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It has been shown that the disk-level S-matrix elements of one Ramond-Ramond (RR) and two Neveu-
Schwarz-Neveu-Schwarz (NSNS) states could be found by applying the Ward identity associated with the
string duality and the gauge symmetry on a given component of the S matrix. These amplitudes have
appeared as the components of six different T-dual multiplets. It is predicted in the literature that there are
some nonzero disk-level scattering amplitudes, such as one RR (p — 1) form with zero transverse index and
two NSNS states, could not be captured by the T-dual Ward identity. We explicitly find this amplitude in
terms of a minimal context of the integral functions by the insertion of one closed string RR vertex operator
and two NSNS vertex operators. From the amplitude invariance under the Ward identity associated with the
NSNS gauge transformations and T-duality, we also find some integral identities.
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I. INTRODUCTION

D-branes are of specific interest in vacuum construction.
They are localized objects on which strings can end. We
will consider the stable D-branes that carry the RR charges
[1]. The dynamics of the D-branes of type II superstring
theories at the lowest order in o is given by the world-
volume theory which is the sum of Dirac-Born-Infeld
(DBI) and Chern-Simons (CS) actions [2-5].

It has been shown that the higher-order corrections to the
D-brane play a pivotal role in determining the consistency
of string compactifications. Without taking these terms
properly into account, one would not reach correct con-
clusions about the space of valid constructions of string
vacua [6]. Such conclusions could be learned about these
higher-order terms by taking the known terms and applying
T-duality to them [7,8] or computing the terms directly by
evaluating scattering amplitudes [6,9,10]. In this paper, we
will concentrate on the latter approach. Thus, we must
evaluate scattering amplitudes in which various string fields
interact with a D-brane. We will confine ourselves to tree-
level calculations, so the corresponding amplitudes are
given by incorporation of multiple string vertex operators
on a disc world sheet. We are following [10-12], where the
formalism was developed and some simple calculations of
amplitudes were done. Similar to the computations in these
references, the final goal is to find the corresponding
Dp-brane effective actions. In [13], we will use string
dualities to present all the gauge invariant completion
amplitudes of three closed strings (one RR and two
NSNS) in the form of T-dual multiplets that are needed
to find the four derivative corrections to the D-brane action.
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The complex integrals appearing in the amplitude could
have closed expressions only in an expansion in . So we
will obtain the string amplitudes in closed form only in this
limit. The disk-level S-matrix element of one RR (p — 3)-
form with two, one and zero transverse indices and two
NSNS states has been studied in [6,11,12,14]. In [15] we
found that these three parts of the amplitude appear as the
first components of three different T-dual multiplets. Three
other T-dual multiplets have been found in [15] in which
the first components of them are not the corresponding
amplitudes of RR (p — 3)-form. The amplitudes have one,
five and fourteen integrals for the first, the second and the
third parts, respectively. The integrals in the second part
satisfy two constraint equations, and the integrals in the
third part satisfy eight constraint equations. The T-dual
Ward identity connects these three parts to the amplitudes
of the RR (p — 1)-form, (p + 1)-form, (p + 3)-form, and
the RR (p + 5)-form. The sum of all multiplets does not
satisfy the Ward identity corresponding to the RR gauge
transformation. This indicates that there should be another
T-dual multiplet. T-duality predicts that the first component
of this multiplet must be the corresponding amplitude
of the RR (p — 1)-form which carries zero transverse
index. We showed that this amplitude could not be captured
by T-duality and Ward identities corresponding to the
NSNS gauge transformations [15].

From the invariance of string amplitudes under the parity
transformation, it is easy to see that string amplitudes
involving RR (p — 1)-form are only nonvanishing if one
NSNS field is graviton (or dilaton) and another one is BNS
field [14]. We are going to calculate this disk world-sheet
amplitude by the insertion of one closed string RR vertex
operator and two NSNS vertex operators.
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The paper is arranged as follows: In Sec. II, we start by
reviewing the approach for three closed string amplitude
including one RR and two NSNS vertex operators in the RNS
world-sheet formalism. In Sec. III, by considering this
approach, we calculate the corresponding amplitude of scalar
RR (p — 1)-form. In addition to all the integral functions that
emerged in the amplitude of other cases of three closed string
amplitudes, some new integral functions appear in this case for
the first time. We introduce these new integral functions in
Sec. IV and, from the amplitude gauge invariance under the
NSNS gauge transformations and amplitude T-dual covari-
ance, we find some identities between these integral functions.

II. THREE-POINT AMPLITUDES

Scattering amplitudes, which explain the interaction of
strings with a D-brane, are speculated as the string vertex
operator insertions on a disk world sheet with Dirichlet and
Neumann boundary conditions. These boundary conditions
have a major role in finding the world-sheet propagators in
the conformal field theory frame. In the following, we are
going to study a general case of three closed amplitude of
one RR and two NSNS states and introduce an approach to
find relevant amplitudes. Then, using this approach we will
calculate our interesting amplitude.

In such cases, one can find the tree-level string scattering
amplitudes by calculating the correlation functions of the
relevant vertex operators on disk. Considering the back-
ground charge of the disk world sheet, we have to pick out
the vertex operators in one of the following pictures:

y(=1/2-1/2) 1, (=1.0) 1,(0.0)

-1/2,-3/2 0,0 0,0
RR NSNS " NSNS* V&R/ / )V< ) V( )

NSNS ¥ NSNS*

We work in the latter picture where the symmetry of the
NSNS states is manifest. We perform the computation in the
above two different pictures. By considering the identities
found in Sec. IV, we confirm that in each case the results
agree with the other case. Using a conformal transformation,
the amplitude can be demonstrated as a correlation function
in the upper half-complex plane with the real axis as the
world-sheet boundary. The amplitude can be written as

A~ (P_H,,yM,)*?

