þ l22 −

1

3
ðl1 þ l2Þ2 þ 2l1

�
; ðB1Þ

where l1 > l2 > … are the row lengths of the Young
diagram λ defining the representation λ. For example,

CSUð3Þ
2 ð□Þ ¼ 4

3
, , and

(the last one is the adjoint representation).

The spectrum can be found in Table VII; it coincides
with the one in Table VI.

3. Explicit form of some singlet states

The construction of singlet states for the OðN1Þ ×
OðN2Þ ×OðN3Þ tensor quantum mechanics is in general
a difficult problem, but it simplifies when one of the groups
is Oð2Þ. The singlet states, which exist only when N1 and
N2 are even, may sometimes be written down by inspection
in the oscillator basis. In this basis, in addition to the
manifest SOðN1Þ × SOðN2Þ symmetry, there is manifest
discrete Z2 × Z2 parity symmetry contained inside
OðN1Þ ×OðN2Þ.
For example, for the Oð2Þ3 model there are only two

singlet states

ϵa1a2δb1b2 ψ̄a1b1 ψ̄a2b2 j0i; ϵb1b2δa1a2 ψ̄a1b1 ψ̄a2b2 j0i; ðB2Þ

since due to the Fermi statistics the other two invariant
contractions vanish. Under the Z2 × Z2 symmetry these
states are ð−;þÞ and ðþ;−Þ, respectively. In agreement
with section VI C, one of these states is invariant
under SUð2Þ × SOð2Þ × SOð2Þ, while the other under
SOð2Þ × SUð2Þ × SOð2Þ.
Generalizing to any OðN1Þ ×Oð2Þ2 model with even

N1, we again find only two singlet states. They may be
written as

ϵa1;…aN1
δb1b2…δbN1−1bN1

ψ̄a1b1…ψ̄aN1
bN1

j0i;
ðϵb1b2δa1a2 ψ̄a1b1 ψ̄a2b2ÞN1=2j0i: ðB3Þ
One of these states is invariant under SUðN1Þ × SOð2Þ×
SOð2Þ, while the other under SOðN1Þ × SUð2Þ × SOð2Þ.

TABLE VII. Energy spectrum of the Oð2Þ ×Oð3Þ ×Oð2Þ
model. Due to the charge conjugation symmetry for the last
Oð2Þ charge, the energies and representations are invariant under
transformation level → 6 − level.

Level SUð2Þ × SUð3Þ irrep SOð2Þ × SOð3Þ irrep 4
g Energy

0 ∅ ×∅ ∅ ×∅ 3
1 □ ×□ □ ×□ 1
2 −1
2 ∅ ×□ 7
2 −1
2 ∅ ×∅ −13
3 1
3 □ ×□ −7
3 −3
3 □ ×∅ 13
4 ∅ ×∅ −13
4 −1
4 ∅ ×□ 7
4 −1
5 □ ×□ □ ×□ 1
6 ∅ ×∅ ∅ ×∅ 3
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For the Oð4Þ2 ×Oð2Þ model there are 4 singlet states

ϵa1a2a3a4ϵa5a6a7a8δb1b5…δb4b8 ψ̄a1b1…ψ̄a8b8 j0i;
ϵb1b2b3b4ϵb5b6b7b8δa1a5…δa4a8 ψ̄a1b1…ψ̄a8b8 j0i;
ðϵa1a2a3a4δb1b2δb3b4 ψ̄a1b1…ψ̄a4b4Þ

× ðδa5a6δa7a8δb5b7δb6b8 ψ̄a5b5…ψ̄a8b8Þj0i;
ðϵb1b2b3b4δa1a2δa3a4 ψ̄a1b1…ψ̄a4b4Þ

× ðδb5b6δb7b8δa5a7δa6a8 ψ̄a5b5…ψ̄a8b8Þj0i: ðB4Þ

The first pair of states have energies E ¼ �16g, saturating
the energy bound (3.10). One of these states is invariant
under SUð4Þ ×Oð4Þ ×Oð2Þ, while the other under
Oð4Þ × SUð4Þ ×Oð2Þ. The second pair of states have
energies E ¼ �4g.
Defining the antisymmetric matrix Mb1b2 ¼ ψ̄ab1 ψ̄ab2 ,

we can write the first two states as

�
trM4 � 1

2
ðtrM2Þ2

�
j0i ðB5Þ

By analogy with (B5), for N a multiple of 4 we may
build a set of states by acting on j0i with traces of powers
of M. For example, for N ¼ 8 we can act with trM16,
trM2trM14, etc. The number of such terms is Pð8Þ, i.e. the
number of partitions of 8 into positive integers, and
Pð8Þ ¼ 22. For Oð12Þ2 ×Oð2Þ the number of such terms
is Pð18Þ ¼ 385. However, these terms are not linearly
independent, so this should be regarded as an upper bound
on the number of invariant states.
More generally, for OðNÞ2 ×Oð2Þ with N a multiple of

4, this upper bound is PðN2=8Þ, which grows exponentially
with N:

PðN2=8Þ → 2

N2
ffiffiffi
3

p exp

�
πN

2
ffiffiffi
3

p
�
: ðB6Þ

[1] E. Witten, An SYK-like model without disorder,
arXiv:1610.09758.

[2] I. R. Klebanov and G. Tarnopolsky, Uncolored random
tensors, melon diagrams, and the Sachdev-Ye-Kitaev mod-
els, Phys. Rev. D 95, 046004 (2017).

[3] R. Gurau, Colored group field theory, Commun. Math.
Phys. 304, 69 (2011).

[4] R. Gurau and V. Rivasseau, The 1/N expansion of colored
tensor models in arbitrary dimension, Europhys. Lett. 95,
50004 (2011).

[5] R. Gurau, The complete 1/N expansion of colored tensor
models in arbitrary dimension, Ann. Henri Poincare 13, 399
(2012).

[6] V. Bonzom, R. Gurau, A. Riello, and V. Rivasseau, Critical
behavior of colored tensor models in the large N limit, Nucl.
Phys. B853, 174 (2011).

[7] A. Tanasa, Multi-orientable group field theory, J. Phys. A
45, 165401 (2012).

[8] V. Bonzom, R. Gurau, and V. Rivasseau, Random tensor
models in the large N limit: Uncoloring the colored tensor
models, Phys. Rev. D 85, 084037 (2012).

[9] S. Dartois, V. Rivasseau, and A. Tanasa, The 1=N expansion
of multi-orientable random tensor models, Ann. Henri
Poincare 15, 965 (2014).

[10] S. Carrozza and A. Tanasa, OðNÞ random tensor models,
Lett. Math. Phys. 106, 1531 (2016).

[11] R. Gurau, The complete 1=N expansion of a SYK–like
tensor model, Nucl. Phys. B916, 386 (2017).

[12] R. Gurau and J. P. Ryan, Colored tensor models—a review,
SIGMA 8, 020 (2012).

[13] A. Tanasa, The multi-orientable random tensor model,
a review, SIGMA 12, 056 (2016).

[14] R. Gurau, Invitation to random tensors, SIGMA 12, 094
(2016).

[15] A. Almheiri and J. Polchinski, Models of AdS2 backreaction
and holography, J. High Energy Phys. 11 (2015) 014.

[16] J. Maldacena, D. Stanford, and Z. Yang, Conformal sym-
metry and its breaking in two dimensional nearly anti-
de-Sitter space, Prog. Theor. Exp. Phys. (2016) 12C104.

[17] J. Engelsoy, T. G. Mertens, and H. Verlinde, An investiga-
tion of AdS2 backreaction and holography, J. High Energy
Phys. 07 (2016) 139.

[18] K. Jensen, Chaos in AdS2 Holography, Phys. Rev. Lett. 117,
111601 (2016).

[19] J. M. Maldacena, The large N limit of superconformal field
theories and supergravity, Int. J. Theor. Phys. 38, 1113
(1999); Adv. Theor. Math. Phys. 2, 231 (1998).

[20] S. S. Gubser, I. R. Klebanov, and A.M. Polyakov, Gauge
theory correlators from noncritical string theory, Phys. Lett.
B 428, 105 (1998).

[21] E. Witten, Anti-de Sitter space and holography, Adv. Theor.
Math. Phys. 2, 253 (1998).

[22] S. Sachdev and J. Ye, Gapless Spin Fluid Ground State in a
Random, Quantum Heisenberg Magnet, Phys. Rev. Lett. 70,
3339 (1993).

[23] O. Parcollet and A. Georges, Non-Fermi-liquid regime of a
doped Mott insulator, Phys. Rev. B 59, 5341 (1999).

[24] A. Georges, O. Parcollet, and S. Sachdev, Mean Field
Theory of a Quantum Heisenberg Spin Glass, Phys. Rev.
Lett. 85, 840 (2000).

[25] A. Kitaev, A simple model of quantum holography,
http://online.kitp.ucsb.edu/online/entangled15/kitaev/,
http://online.kitp.ucsb.edu/online/entangled15/kitaev2/.
Talks at KITP, April 7, 2015 and May 27, 2015.

