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In this paper, we study the homogeneous interiors of black holes possessing SU(2) Yang-Mills fields
subject to corrections inspired by loop quantum gravity. The systems studied possess both magnetic and
induced electric Yang-Mills fields. We consider the system of equations both with and without Wilson loop
corrections to the Yang-Mills potential. The structure of the Yang-Mills Hamiltonian, along with the
restriction to homogeneity, allows for an anomaly-free effective quantization. In particular, we study the
bounce which replaces the classical singularity and the behavior of the Yang-Mills fields in the quantum
corrected interior, which possesses topology R × S2. Beyond the bounce, the magnitude of the Yang-Mills
electric field asymptotically grows monotonically. This results in an ever-expanding R sector even though
the two-sphere volume is asymptotically constant. The results are similar with and without Wilson loop
corrections on the Yang-Mills potential.
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I. INTRODUCTION

It may be argued that black holes are one of the most
fascinating objects predicted by gravitational field theory.
Black holes are likely not just theoretical musings but are
believed to be abundant in our Universe [1–3], with the
most recent compelling evidence coming from the fasci-
nating new field of gravitational wave astronomy (see [4]
for an overview). The indirect evidence of black holes in
our Universe all seems to vindicate the predictions of
general relativity, and it is difficult to argue that general
relativity is not our best theory of gravitation to date. As
successful and aesthetically pleasing as general relativity is,
it does present some issues when making predictions about
black holes. One issue that has garnered much attention in
the literature, at least since Oppenheimer and Snyder’s
seminal work [5], is that of the singularity inside the black
hole. Although perhaps a troubling prediction, it is often
thought that, at such high energies, quantum gravity effects
would begin to dominate and that a quantum theory of
gravity would alleviate the singularity problem. However,
general relativity and related theories have, to date, eluded a
fully satisfactory quantization. There are many reasons for
this, but one central issue is that the diffeomorphism
invariance of the theory, in the form of background
independence, makes such theories difficult to quantize
by standard techniques [6,7]. There are several candidate
quantum gravity theories which attempt to address this

issue (see [8,9,10] and references therein), one of which is
the theory of loop quantum gravity [11]. In the loop
approach, the singularity issue, both in a cosmological
setting and in black holes, has been dealt with on many
levels [12–20]. Interestingly, there is an implication of
signature change in some models due to variable deforma-
tion [21,22]. Due to the difficulty of the problem in general,
one often appeals to effective techniques. One such
technique gives rise to a holonomy corrected effective
theory. Here one replaces the connection variable of loop
quantum gravity, Ai

a, with the holonomy of the connection
inspired by the noncanonical algebra of the quantized
theory [23]. At low order, this replacement usually takes
the form (see Appendix)

Ai
a →

sin ðAi
aδÞ

δ
; ð1Þ

where δ is related to the length of the holonomy path (more
details are provided later). We adopt the convention that
indices a, b, c, etc. are spatial indices, whereas indices
i; j; k;… and I; J; K;… are suð2Þ indices in the gravita-
tional sector and Yang-Mills sector, respectively. We study
the system both with and without finite-size Wilson loop
corrections to the Yang-Mills field.
One issue that can arise with such deformations is that

they can introduce an anomaly in the algebra of constraints.
There are two important issues regarding the constraint
algebra of diffeomorphism invariant theories [24,25]; The
algebra must remain first class, and the algebra must reduce
to the usual general relativity algebra in the limit that the
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variable deformations go to zero. These issues have been
addressed in a number of interesting and sophisticated
ways [24–28]. More general deformations of gravitational
variables respecting an acceptable constraint algebra can be
found in [29]. One scenario where the anomaly issue does
not arise with holonomy corrections is in purely homo-
geneous scenarios [25]. Essentially, the automatic satisfac-
tion of the smeared vector constraint, along with the
trivialization of the integrals in the algebra due to homo-
geneity leads to a trivial algebra.
This is why we limit ourselves to homogeneous black