X/JZZI:VZ]/Q(P1721)3V1_93/2(P1'D,Zl):
X(€2‘D)ulaz/d2Z2:Vgl(p27Z2):ng(pZ'DvZZ):

(e3Pl [ @25V (p32) Vil (pso D2 (1)
The above holomorphic components are given by
VXI/2<P1, 7)) = e—¢(Z1)/25A(Z1)eim.X’

Vs 2 (p1-D.21) = e HEPRSy(2)e P,

and

Vg(pia Zi) - (8X(1 + lpl . l//[//a)eipi‘x’
Vi(pi-D.z;) = (0X* +ip;- D -yy®)e?PX i =23

where X%(z) (and X*(Z)), w*(z) (and w“(Z)) and ¢(z) (and

¢(z)) are bosons, fermions and picture ghosts, respectively.
The indices A, B, - - - are the Dirac spinor indices and

P_=1(1-y) is the chiral projection operator, and

1
Hl(n) = Eelﬂl'"ﬂnyﬂl . }/ﬂn
+1
M=y Q)

where € is the volume (p + 1)-form of the D ,-brane. Here
the matrix D, is a diagonal matrix that agrees with 7, in
directions along the brane (Neumann boundary conditions)
and with —7,,, in directions normal to the brane (Dirichlet

boundary conditions). In this notation, D* = —&*i, D+ =
0"* and thus D, =V, =N,

The correlators in (1) could be calculated by using the
standard world-sheet propagators and the Wick-like rule [11].
By calculating the X-correlators, one finds that there is
conservation of the momenta along the brane. SL(2, R) group
is the conformal symmetry of the upper half-complex plane.
The volume of this group, where the amplitude is divided by it,
could be removed after carrying out the correlators [11].
Considering all possible combinations of Gamma matrices
that appear in the amplitude, one can find that the amplitude
(1) was constructed from the following term,

(HimMp) "By C™) 4 p Al ey (3)

where A, ..., 18 an antisymmetric combination of the NSNS
momenta p,, py and/or the polarizations &,, €3.

Considering (2), one can find that the above sentence
would be zero except for n=p+3, n=p=+1 and
n = p +5. Using the linear T-dual Ward identity associ-
ated with the NSNS gauge transformations, we found the
amplitudes corresponding to these cases in some special
cases and presented them in terms of six T-dual multiplets
in [15]. Our findings in [15], were in agreement with the
explicit scattering calculations performed in [6,10-12,14].

One can find that the sum of the six multiplets does not
satisfy the Ward identity corresponding to the RR gauge
transformation. This indicates that there should be another
T-dual multiplet whose first component is the amplitude
corresponding to C(?=") with zero transverse index. This
scalar RR amplitude could not be captured by the T-dual
Ward identity. So, we have to find this amplitude by explicit
scattering calculation. The inability of the T-dual Ward
identity to construct the S matrix indicates that the
appearance of new integral functions in the scalar RR
C(P=1) amplitude could be expected.
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III. S-MATRIX ELEMENT OF ONE SCALAR
RR (p-1) FORM AND TWO NSNS STATES

In this case, n =0, p = 1 and m = 2. There is not any
contraction between the RR potential and the volume form.
From these considerations, one can find that the nonzero
form of the sentence (3) would be as follows:

32€“Oa'A[a0al].
The correlation functions that contribute in the amplitude
(1) then appear as the following,

(PYrha(:Sy:Spiypyla: - Xomal - (4)

where P’s are multiplication of NSNS momenta and X”s
are the correlators of X’s. The value of m in the amplitude
of our interesting case, indicates that ¢ = 1, ...,4 must be
contributed. We must evaluate the above correlation func-
tions for all allowed values of g and then find the
subamplitudes corresponding to ¢’s. The amplitude of
interest would be found by adding these subamplitudes:

A=A+ Ay + Ay + A, (5)

Let us begin with g = 4.

A. qg=4

By carefully using the Wick-like rule in (4) for g = 4,
one can find that the multiplication of NSNS momenta
includes four momenta as

Ps= (p2)P1(ps- D)2 (p3)(ps - D))+ (2 3).  (6)

In this case, the NSNS polarizations contracte with
the y correlators and relevant momenta multiplication.
Considering the standard world-sheet propagators, one can
find a nonzero correlator of X. It is easy to check that this
result satisfies the SL(2, R) transformation. So we can map
the results to disk with unit radius. After fixing the SL(2, R)
symmetry as [16] in which z; =0, the result for the
correlator of X takes the form'

"From this correlator, it is clear that the six independent
Mandelstam variables appear in the amplitude of three closed
strings. On the other hand, there are seven physical string
channels, three open string channels p; - D - p; and four closed
string channels (p; + py + p3)* and p; - p;, i, j =1, 2, 3. One
can easily solve this ambiguity by using the following string
channel identities:

(P1+ P2+ P3)* =2p1 - po+2p1 - p3+2p2 - ps
pP1-D-pr=py-D-py+p3-D-p3+2p;-p3
+2p,-D - ps.

Xy = [2a?PrPe|zPPems (1 = [ 2)PP P2 (1 = |23]?) PP P32,

— Z3|2P2'P3|1 — Z223|2P2‘D'P3 = X.

We can choose the coordinate z, = r, and polar coor-
dinate z; = r5e' [11]. Under this fixing the measure in (1)
changes as

d2Z1JZZ2d2Z3 e d rzdr2r3dr3d¢9,
0<ryrn<l,0<6<2x (7)

and X, changes as

K= r22p1-pzr32p1~p3(1 — r22)P2‘D'P2(1 — r32)p3-D-p3

X |ry = r3e PP P31 — ryryet®| 2Pl ps, (8)

This function is symmetric under exchanging the
momentum labels 2, 3. Replacing in (4) the correlator
(8) and the momentum multiplication (6) and then using
Wick-like rule, one can find that the amplitude (1) gets the
following subamplitude,2

Ay ~deqqpr-N-€-N-pi[-2p5'(py-N-&f)%
+ p1 - N - py(ed) )T, )

where we use the conservation of momentum along the
brane, p§+ p§+ pi =0. &' is the polarization of the
B-field, &5 is the polarization of the graviton and Z, is an
integral function as [11]

1 1 27 K
7, :/ drz/ dr3/ do—. (10)
0 0 0 rrs

where we fix the SL(2, R) symmetry by using (7).

It is clear that all terms in the above amplitude and in all
other amplitudes in this paper, have a scalar part including
integral function(s) and/or Mandelstam variable(s). The
other part we called the independent structure, including
the momenta, B-field polarization, and graviton polariza-
tion that carry two indices ag, a;. The amplitude (9) has two
independent structures in the form of [(pe’ p)(pet)®(p™))
and [(pp)(pe’p)(e*)n].

The above integral function is the most simple integral
function that appears in the three closed string scattering
amplitude. It is also the only integral function that appears
in the scattering amplitudes corresponding to RR (p — 3)-
form, (p —1)-form, (p + 1)-form, (p + 3)-form and
(p + 5)-form with two, three, four, five, and six transverse

Our conventions set o = 2 in the string theory amplitudes.
Our index convention is that the greek letters (u,v, - --) are the
indices of the spacetime coordinates, the latin letters (a, d, c, - - -)
are the world-volume indices and the letters (i, j, k, - - -) are the
normal bundle indices.
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indices, respectively [11,17]. This integral is invariant
under the interchange of (2 <> 3). It is shown in [17] that
the T-dual Ward identity connects these amplitudes which
furnish a T-dual multiplet. In fact, the scattering amplitudes
that appear as the components of a T-dual multiplet carry
the same integral functions.

B.g¢=3

In this case, the multiplication of NSNS momenta has
three momenta

P = (p2)Vi(pa - DYi((p3)P + (ps - DY) + (2 < 3).
(11)

where i, j, k=1, 2, 3, 4 and i # j # k. After SL(2,R)
fixing z; = 0, the part of the X-correlator corresponding to
this case that involves holomorphic coordinate and momen-
tum is as follows,

. 1 (53 z
[(m T (py- D))= (*—_3)
233 \%3 13

133 233 (2 23
+(p2.D)ai<ﬁ_ﬂ> ol (ﬁ_ﬁ>

33 433 3 123

2o 3)] X, (12)

where Zjj = Zi — -

Investigating the transformation of the y-correlator in
the Wick-like rule and the above X-correlator, one can
verify that the corresponding subamplitude is invariant
under the SL(2, R) transformation.

In the structures containing the world-volume contrac-
tion of p; with NSNS polarizations and momenta, we can
use the conservation of momentum along the brane to write
them in terms of the world-volume contraction of p, and
p3. Also, using this consideration and on-shell condition, it
could be found that the contraction of momentum with
corresponding NSNS polarization in the transverse direc-
tion is not an independent structure, i.e.,

1 233p
—\== [(P1
233422 \%322

pi-N-g=-p;-V-g, i=2,3. (13)
So the structures containing the world-volume contraction
of the NSNS momenta with the NSNS polarizations, the
transverse contraction of the NSNS momenta with the
noncorresponding NSNS polarizations, and the transverse
contraction of the RR momentum with the NSNS polar-
izations would appear as independent structures.

So the corresponding subamplitude .45 could be found
by replacing in (4) the momentum multiplication P5 and
correlator X% and then calculating the correlator of y’s. We
see that, in addition to the structure forms in A,, the
structures in Az appear as the following forms: [(pe’e? p)x
(p®)(p)). [(pp)(pe®) @ (pet)]. [(pp)(p™)(pee )™,
[(pp)(p™)(pee®)]. [(tre®)(pp)(p™)(pe*)@],  and
[(tre5)(pp)(pp)(e*)®®]. The integral functions in this
subamplitude that represent the relevant open and closed
string channels are 7Z,, 73, Z4, and Z;. The explicit form of
these integrals (as in (10) for the integral Z,) are given in
[11,17]. The symmetries of the integrals under the inter-
change of (2 <> 3) are such that 7, <> 753 and Z, <> 7.

The amplitudes corresponding to the RR (p — 3)-form,
(p — D-form, (p + 1)-form, (p + 3)-formand (p + 5)-form
with one, two, three, four and five transverse indices,
respectively, carry the same collection of the above integral
functions. These amplitudes can be expressed in terms of
two T-dual multiplets. The related gauge symmetries con-
nect the corresponding components of these multiplets [17].

C.q=2

The multiplication of NSNS momenta has two momenta
here

Py = (p)V((p3) + (ps - DY) + (2 < 3).  (14)

Using the standard world-sheet propagator of X’s, the part
of the X-correlator corresponding to this case that contains
holomorphic coordinate and momentum becomes as
follows:

) . 235273
- D)% (py - D)% + pfpl + (p1 - D)% (p1)%] + =222 [(p, - D)% (ps - D)% + (ps - D)%(ps3 - D)*]

223232

22233 _ v : . <2432 o a; i, %32823 1 ;@ i a;
+ 2( - ”) [(p1 - D)%(ps - D)% + p{i(py - D)*] + 2< ) [(p1- D)% py + pi py |+ === p5' Py + P55
22733 22223 223232
232295 o aoy 05Y028 Q) ty
+ 223253 %, -D)%) T B I By PR 3)] X, (15)
23232 223232 233233 223432

where i, j =1, 2, 3, 4 and i # j.

Using the fact that the above correlator contracts with the NSNS polarization tensors and considering all permutations of
a; in (4), one observes that the contribution of the above correlator in the corresponding subamplitude is as eight different

terms, but two pairs of these terms are equal.
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Considering the conservation of momentum along the
brane and the on-shell conditions and also using the Wick-
like rule for the correlation function involving four y’s and
two S’s, the subamplitude corresponding to ¢ = 2, namely
A, appears in terms of the structure forms [(¢re%)(p@)x
(p™)(pe’ p)]. [(p®)(pe®) (pe*p)], and  [(pp)(pp)x
(e5¢)®], in addition to the structure forms in preview
subamplitudes. The subamplitude .4, has eight indepen-
dent integral functions 7.7 . J2. T3 Tas T 5. T 12. T 135
and jl4 (ln which j]s = j]3 — j]4 and \716 =
J 13 + J14) whose explicit forms are given in [12]. The
symmetries of the integrals under the interchange of
(2 <> 3) are such that 7,753,713, J14 are invariant,
T < T4 To < T, and Js < —=Ts.

It is shown in [15] that there are three T-dual multiplets in
which all 11 components contain the above 14 integral
functions. The components of these multiplets are the
amplitudes corresponding to the RR (p — 3)-form, (p — 1)-
form, (p + 1)-form, (p + 3)-form, and (p + 5)-form with
zero, one, two, three, and four transverse indices, respectively.

D.¢g=1
In this case, the multiplication of NSNS momenta has
one momentum as
Pir=(p2)) + (p2- D)Pi + (2 < 3), (16)
and the part of the X-correlator corresponding to this case

that involves the holomorphic coordinate and momentum
can be found in Appendix A.

To find the corresponding subamplitude A;, we encoun-
ter a new contraction of some terms of the above correlator
with NSNS polarizations. This indicates that we would
have some new integral functions in A;. However, we find
that no new structure appears in the subamplitude A;. In
fact, this subamplitude includes the familiar structures. By
considering the amplitude invariance under the Ward
symmetry and T-duality covariance of the amplitude, which
is explained in the next section, the number of new
independent integrals appearing in .4, is then reduced to
twelve integrals. We give these integrals the names:
K1, K5, ..., KCy;. The symmetries of the integrals under
the interchange of (2 <> 3) are such that K| < K,,
IC3 <> —IC3, K:4 <> —K:5, IC6 <> }Cg, IC7 <> ICIO’ and
Kg <> KCi1. The explicit form of these new integral func-
tions appears in Appendix B.

To apply the Ward identity on the subamplitudes, it is
convenient to write the amplitude (5) in terms of four
different subamplitudes A’, A7, A™  and A" where the
terms of these subamplitudes contain four different kinds of
scalar parts. The scalar parts in the first subamplitude have
one integral function; in the second subamplitude, they
have a combination of integral functions; in the third
subamplitude, they have one integral function and one
Mandelstam variable; and in the fourth subamplitude, they
have a combination of integral functions and Mandelstam
variables. Hence, it could be shown that A, and .45 have no
contribution to A’/ and also that A, has no contribution to
A"™ _Since the results are long and elaborate, we list them
below without further commentary:

-AI:417;019(3“1"’(5‘39“/)(171'N'eg'v'mjlz—l?l'N‘*‘??'N'P3x74—2192'V‘EQ'N'P3}C5—2P2'V'€§"V‘P3’C4
_2p3V.€124.N.p3168)+2p;0pf;](2p1.N.8§.Ngé.N.plzz_ZPI.N.gg.v.g‘g.Np11'3

_pl.N.g3 83\

—2py N-&-V-el - V-pKio—2py N-&§-N
+2py Ve Ve N -p3Ky—2p, N-&5-V-
+2p3- Ve Vet -V-p3sKy+2p3-V-ei N-
— P 8A N - €§ V-p2Jis—4p-N EA V.
+8py Ve -V-e3-V-psKy+8py- V-l -N-

—pU'pr- V& N-pr2Jis+2p1'pa- V-5 - V- p3 T+ (25 + p3')p
“N-€§-V-prZ3) +4(py-V-e8)o(4py (py-N-&l-N-p)I; =4p\'p;-N-&3-V-prJ,
“N-p2Kig+pl'pr-V-€§-V-poKog+ pi'ps-N-€§-N- prKo
V-psKy+4p'ps-N-& - V- p3Ks—2(2p5' + p§')p1 - N-€ - N - prJ>)

- (2p3' + P3P
+2pi'py- V€
+4pi'py- V€

&

& -
s
€3
s
€3

—P1'N'8§'N'€A'N'P3~715

Vep3Ji5—2p-V-&5-V- eA V-Kg—=2p,-V-&5-N-&y-V-p:Kig

&y VepKo+2py-V ey -N-& - N-p3K,
V-psKs—2p,-N-&5-N
N - p3K; -
VepsTnn+4p: -
Vo psKy) +4(pr N -9)(2pi'p2 N - &3V p3J,

