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We propose a holographic duality between a 2 dimensional (2d) chiral superconformal field theory and a
certain theory of supergravity in 3d with flatspace boundary conditions that is obtained as a double scaling
limit of a parity breaking theory of supergravity. We show how the asymptotic symmetries of the bulk
theory reduce from the “despotic” super Bondi-Metzner-Sachs algebra (or equivalently the inhomogeneous
super Galilean conformal algebra) to a single copy of the super-Virasoro algebra in this limit and also
reproduce the same reduction from a study of null vectors in the putative 2d dual field theory.

DOI: 10.1103/PhysRevD.97.106020

I. INTRODUCTION

The holographic principle offers us a path to a quantum
theory of gravity through a nongravitational field theory in
one lower dimension. The anti-de Sitter/conformal field
theory (AdS=CFT) correspondence [1] is its best under-
stood avatar, but it is believed that holography is more
general and should hold for all spacetimes. Over the last
several years, the original Maldacena proposal has been
extended away from its familiar relativistic setting in AdS
to include nonrelativistic holography [2–4], higher spin
holography [5–7], and gauge-gravity dualities in de Sitter
spacetimes [8,9].
Using the notion of asymptotic symmetries at the

null boundary of spacetime characterized by the Bondi-
Metzner-Sachs (BMS) group [10–12], holography for
asymptotically flat spacetimes [13,14] has recently met
with a certain number of successes, though the discussion
has often been confined to three dimensions and with
theories without supersymmetry. An incomplete list of
important works in this direction is here [15–29]. We point
the reader to [30,31] for a summary of the state of the field.
Supersymmetry is crucial to the original correspondence in
AdS and is a feature we wish to retain as we build towards a

string theoretic understanding of flat holography. Some
recent efforts at supersymmetrization of the results in 3d
include [32–35].
In this paper, we propose a holographic duality between

a specific supersymmetric gravitational theory in 3d and a
2d chiral superconformal field theory. The theory of gravity
is a supersymmetric extension of 3d Einstein gravity in the
first order Chern-Simons (CS) formulation with a parity
breaking term (an analogous theory with minimal super-
symmetry was named “reloaded”1 elsewhere, e.g., in [32]),
equipped with asymptotically flat boundary conditions. We
perform the asymptotic symmetry analysis to find the
kinematical asymptotic symmetry algebra and its dynami-
cal realization in terms of asymptotic charges. We take a
double scaling limit of the charge algebra of the parity
breaking theory. This requires us to send the coefficient μ
of the gravitational Chern-Simons term to zero and tuning
Newton’s constant G → ∞, while keeping the product μG
finite.
On the field theory side, we work with the assumption

that the dual theory inherits the asymptotic symmetry
algebra as its underlying symmetry. For our parity
breaking theory, like the case of usual supergravity with
asymptotically flat boundary conditions, this turns out to
be extended (N ¼ 2) versions of the super-BMS3 algebra
or equivalently the 2d super Galilean conformal alge-
bra (SGCA).
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1As explained more elaborately in the main analysis of the
present paper, we note that this theory departs from usual
extended supergravity theories in unusual appearance of the
spacetime translation generator in anticommutator of two differ-
ent supercharges.
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We note here, following [34], that there are two distinct
supergravity theories that one can obtain in 3d flatspace.
The asymptotic symmetries for both these theories are
supersymmetric extensions of the BMS3 algebra (or the
GCA2), which we discuss below in Eq. (1). As per the
nomenclature of [34], we will be interested in the twisted or
“despotic” supergravity (the asymptotic symmetry algebra
of is the inhomogeneous SGCA (35) as opposed to the
usual Poincare supergravity in 3d, also rather wonderfully
named “democratic” in [34] (for which the homogeneous
SGCA (54) appears as asymptotic symmetries).
The initial departure of our analysis from the case of [34]

is that for the parity breaking despotic theory, the asymp-
totic symmetry algebra has two nonzero central extensions
in our case instead of a single one. We perform a scaling
limit on the field theory with super-BMS symmetries and,
through an analysis of null vectors, show that there is a
consistent truncation to a single copy of a super-Virasoro
algebra. The putative field theory dual is hence governed by
the symmetries of a super-Virasoro algebra and is thus a 2d
chiral superconformal field theory (SCFT). The calculation
of charges on the bulk side yields results consistent with
this, with the charges that correspond to the other gen-
erators of the super-BMS3 algebra identically vanishing in
the scaling limit from the initial parity breaking theory.
We thus propose a duality between a chiral limit of a 3d

supergravity that is a supersymmetric extension of Chern-
Simons gravity, with flat boundary conditions, which we
will call flat space chiral supergravity, and a 2d chiral SCFT
with a certain central charge.
Our present analysis can be compared with the bosonic

flat space chiral gravity story [17]. The asymptotic sym-
metries of 3d flat space at null infinity is the BMS3 algebra:

½Lm; Ln� ¼ ðm − nÞLmþn þ
cL
12

m3δmþn;0; ð1aÞ

½Lm;Mn� ¼ ðm − nÞMmþn þ
cM
12

m3δmþn;0; ð1bÞ

½Mn;Mm� ¼ 0: ð1cÞ

Here, Mn’s are translations of the null direction which
depend on the angle at the boundary and are called
supertranslations. Ln’s are the diffeomorphisms of the
circle at the boundary and are called superrotations. In
Einstein gravity, the central charges take the values cL ¼ 0
and cM ¼ 3=G [12]. These symmetries can be looked upon
as the symmetries of a putative dual 2d field theory living
on the null boundary of flat space. Although these
symmetries have shown up in various contexts, like the
nonrelativistic limit of AdS [36], Galilean gauge theories
[37–39], and also in the tensionless limit of string theory
[40,41] and relatedly in ambitwistor strings [42], concrete
examples are difficult to come by, with the notable
exception of [20]. It would be much easier to have

examples if the symmetry algebra was simply the
Virasoro algebra. This requires one to find a truncation
of (1) down to its Virasoro subalgebra. This is achieved by
first looking at a bulk theory which is topologically massive
gravity (TMG) instead of Einstein gravity. The asymptotic
symmetries of TMG with flatspace boundary conditions
again yield the BMS3 algebra (1), but now the central terms
both become nonzero. It is then possible to perform a
double scaling on the theory so that we can get cL ≠ 0 but
cM ¼ 0. On the bulk side, this reduces TMG to Chern-
Simons gravity. On the boundary, through an analysis of
null vectors, it is possible to show that this limit enables one
to achieve the desired truncation down to a single copy of
the Virasoro algebra. It was thus conjectured that Chern-
Simons gravity with flat space boundary conditions is dual
to the chiral half of a 2d CFT. More specifically, con-
nections were made to a specific dual theory, a monster
CFT. For more details, the reader is referred to [17].
In our present paper, we attempt a supersymmetric

analogue of the analysis reviewed above. Here is a brief
outline of the rest of the paper. In Sec. II, we present our
bulk theory, which is a parity violating theory of super-
gravity. We calculate the charges and the asymptotic
symmetry algebra for this theory and then perform our
scaling limit. The next section is devoted to the analysis on
the field theory side, which is a detailed discussion of the
null vectors in a 2d theory invariant under super-BMS3. We
show that under the proposed scaling, the representations of
the field theory side reduce from modules of super-BMS to
super-Verma modules of a single copy of a super-Virasoro
algebra. We end with a summary of our results and some
discussions. There are three appendixes supplementing the
calculations performed on the bulk theory and one with
some details of the boundary theory.

II. PARITY BREAKING SUPERGRAVITY

A. Dynamics of N = 2 supergravity

The global infinitesimal isometries of 3d flat space form
the nonsemisimple Lie algebra g ¼ isoð2; 1Þ generated
by 3 homogeneous Lorentz generators and translations
generators along the 3 space-time directions. In a basis
convenient for the present purpose, this reads

½Jm; Jn� ¼ ðm − nÞJmþn;

½Jm; Pn� ¼ ðm − nÞPmþn; ½Pm; Pn� ¼ 0 ð2Þ

for m; n ¼ −1, 0, 1. It is an age-old idea that this algebra
could be gauged to find a theory of gravity with a vanishing
cosmological constant. Building towards this goal, one
defines a g valued connection 1-form, and the Chern-
Simons form constructed out of it is expected to give a
theory of gravitation. Taking this a bit further, one can
inquire whether supergravity theories with built-in local
supersymmetric invariance can be obtained by similar
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arguments. The answer, as expected, is affirmative. The key
here lies in finding a Lie-superalgebra whose bosonic part
is g, i.e., (2).
To this end, let us introduce a couple of fermionic

generators Sα, Rα. The α ¼ � 1
2
index reflects the 2d

representation of the 3d Clifford algebra. The nonvanishing
brackets are [apart from those spelled out in (2)]

½Jm; Sα� ¼ ðm=2 − αÞSmþα; ½Jm; Rα� ¼ ðm=2 − αÞRmþα;