hole interiors, sometimes known in the literature as
“T-spheres.” T-spheres are of interest not only because
the Schwarzschild black hole’s interior is a T-sphere, but
they have also been studied under more generic conditions
[30–33]. They have also been used to study the singularity
issue in other theories of gravity [34]. The T-spheres make
up a generalization of the original Kantowski-Sachs metric
[35]. In the realm of loop quantum gravity, the
Schwarzschild interior has been studied in a number of
interesting works [13,36–38] and there have been exten-
sions to homogeneous interiors with cosmological constant
and nontrivial topologies [39]. The Reissner-Nordström
scenario has been studied in [19,40,41]. Recently, the
singularity avoidance issue in Schwarzschild spacetime
has been revisited in [42], pointing out some issues, and
some interesting general results with matter have been
attained [43].
We adopt the interior line element of the following

form,1

ds2 ¼ −N2ðTÞdT2 þ qXXðTÞdX2

þ T2ðdθ2 þ sin2θdϕ2Þ; ð2Þ

and also introduce a homogeneous Yang-Mills field in the
black hole spacetime.
The arena of Einstein Yang-Mills (EYM) theory is

extremely rich, due to the interplay between the complexity
of both general relativity and Yang-Mills theories. Non
black hole globally regular solutions exits which are
asymptotically flat [44–46]. These are magnetic and are
characterized by the number of zero nodes of the Yang-
Mills potential. Interestingly, a similar behavior had been
noted previously in the Einstein-Maxwell-Klein-Gordon
system by Das and Coffman [47]. Aside from the regular
solutions, black hole solutions also exist [48–50]. These
have been characterized as S-type (Schwarzschild) and RN-
type (Reissner-Nordström), which describes their asymp-
totic structure near the singularity [50,51]. There also exist
EYM black hole solutions which possess highly oscillating

metric functions in the interior region [50,51]. The study of
solutions has been extended to include the presence of a
Higgs fields [52–54], and those with nonasymptotically flat
exteriors [55–56]. Symmetries have been also relaxed from
spherical symmetry to axial symmetry [57,58]. Other
interesting issues such as stability, nonminimal coupling,
scaling, dyons and monopoles have also been investigated
(see [59–66] and references therein). Detailed reviews of
EYM theory may be found in [51,67,68].
Our study here is limited to comparing purely classical

evolutions inside the black hole to quantum corrected
evolutions. The node structure of the Yang-Mills potentials
is not studied (and in fact cannot be since some of the nodes
presumably occur in the exterior region, where our analysis
cannot be extended). We also do not study the stability
properties of such black holes. The question we wish to
address is the one of what the effects of loop quantum
corrections are onboth the spacetimegeometry and theYang-
Mills fields and a comparison to purely classical theory.

II. EYM BLACK HOLE INTERIORS IN
ASHTEKAR VARIABLES

In the variables appropriate for the real connection version
of loop quantum gravity, one has a densitized triad, Ei

a, and
suð2Þ connection,Ai

a, as the canonical gravitation variables.
The classical Poisson bracket is given by

fAi
aðxÞ; Ej

bðyÞg ¼ κγδijδa
bδðx; yÞ: ð3Þ

Here κ ¼ 8π and γ is a parameter known as the Immirzi
parameter whose value is usually set via black hole entropy
calculations [69–74]. These variables are related to the more
familiar ADM variables via

Ai
a ¼ Γi

a þ γKi
a; ð4aÞ

Ei
aEj

bδij ¼ qqab; ð4bÞ

with Γi
a the spin-connection:

Γi
a ≔ 2ϵijk e

b
j

�
∂ ½aekb� þ

1

2
δklδmneclema∂benc

�
; ð5Þ

qab the (inverse) 3-metric, and q the metric determinant. The
quantity Ki

a is the densitized extrinsic curvature,

Ki
a ≔

Ej
bδijKabffiffiffiffiffiffiffiffiffiffiffiffiffi
detðEÞp ; ð6Þ

Kab being the usual extrinsic curvature andE the determinant
ofE a

i . In (5) the regular tetrad,e
a
j , is generally to be rewritten

in terms of the densitized triad:

1In this coordinate chart, the Schwarzschild line element has
the form ds2 ¼ − dT2

2M
T −1 þ ð2MT − 1ÞdX2 þ T2ðdθ2 þ sin2θdϕ2Þ

with the coordinate restriction 0 < T < 2M.
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eia ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðEÞp ