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This work completes the classification of the cubic vertices for arbitrary-spin massless bosons in three
dimensions started in a previous companion paper by constructing parity-odd vertices. Similarly to the
parity-even case, there is a unique parity-odd vertex for any given triple s1 ≥ s2 ≥ s3 ≥ 2 of massless
bosons if the triangle inequalities are satisfied (s1 < s2 þ s3) and none otherwise. These vertices involve
two (three) derivatives for odd (even) values of the sum s1 þ s2 þ s3. A nontrivial relation between parity-
even and parity-odd vertices is found. Similarly to the parity-even case, the scalar and Maxwell matter can
couple to higher spins through current couplings with higher derivatives. We comment on possible lessons
for two-dimensional conformal field theory. We also derive both parity-even and parity-odd vertices with
Chern-Simons fields and comment on the analogous classification in two dimensions.
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I. INTRODUCTION

The present paper is meant to complete the program set
out in Ref. [1], concerning the classification of cubic
interactions for massless bosons in three space-time dimen-
sions. In perspective, the hope is that this work will lead to a
full nonlinear action formulation for higher-spin systems
coupled with matter in d ¼ 3.
Higher-spin (HS) gravity [2,3] is one of the promising

attempts at the reconciliation of quantum theory and
General Relativity. Conjectured dualities with known
conformal field theories (CFTs) (see Refs. [4–7] and
references therein) put various models of HS gravity in
the front line of holographic studies of quantum gravity.
A simple and promising example of holographic duality is
the AdS3=CFT2 conjecture of Ref. [4]. One of the main
drawbacks of these models is, however, the lack of a bulk
description suitable for quantization. This problem in
particular is attacked through the so-called Fronsdal
program—a perturbative construction of classical action
for HS gravity models by applying the Noether method to
the gauge symmetries of massless HS fields. The starting

point is the free Fronsdal action for massless fields of any
spin [8]. The interacting theories can be constructed order
by order in powers of the fields, starting from the first
nontrivial order—cubic vertices. The latter are the main
building blocks of most of the known interacting theories.
Cubic interactions of massless higher-spin fields in

arbitrary space-time dimensions d ≥ 4 were studied exten-
sively starting from the pioneering work [9], later extended
to the complete light-cone gauge classification of vertices
first in four dimensions [10] and then in arbitrary dimen-
sions d ≥ 4 [11]. The covariant approach has been devel-
oped more slowly compared to the light-cone approach,
and after seminal works of the same period
[12,13], the Fronsdal program [8] was revived again in
the current millennium (see Refs. [14–21] and references
therein), resulting in the classification of parity-even cubic
vertices in Minkowski space of any dimension d ≥ 4 [22],
i.e., the covariant extension of Ref. [11]. These vertices
were packed into surprisingly compact generating func-
tions [23–26], with intriguing hints on possible relations
with string theory, and the studies of their (A)dS extensions
followed [27–29] in parallel with Vasiliev’s framelike
approach [30–32] to (anti-)de Sitter [(A)dS] vertices.
Even though the light-cone classification has been

known for long time, the full covariant classification in
four dimensions was completed only recently in Ref. [33],
where the parity-odd vertices in d ¼ 4 were derived.
A notable difference between covariant and light-cone
vertices in four dimensions is the existence of a two-
derivative “minimal” coupling to gravity in the light cone,
which is absent in the covariant classification. It is tempting
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to speculate that in four dimensions symmetric tensor fields
may not constitute a perfect choice for minimal covariant
variables for describing flat space theories and possibly
even for the ðAÞdS4 Vasiliev theory. The possibility of
describing the same spectrum of particles with an alter-
native choice of “minimal variables,” i.e., mixed-symmetry
tensors, are poorly explored despite the fact that Vasiliev
system contains these tensors on the same footing as the
symmetric ones (see, however, Refs. [34,35] and references
therein). Indeed, these extra light-cone vertices are crucial
for the consistency of the HS theories in four-dimensional
Minkowski space [36] (see also Refs. [33,37–40]). The
absence of corresponding covariant couplings in d ≥ 4 is
known as the Aragone-Deser problem [41], which is
resolved in constant nonzero curvature (A)dS space-times
by the Fradkin-Vasiliev mechanism [13] (see Refs. [18,42]
for related discussion).
The covariant classification of cubic vertices in Ref. [22]

not only completed the light-cone vertices of Metsaev [11]
to off-shell ones for Fronsdal fields but also defined a
scheme of field redefinitions in a given cubic action to bring
it to the form containing not more than s1 þ s2 þ s3
derivatives. This form does not contain any contraction
between derivatives and is uniquely defined. We refer to it
as a vertex in the Metsaev basis. This was implemented
later in Refs. [43,44] for translating the quadratic order of
the Vasiliev equations in ðAÞdS4, corresponding to the
cubic action, to the Metsaev basis in metric formulation,
that is, AdS extensions of Minkowski vertices for
each number of derivatives Δ ¼ s1 þ s2 þ s3 − 2n for
n ¼ 0; 1;…;minfs1; s2; s3g.
Attempts for going beyond cubic order [23,45–49] have

met difficulties in the framework of local field theory. An
interesting suggestion for a possibility of a nonlocal theory
with conformal symmetry has been made in Ref. [49],
which calls for further studies.
Another interesting recent development is the progress

in the holographic reconstruction [50–52] of type A HS
theory in AdSdþ1. Together with the aforementioned
attempts of construction of a quartic order action via the
Noether procedure, these results brought to the forefront of
HS research the puzzle of locality, which, to our best
knowledge, was first posed sharply for three-dimensional
systems in Ref. [3]. One may hope that the key to the
solution of this puzzle can be found more easily in the
three-dimensional case by applying recently obtained
knowledge of the metriclike theory. Unfortunately, most
of the aforementioned advances in higher-dimensional HS
gravities are not directly applicable to three-dimensional
models. This is due to the heavy use of the Metsaev basis of
cubic interactions in higher dimensions that does not apply
to d ¼ 3. In order to make use of new results in metriclike
HS gravity also for the three-dimensional models, one first
needs to address the gap in the classification of cubic
vertices. In this paper, we continue the study aimed at

filling this gap initiated in Ref. [1], where parity-even cubic
vertices of massless bosons were classified. We complete
the three-dimensional classification of cubic interactions
deriving parity-odd vertices for massless bosonic fields as
well as their couplings to Chern-Simons fields. We also
elaborate on the analogous classification in two dimensions
in the Appendix.
Despite all the successes of the three-dimensional HS

gravities (see Refs. [3,53–56] and references therein), there
is no action formulation (see, however, Ref. [57] and
references therein for nonstandard actions) for the only
known example of higher-spin theory with propagating
degrees of freedom (d.o.f.) in three dimensions, i.e.,
Prokushkin-Vasiliev theory [3]. This theory contains scalar
d.o.f. interacting with higher-spin gauge fields which do
not carry propagating d.o.f. in the bulk. The Chern-Simons
formulation of HS gravity in three dimensions does not
answer the question of whether a Lagrangian for the
Prokushkin-Vasiliev theory exists. This question may be
tackled in the metriclike formulation where scalar and
gauge fields can be put into interaction in a straightforward
manner. This approach is much less explored in three
dimensions though, with the exception of a few works on
higher spins in the Fronsdal formulation [58–60].
S-matrix methods do not apply to three dimensions

where massless particles of spin s ≥ 2 do not propagate.
For the same reason, Metsaev’s light-cone classification
[11] does not work in three dimensions. The part of the
cubic vertices that contains no divergences and traces, i.e.,
traceless-transverse (TT) vertices, are nontrivial, though,
as shown in Ref. [1], and can serve as the basis for the
classification of cubic interactions of massless fields in
three dimensions.
The main difference between dimensions d≥5 and d ≤ 4

for the cubic interactions of massless symmetric HS
fields is the existence of dimension-dependent identities
(Schouten identities) that are available in the latter case.
Due to these identities, the classification of cubic vertices in
three dimensions becomes a completely independent prob-
lem which overlaps with the generic dimensional classi-
fication only for some vertices involving lower-spin fields.
The classification of d ¼ 3 vertices was initiated in
Ref. [1] where the parity-even vertices for interactions of
massless bosons were derived. In this work, we complete
the classification, adding to it the parity-odd vertices of
massless bosons as well as their interactions with Chern-
Simons vector fields.
The paper is organized as follows. In Sec. II, we review

the metriclike formulation of free HS fields. In Sec. III, we
review the construction of cubic vertices in higher dimen-
sions and the parity-even vertices in three dimensions. In
Sec. IV, we derive the full list of parity-odd cubic vertices
of massless bosons in three dimensions and establish an
interesting relation between parity-odd and parity-even
vertices. In Sec. V, we study interactions of massless fields
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with Chern-Simons vector fields. We conclude with a
summary of results and discussion in Sec. VI. The
Appendixes provide curious observations related to the
parity-even vertices and classification of Fronsdal cubic
vertices in two dimensions.

II. REVIEW: FREE THEORY

In this paper, we study interactions of massless fields of
any spin as deformations of the free theory. To this end, we
first set the stage by describing the free theory. In order to
streamline the notation, we will contract space-time indices
μ; ν;… with commuting auxiliary variables aμ. In this
language, the rank s symmetric tensor field is given by

ϕsðaÞ ¼ 1

s!
ϕμ1…μsa

μ1…aμs : ð1Þ

In order to describe a free particle with spin s in a covariant
manner, one has to impose on the rank s symmetric Lorenz
tensor field the so-called Fierz equations [61]:

ð□þm2ÞϕðsÞðaÞ¼ 1

s!
ð□þm2Þϕμ1…μsa

μ1…aμs ¼ 0; ð2aÞ

ð∂x · ∂aÞϕðsÞðaÞ ¼
1

ðs − 1Þ! ∂
νϕνμ2…μsa

μ2…aμs ¼ 0; ð2bÞ

∂2
aϕ
ðsÞðaÞ ¼ 1

ðs − 2Þ!ϕ
ν
νμ3…μsa

μ3…aμs ¼ 0: ð2cÞ

For the massless fields ðm2 ¼ 0Þ, one has to require also an
extra equivalence between fields, differing by a gradient
shift with traceless and transverse parameter ϵs−1ðx; aÞ:

δϕðsÞðaÞ ¼ ða · ∂xÞϵðs−1ÞðaÞ; ð3Þ

ð∂x · ∂aÞϵðs−1ÞðaÞ ¼ 0; ∂2
aϵ
ðs−1ÞðaÞ ¼ 0: ð4Þ

It has been a challenge to find a Lagrangian, even for the
free Fierz equations. The natural expectations based on
experience with lower spins is to have a single equation of
motion for the rank s tensor field, which has all three Fierz
equations as its consequences and also gauge symmetry of
action in the massless case.
For the massless case, the most conventional description

is due to Fronsdal [8]. The equation of motion is given by
the Fronsdal tensor

F ðsÞðaÞ≡ ½□ − ða · ∂xÞD�ϕðsÞðaÞ ¼ 0; ð5Þ

with the de Donder operator D ¼ ð∂x · ∂aÞ − 1
2
ða · ∂xÞ∂2

a.
The Fronsdal tensor F is invariant with respect to gauge
transformations:

δϕðsÞðaÞ ¼ ða · ∂xÞϵðs−1ÞðaÞ with ∂2
aϵ
ðs−1ÞðaÞ ¼ 0: ð6Þ

The Fronsdal field ϕðsÞðaÞ is doubly traceless:

ð∂2
aÞ2ϕðsÞðaÞ ¼ 0: ð7Þ

The action is given by

SðsÞ ¼
1

2

Z
ddxϕðsÞðaÞð ∂a

 �
· ∂a
�!ÞsGðsÞðaÞ; ð8Þ

with Lagrangian equations of motion:

GðsÞðaÞ ¼ F ðsÞðaÞ − 1

4
a2∂2

aF ðsÞðaÞ ¼ 0: ð9Þ

Using double-tracelessness of the Fronsdal field, one can
easily show that the equations of motion G ¼ 0 are
equivalent to the Fronsdal equations F ¼ 0. At the
linearized level, the Fronsdal equations imply the Fierz
equations.
An alternative to the Fronsdal action is given by the

Maxwell-like formulation [62] of HS dynamics. The TT
parts of vertices in both formulations are equivalent, though
[29], and we will therefore not distinguish them in this
work since we restrict ourselves to TT vertices only
following Ref. [1]. The TT vertices studied here can be
completed to off-shell vertices for both Fronsdal and
Maxwell-like HS fields. It is an empirical observation that
the TT vertices can be completed to off-shell ones, based on
the known examples of both Fronsdal [22] and Maxwell-
like [29] vertices in d ≥ 4. We do not have a proof that it
will work in three dimensions straightforwardly. One
interesting check would be to see if the “Grassmann
miracle” of Ref. [25] (which allows us to immediately
derive the off-shell vertices from TT ones) works in this
case. In three dimensions, the off-shell vertex computations
are technically involved, though, and we do not attempt
them here. One can regard the results of this work as the
classification of deformations of the Fierz system of
equations [61] for massless HS fields in d ¼ 3. There is
an important difference between Fronsdal and Maxwell-
like descriptions relevant to this work which we do not
elaborate on here, though. While Fronsdal fields do not
carry propagating d.o.f. in three dimensions, the reducible
Maxwell-like fields do carry a propagating massless scalar
(vector) d.o.f. for even (odd) spin. As a consequence,
nonlinear theories of Maxwell-like fields, if any, cannot be
given by Chern-Simons actions in striking difference with
many known models for Fronsdal fields. The classification
that we carry out here can be implemented for building
models with both Fronsdal and Maxwell-like field content.

III. REVIEW: CUBIC VERTICES

We will assume that there exists a gauge invariant
nonlinear action S that can be expanded in power of fields
with a small expansion parameter g as follows,
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S ¼ Sð2Þ þ gSð3Þ þ g2Sð4Þ þ � � � ; ð10Þ

where Sð2Þ ¼ Sðs1Þ þ Sðs2Þ þ Sðs3Þ with SðsiÞ denoting the
Fronsdal action for the spin-si field (8). Gauge invariance
of the action implies

δS ¼ ðδð0Þ þ gδð1Þ þ � � �ÞðSð2Þ þ gSð3Þ þ � � �Þ
→ δð0ÞSð3Þ þ δð1ÞSð2Þ ¼ 0:

Using the fact that δð1ÞSð2Þ ¼δð1Þϕðs1ÞGðs1Þþδð1Þϕðs2ÞGðs2Þþ
δð1Þϕðs3ÞGðs3Þ, it follows that

δð0ÞSð3Þ ≈ 0; ð11Þ

where ≈ denotes equality upon imposing free equations of
motion G ¼ 0. Note also that any two actions S and S0
related by a field redefinition ϕ → ϕþ gfðϕ;ϕÞ obey

Sð3Þ ≈ S0ð3Þ: ð12Þ

This ambiguity in the field redefinition at the cubic order
will be fixed by restricting the possibility of derivative
contractions in the cubic vertex (as reviewed for example
in Refs. [1,33]).
One can now make the following ansatz for the cubic

action,

Sð3Þ ¼
Z

ddxVϕðs1Þða1; x1Þϕðs2Þða2; x2Þϕðs3Þða3; x3Þ

×

�Y3
i¼1

δðx − xiÞd3xi
�
; ð13Þ

where the differential operator V ¼ Vð∂x1 ; ∂a1 ; ∂x2 ; ∂a2 ;∂x3 ; ∂a3Þ is to be determined. Since V is a scalar operator,
it is built of contractions of the derivatives ∂ai and ∂xi . It
can be shown that, up to total derivatives and upon fixing
the freedom in field redefinitions, all contractions can be
written in terms of

∂ai · ∂xi ≡ Divi; ð14aÞ

∂ai · ∂xiþ1 ≡ yi; ð14bÞ

∂ai · ∂aiþ1 ≡ ziþ2; ð14cÞ

∂ai · ∂ai ≡ Ti; ð14dÞ

where here and in the following we assume indices i; j;…
to be cyclic in (1,2,3), for example yi ≡ yiþ3. The field
redefinition freedom is fixed following Refs. [21,22], that
is, by removing all terms with derivatives contracted with
each other. Strictly speaking, one can exclude the derivative
contractions by field redefinitions only in the terms that do

not contain divergences. That turns out to be already
sufficient for fixing the field redefinition freedom (see,
e.g., Ref. [25]). Let us furthermore restrict to interaction
terms which do not involve traces Ti or divergences Divi.
In this case, one obviously has

V ¼ Vðyi; ziÞ: ð15Þ

The gauge variation of the ansatz for the cubic action is then
given by

δð0ÞSð3Þ ¼
Z

ddx
Y3
i¼1

dxiδðx− xiÞV

×
X3
j¼1

aj · ∂xjϵðaj; xjÞϕðajþ1; xjþ1Þϕðaj−1; xj−1Þ:

Using the commutators

½ziþ1; ai · ∂i� ≗ yiþ2; ½ziþ2; ai · ∂i� ≗ −yiþ1; ð16Þ

where ≗ denotes equality up to equations of motion, total
derivatives, traces, and divergences. Similarly, it can be
shown that all other commutators vanish up to these terms.
After dropping total derivatives with respect to ∂xi , it then
follows that

δð0ÞSð3Þ ¼
Z

ddx
Y3
i¼1

dxiδðx − xiÞ

×
X
j

ðyj−1∂zjþ1 − yjþ1∂zj−1ÞV

× ϵðaj; xjÞϕðajþ1; xjþ1Þϕðaj−1; xj−1Þ:

It then immediately follows that gauge invariant vertices
should solve the equations

DiV ≡ ðyi−1∂ziþ1 − yiþ1∂zi−1ÞV ¼ 0; i ¼ 1; 2; 3 ð17Þ

and are given by

V ¼ Vðyi; GÞ with G ¼
X3
i¼1

yi · zi: ð18Þ

In generic space-time dimensions, these solutions span the
entire space of possible cubic vertices. However, at fixed
dimension d ≤ 4, most of these vertices are vanishing [33],
while there may be more solutions due to Schouten
identities as demonstrated in Ref. [1]. We will briefly
review the main results of the latter work on parity-even
vertices in d ¼ 3 here.
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A. Parity-even vertices in d = 3

The derivation of Lorentz covariant cubic vertices
described above has to be supplemented with Schouten
identities that are relevant for d ≤ 4. The case of four
dimensions can be found in Ref. [33], while in Ref. [1], the
d ¼ 3 parity-even vertices are classified. The Schouten
identities can be systematically derived by “overantisym-
metrization” of Lorentz indices, and there are even
Mathematica packages doing so [63]. The general idea
is to compute all possible contractions of the generalized
Kronecker delta δν1ν2ν3ν4μ1μ2μ3μ4 with operators ∂μ

xi ; ∂ν
ai . These

contractions vanish automatically as they antisymmetrize
four indices that take three possible values (by a pigeonhole
principle, at least two of the four indices take the same
value) and provide the basis of all parity-even Schouten
identities. The elementary three-dimensional Schouten
identities for parity-even TT cubic vertices are given as
(grouped in two-, three-, and four-derivative identities, no
summation over repeating indices assumed)

ðG− yiziÞ2 ¼ 0; yiziG− yi−1zi−1yiþ1ziþ1 ¼ 0; ð19aÞ

yiyi�1ðG − yiziÞ ¼ 0; ð19bÞ

y2i y
2
iþ1 ¼ 0; y2i yiþ1yi−1 ¼ 0: ð19cÞ

These identities will be supplemented with parity-odd ones
in the next section and are needed for the derivation of
parity-odd vertices.
Due to identities (19), the classification of parity-even

cubic vertices in three dimensions is different from that of
d ≥ 4. In particular, these identities allow for the existence
of two-derivative and three-derivative TT vertices given by
Ref. [1]:

Vs1;s2;s3 ¼ ½ðs1 − 1Þy1z1 þ ðs2 − 1Þy2z2 þ ðs3 − 1Þy3z3�
×Gzn11 zn22 zn33 ; ð20aÞ

ni ¼
1

2
ðsi−1 þ siþ1 − siÞ − 1 ≥ 0;

Vs1;s2;s3 ¼ y1y2y3z
n1
1 zn22 zn33 ;

ni ¼
1

2
ðsi−1 þ siþ1 − si − 1Þ ≥ 0: ð20bÞ

The expressions (20a) and (20b) describe unique cubic
vertices for even and odd sums of spins, respectively. Note
that (20a) involves minimal coupling to gravity discussed
for particular cases earlier in Refs. [58,64,65]. These
vertices exist only if the spin values satisfy triangle
inequalities si < siþ1 þ si−1.

IV. PARITY-ODD VERTICES
FOR MASSLESS BOSONS

In order to construct parity-odd vertices of massless
fields in three dimensions, one needs to add to the building
blocks of the parity-even vertices, i.e., yi and zi, all
elementary scalar contraction operators that involve the
invariant tensor ϵμνλ of the Lorentz algebra. These are

U ¼ ϵμνλ∂a1
μ ∂a2

ν ∂a3
λ ; ð21Þ

Vij ¼ ϵμνλ∂aiþ1
μ ∂ai−1

ν ∂xj
λ ; ð22Þ

Wi ¼ ϵμνλ∂ai
μ ∂xiþ1

ν ∂xi−1
λ ; ð23Þ

where the V’s satisfy (discarding total derivative terms)

X
j

Vij ¼ 0; ð24Þ

while the W’s are a choice of basis for nine different
structures with two derivatives related to each other up to
total derivatives. Therefore, the independent set of parity-
odd variables is spanned by ten scalar operators
U;Vijði ≠ jÞ;Wi. It is straightforward to check that

½U; ai · ∂j� ¼ Vij; ½Vii�1; ai · ∂j� ¼ 0; ð25Þ

½Vii�1;aj ·∂i�1�¼0; ½Vii�1;ai∓1 ·∂i∓1�¼−Wi�1; ð26Þ

½Vii�1;ai�1 ·∂i∓1�¼�Wi∓1; ð27Þ

½Vii�1;ai�1 ·∂i�¼−Wi∓1; ½Vii�1;ai∓1 ·∂i�¼Wi�1; ð28Þ

½Wi; aj · ∂k� ¼ 0; ð29Þ

up to total derivatives.
The operatorDi (17) takes the following form for parity-

odd vertices:

Di ¼ yi−1∂ziþ1 − yiþ1∂zi−1 −Wi−1∂Viþ1i−1

−Wiþ1∂Vi−1iþ1 − Vii−1∂U − Viiþ1∂U: ð30Þ

The elementary parity-odd Schouten identities are given by
(with arbitrary i, j, k and no summation over repeating
indices assumed)

Vi−1iziþ1þViþ1izi−1¼0;

UyiþViþ1i−1zi−1−ðVi−1iþVi−1iþ1Þziþ1¼0; ð31aÞ

Vijyi¼Vkjyk;

Wiþ1ziþ1−Wizi¼Vji−1yj¼Vki−1yk; ð31bÞ

Wiziþ1¼Viþ1iyi; Wizi−1¼−Vi−1iyi; ð31cÞ
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Wiyi�1 ¼ 0; ð31dÞ

where identities are grouped into one-, two-, and three-
derivative ones. From these, we derive other useful iden-
tities:

Vii�1ðyizi þ yi∓1zi∓1Þ ¼ 0; ð32Þ

Wiyizi ¼ Viiþ1y2i ¼ −Vii−1y2i ;

Vijyjyj�1 ¼ 0; Wiyiz2i ¼ −Uy1y2y3; ð33Þ

Vii�1y2i yi∓1¼ 0; Vijy1y2y3¼ 0; Wiy2i z
2
i ¼ 0: ð34Þ

A consequence of the Schouten identities is that all parity-
odd terms with more than one derivative can be written in
terms ofWi, yi, zi operators only as long as the spins satisfy
triangle inequalities si < siþ1 þ si−1. This property will be
useful in the following. The terms that cannot be written
only in terms of the variables mentioned above are of the
following form:

Vii�1yni∓1z
m
i z

p
i�1 ≠

X
k

OðWkÞ: ð35Þ

We assume without loss of generality s1 ≥ s2 ≥ s3. Then,
all the terms of the type (35) are given as

V23y
s1−s2−s3
1 zs3−12 zs23 ; V32y

s1−s2−s3
1 zs32 z

s2−1
3 ð36Þ

and exist only for s1 ≥ s2 þ s3. We also note that any
expression written in terms of Wi and nonvanishing up to
identities (31d) and (34) cannot be converted to Vij

expressions that vanish. This is due to the fact that terms
involvingWk with different k give rise to Vij with different
j that cannot sum up to zero through identities (31a) and
(31c). This simple technical observation suggests that
working solely with Wk-s wherever possible will not miss
any information about terms that may conspire to sum up to
zero. Since Wi-s are also commuting with all gauge
variations, it makes them the preferred choice of variables
in expressions with more than one derivative that we will
study in the following.
We now proceed with the derivation of parity-odd cubic

vertices for massless bosons in three dimensions. We will
need to discuss separately different cases and simplify each
ansatz maximally, to save virtual trees that get cut in order
to supply us with Mathematica notebooks.

A. Vertices with scalars

The simplest example is a vertex with two scalar fields
involved: ðs; 0; 0Þ. In this case, the only candidate vertex
operator is

VPO
s;0;0 ¼ W1ys−11 ð37Þ

and defines a gauge invariant vertex of current-interaction
type

Ls;0;0 ¼ hμ1…μs J̃μ1…μs ; ð38Þ

where the current

J̃μ1…μs ¼ ϵνρðμ1∂νJρμ2…μsÞ ð39Þ

is roughly the curl of the parity-even conserved current
Jμ1…μs of spin s. Next, we look at the possible vertices
with s1 ≥ s2 ≥ 1 and s3 ¼ 0. The general ansatz for the
ðs1; s2; 0Þ vertex can be written as

Vs1;s2;0 ¼ ðαV31 þ βV32Þys1−s21 zs2−13 : ð40Þ

The variation of (40) with respect to the gauge symmetry of
the spin-s1 field gives

D1Vs1;s2;0 ¼ ðs2 − 1ÞðαV31 þ βV32Þys1−s21 y2z
s2−2
3

− βw2y
s1−s2
1 zs2−13 : ð41Þ

The variation of (40) with respect to the symmetry of the
spin-s2 field gives

D2Vs1;s2;0 ¼ −αW1y
s1−s2
1 zs2−13

þ ðs2 − 1ÞðαV31 þ βV32Þys1−s2þ11 zs2−23

¼ −s2αW1y
s1−s2
1 zs2−13

þ ðs2 − 1ÞβV32y
s1−s2þ1
1 zs2−23 : ð42Þ

Vanishing of this variation is compatible with a nonzero
vertex only for s2 ¼ 1, α ¼ 0. Therefore, there is a unique
vertex,

VPO
s;1;0 ¼ V32ys−11 ; ð43Þ

which is invariant with respect to the gauge transformation
of the second (Maxwell) field (D2VPO

s;1;0 ¼ 0), while the
gauge variation of the spin-s field,

D1VPO
s;1;0 ¼ −W2ys−11 ; ð44Þ

vanishes due to (31d) iff s ≥ 2. Therefore, the vertex of
type ðs; 1; 0Þ exists for any s ≥ 2.
For s2 ≥ 2, the variation (42) can be rewritten as

D2Vs1;s2;0 ¼ ðs2αV31 þ ðs2 − 1ÞβV32Þys1−s21 zs2−23 ð45Þ

and allows for gauge invariance only for trivial solution
α ¼ β ¼ 0.
Similar to the parity-even case, there are no couplings of

the type ðs1; s2; 0Þwith s1 ≥ s2 ≥ 2. Thus, we found all the
vertices involving scalar fields.
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B. Vertices with Maxwell fields

From the Schouten identity (31d), it follows immediately
that there is a vertex of the type ðs; s; 1Þ with two
derivatives:

VPO
s;s;1 ¼ W3zs3: ð46Þ

It is a parity-odd two-derivative coupling to spin 1 which
requires charged spin-s fields. For s ¼ 1, Eq. (46) repro-
duces the spin-1vertex found by Anco in Ref. [66]. There is
another vertex of the type ðs; 1; 1Þ that may be guessed
immediately,

VPO
s;1;1 ¼ W1ys−11 z1; ð47Þ

which involves sþ 1 derivatives. For s ¼ 1, Eq. (47)
coincides with (46) up to relabeling of the fields. We will
come back to this vertex shortly.
It remains to check other possibilities of interactions

s1 ≥ s2 ≥ s3 ¼ 1 with the Maxwell field. It is straightfor-
ward to see that the number of derivatives cannot be less
than s1 − s2 simply because there are no candidate scalar
expressions. The upper bound on derivatives is a bit more
subtle to define. An obvious upper bound is s1 þ s2, since
all vertex monomials with s1 þ s2 þ 2 derivatives vanish
due to (31d) for any s1 and s2 and there are no candidate
expressions with derivatives more than s1 þ s2 þ 2.
Nevertheless, it can be easily shown that for s1 ≥ s2 ≫ 1
the upper bound is much lower than s1 þ s2 due to (19c)
and (31d). In fact, careful examination taking into account
all Schouten identities shows that there are no nontrivial
vertex candidates for the number of derivatives more than
s1 − s2 þ 2. Therefore, we are left with two candidate
values for the number of derivatives in the vertex: s1 − s2
and s1 − s2 þ 2. We will consider these cases separately.

1. ðs1 − s2 + 2Þ-derivative vertex

With the help of some elementary algebra and making
use of Schouten identities, a general ansatz for an
s1 − s2 þ 2-derivative vertex can be written in the form

Vs1;s2;1 ¼ ½γ1W1z1 þ γ2W2z2 þ γ3W3z3�ys1−s21 zs2−13 ; ð48Þ
where γi are arbitrary constants.
For simplicity, we discuss separately the cases of s2 ¼ 1,

s1 ¼ s2, and s1 > s2 ≥ 2:
(i) For s2 ¼ 1, we have a general ansatz,

Vs;1;1 ¼ ½γ1W1z1 þ γ2W2z2 þ γ3W3z3�ys−11 : ð49Þ
For s ¼ 1, we have

VPO
1;1;1 ¼ γ1W1z1 þ γ2W2z2 þ γ3W3z3; ð50Þ

with arbitrary γi. Each of the three terms in this
expression is separately gauge invariant and defines

a vertex of the type (46). We have three inequivalent
vertices, defined for any triple of Maxwell fields. As
opposed to the Yang-Mills vertex, which is fully
antisymmetric in all three fields involved, the term
Wizi is antisymmetric only in two fields Ai�1

μ and
can even define a cubic vertex for only two distinct
Maxwell fields (e.g., taking value in the two-
generator Lie algebra of infinitesimal affine trans-
formations of a real line). This vertex has been studied
in Ref. [66]. One can write it in explicit form:

L1;1;1 ¼ fabcϵμνλAa
μF̃b

ν F̃c
λ; ð51Þ

F̃a
μ ¼ ϵμνρ∂νAaρ; fabc ¼ −facb: ð52Þ

For s ≥ 2, we have

Vs;1;1 ¼ γ1W1z1ys−11 : ð53Þ

This is the ðs; 1; 1Þ vertex (47) where, for odd s,
nontrivial interaction requires charged Maxwell
fields.

(ii) For s1 ¼ s2 ¼ s > 1, the general ansatz with
s1 − s2 þ 2 ¼ 2 derivatives is

Vs;s;1 ¼ ½γ1W1z1 þ γ2W2z2 þ γ3W3z3�zs−13 ð54Þ

and is gauge invariant iff γ1 ¼ γ2 ¼ 0. Therefore, we
end up with the unique possibility of the vertex (46).

(iii) For s1 > s2 ≥ 2, the general ansatz (48) reduces to

Vs1;s2;1 ¼ γ1W1z1y
s1−s2
1 zs2−13 ; ð55Þ

which is not gauge invariant under the variation of
the second field with spin s2.

Therefore, we find that all the vertices for s1≥s2≥s3¼1
with s1 − s2 þ 2 derivatives are covered by (46), (47),
and (50).

2. ðs1 − s2Þ-derivative vertex

A general ansatz with s1 − s2 derivatives can be written
for s1 ¼ s2 ¼ s in the form (without derivatives since
s1 − s2 ¼ 0)

Vs;s;1 ¼ Uzs−13 : ð56Þ

It is elementary to check that this expression is not gauge
invariant. We will assume in the following that s1 > s2, in
which case the general ansatz takes the form

Vs1;s2;1 ¼ ðαV23z3 þ βV21z3 þ γV32z2Þys1−s2−11 zs2−13 ; ð57Þ

and it is easy to check that the equation D1Vs1;s2;1 ¼ 0 has
only vanishing solutions for the coefficients α, β, γ unless
s2 ¼ 1, β ¼ 0; γ ¼ −α. The only candidate expression
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Vs;1;1 ¼ ðV23z3 − V32z2Þys−21 is, however, not invariant
with respect to the gauge transformations of Maxwell
fields.
We conclude that all the parity-odd vertices with

Maxwell fields are given by (46), (47), and (50).

C. Gravitational interactions

Making use of the Schouten identity (31d), one can
easily show that there is a three-derivative parity-odd
ðs; s; 2Þ coupling to massless spin 2:

VPO
s;s;2 ¼ W3y3zs3: ð58Þ

This vertex is symmetric with respect to the exchange of
spin-s fields and therefore does not require charged fields.
For s ¼ 2, the expression (58) reproduces the vertex found
by Boulanger and Gualtieri in Ref. [67].
Any ðs; s; 2Þ type of parity-odd vertex requires an

odd number of derivatives. We will see in the following
that there are no parity-odd vertices with one derivative
or with more than four derivatives. Therefore, Eq. (58) is
the unique parity-odd coupling to gravity for given
spin s.
We conclude that the parity-odd minimal coupling to

gravity is given by a three-derivative vertex. Let us recall
that the parity-even gravitational coupling has two deriv-
atives. This is in contrast to spin-1 (Maxwell) minimal
couplings, where the parity-odd coupling (46) has two
derivatives while the parity-even coupling has three
derivatives [1].
It remains to see what the other options of s1>s2≥s3¼2

couplings are. These vertices will be classified in the
following, where we will consider the more general case
of couplings between fields with arbitrary spin values.

D. General case

It is elementary to verify, by making use of the Schouten
identity (31d), that the expression W1yn1z

m
1 is gauge

invariant for any n, m and therefore forms a vertex.
These types of vertices are all exhausted by (37), (46),
(47), and (58). There are no vertices of the aforementioned
type with n;m ≥ 2 due to (34).
After the examples with low spins, we now start studying

more general cases of cubic interactions.

1. Couplings without derivatives

It is straightforward to show that there are no vertices
without derivatives. In order to do so, one just needs to
gauge variate the most general ansatz,

Vs1;s2;s3 ¼ Uzn11 zn22 zn33 ; si ¼ ni−1 þ niþ1 þ 1; ð59Þ

and compare to the linear combination of one-derivative
Schouten identities with arbitrary coefficients. One will

thus verify that there is no such linear combination and
therefore no vertex without derivatives.

2. One-derivative vertices

It is straightforward to show that any one-derivative
parity-odd vertex with three massless fields of spins
s1 ≥ s2 ≥ s3 ≥ 2 could be written in the following
form,

Vs1;s2;s3 ¼
X3
i¼1
ðαiViiþ1 þ βiVii−1Þziþ1zi−1zn11 zn22 zn33 ; ð60Þ

which can be further simplified in case the spins satisfy
triangle inequalities s1 < s2 þ s3 to

Vs1;s2;s3 ¼ ðα1V12z2z3 þ α2V23z3z1 þ α3V31z1z2Þzn11 zn22 zn33

ð61Þ

and if they saturate triangle inequality s1 ¼ s2 þ s3 to

Vs1;s2;s3 ¼ ðαV23z3 þ βV32z2Þzn22 zn33 : ð62Þ

In both cases, even though there are solutions for each of
the equations DiVs1;s2;s3 ¼ 0, there is no nonzero inter-
section between these solutions. This observation may be
useful in the classification of couplings with massless and
massive fields (since massive fields are not constrained by
gauge invariance), which is out of the scope of this work. It
is also easy to verify that there are no candidate expressions
for one-derivative vertices if s1 > s2 þ s3.
We conclude that there are no parity-odd vertices with

one derivative for any spins s1 ≥ s2 ≥ s3 ≥ 0.

3. Two-derivative vertices

Now, we turn to studying two-derivative parity-odd
interactions. This corresponds to odd values of the sum
s1 þ s2 þ s3, and therefore the triangle inequality cannot be
saturated; s1 ≠ s2 þ s3. We discuss separately the case
when the spins satisfy triangle inequalities and when they
do not.

Triangle inequalities are satisfied.—Taking into account
that s1 ≥ s2 ≥ s3 ≥ 1 and s1 < s2 þ s3, any vertex mono-
mial with two derivatives can be brought to the form where
the only parity-odd operators are Wi. We end up with a
simple ansatz:

Vs1;s2;s3 ¼ ½αW1z1 þ βW2z2 þ γW3z3�zn11 zn22 zn33 ;

n1 ≤ n2 ≤ n3: ð63Þ

Making use of (31d) and (33), one can show that the gauge
invariance conditions,
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D1Vs1;s2;s3 ¼ ½−βn3W2y2z22 þ γn2W3y3z23� ð64aÞ

zn11 zn2−12 zn3−13 ¼ ðβn3 − γn2ÞUy1y2y3z
n1
1 zn2−12 zn3−13 ¼ 0;

ð64bÞ

D2Vs1;s2;s3 ¼ ½−γn1W3y3z23 þ αn3W1y1z21� ð64cÞ

zn1−11 zn22 zn3−13 ¼ ðγn1 − αn3ÞUy1y2y3z
n1−1
1 zn22 zn3−13 ¼ 0;

ð64dÞ

D3Vs1;s2;s3 ¼ ½−αn2W1y1z21 þ βn1W2y2z22� ð64eÞ

zn1−11 zn2−12 zn33 ¼ ðαn2 − βn1ÞUy1y2y3z
n1−1
1 zn2−12 zn33 ¼ 0;

ð64fÞ

imply

βn3 − γn2 ¼ γn1 − αn3 ¼ αn2 − βn1 ¼ 0: ð65Þ

The solution to these equations fixes the vertex uniquely up
to an overall constant:

VPO
s1;s2;s3 ¼ ½n1W1z1 þ n2W2z2 þ n3W3z3�zn11 zn22 zn33 ;

si ¼ niþ1 þ ni−1 þ 1: ð66Þ

The vertex is not unique only when n1 ¼ n2 ¼ n3 ¼ 0.
In this case, Eq. (65) are trivialized, and there are no
restrictions on α, β, γ. This case corresponds to the vertex
given by Eq. (50). This vertex exists for any triples of spins
with an odd sum satisfying strict triangle inequalities. For
s1 ¼ s2 ¼ s3 ¼ 3, the expression (66) reproduces the
vertex found by Boulanger et al. in Ref. [68]. To our best
knowledge, the latter is the only example known in the
literature of parity-odd cubic vertices of HS fields in three
dimensions.
This result is similar to parity-even case, where the

two-derivative vertex (20a) exists for every triple of spins,
with even sum, satisfying strict triangle inequalities. One
important difference is that if there are two fields with the
same spins in the vertex the parity-even vertex with two
derivatives (20a) is symmetric with respect to exchange of
these fields, while parity-odd one (66) is antisymmetric (we
assume at least one of the spins is greater than 1). We will
come back to the relation of the parity-even and parity-odd
vertices in the following.
Triangle inequalities are violated.—It is elementary to
show that for s1 > s2 þ s3 þ 1 there are no vertex mono-
mials with two derivatives. The only allowed case is
s1 ¼ s2 þ s3 þ 1, with an ansatz involving expressions
of the type (36)

VPO
s1;s2;s3 ¼ ðαV23z3 þ βV23z2Þy1zs3−12 zs2−13

þ γW1z
s3
2 z

s2
3 : ð67Þ

This expression is invariant with respect to the spin-s1
field’s gauge variation, D1V ¼ 0, if αs2 þ βs3 ¼ 0, and
with respect to the second field’s gauge variation,D2V ¼ 0,
if αs2 ¼ 0 ¼ βðs2 − 1Þ; γs2 ¼ 0, while for the invariance
with respect to the third field, we get αðs3 − 1Þ ¼ 0 ¼ βs3;
γs3 ¼ 0. The only nontrivial solutions for this class of
vertices are given by (37) with s ¼ 1 and (43) with s ¼ 2.
We conclude that, similarly to parity-even vertices with

two derivatives, there is only one parity-odd vertex (66)
with two derivatives for each triple of spins s1≥ s2≥ s3≥2
satisfying triangle inequalities s1 < s2 þ s3 and with the
odd sum s1 þ s2 þ s3.

4. Three-derivative vertices

For vertices with three derivatives, we consider sepa-
rately three cases depending on the values of spins. This
corresponds to an even sum of the spins.
Triangle inequalities are satisfied.—In this case, the gen-
eral ansatz for the vertex is given by (the overall arbitrary
coefficient is dropped)

VPO
s1;s2;s3 ¼ −Wiyiz2i z

n1
1 zn22 zn33

¼ Uy1y2y3z
n1
1 zn22 zn33 ;

si ¼ ni−1 þ niþ1 þ 2: ð68Þ

Remarkably, this vertex is gauge invariant with respect to
all three variations due to (19c) and (34).
This result is similar to the parity-even case (20), where

every triple of spins with an odd sum defined a unique
vertex (20b) proportional to y1y2y3 [except for (1,1,1)
Yang-Mills fields, for which there were two vertices—with
one derivative and three derivatives]. One notable differ-
ence is that, in case there are two fields with identical spin,
due to the factor U, the vertex is symmetric with respect to
permutations of these fields, as opposed to the vertex (20b),
which would be antisymmetric. For s1 ¼ s2 ¼ s3 ¼ 2, the
vertex (68) reproduces the symmetric d ¼ 3 vertex of
Ref. [67].
Triangle inequalities are saturated.—In this case, there are
no nontrivial vertex monomials with three derivatives.
Triangle inequalities are violated.—This case allows for
a nontrivial vertex ansatz iff s1 ¼ s2 þ s3 þ 2. The most
general ansatz is given by

VPO
s1;s2;s3 ¼ ðαV23z3 þ βV32z2Þy21zs3−12 zs2−13

þ γW1y1z
s3
2 z

s2
3 : ð69Þ

The analysis of this case is similar to the two-derivative one
performed above. The only nontrivial solutions have been
covered by (37) with s ¼ 2 and (43) with s ¼ 3.
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It is a straightforward algebraic exercise to show that
there are no nontrivial vertices with more than three
derivatives for s1 ≥ s2 ≥ s3 ≥ 2. This completes the clas-
sification of parity-odd cubic vertices of massless bosonic
fields in three space-time dimensions.

E. Relations between parity-odd
and parity-even vertices

There is a remarkable universality in the formulas of the
vertices (20a), (66), (20b), and (68). In order to show it, we
first notice the following relation (as always in this work,
we neglect trace terms):

U2 ¼ −2z1z2z3: ð70Þ

Now, we can formally define the following operator:

z1=21 z1=22 z1=23 ¼ iffiffiffi
2
p U: ð71Þ

Now, let us shift the integers ni in the (66) by half:
ni → ni þ 1

2
. Then, the sum of the spins becomes even,

and Eq. (66) can be formally rewritten as

Vs1;s2;s3 ¼
��

n1 þ
1

2

�
W1z1 þ

�
n2 þ

1

2

�
W2z2

þ
�
n3 þ

1

2

�
W3z3

�
zn1þ1=21 zn2þ1=22 zn3þ1=23 ð72Þ

¼ iffiffiffi
2
p

��
n1 þ

1

2

�
W1z1 þ

�
n2 þ

1

2

�
W2z2

þ
�
n3 þ

1

2

�
W3z3

�
Uzn11 zn22 zn33 ð73Þ

¼ iffiffiffi
2
p ½ðs1 − 1Þy1z1 þ ðs2 − 1Þy2z2 ð74Þ

þðs3 − 1Þy3z3�Gzn11 zn22 zn33 ; ð75Þ

where si ¼ niþ1 þ ni−1 þ 2. Here, we used the identities

WiU ¼ yiðG − yiziÞ ð76Þ

and (19a). Equation (75) exactly reproduces the parity-even
vertex (20a) up to an overall constant. It is elementary to
show that the same relation holds between three-derivative
parity-odd (68) and parity-even (20b) vertices.
Another curiosity related to parity-even vertices is

discussed in Appendix A.
This universality in formulas may have a deeper meaning

in terms of certain dualities between fields that is yet to be
uncovered. For example, it may be related to the Chern-
Simons formulation where each HS field has two con-
nections analogous to dreibein and spin connection of

gravity. When switching to the Fronsdal formulation, the
“spin connection” is solved in terms of the “frame field,”
and the solution contains one derivative and a Levi-Cività
tensor. Replacing one frame field with a spin connection
partner may result in switching the interactions between
parity-odd and parity-even ones (it changes the parity and
the number of derivatives by 1). This is a speculation but
can be checked by explicit computations. It is also tempting
to speculate about the existence of a more fundamental
formulation of any HS theory in terms of spinors, analo-
gous to Refs. [2,3], that treat the parity-even and parity-odd
vertices on the same footing. We leave more thorough
investigations of this aspect to a future work.

V. VERTICES WITH CHERN-SIMONS
VECTOR FIELDS

So far, we have been studying TT vertices of Fierz-type
fields including the Maxwell field for s ¼ 1 that is given by
the free Lagrangian,

L0
s¼1 ¼ −

1

4
FμνFμν; Fμν ¼ ∂μAν − ∂νAμ; ð77Þ

with field equation ∂μFμν ¼ 0, i.e., both the Fronsdal
equation [8] and Maxwell-like HS equation [62] for
s ¼ 1. In three dimensions, one can also consider CS
vector fields with a free Lagrangian,

L0
s¼1 ¼

1

2
ϵμνλAμ∂νAλ; ð78Þ

and free-field equation Fμν ¼ 0. It is common to call the CS
field a spin 1 or vector field, but one has to be careful to not
confuse it with the Maxwell field. We will mostly use the
terms CS or Maxwell for the corresponding fields in the
following. Since this field appears naturally in the context
of HS gravity theories [3,65], we study its interactions with
other massless fields for completeness of our analysis.
Note that, due to the difference in the free-field equa-

tions, the equivalence class that is defined for field
redefinitions and gauge variations of vertices is different
for CS fields. Any term that is proportional to free Maxwell
field equations is obviously also on-shell trivial for CS
fields. The opposite, however, is not true. The on-shell
trivial cubic terms for a CS field (ith field in the vertex) that
are not trivial for Fierz (i.e., Fronsdal and Maxwell-like)
fields are given by the expressions

G − yizi ¼ 0; yiyi�1 ¼ 0;

Wi ¼ 0; Vi�1i ¼ 0; Wiþ1ziþ1 ¼ Wi−1zi−1: ð79Þ

Together with Fierz equations and Schouten identities,
these terms define an equivalence class for cubic vertex
monomials. Cubic vertices with CS fields should have
trivial gauge variations in this class while not being trivial
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themselves. There are three possible cases depending on
the number of CS fields in the cubic vertex.