½Pm; Sα� ¼ ðm=2 − αÞRmþα;

fSα; Sβg ¼ Jαþβ; fSα; Rβg ¼ Pαþβ: ð3Þ

Let us call this superalgebra g̃. We take a moment to note
that the translation generators Pm do not appear as the
anticommutator of two same supersymmetry generators.
Rather it appears in a twisted sector of an S, R anticom-
mutator. This is a bit unusual superalgebra in the global
spacetime sense. The algebra valued connection 1-form can
thus be expressed in this basis as

A ¼ enPn þ ωnJn þ
1ffiffiffi
2

p ðψαS−α þ ηαR−αÞ: ð4Þ

Here, e, ω, respectively, are the vielbein and spin con-
nection 1-forms, while the fermionic fields ψ and η stand
for the Majorana gravitino fields. The last input required to
construct (an action of) a gravitational theory is an invariant
quadratic form on the algebra. It is well known that with the
bosonic part g being nonsemisimple, the canonical choice
of the Killing metric is degenerate. However that problem
can easily be avoided by defining [43,44]

hJm; Pni ¼ γmn; where γ ¼ anti-diagonalð−2; 1;−2Þ:
ð5Þ

Moreover, it is augmented for the whole g̃ by the portion
involving the supertrace of the fermionic generators:

hSα; Rβi ¼ Cαβ; with C ¼
�
0 −2
2 0

�
: ð6Þ

Here, C is the charge conjugation matrix. With respect to
the above inner product, the Chern-Simons action

S ¼ k
4π

Z �
A ∧ dAþ 2

3
A ∧ A ∧ A

�
ð7Þ

(k ¼ 1
4GN

is the Chern-Simons level with GN being the 3d
Newton’s constant) now in terms of the gravitational fields
takes an N ¼ 2 supergravity form:

S ¼ 1

16πGN

Z
2en ∧ Rn − ψ̄Dη − η̄Dψ þ 1

2
ψ̄enΓnψ : ð8Þ

We again mention that to get this supergravity theory, we
gauged a version of superalgebra which is twisted in the
sense mentioned above.
Here, D as usual is the covariant derivative with respect

to the connection ω, and we have used the super-Lie
algebra g̃ and the invariant bilinear form on it [(5) and (6)].
As per the present convention, the conjugation of Majorana
spinors in (8) has been defined via the charge conjugation
matrix (6), and the Gamma matrices are given in terms of
the Pauli matrices:

Γ0 ¼ σ3; Γ�1 ¼ −iσ2 � σ1: ð9Þ

According to the terminology of [34], Eq. (8) is the
despotic form of flat space supergravity.
Supersymmetry is built into the action (7) as it is locally

gauge invariant (small gauge transformations), and the
connection (4) is super-Lie algebra valued. Equation of
motion in the Chern-Simons version is flatness of the
connection, which, in terms of the curvature Rn of the spin-
connection and the torsion Tn, translates to

Rn ¼ −
1

4
ψ̄Γnψ ; Tn ¼ −

1

4
ψ̄Γnη: ð10Þ

For the matter fields, the equations of motion are

Dψ ¼ 0; Dη ¼ −
1

2
enΓnψ : ð11Þ

A striking feature of 3d gravity in the first order
formulation is the existence of a one-parameter family of
actions, all of which give the same equations of motion. It
was most prominently described in [44] for AdS gravity
and later in the context of supergravity in [45]. In the case
of interest, viz. asymptotically flat supergravity with
various amount of supersymmetry, this has been addressed
in [32,33,46,47]. In light of the present analysis, the action
(8) is a single member of the above mentioned family.
In the case of supergravity, the above can be extended to

a one-parameter family of theories by a simple twist in the
Lie algebra inner product. More explicitly, this is done by
supplementing (5) and (6) with

hJm; Jni ¼
1

μ
γmn; hSα; Sβi ¼

1

μ
Cαβ ð12Þ

for a real parameter μ. It is straightforward to see that with
respect to this modified inner product the Chern-Simons
action gives rise to an action which contains μ dependent
terms in addition to the earlier action (8)

S̃ ¼ 1

16πGN

Z
2en ∧ Rn þ

1

μ
CSðωÞ − ψ̄Dη − η̄Dψ

þ 1

2
ψ̄enΓnψ −

1

μ
ψ̄Dψ : ð13Þ
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Here, CSðωÞ ¼ hωdωþ 2
3
ω3i is the Chern-Simons 3-form

for the connection ω. This N ¼ 2 theory can be viewed in
contrast to the parity breaking N ¼ 1 supergravity action
used in [32], termed reloaded by the authors.
However, equations of motion do not alter (with respect

to the Chern-Simons theory, they still stem from the
flatness of connection based on the same Lie algebra).
As long as classical solutions are concerned, all of the
members in this family of theories are the same. On the
other hand, the charge algebra of large diffeomorphisms is
affected because of the modification of the canonical
structure. In addition, due to the emergence of a
Lorentz-Chern-Simons term, parity is broken.
To illustrate the point regarding the canonical structure,

we first remind ourselves of a couple of well known facts
about Chern-Simons theory:

(i) There are no local physical degrees of freedom.
There may, however, be global degrees of freedom
either due to nontrivial topology of background
manifold or due to the boundary, if the manifold
has one.

(ii) There is no global rigid symmetry and hence no
conserved quantities associated with them. How-
ever, gauge invariance may result in nontrivial
conserved charges, with support only at the boun-
dary, provided appropriate boundary conditions
are met.

The last point can be analytically expressed as a generically
nonintegrable variation of a charge corresponding to a
gauge generator Λ, a g̃ valued spacetime function:

=δQ½Λ� ¼ −
k
2π

Z
∂Σ
hΛ; δAi: ð14Þ

Here, Σ is a two-surface, which can be treated as a
spatial one when a spacetime interpretation is attached to
the background manifold. This is now clear that both
the dependence of the gauge parameter Λ on A and the
asymptotic data on A determine the existence of a chargeQ
above (14). It is also to be noted here that if a charge exists,
it would, in our specific theory, depend on the twist or
parity breaking parameter μ via the inner product.
From the gravity perspective, there are only diffeo-

morphism invariance of the theory generated by spacetime
vector fields. In the case of supergravity, like the one we are
interested in, there are local supersymmetric invariances as
well. For a diffeomorphism and local supersymmetry
transformation generated by Ξμ, there is an equivalent
(on-shell) gauge transformation in the CS picture:

Λ ¼ ΞμAμ; ð15Þ

which is linearly dependent on the field configuration. In
Appendix A, we have adapted a covariant phase space
analysis of CS theory. There we describe in detail the

obstruction to integrability of charges and its resolution for
linearly dependent gauge parameters by choosing a mild
gauge fixing condition on the asymptotic gauge field.

B. Asymptotic symmetries of N = 2 supergravity:
Boundary conditions

We have just observed that all of the interesting features
in a topological theory like 3d gravity or equivalently CS
emerges from the asymptotic boundary. In particular,
determining the physical charges, if they exist at all,
(14) requires specifying field configurations near the
boundary.
As is understandable, various physical situations impose

strict restrictions on boundary conditions. In the present
asymptotically flat supergravity setup, we would consider
one such scenario. To be more concrete, let us consider the
connection Afs corresponding to the 3d Minkowski space
devoid of fermionic degrees of freedom. Then, we impose
the following boundary condition on generic CS flat
connections:

ðA − AfsÞjr¼constant→∞ ¼ Oðr0Þ: ð16Þ

For the gravity interpretation to be clear, we specify the
topology of the two-dimensional null boundary of the
background spacetime manifold to be a cylinder and
coordinatize it by the retarded time u and periodic
coordinate ϕ. The spatial foliations Σ with coordinates
ðr;ϕÞ are chosen to be discs which cut the null infinity
ðr → ∞Þ at constant u.
It is evident that the elements of the reduced phase space

Pred defined via (A12) satisfy the condition (16). Therefore
we can write these connections as

A ¼ b−1ðdþ aÞb: ð17Þ

For the present work, we further reduce the space of
connections. This reduction corresponds to asymptotically
flat spacetimes in “BMS-gauge” [16] adapted to include
N ¼ 2 supersymmetry:

b ¼ e
r
2
P−1 ; ð18aÞ

a ¼
�
Pþ1 −

M
4

P−1 þ
ψ

4
R−1=2

�
du

þ
�
Jþ1 −

M
4

J−1 −
N
4
P−1 þ

ψ

4
S−1=2 þ

η

4
R−1=2

�
dϕ;

ð18bÞ

whereM,N are bosonic and ψ , η [not to be confused with
the two component gravitinos appearing in (4) or (8)] are
fermionic variables, supposed to coordinatize the phase
space. Hence,
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A ¼ 1

2
P−1drþ ðrP0Þdϕþ a: ð19Þ

Flatness of the connection A, i.e., on the space of
gravitational solutions, the above fields get more restricted
and should take the following form:

M ¼ MðϕÞ; N ¼ J ðϕÞ þ uM0ðϕÞ;
ψ ¼ ΨðϕÞ; η ¼ ΘðϕÞ þ uΨ0ðϕÞ: ð20Þ

Here the primes denote derivative with respect to ϕ.
These are essentially the boundary conditions presented

in [34]. Note that all the Lie-(super) algebra components of
a, by these boundary conditions, are no longer dynamical
(in the sense that they are phase space constants). In the
covariant phase space framework of Appendix A 2, this is
further reduction of the phase space to P̃red ⊂ Pred defined
by the conditions like δhau; J−1i ¼ 0 ¼ δhau; P−1i etc.
In the specific gauge (17), for any linearly state-

dependent gauge transformation like (15), existence of
an integrable charge is guaranteed if the term

hau; δaϕi ð21Þ

is a total variation. The interested reader may consult (A14)
for an explanation. A nice feature of the boundary
configuration (18b) indeed satisfies this condition. This
directly implies that any diffeomorphism (and local
supersymmetry transformation) for boundary field configu-
ration satisfying the integrability of (21) gives a conserved
charge supported at the boundary, provided it is finite
for r → ∞.
Since we have kept the asymptotic field configurations

(boundary falloff conditions) (18b) the same as in [34], we
can freely use some of the relevant results from there.
However, our further results will differ from theirs because
the dynamic content of the theory we are using, including
the canonical structure, differs.

C. Asymptotic symmetries of N = 2 supergravity:
Dynamical realization

In the above discussion, we have noticed that with our
boundary conditions (18b), the existence of charges cor-
responding to an arbitrary diffeomorphism is guaranteed
provided the charge does not diverge as r → ∞. We now
construct the algebra of charges induced on the phase space
from the algebra of gauge transformations (not to be
confused with the Lie algebra of the gauge group).
Since there is gauge redundancy, in the canonical formal-
ism this algebra is implemented via a Dirac bracket of
charges. Avoiding this route, we present a covariant
framework for this in Appendix A 2. There, we prove that
more information is required to ensure closure of an algebra
of charges corresponding to arbitrary diffeomorphisms (or
rather, the associated gauge parameters). For a generic field

configuration, only those charges should be considered
whose corresponding gauge generators preserve the inte-
grality criterion of hau; δaϕi.
The present field configuration (18b), however, is more

restrictive and contains components which are phase space
constants, e.g., hJ−1; aui ¼ 0. These conditions define a
subspace of the phase space. Therefore, it is natural to only
consider gauge transformations that are tangential to this
reduced space. For the last example of hJ−1; aui, this
implies that we should restrict the gauge transformation
parameter λ ¼ bΛb−1 to preserve this2:

hJ−1; δλaui ¼ 0: ð22Þ

In order to make the form of allowed transformations
explicit, let us express it in terms of our chosen basis:

λ ¼ ξnPn þ χnJn þ ϵαSα þ ζαRα: ð23Þ

Conditions like (22) above put the following restrictions on
components of λ:

χ0 ¼ −χþ10; χ−1 ¼ 1

2
χþ100 −

M
4

χþ1 −
ψ

8
ϵ1=2; ð24aÞ

ξ0 ¼ −ξþ10;

ξ−1 ¼ 1

2
ξþ100 −

M
4

ξþ1 −
N
4
χþ1 −

ψ

8
ζ1=2 −

η

8
ϵ1=2; ð24bÞ

ϵ−1=2 ¼ −ϵ1=20 þψ

4
χ1; ζ−1=2 ¼ −ζ1=20 þ η

4
χ1 þ ψ

4
ξþ1:

ð24cÞ

Supplemented by these, there are also the following
conditions on the functional forms of the 4 independent3

functions:

χþ1 ¼ YðϕÞ; ξþ1 ¼ TðϕÞ þ uY 0ðϕÞ;
ϵ1=2 ¼ ϵðϕÞ; ζ1=2 ¼ ζðϕÞ þ uϵ0ðϕÞ: ð25Þ

We have observed from the boundary conditions (18b),
which ultimately reduce the phase space to two bosonic
(M, N ) and two fermionic functions (η, ψ), that the inte-
grability condition (A14) for charges is met. The explicit

2Note that, as we have seen, the allowed gauge transformation
parameters which preserve P̃red depend linearly on the field
components. Hence, they can be understood to be composed of a
diffeomorphism generating transformation and a pure gauge
transformation, as well as local supersymmetry as in (A7).
However, for the purpose of this article, we will not explicitly
use this form to identify the diffeomorphism and local super-
symmetry generating vector fields.

3By independence of 2-phase space functions f and g, we
mean the linear independence of the phase space tangent vectors
or the variations δf and δg.

FLATSPACE CHIRAL SUPERGRAVITY PHYS. REV. D 97, 106020 (2018)

106020-5



form of the integrated charge corresponding to II C
and (25) is

Q½λðY; T; ϵ; ζÞ� ¼ −
k
4π

Z
∂Σ¼S1

��
J þ 1

μ
M

�
Y

þMT þ ϵ

�
Θþ 1

μ
Ψ
�
þ ζΨ

�
dϕ:

ð26Þ

In order to present the algebra of the Dirac brackets of the
charges in conventional form, we would express them as
the following modes:

Lm ≔ −Q½λðY ¼ eimϕ; 0; 0; 0Þ�

¼ k
4π

Z
S1
dϕ

�
J þ 1

μ
M

�
eimϕ; ð27aÞ

Mm ≔ −Q½λð0; T ¼ eimϕ; 0; 0Þ� ¼ k
4π

Z
S1
dϕMeimϕ;

ð27bÞ

Gr ≔
ffiffiffi
2

p
Q½λð0; 0; ϵ ¼ eirϕ; 0Þ�

¼ −
ffiffiffi
2

p
k

4π

Z
S1
dϕ

�
Θþ 1

μ
Ψ
�
eirϕ; ð27cÞ

Hr ≔
ffiffiffi
2

p
Q½λð0; 0; 0; ζ ¼ eirϕÞ� ¼ −

ffiffiffi
2

p
k

4π

Z
S1
dϕΨeirϕ:

ð27dÞ

The main goal of the asymptotic analysis is to calculate the
Dirac brackets of these Fourier modes. As we have found
out the gauge transformations which preserve the reduced
phase space, it is now guaranteed that the charge algebra
should be closed. The brackets can be easily computed
using (28):

fQ½Λ1�; Q½Λ2�g ¼ −
k
2π

Z
∂Σ
ðh½Λ1;Λ2�; Ai þ hΛ2; dΛ1iÞ

ð28Þ

for generic gauge parametersΛ1;2 and field configuration A.
For example, if we choose λ1ðY ¼ eimϕ; 0; 0; 0Þ and

λ2ðY ¼ einϕ; 0; 0; 0Þ, then the Dirac bracket is

fLm; Lng ¼ Ωðδλ1 ; δλ2Þ ¼ −iðm − nÞLmþn − i
k
μ
m3δmþn;0:

ð29Þ

The explicit computation of this bracket is presented in the
Appendix C. This is easily promoted to quantum commu-
tators by the usual prescription fA;BgPB → i½A; B� (having

set ℏ ¼ 1). The full charge algebra (nonzero brackets
only) is

½Lm; Ln� ¼ ðm − nÞLmþn þ
cL
12

m3δmþn;0; ð30aÞ

½Lm;Mn� ¼ ðm − nÞMmþn þ
cM
12

m3δmþn;0; ð30bÞ

½Lm;Gr� ¼
�
m
2
− r

�
Gmþr; ð30cÞ

½Lm;Hr� ¼
�
m
2
− r

�
Hmþr; ð30dÞ

½Mm;Gr� ¼
�
m
2
− r

�
Hmþr; ð30eÞ

fGr;Gsg ¼ 2Lrþs þ
cL
3
r2δrþs;0; ð30fÞ

fGr;Hsg ¼ 2Mrþs þ
cM
3
r2δrþs;0; ð30gÞ

where the central charges are both nonvanishing cL¼
12k=μ¼ 3

μGN
; cM¼12k¼ 3

GN
. The curly braces for fermion-

fermion brackets are the usual anticommutators.
The infinite bosonic modes of the above algebra form the

3d BMS algebra. The whole set incorporating a couple of
fermionic ones is formally the same as the despotic N ¼ 2
super-BMS algebra, as per the nomenclature introduced in
[34]. The important difference here, of course, is the
nonvanishing central charge cL. One should note that even
in the presence of more than 1 supersymmetry generator,
we do not have a bosonic R-current which may generate a
rotation in the G, H plane. This is basically due to the clear
asymmetry between the two in the algebra (30).

D. Bulk chiral limit

In this subsection, we describe a mechanism that leads to
a chiral truncation of the algebra (30) in a manner similar to
that in the bosonic case [17]. The starting gravitational
theory or theories are a two-parameter family characterized
by the Newton’s constant GN and the parity breaking
parameter μ. The limit μ → ∞ gives us back pure Einstein
gravity coupled with two fermions in the despotic manner.
The limit works fine at each step of the asymptotic
symmetry analysis, definition of the charges, and even
the level of the charge algebra. As expected, these results in
this limit match precisely those of [34]. In particular, the
central charges become

lim
μ→∞

ðcL; cMÞ ¼
�
0;

3

GN

�
: ð31Þ

It is intriguing to observe, however, that there exists another
limit at the parameter space where the roles of the central
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charges flip, i.e., cL is nonzero while cM vanishes.
This sector is probed by the double-scaling limit μ → 0,
GN → ∞ such that the product μGN ¼ 1

κ is a finite constant.
When applied to the conserved charges (32), this limit forces

Lm ¼ κ

16π

Z
S1
dϕMeimϕ;

Gr ¼ −
ffiffiffi
2

p
κ

16π

Z
S1
dϕΨeirϕ; Mm ¼ Hr ¼ 0: ð32Þ

Here, we should remind ourselves that the Chern-Simons
level kwas equated from the start with 1

4GN
. Dropping off the

two sets of generators now reduces the super-BMS algebra
(30) to a single copy of super-Virasoro algebra with central
charge cL ¼ 3κ.
As expected, from the vanishing of the Mn charges, the

energy, corresponding to the asymptotic diffeomorphism
∂u vanishes in this limit. The angular momentum, which in
general takes the form

−Q½∂ϕ� ¼
k
4π

Z
S1

�
1

μ
MðϕÞ þ J ðϕÞ

�
; ð33Þ

takes the simplified form κ
8
M0.M0 is the zero mode of the

function MðϕÞ appearing in the boundary condition II B,
not to be confused with the vanishing charge M0. In the
quantum theory, this should imply that at the chiral limit,
the physical primary states, labeled by two parameters
energy and angular momenta, would now collapse to a one-
parameter space, labeled only by angular momenta and
fixed energy (the zero value may always be given an
unphysical constant shift). We aim to prove at the level of
highest weight modules of the algebra using representation
theory techniques.
It is curious to note the effect of this scaling limit on the

action. In this limit, the action (13) written in terms of
gravity variables simplifies to

S̃ ¼ κ

16π

Z
CSðωÞ − ψ̄Dψ : ð34Þ

One may wish now to incorporate the torsion condition
Tn ¼ − 1

4
ψ̄Γnη to move over to a second order formalism

for the action and perform the asymptotic charge analysis,
but for the purpose of the present work of holographic
equivalence at the level of symmetry generators, we prefer
not to work with the supersymmetric gravitational theory at
the chiral point in second order formalism.

III. CHIRAL LIMIT: BOUNDARY SIDE

A natural prescription for holography for a generic
spacetime, drawing inspiration from lessons in
AdS=CFT, is to assume that the asymptotic symmetries
of the gravity theory would be realized as the underlying

symmetry algebra of the putative dual field theory.
Following this, the supersymmetric field theory dual to
the supergravity theory in the previous section will inherit
its asymptotic structure as its defining symmetry. Thus, if
there exists a field theory that is holographically dual to the
despotic supersymmetric parity violating theory we dis-
cussed in the earlier section, it would follow what we call
the inhomogeneous super galilean conformal algebra
(SGCAI):

½Ln; Lm� ¼ ðn −mÞLnþm þ cL
12

ðn3 − nÞδnþm;0;

½Ln;Mm� ¼ ðn −mÞMnþm þ cM
12

ðn3 − nÞδnþm;0;

½Ln;Gr� ¼
�
n
2
− r

�
Gnþr; ½Ln;Hr� ¼

�
n
2
− r

�
Hnþr;

½Mn;Gr� ¼
�
n
2
− r

�
Hnþr;

fGr;Gsg ¼ 2Lrþs þ
cL
3

�
r2 −

1

4

�
δrþs;0;

fGr;Hsg ¼ 2Mrþs þ
cM
3

�
r2 −

1

4

�
δrþs;0: ð35Þ

Note that (35) is a rewritten version of (30) with a trivial
shift in the generators: Ln → Ln þ cL

24
δn;0;Mn → Mn þ

cM
24
δn;0. We will have both central terms cL and cM turned

on. From the bulk theory,

cL ¼ 3

μGN
; cM ¼ 3

GN
: ð36Þ

In the preceding sections, we showed that the gravity theory
reduced to a supersymmetric version of Chern-Simons
gravity (CSG) under the double scaling limit

μ → 0; GN → ∞; μGN ¼ 1

κ
; ð37Þ

where κ is a constant. The charges corresponding toMn and
Hr vanished identically in this scaling limit, leading us to
believe that for CSG, the dual theory could be governed by
just a single copy of the super-Virasoro algebra. In what
follows, through an analysis on null vectors in the field
theory with SGCAI symmetry, we show that the scaling
limit that we proposed in the bulk indeed corresponds to a
consistent truncation from an inhomogeneous Galilean
conformal field theory (SGCFTI) to a chiral half of a
superconformal field theory in 2d.

A. Representation theory

We are interested in the representation theory of the
above algebra (35). We will label the states by the
eigenvalues of L0 and M0:
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L0jϕi ¼ Δjϕi; M0jϕi ¼ ξjϕi: ð38Þ

We will work exclusively in the Neveu-Schwarz sector.
Hence, the modes of the fermionic generators are half
integral, and this means that there is no further label on the
states of the representation. The algebra determines that
fLn;Mn;Gn;Hng lower the Δ eigenvalue for n > 0. We
want the spectrum of Δ to be bounded from below,
and hence in close analogy to the usual 2d CFTs, we
define the notion of a primary state jϕip as one for whichΔ
cannot be lowered further:

Lnjϕip ¼ Mnjϕip ¼ Gnjϕip ¼ Hnjϕip ¼ 0: ð39Þ

The modules of the algebra would be built out of these
primary states by acting with raising operators.

B. Null state analysis

Wewish to check the reducibility of the modules that are
built out of the primaries, as just described. To do this, we
shall examine the possibility of occurrence of null states in
the spectrum, i.e., states that are orthogonal to all states in
the Hilbert space, including themselves. More details of the
analysis of this section can be found in [48] and
Appendix D. This can be viewed as the supersymmetric
generalization of the bosonic chiral truncation done
in [17,49].
First, we list the most general states at the first few levels.

In the following, the state jni represents a state at level n.
The most general states, up to level 2, are given by

j1=2i ¼ a1G−1
2
jϕi þ a2H−1

2
jϕi; ð40Þ

j1i ¼ b1L−1jϕi þ b2M−1jϕi þ b3G−1
2
H−1

2
jϕi; ð41Þ

j3=2i ¼ d1L−1G−1
2
jϕi þ d2L−1H−1

2
jϕi

þ d3M−1G−1
2
jϕi þ d4M−1H−1

2
jϕi

þ d5G−3
2
jϕi þ d6H−3

2
jϕi; ð42Þ

j2i ¼ f1L−2jϕi þ f2L2
−1jϕi þ f3L−1M−1jϕi

þ f4L−1G−1
2
H−1

2
jϕi þ f5M2

−1jϕi
þ f6M−2jϕi þ f7M−1G−1

2
H−1

2
jϕi

þ f8G−3
2
H−1

2
jϕi þ f9G−1

2
H−3

2
jϕi: ð43Þ

Now we impose the conditions of these states for being
null. It is straightforward to see that a state jmþ ri,
Lnjmþ ri ¼ 0, provided n > mþ r. It is the same for
Mn, Gs, and Hs, where n or s > mþ r. Below, we list the
conditions for the states above being null. The nontrivial
conditions at each level yield

Level 1=2∶ G1
2
j1=2i ¼ 2a1Δjϕi þ 2a2ξjϕi ¼ 0;

H1
2
j1=2i ¼ 2a1ξjϕi ¼ 0: ð44Þ

Level 1∶ G1
2
j1i ¼ ðb1 − 2b3ξÞG−1

2
jϕi

þ ðb2 þ 2b3ΔÞH−1
2
jϕi ¼ 0;

H1
2
j1i ¼ ðb1 þ 2b3ξÞH−1

2
jϕi ¼ 0;

L1j1i ¼ 2½b1Δþ ðb2 þ b3Þξ�jϕi ¼ 0;

M1j1i ¼ 2b1ξjϕi ¼ 0: ð45Þ

Similarly, we can find the conditions for null states at
higher levels. For levels 3=2 and 2, the details are listed in
Appendix D. We then go on to find the restrictions on the
constant coefficients for these states:
Level 1=2: We have 2 constants a1, a2 satisfying

equations

a1Δþ a2ξ ¼ 0; a1ξ ¼ 0: ð46Þ

To get a nontrivial state, we must have ξ ¼ 0, and the null
state is

j1=2i ¼ a2H−1
2
jϕi: ð47Þ

Level 1: We have 3 constants b1, b2, b3 satisfying
equations

b2ξ ¼ b3ξ ¼ 0; b2 þ 2b3Δ ¼ 0; ð48Þ

and b1 ¼ 0. To get a nontrivial state, we must have ξ ¼
b1 ¼ 0 and b3 ¼ − 1

2Δ b2. If Δ ≠ 0, the null state becomes

j1i ¼ b2

�
M−1jϕi −

1

2Δ
G−1

2
H−1

2
jϕi

�
: ð49Þ

The second term in (49) is the descendant of the null state at
level 1=2. So, if we set j1=2i ¼ 0, then we are left with
M−1jϕi at level 1.
Level 3=2: At this level, we have 6 constants d1; d2;…d6

satisfying equations

d2ξþ d5 ¼ 0; d2ð1þ ΔÞ þ d4ξþ d6 ¼ 0; ð50Þ

d5Δþ ð4d2 þ d6Þξþ
1

3
ðcLd5 þ cMd6Þ ¼ 0;

d5

�
ξþ cM

3

�
¼ 0; ð51Þ

and d1 ¼ 0; d2 ¼ d3. Considering the case where cM ¼ 0,
we find that to get a nontrivial state at this level,
ξ ¼ d1 ¼ d5 ¼ 0. The null state is given by
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j3=2i ¼ d2½L−1H−1
2
jϕi þM−1G−1

2
jϕi

− ð1þ ΔÞH−3
2
jϕi� þ d4M−1H−1

2
jϕi: ð52Þ

Except for the third term in (52), all of the other terms are
descendants of the null state at level 1=2 and 1. Setting
j1=2i ¼ j1i ¼ 0, we are left with H−3

2
jϕi at level 3=2.

Level 2: If we set cM ¼ 0, we have 9 constants f1;
f2;…f9 which follow equations given in Appendix D. For
Δ ≠ 0 and cL ≠ 9

2
, the null state at this level is

j2i ¼ f3L−1M−1jϕi

þf7

�
M−1G−1

2
H−1

2
jϕi− 3þ 2Δ

2
M2

−1jϕi
�

þf8

�
G−3

2
H−1

2
jϕi−G−1

2
H−3

2
jϕiþ

�
2þ 4Δ

3

�
M−2jϕi

�
:

ð53Þ

The same analysis can be done here, and we find
that except for M−2jϕi, all the remaining terms are
descendants of the null states at lower levels. We can thus
set M−2jϕi ¼ 0 and carry on doing the same exercise for
higher and higher levels. This means that we can throw
away theH’s at all half integer levels and theM’s at integer
levels. This truncates the algebra to L and G’s, leaving us
with a single copy of super-Virasoro algebra.

IV. CONCLUDING REMARKS

A. Summary

In this paper, we have discussed a theory of parity
violating N ¼ 2 supergravity in asymptotically flat space-
times and its dual field theory. We looked at a scaling limit
of this theory where the asymptotic symmetries from the
bulk perspective reduce to a single copy of the super-
Virasoro algebra from the parent despotic super-BMS
algebra, borrowing nomenclature from [34], or the inho-
mogeneous super Galilean conformal algebra. Through a
study of null vectors in the putative dual 2d field theory, we
showed that this feature is also mirrored on the boundary.
We call this the chiral reduction of the SGCAI. The bulk
theory correspondingly is called flat chiral supergravity.
The principal claim of this paper is thus the following new
holographic connection:
Holographic correspondence: Flatspace chiral super-

gravity, defined by the action (13) and boundary conditions
(II B) at the chiral limit effected through the asymptotic
charge algebra, is dual to a 2d chiral superconformal field
theory with central charge c ¼ 3κ.

B. SGCAH or the democratic limit

Interestingly, there exists another variant of the super-
symmetric GCA, called the homogeneous SGCA or
SGCAH, which arises from the analysis of asymptotic

symmetries of supergravity on flat spacetimes [32] and also
in the analysis of tensionless superstrings [50,51]. Here, the
fermions are scaled in the same way [51] and were called
the “democratic” limit in [34]. This algebra is given by

½Ln; Lm� ¼ ðn −mÞLnþm þ cL
12

ðn3 − nÞδnþm;0;

½Ln;Mm� ¼ ðn −mÞMnþm þ cM
12

ðn3 − nÞδnþm;0;

½Ln;Qα
r � ¼

�
n
2
− r

�
Qα

nþr;

fQα
r ; Q

β
sg ¼ δαβ

�
Mrþs þ

cM
6

�
r2 −

1

4

�
δrþs;0

�
: ð54Þ

In the analysis of [34], the central charge cL was zero as is
expected from usual supergravity. However, we can intro-
duce a nonzero cL by using the same method as described
earlier in this paper.
Chiral truncation? We could have asked whether the

usual theory of supergravity in 3d flat spacetimes modified
in the aforementioned way, of which (54) is the asymptotic
symmetry algebra, admits a chiral truncation as the one we
have just seen, when we tune cM to zero. Here, we notice
that the above algebra (54) does not admit a super-Virasoro
subalgebra, and so a truncation down to the chiral half of a
superconformal theory is not possible. One could wonder
whether there is a truncation down to just a Virasoro algebra.
This stems from the observation that chiral truncation in the
bosonic sector essentially amounted to setting the M’s to
zero. From the above algebra, it seems that since fQ;Qg
closes toM, setting the M’s to zero would also set all of the
supersymmetry to zero. This seems to be a rather unsatis-
factory situation. A truncation in a supersymmetric theory
leading to a theory without supersymmetry is unusual. This
is especially true when one considers the case of tensionless
superstrings, as considered in [48]. However, an analysis of
null states in this algebra carried out in [48] indicates that this
truncation is not an allowed truncation. We are yet to
understand what prevents this truncation from the point of
view of the bulk, and we leave this to future work.
Emergent R-symmetry: Towards a better understanding

of the SGCAH, we make a curious observation before
finishing. If one switches cM ¼ 0 but allows a finite cL in
(54), there is an emergent Uð1Þk R-symmetry admitted by
the algebra. Let us denote the modes of this new current
algebra by Pn. Then, the nontrivial brackets of Pn with the
rest of the generators of (54) are

½Ln; Pm� ¼ −mPnþm; ½Pn; Pm� ¼ knδnþm;0;

½Pn;Qα
r � ¼ iϵαβQβ

nþr: ð55Þ

This algebra also allows a 1-parameter spectral flow. This
becomes manifest by the following basis change of the
supercharges:

FLATSPACE CHIRAL SUPERGRAVITY PHYS. REV. D 97, 106020 (2018)

106020-9



Q� ¼ 1ffiffiffi
2

p ðQ1 � iQ2Þ: ð56Þ

Note, now Q�
r has definite charges �1 under P0, and

also now

fQþ
r ; Q−

s g ¼ Mrþs; fQþ
r ; Qþ

s g ¼ 0 ¼ fQ−
r ; Q−

s g: ð57Þ

Then, the relabeling of the generators as

Q̃�
r ¼ Q�

r�η; L̃n ¼ Ln þ ηPn þ
η2k
2

δn;0

P̃n ¼ Pn þ ηkδn;0; M̃n ¼ Mn ð58Þ

turns out to be an inner-automorphism of (54) with the
Uð1Þk current; thus, this leads to a spectral flow. It would be
interesting to use this spectral flow symmetry of the super-
BMS algebra (58) in a way analogous to [46], in a
holographic context.

C. Flatspace chiral supergravity with more SUSY?

Finally, let us comment on a natural extension of the
results of this paper. It is interesting to ask whether the
N ¼ 2 theory that we have just discussed is the only
supersymmetric theory where we can observe such trun-
cations in the bulk and boundary theories. We believe that
this is not the case. We can take, e.g., the N ¼ 4 extended
super-BMS theory constructed in [46], the underlying
symmetry algebra of which is given by

½Ln; Lm� ¼ ðn −mÞLnþm þ cL
12

ðn3 − nÞδnþm;0; ð59aÞ

½Ln;Mm� ¼ ðn −mÞMnþm þ cM
12

ðn3 − nÞδnþm;0; ð59bÞ

½Ln;G�
r � ¼

�
n
2
− r

�
G�

nþr; ½Ln; R�
r � ¼

�
n
2
− r

�
R�
nþr;

½Mn;G�
r � ¼

�
n
2
− r

�
H�

nþr; ð59cÞ

½Ln; Jm� ¼ −mJnþm; ½Ln; Pm� ¼ −mPnþm;

½Mn; Jm� ¼ −mPnþm; ð59dÞ

½Jn; G�
r � ¼ �G�

nþr; ½Jn; R�
r � ¼ �R�

nþr;

½Pn;G�
r � ¼ �R�

nþr; ð59eÞ

fG�
r ; G

∓
s g ¼ 2Lrþs � ðr − sÞJrþs þ

cL
3

�
r2 −

1

4

�
δrþs;0;

ð59fÞ

fG�
r ; R

∓
s g ¼ 2Mrþs � ðr − sÞPrþs þ

cM
3

�
r2 −

1

4

�
δrþs;0;

ð59gÞ

½Jn; Jm� ¼
cL
3
nδnþm;0; ½Jn; Pm� ¼

cM
3
nδnþm;0: ð59hÞ

The suppressed commutators, as usual, are zero. The initial
indications are that we should be able to consistently “turn
off”Mn, R�

n , and Pn.
4 This would lead us to a chiralN ¼ 4

super-Virasoro algebra, generated by Ln,G�
n ; Jn. Of course,

one needs to do the analogue of the analysis that we
performed in the bulk and also the full null state analysis of
this algebra to check whether this truncation is consistent.
However, the indications are that this would again work and
should lead to a flatspace chiral supergravity, now with
more supersymmetry.
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APPENDIX A: COVARIANT PHASE SPACE
OF CHERN-SIMONS THEORY

AND GLOBAL CHARGES

Most of the generic results presented in this subsection
can be compared to5 [52] worked out in canonical formal-
ism or can be extracted from more formal cohomological
results in [53,54]. We present this section so as to make the
paper self-consistent, in a formalism (for particular appli-
cation of this formalism in the context of 3d bosonic

4The first check of this is to see if putting these charges to zero
leads to a consistent reduced algebra.

5Some of the results, for example, those stemming from the
choice about the linear field dependence of the gauge parameter
as presented in Eq. (38) of [52], are not generic enough to
describe our purpose. This will be pointed out later.
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gravity, see [55]) which best suits our purpose of asymp-
totic charge calculation.
First variation of the Chern-Simons Lagrangian 3-form

gives us the presymplectic potential Θ, which is a two form
on spacetime and 1-form on covariant phase space [56–60]
P (space of solutions):

ΘðδÞ ¼ −
k
4π

hA ∧ δAi: ðA1Þ

Here, the variation δ serves as a vector field onP, and in the
above, it is contracted with Θ. It can be shown that the
integrated (over some spatial 2-surface Σ6) exterior deriva-
tive (with respect to P) of Θ gives a background indepen-
dent and closed presymplectic structure:

Ωðδ1; δ2Þ ¼
k
4π

Z
Σ
ðδ1Θðδ2Þ − δ2Θðδ1ÞÞ: ðA2Þ

In the above, the presympletic 2-form is contracted with
respect to two arbitrary variations or vector fields δ1, δ2. For
variations, which commute with each other, the expression
simplifies to

Ωðδ1; δ2Þ ¼
k
2π

Z
Σ
hδ1A ∧ δ2Ai: ðA3Þ

Now let us consider a particular diffeomorphism on P
generated by the vector field δΛ on P such that it acts as
gauge transformation of the connections:

δΛA ¼ dΛþ ½A;Λ�; ðA4Þ

(λ clearly is a Lie-algebra valued spacetime function). For
the present purpose, we would consider only those gauge
parameters Λ which do not depend on field configurations
(state-independent) in the bulk but may do so in the
boundary ∂Σ. Hence, the form (A3) of the presymplectic
structure when supported over Σ is justified.
Contracting δΛ with Ω gives

Ωðδ; δΛÞ ¼ −
k
2π

Z
∂Σ
hΛ; δAi: ðA5Þ

If Λ continues to be state (A) independent even on ∂Σ, the
above7 expression is integrable (with respect to δ) trivially
to give the conserved charge

Q0½Λ� ¼ −
k
2π

Z
∂Σ
hΛ; Ai ðA6Þ

modulo additive terms which are phase space constants.
Here and always in this article, we assume that if an
integrated charge corresponding to some Λ is found, that it
does not diverge at the boundary. This expression contains
an integral supported only on ∂Σ; hence, it truly captures
the fact that gauge transformations give rise to nonvanish-
ing conserved charges through only boundary contribu-
tions. Extensions of A in the bulk are redundant
information. Hence, the physical phase space P̃ ⊂ P of
Chern-Simons theory, on which the charges (A5) act,
contains information of flat connections A at the boundary.
However, for the case of Λ being state-dependent, the

right hand side of (A5) is not an exact form on P̃, and we
would write that as an unintegrated =δQ. To illustrate the
point, let us consider, for example, Λ as a linear function of
A, which is the most simple nontrivial dependence

Λ ¼ ΞμAμ þ α ðA7Þ

for some spacetime vector field Ξ which my have bosonic
as well as fermionic components. Note that Ξ and the
Lie-algebra valued spacetime function α are both constants
on P̃. Interestingly, the above gauge parameter Λ, on-shell
induces diffeomorphism (and local supersymmetry trans-
formation) by vector field Ξ in addition to a state inde-
pendent gauge transformation by α. Now let us choose
Σ to be of the topology of a disc8 and choose standard
coordinates r;ϕ on it and u (to be interpreted as retarded
time coordinate in gravity setting) as the coordinate
designating each Σ foliation. Then, the above unintegrated
charge takes the form

=δQ½Λ� ¼ −
k
2π

Z
∂Σ¼S1

hðΞuAu þ ΞrArÞ; δAϕi

þ δ

�
Q0½α� −

k
4π

Z
S1
ΞϕhAϕ; Aϕi

�
: ðA8Þ

It is evident that the functions Au, Ar are obstructions
against explicit integrability of the charge. As done in
canonical analysis [52] in covariant phase space, we cannot
always do away with both Au and Ar by gauge choice. This
becomes clear by concentrating on the explicit example we
worked with in the main body the article, particularly in
(18b). As expected, the first part of (A8) is also the
unintegrated form of charge associated with diffeomorph-
sim invariance. In case charges are integrated, we can at
least formally calculate their Dirac brackets. That can be
calculated directly from the presymplectic structure (A3):

6In the Chern-Simons theory framework, “spatial surface”
does not hold much meaning as we don’t require the presence of
any Lorentz structure or a metric. Only requiring that the
background 3-manifold can be foliated as T × Σ for some real
interval T is sufficient (but not necessary).

7In the explicit calculation, the spacetime 1 form δA is to be
pulled back to the codimension 2 submanifold ∂Σ.

8The inclusion of black holes may be seen as inducing annular
topology, which essentially modifies the homology of Σ, a
canonical analysis of which can be found in [61].
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ΩðδΛ1
; δΛ2

Þ ¼ −
k
2π

Z
∂Σ
ðh½Λ1;Λ2�; Ai þ hΛ2; dΛ1iÞ: ðA9Þ

This is the covariant phase space equivalent of the
canonical Dirac bracket fQ½Λ1�; Q½Λ2�g. We must note
an important caveat here that as we are not yet in a position
to find the expression of integrated charges, the above Dirac
bracket calculation does not give us an explicit algebra of
charges which might have been viewed as dynamical
realization of algebra of gauge transformation.
As a side note let us take a close look at the brackets of

the charges due to state-independent gauge transformations
α. This can be readily extracted by putting Ξ ¼ 0 in (A7)
and using (A9). More specifically, we define the charges

JIm ¼ Q0½α ¼ eimϕTI�; ðA10Þ

where T are the Lie-algebra generators. Then, the classical
charge algebra becomes

fJIm; JJng ¼ fIJKJKmþn þ iknδmþn;0gIJ ðA11Þ

the “classical” Kac-Moody algebra corresponding to the
algebra on which the Chern-Simons theory was based. fIJK
and gIJ, respectively, are the structure constants and non-
degenerate metric.

1. Reduced phase space

Until now we have worked with the full gauge field A
and observed that its restriction at the asymptotic boundary
is responsible for conserved global charges in the theory.
Motivated by physically interesting scenarios,9 which we
particularly deal with in the supergravity context of the
present article, we will make further reduction of the phase
space. The type of reduction that would be useful for us is
given by

A ¼ b−1ðdþ aÞb: ðA12Þ

In the coordinate chart that describes the background, we
would choose b ¼ erL with L being a fixed element in the
Lie-algebra and a is the pull back of bAb−1 to the surface
r ¼ const → ∞. Hence, the functions aIu; aIϕ (I, J will
denote the Lie-algebra index on a chosen basis) span a
reduced pace Pred ⊂ P̃ defined by δAr ¼ 0. Let us now
define λ ¼ bΛb−1. Note that since a is the pull back of the
1-form bAb−1 to the boundary, it is easy to see that λ can be
taken to be independent of r and hence suitable to be a
function defined exclusively on the boundary. Further, only

with this choice of λ is the reduced phase space Pred
preserved.
Now, for field dependent gauge transformations (A7),

this means

λ ¼ Ξμð∂μbb−1 þ aμÞ þ β where β ¼ bαb−1

¼ Ξuau þ Ξϕaϕ þ ΞrLþ β: ðA13Þ

It now becomes clear from (A8) that on Pred, that the
obstruction against the integrability of corresponding
charges comes as

=δQ½Λ� ¼ −
k
2π

Z
S1
dϕhΛ; δAϕi ¼ −

k
2π

Z
S1
dϕhλ; δaϕi

¼ integrable part −
k
2π

Z
S1
dϕΞuhau; δaϕi: ðA14Þ

Basically, the sufficient requirement for integrability of the
charge, for any arbitrary vector fields Ξ is the integrability
of the inner product hau; δaϕi.
The up-shot of the present discussion is any diffeo-

morphism including local supersymmetry (or any linearly
state-dependent gauge transformation) gives rise to inte-
grated conserved charge on Pred, provided the above
sufficiency10 is met and the charge integrals do not diverge
as r → ∞. Moreover, it also means that only the aIϕ spans
Pred as aIu must be functions of aIϕ for the sufficiency. This
is illustrated explicitly in the supergravity context as in
(18b). Up to this point, we have stated existence conditions
of integrated charge on the reduced phase space Pred for
arbitrary ΛðΞ; αÞ. One can now use (A9) to compute Dirac
brackets of these charges. However, that might not lead to
closed algebra of charges on Pred. In order to ensure that,
we will have to consider only those transformations δΛ
which are tangential vector fields on Pred, i.e., preserves the
condition (A12) via ∂rλ ¼ 0 and preserves the integrability
criterion of hau; δaϕi. In the explicit example presented in
the main body of the paper, we reduce the phase space
further employing physical boundary conditions II B, (20).
More restrictive choice of the gauge parameters should be
taken in order to preserve them.

2. Charge algebra on reduced phase space

We have outlined above that arbitrary diffeomorphisms
can result in conserved boundary charges. However, for a

9In the gravitational context, these are boundary conditions
coming from physically justified falloff conditions of the con-
nection fields.

10If yi are the coordinates of the reduced phase space, which
should be even in number and may well be spacetime functions,
then the integrability condition boils down to

gIJ

�
δaIu
δyi

δaJϕ
δyj

−
δaIu
δyj

δaJϕ
δyi

�
¼ 0

for all i, j, and gIJ is the Lie-algebra metric.
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closed algebra of charges more stringent conditions come
in to play. Before going to the explicit example of the
starting supergravity theory, let us analyze the phase space
in a bit more detail. Without losing generality, in what
follows we would set α ¼ 0 ¼ β for (A7) and (A13).
Moreover, we will not, at this stage, put any additional
boundary conditions which may reduce Pred further. This
means that all the components aIϕ, which we will denote as
yI (which are functions of u;ϕ, the boundary coordinates)
from now on, do spanPred. For integrability, we put a linear
ansatz for the functional form11 of auðyÞ on Pred

aIu ¼ CI
JyJ ðA15Þ

for both phase space and spacetime constant automor-
phisms CI

J on the Lie-algebra. It should be kept in mind
that the equations of motion, i.e., the flatness of the original
connection A is always implied. On Pred this now gives

CI
J∂ϕyJ − ∂uyI þ CK

LyJyLfIJK ¼ 0: ðA16Þ

It is now easy to see that the expression

hau; δaϕi ¼ δ

�
1

2
CIJyIyJ

�
ðA17Þ

is integrable if and only if CIJ is a symmetric tensor on the
Lie-algebra. The corresponding charge is now

Q½Ξ� ¼ −
k
2π

Z
∂Σ

dϕ

�
1

2
GðΞÞ
IJ yIyJ þ ΞrLIyJgIJ

�
; ðA18Þ

where we have introduced

GðΞÞ
IJ ¼ CIJΞu þ gIJΞϕ

with gIJ the Lie-algebra metric. We should now consider
the symmetries, which are allowed, in a sense of preserving
Pred. This means also preserving the integrable structure
(A15) of charges on Pred, i.e.,

δaIu ¼ CI
JδyJ;

hence CI
Jð∂ϕλ

J þ yKλLfKLJÞ ¼ ∂uλ
I þ CK

JyJλLfKLI:

ðA19Þ

It should be noted that this is the key equation for an
“allowed” set of gauge transformation. On the other hand,
this equation governs the physical boundary diffeomor-
phisms that preserve Pred or asymptotic boundary con-
ditions. This essentially is a subset of all possible boundary

diffeomorphisms. We would also stress here that a more
strict set of boundary conditions can only reduce the
allowed space of diffeomorphisms. Using (A19) and
putting in the presymplectic form (A9), we can now
compute the Dirac bracket of charges corresponding to
2-gauge parameters λa ¼ GðΞaÞJ

IyITJ þ ΞaL; a ¼ 1, 2:

fQ½Ξ1�; Q½Ξ2�g ¼ −
k
2π

Z
∂Σ
ðh½Λ1;Λ2�; Ai þ hΛ2; dΛ1iÞ

¼ −
k
2π

Z
∂Σ
hλ2; ð∂ϕλ1 þ ½aϕ; λ1�Þi

¼ Q½Ξ̃� þ k
2π

Z
∂Σ

Ξr
1L

I∂ϕðΞr
2LIÞ; ðA20Þ

where Ξ̃ ¼ −½Ξ1;Ξ2� is the Lie bracket of the vector fields
Ξ1, Ξ2 restricted on the r ¼ constant boundary surface. The
steps involved in this calculation are a bit too lengthy and
are given in the next Appendix. The equation (A20)
represents the dynamical realization of the algebra of
allowed diffeomorphisms that preserve the reduced boun-
dary phase space. The dynamical realization is not exact
due to the presence of the central term

R
∂Σ Ξr

1L
I∂ϕðΞr

2LIÞ.

APPENDIX B: DERIVING (A20)

We here supply the steps involved in deriving (A20). We
start with the criterion (A15) every allowed gauge param-
eter or diffeomorphism must satisfy in order to preserve the
reduced phase space.
While this is the key equation for “allowed” set of gauge

transformation, more usable sets of information can be
derived from it:

∂uG
ðΞÞ
IJ ¼ CIMð∂ϕGðΞÞM

J þ yKGðΞÞLðJfKÞLMÞ
− CKðJGðΞÞL

MÞyMfKLI

þ ΞrLLCMðIfJÞLM; ðB1Þ

gIJ∂uΞr ¼ CIJ∂ϕΞr þ yMΞrðCIKfMJ
K þ CMKfIJKÞ:

ðB2Þ

Here, the symmetrization brackets are used without any
combinatoric factor. Let us now consider the following
expression for the Lie bracket Ξ̃ ¼ −½Ξ1;Ξ2�:

−
1

2

Z
∂Σ

GðΞ̃Þ
IJ yIyJ ¼ 1

2

Z
∂Σ
½ðΞu

1∂u þ Ξϕ
1∂ϕÞGðΞ2Þ

IJ

− ðΞ1 ↔ Ξ2Þ�yIyJ

¼
Z
∂Σ

yIGðΞ1Þ
IK ∂ϕðGðΞ2ÞK

JyJÞ

−
Z
∂Σ
ðΞu

1Ξr
2 − Ξr

1Ξu
2ÞLLCIMfJLMyIyJ:

11This can be contrasted with the situation discussed in [62],
where all components of au are taken to be phase space constants
and thereby ensuring integrability trivially.
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This can be written in a varied form:Z
∂Σ

yIGðΞ1Þ
IK ∂ϕðGðΞ2ÞK

JyJÞ

¼ −
1

2

Z
∂Σ

GðΞ̃Þ
IJ yIyJ þ

Z
∂Σ

ðΞu
1Ξr

2 − Ξr
1Ξu

2ÞLLCIMfJLMyIyJ:

ðB3Þ
On the other hand, the following expression simplifies as

−
Z
∂Σ

Ξ̃rLIyJgIJ ¼
Z
∂Σ

yILJ½GΞ1

IJ ∂ϕΞr
2

þ Ξu
1Ξr

2y
MðCIKfMJ

K þ CMKfIJKÞ
þ gIJΞ

ϕ
1∂ϕΞr

2� − ðΞ1 ↔ Ξ2Þ

¼
Z
∂Σ

yIGΞ1

IJ ∂ϕðΞr
2L

JÞ þ Ξr
1L

I∂ϕðGΞ2

IJ y
JÞ:

ðB4Þ
Now from the expression (A20), the nonderivative term
simplifies as

−
Z
∂Σ
hλ2; ½aϕ; λ1�i ¼

Z
∂Σ
ðΞu

1Ξr
2 − Ξr

1Ξu
2ÞLLCIMfJLMyIyJ;

ðB5Þ
where we have used λI1 ¼ GðΞ1ÞI

JyJ þ Ξr
1L

I and λI2 ¼
GðΞ2ÞI

JyJ þ Ξr
2L

I .
Hence, the expression for the bracket of the charges

(A20) can be written up to constant multipliers:

−
Z
∂Σ
hλ2; ð∂ϕλ1 þ ½aϕ; λ1�Þi

¼
Z
∂Σ

yIGðΞ1Þ
IK ∂ϕðGðΞ2ÞK

JyJÞ þ yIGΞ1

IJ ∂ϕðΞr
2L

JÞ

þ Ξr
1L

I∂ϕðGΞ2

IJ y
JÞ þ Ξr

1L
I∂ϕðΞr

2LIÞ
þ ðΞu

1Ξr
2 − Ξr

1Ξu
2ÞLLCIMfJLMyIyJ: ðB6Þ

It is now trivial to use the expressions in (B3) and (B4) to
see that
Z
∂Σ
hλ2; ð∂ϕλ1 þ ½aϕ; λ1�Þi

¼
Z
∂Σ

1

2
GðΞ̃Þ
IJ yIyJ þ Ξ̃rLIyJgIJ − Ξr

1L
I∂ϕðΞr

2LIÞ: ðB7Þ

Hence, the bracket of charges corresponding to the vector
fields Ξ1 and Ξ2 is

fQ½Ξ1�; Q½Ξ2�g ¼ −
k
2π

Z
∂Σ
hλ2; ð∂ϕλ1 þ ½aϕ; λ1�Þi

¼ Q½Ξ̃ ¼ −½Ξ1;Ξ2��

þ k
2π

Z
∂Σ

Ξr
1L

I∂ϕðΞr
2LIÞ: ðB8Þ

APPENDIX C: EXPLICIT COMPUTATION OF
THE DIRAC BRACKET FOR SUPERGRAVITY

We would present the explicit computation (29) here.
According to the definitions of these modes (32), we see
that the charges Lm correspond to the gauge transformation
whose asymptotic form is given by λðY1 ¼ eimϕ; 0; 0; 0Þ.
The Dirac bracket follows from the formula derived in

(A9). For this, we should be considering two gauge
transformations λ1 and λ2 such that among their component
functions, only χþ1ðϕÞ ¼ YðϕÞ do survive. Y1 ¼
eimϕ; Y2 ¼ einϕ give the specific modes given above.
Using II C and (25), we get

λ1 ¼ Y1L1 − Y 0
1L0 þ

�
1

2
Y 00
1 −

M
4

Y1

�
L−1

þ uY 0
1M1 − uY 00

1M0

þ
�
1

2
uY 000

1 −
M
4

uY 0
1 −

N
4
Y1

�
M−1

þ 1

4
ðY1ψG−1=2 þ ðY1ηþ uY 0

1ψÞR−1=2Þ ðC1Þ

and similar for λ2. For the expression in (A9), we first
evaluate the first term using the brackets (2) and (3) of the
algebra g̃ and the inner product (5) and (12). A few lines of
algebraic manipulation yield

Z
S1
h½λ1; λ2�; ai ¼

2

μ

Z
S1
Y 0
1Y

00
2: ðC2Þ

Note that this term is independent of any phase space
variable.
On the other hand, the second term evaluates to

Z
S1
hλ1; dλ2i ¼

1

2

Z
S1
dϕð−Y 0

1Y2 þ Y1Y 0
2Þ
�
J þ 1

μ
M

�

þ 3

μ

Z
S1
Y 0
1Y

00
2: ðC3Þ

Hence,

fQ½λ1ðY1; 0; 0; 0Þ�; Q½λ2ðY2; 0; 0; 0Þ�g

¼ −
k
2π

Z
∂Σ
ðh½Λ1;Λ2�; Ai − hΛ1; dΛ2iÞ

¼ −
k
2π

Z
∂Σ
ðh½λ1; λ2�; ai − hλ1; dλ2iÞ

¼ −
k
4π

Z
S1
dϕðY 0

1Y2 − Y1Y 0
2Þ
�
J þ 1

μ
M

�

þ k
2π

1

μ

Z
S1
Y 0
1Y

00
2: ðC4Þ

The Dirac bracket for the modes are found by setting
Y1 ¼ eimϕ, Y2 ¼ einϕ.
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APPENDIX D: DETAILS OF THE NULL STATE ANALYSIS

This appendix contains some of the detailed calculations of Sec. III, which we omitted in the main text. First, we list the
conditions of the states at level 3

2
and level 2 being null.

Level 3=2:

G1
2
j3=2i ¼ ½d1ð1þ 2ΔÞ þ 2d2ξþ 2d5�L−1jϕi þ 2½d3ð1þ ΔÞ þ d4ξþ d6�M−1jϕi þ ðd2 − d3ÞG−1

2
H−1

2
jϕi ¼ 0;

H1
2
j3=2i ¼ 2d1ξL−1jϕi þ 2½d1 þ d3ξþ d5�M−1jϕi þ 2d1G−1

2
H−1

2
jϕi ¼ 0;

L1j3=2i ¼ ½d1ð1þ 2ΔÞ þ 2d3ξþ 2d5�G−1
2
jϕi þ ½d2ð1þ 2ΔÞ þ d3 þ 2d4ξþ 2d6�H−1

2
jϕi ¼ 0;

M1j3=2i ¼ d1ð1þ 2ξÞG−1
2
jϕi þ 2ðd2ξþ d5ÞH−1

2
jϕi ¼ 0;

G3
2
j3=2i ¼ ½2ð2d1 þ d5ÞΔþ 2ð2d2 þ 2d3 þ d6Þξþ

2

3
ðcLd5 þ cMd6Þ�jϕi ¼ 0;

H3
2
j3=2i ¼

�
2ð2d1 þ d5Þξþ

2d5cM
3

�
jϕi ¼ 0: ðD1Þ

Level 2:

G1
2
j2i ¼ 2ðf2 − f4ξÞL−1G−1

2
jϕi þ ½f3 þ 2f4ð1þ ΔÞ þ 2f8�L−1H−1

2
jϕi þ ðf3 − 2f7ξ − 2f9ÞM−1G−1

2
jϕi

þ ½2f5 þ f7ð3þ 2ΔÞ�M−1H−1
2
jϕi þ

�
3f1
2

− 2f8ξ

�
G−3

2
jϕi þ

�
3f6
2

þ f9ð3þ 2ΔÞ
�
H−3

2
jϕi ¼ 0;

H1
2
j2i ¼ 2ðf2 þ f4ξÞL−1H−1

2
jϕi þ ½f3 þ 2ðf4 þ f7ξþ f8Þ�M−1H−1

2
jϕi þ

�
3f1
2

þ 2f9ξ

�
H−3

2
jϕi ¼ 0;

L1j2i ¼ ½3f1 þ 2f2ð1þ 2ΔÞ þ 2ðf3 þ f4Þξ�L−1jϕi þ ½2f3ð1þ ΔÞ þ 2ðf5 þ f7Þξþ 3f6 þ 2f9�M−1jϕi
þ ½2f4ð1þ ΔÞ þ 2f7ξþ 2f8 þ 2f9�G−1

2
H−1

2
jϕi ¼ 0;

M1j2i ¼ 4f2ξL−1jϕi þ ð3f1 þ 2f2 þ 2f3ξÞM−1jϕi þ 2f4ξG−1
2
H−1

2
jϕi ¼ 0;

G3
2
j2i ¼

�
5f1
2

þ 2f2 þ 4f4ξþ 2f9

�
ξþ cM

3

��
G−1

2
jϕi þ 2

�
f3 þ f4ð1þ 2ΔÞ þ 5f6

4
þ 2f7ξþ f8

�
Δþ cL

3

�
þ 2f9

�

×H−1
2
jϕi ¼ 0;

H3
2
j2i ¼

�
5f1
2

þ 2f2 þ 4f4ξþ 2f8

�
ξþ cM

3

��
H−1

2
jϕi ¼ 0;

L2j2i ¼
�
2ð2f1 þ 3f2ÞΔþ ð6f3 þ 6f4 þ 4f6 þ 6f7 þ 5f8 þ 3f9Þξþ cM

�
f9 þ

f6
2

��
jϕi ¼ 0;

M2j2i ¼
�
f1

�
4ξþ cM

2

�
þ 6f2ξ

�
jϕi ¼ 0: ðD2Þ

Null state conditions for level 2: We now give the details of the null state conditions for level 2. If we set cM ¼ 0, we have
9 constants f1; f2…f9 satisfying equations

f3ξ ¼ f8ξ ¼ f9ξ ¼ 0;

f3 þ 2f4ð1þ ΔÞ þ 2f8 ¼ 0;

f3 − 2f7ξ − 2f9 ¼ 0;

2f5 þ f7ð3þ 2ΔÞ ¼ 0;

3f6
2

þ f9ð3þ 2ΔÞ ¼ 0;

f3 þ 2ðf4 þ f7ξþ f8Þ ¼ 0;
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2f3ð1þ ΔÞ þ 2ðf5 þ f7Þξþ 3f6 þ 2f9 ¼ 0;

2f4ð1þ ΔÞ þ 2f7ξþ 2f8 þ 2f9 ¼ 0;

f3 þ f4ð1þ 2ΔÞ þ 5f6
4

þ 2f7ξþ f8

�
Δþ cL

3

�
þ 2f9 ¼ 0;

ð6f3 þ 4f6 þ 6f7 þ 5f8 þ 3f9Þξ ¼ 0; ðD3Þ

and f1 ¼ f2 ¼ 0. Demanding a nontrivial solution, we get ξ ¼ f1 ¼ f2 ¼ 0, f3 ¼ 2f9. For the rest of the analysis, the
reader is redirected to the main text.
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