‘SQ'V'P3’C1
N.gg.v.gg.N.pzjls
1\/.815\.N.gg.v.mj4

ngszfz

—2(p3-V-e)©2py'p1-N-€§-N-pIy+pi'p-N-€§-V-pr2J1s—4p5'p1-N-€§-V-p3J,
—2py'py-N-&§-N-poKy +2pi'ps-V-€§-V-psKy=2p{'py- V-5 -N- p,Ky)
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+2(p3-N-8)02p3'p1-N-&-N-piZ3—p3'pi-N-&-N-pyJ1s—4p3'pi-N-€§-V-p3sJpo
—2p{'p2- V&3 -V-paky =2pi'ps- V&3 -N-poKy =2p{'py-N -3 -V - p3K7)
+4(p1-N-€3)py (=p1-N-&8 N-psTr+py-N-&§-V-p3T3=2p,-V-&5 - V- p3J,
+2py- V-8 -N-p3Jo) +2(pa-V-)%pl' (p1-N-€8 -N-p3J1s —2p2- V-5 - V- p3Ky
—2py- V-8 -N-p3Kig—2p3- V€8 -N-p3sKy) +2(pa-N-&3)%p'(p1-N-&5-V-p3J s

—2py- V&8 - V-p3Kig—=2ps- V&l -N-p3Kog—2p3- V-4 -N- p3K)), (17)

AT =2pps(py N5 -N-&y - V-p3(4T = T16 +2Ts5) = p1-N-&§-V-&§ - N p3(T 16 +2T5)
+2p3-V ey Veed - N-p3(2Ks + Kg) +2p3- V-5 - N5 - V- p3(=2Ks + Ke)
+pi-N-& Vel V-py(4T = T16=2Ts5) —p1-N-&5-N-&§-N-py(J16—2T5))
—2(p1-N-&)py" (p2- V- -V -pa(-4T + T16+2T5) + p2-N-&3 - N-pa(T16 = 2T5))
+2(ps -V &h)“(p1 - N-&§- N po[ps' (2T = Tie) + P53 (4T = T 16+ 275)]
=2p'pa-N-& V- p3(=2Ks + Kg) = p3'p1 N -5 -V-p2(87T + T15))
+2(p3-N-&2)(py'p1-N-&§-V-py2T = T16) = p3'p1-N-&5- V- pp(T 16 +2T5)

+ P3P N & N-py(8T = Tis) =2p\'p2 V- &5 - V- p3(2Kg + K))

+(p2- Vo) (p1-N-&-V-ps[py 3BT = T16 = Ts) +2p5' (8T = T 16— 2T5)])
—2(py-N-&3)(pi-N-& -N-ps[p5'(Tis = 2Ts) + p§' (4T + T 16 = 2T5)))
—8(pi-N-&3)%py'ps-V ey -N-ps(T +Ts) (18)

AM = 4(py - N - &3)(—1Ly(py - N - 5) 4+ 2tT5(ps- V- €5)) +4(py- V- &3)(tZ3(py - N - €5)"
=2t 1(pa- V- e8)M) +4(sT atr(e5 - V)(ps - N - €5)%ps —sT1apa- V- €5 - V- py(eh) ) (19)

AMM = 2(p; - N -5 - V-ey)(=v(T 16 +2T5)p\" — uT1spy' + 40T p3' + 25Z3p5')
+(p1-N-&§-N-&))®QuT pi' —4uTsp]" + 20T 15p|' +4sLrp3' +8uT (2p5' + p3'))
+2(p1-N-&) -V &) (uT 6py' —2uTspy' + 0T 1spy —2I3p5' —2uT (2p5' +3p53'))
+2(p1-N-&5 - N-3)®(2rLypy' +20T5py' + (3p3' + p3')(uT s + vT16) + 40T (p3' = p3'))

+ (P2 V€] V&) (=4p(Ko — 2KC11) pi' + 40K, pit = 40KCspy' = 21T 15p5' +4sTs(ps' = py')
+25(2p5' + p§' ) (4T + T16)) =2(p2- V- €3 - N - €5)(sT15(2p5' + p§') = 20K, pi' + vksp5!
+2pKiops +1(T 16 =2T5)p5') = 2(p2 N &3 - V- &3)(sT15(2p5" + p§') + 1(=4T + T 16 + 2T 5)p5’
+vKspy' +2pKiopt +2ulCopl) + (po - N - €3 - N - €3)% (25T 16(2p5" + p5') +45T5(p3' —3p3')
=2t 15p5" + 8vksp|t 4 4ull, pit — 203 p5' — 4u(Ky — 2K1) pit — 16sT pi')

+(p3- V- Eg V- g5)%(=4v(2Ks + Ko ) pi' — 4ulCipi' + 85T 12p5') + (p3- V- 8§ “N - &5) % (=4vk; pY!
— 4u(=2Ks + Ko)p{' = 85T4p3') + (p2- V&5 - V- &3)(8tT 1 p5' + 4(vy0 + uko)pY')

+(p2- V&g N-e))(=81T,p5" +4(0Ko +ulio)pi') + (p3 -V - &5 - V- e)© (16T p{' = 2T 15p5
+4vlopy —4p(Ko = 2K11) Y = 2(2p3" + p3')(sT 16 +25T5)) + (3 V- &5 - N - €3)® (45T 15p3'

= 2(=AT + T16 = 2T5)p5' + 4Ky = pKio)pi') + (p3 - N - &5 - V- £5)* (=257 15(2p3' + p3')

= 21(J16 +2T5)p5" = 4(pKio + uly)pi') + (p3 - N - &5 - N - €3)*(25(2p5" + p3') 2T = T 16)
—4sTs5(2p5' +3p5') = 2tT1s5p5' + 420K, — p(Ko = 2Kyy) + uky)py')

+ (65)%(=2py N &3 - N - p1(vI3+uly) +2py - N -5 - V- py(25T5 + uT 15 + v(=2T + T 16))
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+2p N-& - N-py(=25Ty + vT 5+ u(-2T + T16))

+2py- V-8 -V-pas(T = Ts)

—4p, N -€§-V-p3(2sTy —vT 1n + uTy)
—p2 N-& - N-py(s(T16—2Ts) +1T15) +4py-N-€3- V- p3sTs)

+2(e5 - V- &) (T 16— 2T5)(tv — us) + T 15(tu — sv) + 2s1L3 + 4usT ) + 2(5 - N - )0 (2511,

—(J16 = 2T5)(sv —ut) + T 5(tv — us)

—4tuJ) +2(py- V- €§)a0((p3 -V 83‘)“‘(&715 +5(-4T + T +2T5))

+(p3-N- SA)a‘(Sjw +1(T16+2T5))) +2(p2- N-&3)“((p3- V- &3)1 (sT15 + 1(=4T + T16 — 2T 5))

+ (p3-
= (
(vIQ+uI3)(p1 N - )m) + dtr(e -

pi-N-&)*[(vJ4 -
U’CS + M’C4) ]

( Mjlz)Ps
(

+
+
+
+ 2tr(€§ -

) (1T 15 +5(T16 = 2T5))) +4(p1 - N-€3)02(=v T, + ud 1) (P>
sTs+ U( 2T + T16) +uT15)(ps- V- €3) + (s = 0T 15 +u(2T = T16))(p3 - N - €5)"

V(1T 12 = K7 = ule)p3' (p3 - N - €)%

— 21Ty — 0T 4+ uT 12)p5] +2(pa - V- €3)[(2tT 3 + vKs + ukly) py'
(p3 -V - &9)®[(tT 4 + v + ukly) p5’
V)(€2) 0 ((s(21T4 = v T4 +uT12) + t(=0T 15 + uT4))),

. V.eA)al

+ (8T 12 + (Ko + K7)(u + v)) p3'])
(20)

where we have used the following definitions for the Mandelstam variables:

s=pi1-N-p, t=p-N-p3, u=p,-V-ps3

IV. CONSTRAINTS AND INTEGRAL IDENTITIES

It has been shown that scattering amplitudes are invariant
under the linear T-duality transformations on the external
states. Assuming that the NSNS fields are small perturba-
tions around the flat space, e.g., G,, =n,, +h,, and
applying the T-duality transformation along the Killing
coordinate y, the massless NSNS fields transforms
linearly as

(}l

—h
h

yy - yy?»

=

(21)

w — M
where y, v denote any coordinate other than y.

It has been speculated that the subamplitudes A;, A,,
and Aj, including the familiar integral functions Z;’s and
J.’s, could be predicted by T-dual Ward identity and that
the subamplitude .4, that has new integral functions could
not be predicted completely [15]. By applying the T-duality
transformations on the external directions of the total
amplitude (1) and considering the Ward identities corre-
sponding to its polarizations, one can find the T-dual
completion of this amplitude in which we are not interested
in this paper.

Now we are going to investigate the T-duality covariance
of the amplitudes that we found in this paper by applying
the T-duality transformation on the internal directions.
The internal directions mean the indices «, 3, and y appear

in the Mandelstam variables p“p,, in the structures p”e,,
14

Pregsp’, €%, pUepelt, and pTe, e’ p,. From the
T-duality rules, we know that the background fields are

p=p2-V-pa, qg=p3-V-p;s, v=p,-N-p;s.

|

independent of the Killing coordinates along which the
T-duality is applied [18]. So, apart from the last three
terms, it is easy to see this symmetry because the NSNS
polarization tensors contract either with the volume form or
with the momentum. The last three terms require further
investigation. One can find that the structures made of the
contraction of two NSNS polarization tensors should
appear as (&5 )4(&3)," + (¢5)""(&3),” to be invariant under
the T-duality transformations. As a result, the amplitude
that we found in this paper would be T-dual covariance
if the structures e*%e,”, p®e s, and p®e s/’ p, appear as
the following,

(&7 -V- &3y + (&5 -N-&3)™,
(p-&8-V-&)F+(p-&§-N-&3),
p-e&-V-&i-p+p-e§-N-&-p,

and the corresponding terms in the (2 <> 3) part. One can
find that the amplitude (5) respects this symmetry.

A scattering amplitude should satisfy the Ward identity
associated with its polarizations [11]. Therefore, the
amplitude (5) should be invariant under the NSNS gauge
transformations. However, it satisfies the RR gauge trans-
formation when one includes the amplitude of the RR
(p — I)-form with two transverse indices [17], and the
amplitude of the RR (p — 1)-form with one transverse
index [15].

By imposing the consistency of the amplitude (5) with
the NSNS gauge transformation, i.e., under replacing the
symmetric and antisymmetric NSNS polarization with
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() = prev  prgr (N - pre = pr (22)
the gauge invariant amplitude must be zero. Using this
condition, one finds the following identities,

=217, 4+2qZ4+ vy, —ul; =0
=25Tr +vT 15 +2pT> + u(—4T + T16 —2Ts5) =0
25T3 =2pT 1 +uT s+ v(Tis+2T5) =0
“25T4+ 0T 10 +2pT3—uJs =0
25T 15+ v(Kg +2/Cg) = 2pKy + uk;7 =0
25T 4+ vK7 = 2pKs 4+ u(Kg —2Kg) =0
25(=T + Ts) + 0Ky +2pKyy +uky =0,
(23)

and similar relations under the interchange of (2 <> 3). The
first four identities that include the old integrals Z;’s and
J, have appeared before in [11,12,15], and the other ones
that include new integrals K;’s are new identities. In
calculating the amplitude (5), we found two integral
functions including some tachyonic poles appearing in
the subamplitudes A’™ and A’/ . On the other hand, there
were two integral identities, in addition to the above
identities, that could fix these two tachyonic integral
functions. From these additional identities, we could fix
these tachyonic integrals in terms of some familiar integrals
J;’s and K;’s. The integral identities can be checked at low
energy. In performing this calculation, one needs the o
expansion of the integrals that appear in the identities.
The o expansion of the integrals Z;’s and 7;’s have been
found in [10,14]. We find the corresponding expansion
for integrals /C;’s for the special kinematic setup where
uxv = 0 and check the identities (23).

Considering properly the symmetries coming from
T-duality and Ward identities, it could be possible to write
an amplitude in terms of the minimal possible number
of integral functions. From these considerations, we
found that the amplitude (5) includes 24 nontachyonic
independent integral functions that satisfy 14 constraint

|

1 X X a a a
X|=— ("7 + pT(p1.D)* + pi' (p1.D)* + (p1.D)* (py.D)*) +

AVAS

+ (p1-D)*(py.D)*) +

1
|2,

Z3Z5;

1
—(p1-D)*(pr.D)%) — =
(D) (D)) = 5

1

1
+5—— (P P5 = (p2.D)" (p3.D)*™ = (p2.D)" p§* + p3*(p3.D)™) + =

ZyZ33

(p7 P53 + (p1.D)* p5* — (p1.D)* (p2.D)™ + pP(p2.D)™) +

equations (23). From boundary state formalism, the disk-
level amplitude of an arbitrary RR state and two NSNS
vertex operators has been found in the interesting paper
[19], where the T-dual gauge symmetry was not taken into
account and the amplitude appeared in terms of a larger
context of integral functions in which some of them were
tachyonic integrals.

The T-dual Ward identity connects the amplitude (5) to
the amplitudes corresponding to the RR (p + 1)-form with
one transverse index and RR (p + 3)-form with two
transverse indices which furnish the following T-dual
multiplet,

Ap(CrD) = A () = Ay (),
where the number in the label of A refers to the number of
transverse indices of the RR potential. The components A,
and A, carry the same integral that the first component A,
[amplitude (5)] carries. To find a gauge invariant form of all
elements of the above multiplet, and more generally the
amplitude of an arbitrary RR state and two NSNS, from
T-dual Ward identity or explicit calculation, one needs to
use the identities (23). Using the low-energy expansion of
the integrals appearing in the amplitudes, one can find the
« expansion of the amplitudes. Hence, this multiplet can be
analyzed at low energy to extract the appropriate couplings
of one RR and two NSNS states in the field theory at order
a?. We are not interested in finding the corresponding
couplings here and leave the details of these calculations for
future work.
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APPENDIX A: ON X CORRELATION

Here, we present the part of the X-correlator correspond-
ing to g = 1 that involves holomorphic coordinates and
momenta.

7 Z_ (pfllzpflls +p(112(p1-D)"3 +(P1-D)"2p?3
342

(PP + PP (p1-D)* + (p1.D)2p{" + (p1.D)*=(py.D)™)

7,75 (Py'p5* + (p1-D)" P§* = pY' (p2.D)™

(P72 p5 + (p1.D)*p5 = p*(p3.D)% — (p1.D)*%(p;3.D)*™)