A. Vertices with one CS field

A general ansatz for parity-even vertices with one CS
field and two Fierz fields with spins s1, s2 can be written
in the form

V ¼ ys1−s21 zs2−13 ðαy1z1 þ γy3z3Þ: ð80Þ

Note that the y2z2 term is absent as it can be replaced by
y1z1 due to identity (79): y1z1 þ y2z2 ¼ 0. This vertex is
gauge invariant with respect to all three gauge trans-
formations for α ¼ 0 and is not trivial only for s1 ¼ s2.
It therefore defines a unique cubic vertex of two massless
fields of spin s and a CS field:

VCS ¼ y3zs3: ð81Þ

It is straightforward to see that this interaction corresponds
to minimal coupling to the vector gauge field obtained
by replacing in the free action of a spin-s field
∂ → ∇ ¼ ∂ þ A, i.e., making use of covariant derivatives.
This coupling has appeared for example in Ref. [65] and is
obviously not applicable to Maxwell fields. The free action
of a spin-s field, supplemented with covariant derivatives,
is gauge invariant up to commutators of covariant deriv-
atives which are proportional to the curvature of the vector
field. This curvature terms are equations of motion for CS
fields and can therefore be compensated by deformations of
transformations for CS fields. This is not true for Maxwell
fields, though. The absence of minimal coupling to the
electromagnetic field is known as the Velo-Zwanziger
problem [69] and is analogous to the Aragone-Deser
problem for minimal coupling to gravity. In three dimen-
sions, the minimal coupling to gravity exists and is related
to the fact that the Riemann curvature of gravity is
proportional to Einstein equations in three dimensions,
and therefore the problematic terms can be compensated
with deformations of gauge transformations of the metric
(analogously to the Rarita-Schwinger coupling that leads to
supergravity). Even though the mechanisms are slightly
different for spin 1 and spin 2, in both cases, the fact that the
curvature tensor is on-shell trivial allows for minimal
coupling. The on-shell triviality of the curvature tensor
is, on the other hand, related to the absence of dynamical
d.o.f. in the bulk and opens the possibility for CS
formulation.
Parity-odd CS vertices are also severely restricted. Given

that the third field in the vertex is a CS field, it can for
example be shown thatW1y1z1 ¼ 0 ¼ W2y2z2. After some
algebra, it is straightforward to show that, for two Fierz
fields with spins s1 ¼ s2 ¼ s, there is a two-derivative
coupling to the CS field with the vertex operator given by

VCS
PO ¼ W1z1zs−13 ¼ W2z2zs−13 ¼ 1

2
Uy1y2zs−23 : ð82Þ

We skip the details of the computations here since they are
elementary algebraicmanipulations by straightforward appli-
cation of the Schouten identities, Fierz equations, and (79).

B. Vertices with two CS fields

In this case, the extra identities include (we assume the
second and third fields are CS)

yiyj ¼ 0ði ≠ jÞ; G − y2z2 ¼ 0 ¼ G − y3z3; ð83Þ

W2 ¼ W3 ¼ 0; W1z1 ¼ 0: ð84Þ

Using these equalities, one can easily show that there are no
vertices of interactions between a massless field with spin s
and two CS fields if s ≥ 2. Instead, there is a vertex of
interactions of a Maxwell field and two CS fields:

VMCS ¼ y1z1 ¼ −y2z2 ¼ −y3z3: ð85Þ

For this vertex to be nonzero, the two CS fields should be
charged.
There are no parity-odd vertices with two CS fields and a

massless field with spin s.

C. Vertices with three CS fields

In this case, we have

Wi ¼ 0; Vij ¼ 0; yiyj ¼ 0; yizi ¼ 0: ð86Þ

The only nontrivial contraction between the three fields is
given by a parity-odd expression,

VPO
CS ¼ U; ð87Þ

which is gauge invariant and is the well-known interaction
term of CS fields. For this interaction to be nontrivial, CS
fields should carry non-Abelian charges.
These results fit into the picture of our findings for HS

fields. There are no cubic interactions between massless
fields where spins do not satisfy triangle inequalities.

VI. DISCUSSION

In this work, we completed the program initiated in
Ref. [1], providing an exhaustive classification of covariant
cubic interactions for massless bosonic fields in three
dimensions. We found that the parity-odd cubic vertices
for interactions of massless fields in three dimensions are in
one-to-one correspondence with parity-even vertices. For
each collection of massless fields satisfying strict triangle
inequalities, there is a unique parity-odd vertex on top of
the unique parity-even one. The only exception is the cubic
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interaction between three Maxwell fields in both parity-
even and parity-odd cases. In the parity-even case, there are
two vertices for collection of Maxwell fields—the Yang-
Mills vertex and F3 vertex, both requiring fully antisym-
metric Chan-Paton factors. For the parity-odd case, there
are three free parameters in the two-derivative vertex (50),
which has no definite symmetry. For triplet of spins not
satisfying triangle inequalities, the only cubic vertices are
of “current-interaction” type, involving two matter fields of
spin s ¼ 0 or 1. For the triplets, that contain at least two
spins greater than 1, all the vertices have either two or three
derivatives.
Our results should match the CFT three-point functions,

as argued, e.g., in Refs. [33,70]. The uniqueness of the
vertex for a given triplet is in agreement with the two-
dimensional CFT. The three-point functions of quasipri-
maries in two-dimensional CFT have two free parameters
for every triple of spins. In our classification, for each triple,
we get one parity-even and one parity-odd vertex and
therefore match the number of independent structures.
The only intriguing aspect is the missing vertices, which
translate into selection rules in two-dimensional CFT.
Similarly to the parity-even case [1], in the parity-odd
case, missing vertices are all those containing at least two
fields with spin greater than 1 and violating strict triangle
inequalities. Therefore, for quasiprimaries of spin values
s1 ≥ s2 ≥ s3 ≥ 2, all the three-point functions for values
s1 ≥ s2 þ s3 are expected to be zero. This property is
observed in known examples of two-dimensional CFT’s
(see, e.g., Ref. [71]), but we are not aware of a general
proof.
The only massless fields that carry propagating d.o.f. in

three dimensions are scalar and Maxwell fields which are
related by duality. Nevertheless, there are slight differences
in vertices containing scalars and Maxwell fields observed
in our classification. When we compare these vertices, one
can take into account the exact relation of duality between a
Maxwell field Aμ and a scalar ϕ, given by the relation

Fμν ¼ ∂μAν − ∂νAμ ¼ ϵμνλ∂λϕ: ð88Þ

If a vertex involves the curvature of the Maxwell field, one
can simply replace it with the right-hand side of Eq. (88)
and get a vertex for a scalar, which has opposite parity.
Similarly, if the vertex contains derivative of the scalar, one
can replace it with the dual of the curvature of the Maxwell
field. Instead, for the vertices where one has a naked vector
potential Aμ, this dualization is not applicable since the curl
operation is not invertible and the field Aμ cannot be
expressed through ϕ locally. Let us start with parity-even
vertices with Maxwell fields. There is an ðs; 1; 0Þ vertex,
which contains sþ 1 derivatives and in which one can
dualize the Maxwell field to get the parity-odd ðs; 0; 0Þ
vertex (37) with sþ 1 derivatives. Alternatively, one can
dualize the scalar to get the parity-odd ðs; 1; 1Þ vertex (47)

with sþ 1 derivatives. Therefore, we established duality
relations:

VPO
ðs;1;1Þ ↔ Vðs;1;0Þ ↔ VPO

ðs;0;0Þ: ð89Þ

This duality works for any s ≥ 1.
Next, there is a parity-even vertex Vðs;1;1Þ ¼ ys−11 Gwith s

derivatives. Dualization of one Maxwell field leads to a
vertex VPO

ðs;1;0Þ with s derivatives given by (43). We can

further dualize the second Maxwell field and get a parity-
even vertex Vðs;0;0Þ ¼ ys1 with s derivatives:

Vðs;1;1Þ ↔ VPO
ðs;1;0Þ ↔ Vðs;0;0Þ: ð90Þ

These dualities work for s ≥ 2, since there is no parity-odd
vertex for spin configuration (1,1,0), which leaves out the
Yang-Mills vertex from the dualization procedure. The
dualization of the other cubic vertex of three Maxwell
fields, the F3 vertex, leads to a trivial TT expression and
therefore does not have a parity-odd (1,1,0) dual either.
The (A)dS cubic vertices in any dimensions can be

understood as deformations of flat space cubic vertices, and
therefore the first step towards (A)dS vertices lies in the
classification of their flat counterparts. In fact, all known
Lagrangian theories with the HS spectrum in three dimen-
sions allow for the flat space limit. Therefore, one may
expect that the Lagrangian formulation for Prokushkin-
Vasiliev theory, if existing, may also allow for a flat limit.
Even more, three-dimensional Minkowski vertices can be
extended to arbitrary Einstein backgrounds for the same
reason as the absence of Aragone-Deser problem in three
dimensions—the obstructing terms are given by Weyl
tensors and therefore vanish in three dimensions. One
can even work with full nonlinear gravity while construct-
ing the action perturbatively in powers of HS fields (see
Ref. [65] for such expansions of full nonlinear theories). In
that case, one needs to take care of the backreaction to the
Einstein equations involving HS fields, which contribute to
the construction of quartic and higher order vertices.
The full classification of cubic vertices is the first step

toward the construction of a Lagrangian for the HS theories
accommodating propagating d.o.f. which are not covered
by Chern-Simons actions. Our classification is performed
for the three-dimensional Minkowski background, while
the (A)dS extension can be considered straightforwardly.
Since the main technical difficulty of (A)dS extensions is
related to the nontrivial commutators of covariant deriva-
tives, it is natural to expect that those vertices that contain
many derivatives will be the most challenging. As we have
seen, in three dimensions, the only vertices that contain
more than three derivatives are current interactions con-
taining scalar and Maxwell fields. The AdS extensions for
these vertices have already been studied in higher dimen-
sions in Refs. [19,20,26]. The scalar coupling in three
dimensions was studied in Refs. [72–75].