SPECTRA OF EIGENSTATES IN FERMIONIC TENSOR … PHYS. REV. D 97, 106023 (2018)

106023-19

http://arXiv.org/abs/1610.09758
https://doi.org/10.1103/PhysRevD.95.046004
https://doi.org/10.1007/s00220-011-1226-9
https://doi.org/10.1007/s00220-011-1226-9
https://doi.org/10.1209/0295-5075/95/50004
https://doi.org/10.1209/0295-5075/95/50004
https://doi.org/10.1007/s00023-011-0118-z
https://doi.org/10.1007/s00023-011-0118-z
https://doi.org/10.1016/j.nuclphysb.2011.07.022
https://doi.org/10.1016/j.nuclphysb.2011.07.022
https://doi.org/10.1088/1751-8113/45/16/165401
https://doi.org/10.1088/1751-8113/45/16/165401
https://doi.org/10.1103/PhysRevD.85.084037
https://doi.org/10.1007/s00023-013-0262-8
https://doi.org/10.1007/s00023-013-0262-8
https://doi.org/10.1007/s11005-016-0879-x
https://doi.org/10.1016/j.nuclphysb.2017.01.015
https://doi.org/10.3842/SIGMA.2012.020
https://doi.org/10.3842/SIGMA.2016.056
https://doi.org/10.3842/SIGMA.2016.094
https://doi.org/10.3842/SIGMA.2016.094
https://doi.org/10.1007/JHEP11(2015)014
https://doi.org/10.1093/ptep/ptw124
https://doi.org/10.1007/JHEP07(2016)139
https://doi.org/10.1007/JHEP07(2016)139
https://doi.org/10.1103/PhysRevLett.117.111601
https://doi.org/10.1103/PhysRevLett.117.111601
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.1016/S0370-2693(98)00377-3
https://doi.org/10.1016/S0370-2693(98)00377-3
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.1103/PhysRevLett.70.3339
https://doi.org/10.1103/PhysRevLett.70.3339
https://doi.org/10.1103/PhysRevB.59.5341
https://doi.org/10.1103/PhysRevLett.85.840
https://doi.org/10.1103/PhysRevLett.85.840
http://online.kitp.ucsb.edu/online/entangled15/kitaev/
http://online.kitp.ucsb.edu/online/entangled15/kitaev/
http://online.kitp.ucsb.edu/online/entangled15/kitaev/
http://online.kitp.ucsb.edu/online/entangled15/kitaev/
http://online.kitp.ucsb.edu/online/entangled15/kitaev2/


[26] J. Polchinski and V. Rosenhaus, The spectrum in the
Sachdev-Ye-Kitaev model, J. High Energy Phys. 04 (2016)
001.

[27] J. Maldacena and D. Stanford, Comments on the Sachdev-
Ye-Kitaev model, Phys. Rev. D 94, 106002 (2016).

[28] A. Jevicki, K. Suzuki, and J. Yoon, Bi-local holography
in the SYK model, J. High Energy Phys. 07 (2016)
007.

[29] D. J. Gross and V. Rosenhaus, A generalization of Sachdev-
Ye-Kitaev, J. High Energy Phys. 02 (2017) 093.

[30] V. Bonzom, L. Lionni, and A. Tanasa, Diagrammatics of a
colored SYK model and of an SYK-like tensor model,
leading and next-to-leading orders, J. Math. Phys. (N.Y.) 58,
052301 (2017).

[31] I. R. Klebanov and G. Tarnopolsky, On large N limit of
symmetric traceless tensor models, J. High Energy Phys. 10
(2017) 037.

[32] F. Ferrari, V. Rivasseau, and G. Valette, A new large N
expansion for general matrix-tensor models, arXiv:
1709.07366.

[33] D. Benedetti and R. Gurau, 2PI effective action for the SYK
model and tensor field theories, arXiv:1802.05500.

[34] K. Bulycheva, I. R. Klebanov, A. Milekhin, and G.
Tarnopolsky, Spectra of operators in large N tensor models,
Phys. Rev. D 97, 026016 (2018).

[35] S. Choudhury, A. Dey, I. Halder, L. Janagal, S. Minwalla,
and R. Poojary, Notes on Melonic SOðNÞq−1 Tensor
Models, arXiv:1707.09352.

[36] M. Beccaria and A. A. Tseytlin, Partition function of free
conformal fields in 3-plet representation, J. High Energy
Phys. 05 (2017) 053.

[37] S. Sachdev, Bekenstein-Hawking Entropy and Strange
Metals, Phys. Rev. X 5, 041025 (2015).

[38] A. M. Garca-Garca and J. J. M. Verbaarschot, Spectral and
thermodynamic properties of the Sachdev-Ye-Kitaev model,
Phys. Rev. D 94, 126010 (2016).

[39] J. S. Cotler, G. Gur-Ari, M. Hanada, J. Polchinski, P. Saad,
S. H. Shenker, D. Stanford, A. Streicher, and M. Tezuka,
Black holes and random matrices, J. High Energy Phys. 05
(2017) 118.

[40] C. Krishnan, S. Sanyal, and P. N. Bala Subramanian,
Quantum chaos and holographic tensor models, J. High
Energy Phys. 03 (2017) 056.

[41] I. Klebanov, D. Roberts, D. Stanford, and G. Tarnopolsky
(unpublished).

[42] C. Krishnan, K. V. P. Kumar, and S. Sanyal, Random
matrices and holographic tensor models, J. High Energy
Phys. 06 (2017) 036.

[43] S. Chaudhuri, V. I. Giraldo-Rivera, A. Joseph, R.
Loganayagam, and J. Yoon, Abelian tensor models on
the lattice, Phys. Rev. D 97, 086007 (2018).

[44] C. Krishnan and K. V. P. Kumar, Towards a finite-N holo-
gram, J. High Energy Phys. 10 (2017) 099.

[45] C. Krishnan, K. V. Pavan Kumar, and D. Rosa, Contrasting
SYK-like models, J. High Energy Phys. 01 (2018) 064.

[46] C. Krishnan and K. V. Pavan Kumar, Exact solution of a
strongly coupled gauge theory in 0þ 1 dimensions, arXiv:
1802.02502.

[47] F. Ferrari, The large D limit of planar diagrams, arXiv:
1701.01171.

[48] T. Azeyanagi, F. Ferrari, P. Gregori, L. Leduc, and G.
Valette, More on the new large D limit of matrix models,
arXiv:1710.07263.

[49] D. Anninos and G. A. Silva, Solvable quantum Grassmann
matrices, J. Stat. Mech. 04 (2017) 043102.

[50] A. Kitaev, Periodic table for topological insulators and
superconductors, AIP Conf. Proc. 1134, 22 (2009).

[51] J. Yoon, SYK models and SYK-like tensor models
with global symmetry, J. High Energy Phys. 10 (2017) 183.

[52] O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas, and
M. Van Raamsdonk, The Hagedorn-deconfinement phase
transition in weakly coupled large N gauge theories, Adv.
Theor. Math. Phys. 8, 603 (2004).

[53] S. Elitzur, Y. Frishman, E. Rabinovici, and A. Schwimmer,
Origins of global anomalies in quantum mechanics, Nucl.
Phys. B273, 93 (1986).

[54] M. Tierz, Polynomial solution of quantum Grassmann
matrices, J. Stat. Mech. 05 (2017) 053203.

[55] D. Anninos, F. Denef, and R. Monten, Grassmann matrix
quantum mechanics, J. High Energy Phys. 04 (2016) 138.

KLEBANOV, MILEKHIN, POPOV, and TARNOPOLSKY PHYS. REV. D 97, 106023 (2018)

106023-20

https://doi.org/10.1007/JHEP04(2016)001
https://doi.org/10.1007/JHEP04(2016)001
https://doi.org/10.1103/PhysRevD.94.106002
https://doi.org/10.1007/JHEP07(2016)007
https://doi.org/10.1007/JHEP07(2016)007
https://doi.org/10.1007/JHEP02(2017)093
https://doi.org/10.1063/1.4983562
https://doi.org/10.1063/1.4983562
https://doi.org/10.1007/JHEP10(2017)037
https://doi.org/10.1007/JHEP10(2017)037
http://arXiv.org/abs/1709.07366
http://arXiv.org/abs/1709.07366
http://arXiv.org/abs/1802.05500
https://doi.org/10.1103/PhysRevD.97.026016
http://arXiv.org/abs/1707.09352
https://doi.org/10.1007/JHEP05(2017)053
https://doi.org/10.1007/JHEP05(2017)053
https://doi.org/10.1103/PhysRevX.5.041025
https://doi.org/10.1103/PhysRevD.94.126010
https://doi.org/10.1007/JHEP05(2017)118
https://doi.org/10.1007/JHEP05(2017)118
https://doi.org/10.1007/JHEP03(2017)056
https://doi.org/10.1007/JHEP03(2017)056
https://doi.org/10.1007/JHEP06(2017)036
https://doi.org/10.1007/JHEP06(2017)036
https://doi.org/10.1103/PhysRevD.97.086007
https://doi.org/10.1007/JHEP10(2017)099
https://doi.org/10.1007/JHEP01(2018)064
http://arXiv.org/abs/1802.02502
http://arXiv.org/abs/1802.02502
http://arXiv.org/abs/1701.01171
http://arXiv.org/abs/1701.01171
http://arXiv.org/abs/1710.07263
https://doi.org/10.1088/1742-5468/aa668f
https://doi.org/10.1063/1.3149495
https://doi.org/10.1007/JHEP10(2017)183
https://doi.org/10.4310/ATMP.2004.v8.n4.a1
https://doi.org/10.4310/ATMP.2004.v8.n4.a1
https://doi.org/10.1016/0550-3213(86)90042-8
https://doi.org/10.1016/0550-3213(86)90042-8
https://doi.org/10.1088/1742-5468/aa6c84
https://doi.org/10.1007/JHEP04(2016)138