Ay Ay 04 D)®
77 (Py'ry — Py (p2.D)
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1
+ (p1.D)*pS* — (p1.D)*(p,.D)*™) — 770 (PP P53 + (p1.D)*=py* = py(p3.D)™ = (p1.D)%(p3.D)™)
1
~ 7z (PP + (p1-D)=p3* — pi*(p3.D)™ — (p1.D)*(p3.D)™) — 7o ((p2-D)*(p3.D)™ = p3*(ps3.D)™
1
— (p3.D)" (p3.D)*) = ———((p>.D)*(p3.D)* — p5'(p3.D)* — (P3-D)y,(P3-D)g,)
Z33223
+ (PP + pi(p1-D)™ + (p1.D)* (p1.D)* + pY' (p1.D)™) + (P1 P + pi(p1.D)®
7,7, 7, 74
+ (p1.D)*(py.D)* + (p;.D)*p}?) — 770 =——(p1'py* — P (p2.D)* + (p1.D)* p5* — (p1.D)*(p,.D)™)
1 1
+—— ZnnZss (p3*(p2.D)* — p§'(p3.D)* — (p2.D)% p5' + p5*(p3.D)*%) — 75735 ((p2-D)% p5* — (p2.D)*%(p3.D)*®
1
= (p2.D)*(p2.D)™) + o———((p2.D)" p3’ + p3*(p2.D)* = (p2.D)* (p>.D)™)
ZZ3Z22
1 1, 2 0 % [¢5
————(p§'(p3.D)* = p5*(p3.D)* — (p3.D)* (p3.D)*) + (PP + P ps — (p1.D)*=p5
Z3zzz3 Zy 2
o 1 ’ a X X, 0 a a 0 %
+ (p1.D)*p5') +7(p{f*p'3' + (p1-D)* p§' = pipy’) — ZBT(pZ’*péz + (p2.D)*(p3.D)*™ + p3' p5*)
23
= ———(p3 (p2.D)" = p3’ p5* = p3*(p3.D)") + 5——(p3' (p2-D)* + p3*(p3.D)™ = p5p3’)
Z22223 Z23223
1 1
+o—— (P’ Py = P3Py = Py (p3.D)™) + =——(pi*(p3.D)* + (p1.D)*(p3.D)™)
Z23Z23 Z3ZZ3
+ =——(P1*(p3-D)% + (p1.D)*(p3.D)*) + =—— (pT*(p3.D)™ + (p1.D)*(p3.D)*™)
VAVAS VAVAE
1 1
+ =——(p*(p2-D)" + (p1.D)*(p,.D)™) = (P (p2-D)® + (p1.D)*(p,.D)*)
VYA 7,75,
1 1
to Zn (pT'p3' = (p1-D)%p3* + (p1.D)*pg') — ﬁ@?zp?“ — (p2.D)% p5* + p3*(p3.D)™)
3423 23433
1 1 1
D) D)® DY) — —— (pT p% DY pB) — — (pDB p% _ pnas
~ 77 =—— (P (p2.D)* + (p1.D)*(p,.D)*) 77 (p' Py’ + (p1-D)* py’) 2232(p2 p3 —nn%)
1 a o a o 1 a o a
—2pXp* D)« 2 X bl D)%
+ZZ3Z22 (p3* Py’ —2p3°ps') — 775 ———(p3*p1" + p3*(p1.D) )+Z3ZQ3 (P3P + p3’ (p1.D)™)
1
s Ay a3 ay a Q. ay a
+ (p1.D)® p%*) 4+ ——— - +—— (1 - D)
. (P p5* + (p1.D)* ps) ZonZo (P’ P3* = p3'py) 77 (n p5t(ps.D)™)
1
_ a0y .D ay % .D ap %\ .D ay .D A 000y
770 (p1'p5' + (p1.D)" p3*) — 77 ———(p'p5' + (p1.D)" p5*) _ngz((pz )% (p3.D)*% — n™%)
1 1 {
+—— (1% = (p2.D)* p3*) + 5——((p2.D)* (p3.D)™ + p3’(p2.D)*
223 222223

na]az na3a4 1
+ —_
Z,1* 12t Zy

1
— (p2.D)*(p2.D)* + p3*(p2.D)* — (py.D)* (py.D)™) — Z 5 (P3' pst —nM®) + 5 Py (pa.D)™

=2 (5" (p3. D)™ = PPy’ = P (p1.D)™ = (p1.D)" Py = (p1.D)* (p1.D)™)
33

(P (p2.-D)™ + (p1.D)*(py.D)* = (py.D)%(p3.D)* = p{*(p3.D)™) — (pY' (p2.D)™

VAVAE VAVAE

+ (p1.D)" (py.D)% = (p1.D)* (p3.D)* — p}' (p3.D)*™)|.
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APPENDIX B: NEW INTEGRALS

In this appendix, we present the explicit form of the integrals appearing in subamplitude .4,. These combinations appear

naturally from the contractions,

I (1= |22 (1 + |231*) (2225 + 2243) + 2|z3 (1 + |z2/))
ICl = sz 23 P 5 5 - 5
|122[% |22 = z31%| 23] = 1 + 223]
(1= |z3)((1 4 |22*) (2225 + 2073) 4 2]z (1 + |z5))

’

K, = / d*z2,d’z4

2|z, + 732 (|22]% = |z3)?
A )
|Zz| |Z3| |Zz—Z3|

|22]*[z2 — z3* |23 — 1 + 23]

’

1+ [2*) (1 = |23 2]z (1 + |23]7) = (1 4 |22]*) (2223 + 2273)]

’C4 = /JZZQdZZ3(

22123 (=1 + |22]*) (=1 + |z3]*)| = 1 + 2225/ 22 — 23]
1— |2o]*) (1 4 |23 [(1 + |23]%) (2225 + 2083) — 2|23 (1 + |22/*)]

’

’Cs = /d212d2Z3(

2221232 (=1 + |22]*) (=1 + |z3]*)| = 1 + 2225/ 22 — 23]
=2(1 + |z ) (%5 + %25 —

’

231 = 122 + [22 P[22 (2 = J2af® = [25))

Ke = /J222d223

222232 (1 = |23)*) |22 — z3*| = 1 + Z32]?
2(1 = |z) (1 — |z3]*) (2223 + 322)

’

’C7 = /J222d2Z3

22?232 (1 = |23)*) |22 — 23] = 1 + Z322|*”

(14 |23 (122 = [23) (X = |22 25) + (G322 = 2223)°)]

,Cg = /d2Z2d223

|22 |23]% 120 — z3*(1 = |23 *)| = 1 + D23
=2(1 + |2 *) (223 + 723 — |z3]* — |22 + |22 P23 (2 = |20)? = |23]%))

Ky = /JZZ2d213

222232 (1 = |22[*) |22 — 32| = 1 + Z225]?
2(1 = |za|") (1 — |23]*) (2223 + 2322)

’

ICIO = /d212d2Z3

222|232 (1 = |z2*) |22 = 23| = 1 + 2223 >
(1 + 22 [(22]* = 23 2) (=1 + |22 *|23]) + (G322 — 2223)?]

]Cll = /d2Z2d223

|22 |23]% 120 — 232 (1 = |22 *)| = 1 + D23

’

where we apply the SL(2, R) symmetry fixing as [16] in which z; = 0.
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