PAN KESSEL and KARAPET MKRTCHYAN PHYS. REV. D 97, 106021 (2018)

106021-12



The main technical novelty of the three-dimensional
classification provided in this work and in Ref. [1] com-
pared to earlier work on cubic vertices in arbitrary
dimensions is related to the systematic implementation
of Schouten identities in three dimensions. When consid-
ering quartic interactions of massless symmetric fields,
there are relevant Schouten identities in dimensions d ≤ 6.
Therefore, the analysis of the quartic order of interactions
becomes more involved. We plan to address that problem in
both three-dimensional and higher-dimensional contexts in
the future.
We delegate some more technical discussion to the

Appendixes. In Appendix A, we elaborate on the possibil-
ity of writing parity-even vertices as ratios which are by
themselves meaningless expressions but can be defined and
motivated only in three dimensions due to their equivalence
to vertices of Ref. [1] via Schouten identities. We study
two-dimensional vertices in Appendix B. There, the
restrictions imposed by Schouten identities are much more
severe and eventually allow for only vertices of the types
ðs; s; 1Þ and ðs; s; 0Þ.
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APPENDIX A: VERTICES AS RATIOS

In generic dimensions, the ðs1; s2; s3Þ cubic interactions
can be written in the basis of cubic vertices of the form

Vs1;s2;s3 ¼
Xminðs1;s2;s3Þ

n¼0
gny

s1−n
1 ys2−n2 ys3−n3 Gn; ðA1Þ

where gn are undetermined constants. One easily checks
that si corresponds to the spins of the field ϕi by rewriting
each term in Vs1;s2;s3 as

ys1−n1 ys2−n2 ys3−n3

X
αþβþγ¼n

cαβγðy1z1Þαðy2z2Þβðy3z3Þγ; ðA2Þ

where cα;β;γ are the trinomial coefficients. Counting the
powers of, say, a1 then gives

s1 − n|fflffl{zfflffl}
y
s1−n
1

þ α|{z}
ðy1z1Þα∼yα1

þ β|{z}
ðy2z2Þβ∼zβ2

þ γ|{z}
ðy3z3Þγ∼zγ3

¼ s1: ðA3Þ

The nth term in the sum (A1) has s1 þ s2 þ s3 − 2n
derivatives. Therefore, the term with the minimal number
of derivatives corresponds to n ¼ minðs1; s2; s3Þ, while the
term with n ¼ 0 contains the maximal number of deriva-
tives. These two bounds are commonly referred to as the
lower and upper Metsaev bounds respectively.
For a given dimension, one may be able to construct

vertices which violate these bounds due to the presence of
Schouten identities. For an example, one can construct
vertices corresponding to minimal ðs; s; 2Þ coupling to
gravity in three dimensions. These vertices only involve
two derivatives and therefore violate the lower Metsaev
bound for s > 2. One may try to express these vertices in
the form of (A1) (a similar attempt has been made for four-
dimensional vertices in Ref. [38]).
We start from

V ¼ Gs

ys−23

; ðA4Þ

which by itself is of course a nonsensical expression in the
space of polynomials (1) in the auxillliary variables a.
However, as we will see shortly, one can make sense of it
only in three dimensions using Schouten identities. Note
that this vertex only contains two derivatives and obviously
fulfills DiV ¼ 0. By using the definition of G, one obtains

Gs

ys−23

¼
Xs
k¼0

�
s

k

� ðG − y3z3Þkðy3z3Þs−k
ys−23

¼ zs3y
2
3 þ sðG − y3z3Þy3zs−13|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Vmin

þ ðG − y3z3Þ2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Δ

Xs−2
k¼0

�
s

kþ 2

� ðG − y3z3Þkzs−kþ23

yk3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
R

:

The last term, however, vanishes due to the Schouten
identity (19a). Therefore, we have constructed a gauge
invariant ðs; s; 2Þ TT vertex involving only two derivatives
as can be seen as follows:

0 ¼ DiV ¼ DiðVmin þ Δ × RÞ
¼ DiVmin þDiðΔÞ × Rþ Δ ×DiðRÞ: ðA5Þ

Since DiðSchouten identitiesÞ⊂Schouten identities, it then
follows that DiVmin ¼ 0.
This procedure can fail in subtle ways. To illustrate this,

let us consider one-derivative minimal coupling to the
Maxwell field which is defined, similarly to (A4), through
a ratio:
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Gs

ys−13

¼ zs3y3 þ sðG − y3z3Þzs−13|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Vmin

þ ðG − y3z3Þ2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Δ

1

y3

Xs−2
k¼0

�
s

kþ 2

� ðG − y3z3Þkzs−kþ23

yk3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
R

:

ðA6Þ

In this case, it follows for example that

D2ðΔÞ×R∼ðG−y3z3Þy2y3

×
1

y3

Xs−2
k¼0

�
s

kþ2

�ðG−y3z3Þkzs−kþ23

yk3
; ðA7Þ

and due to the pole in y3, the first term in the sum is no
longer proportional to a Schouten identity after canceling
terms common to the denominator and numerator. Note
that such a pole would not arise for the case of minimal
coupling to gravity (A4). It is interesting to notice that the
same ratio (A6) defines a minimal coupling to the Chern-
Simons field given in (81). This is due to the first identity
of (79) (applicable for Chern-Simons fields only) which
allows one to replace (A6) by

Gs

ys−13

¼ y3zs3|{z}
Vmin

þ Δ0 × R0; ðA8Þ

where now

Δ0 ¼ G − y3z3 ¼ 0;

R0 ¼
Xs−1
k¼0

�
s

kþ 1

� ðG − y3z3Þkzs−kþ23

yk3
ðA9Þ

and we extend the argument given for spin-2 minimal
coupling to this case. As we have shown, the schematic

way of writing the vertices as ratios can be defined
consistently only for vertices that are otherwise shown to
exist in covariant formulation due to Schouten identities.

APPENDIX B: d = 2

In two dimensions the Schouten identities can be used to
eliminate the d’Alembertian term in the Fronsdal action for
s ≥ 2 in favor of trace and divergence terms, which renders
the free theory to be trivial for TT fields. For example, the
spin-2 Fronsdal equation itself is proportional to the
Schouten identity. This is a “linearization” of the statement
that the Einstein-Hilbert action is topological and there are
no Einstein equations of motion for the metric in two
dimensions. For s > 2, the massless equation (2a) is a
consequence of the two other Eqs. (2b) and (2c). One may
study massless HS fields in fully reducible Maxwell-like
formulation in d ¼ 2. There, each even rank field carries a
single scalar mode.
HS theories in two dimensions are making use of BF-

type actions [76]. Nevertheless, if one insists on Fronsdal
formulation and tries to derive TT cubic couplings, the
following observations are in order. Some of the Schouten
identities that can be derived in this case are

y1y2y3 ¼ 0; y2i yj ¼ 0; yiyjzj ¼ 0; ðB1Þ

G2¼ 0; ziðG−yi�1zi�1Þ¼ 0; z1z2z3¼ 0: ðB2Þ

These identities imply that any term with more than two
derivatives is TT trivial and there are no candidate TT
expressions for s1 ≥ s2 ≥ s3 ≥ 2. The only parity-even TT
vertices that can be written down necessarily have scalar or
Maxwell fields involved and are given by the ðs; s; 0Þ vertex
Vðs;s;0Þ ¼ y1y2zs−13 , ðs; s; 1Þ vertex Vðs;s;1Þ ¼ y3zs3 (s ≥ 2,
s ¼ 0), and usual Yang-Mills (1,1,1) vertex Vð1;1;1Þ ¼ G.
These observations may be useful in the attempts to
construct HS gravity theories in two dimensions.
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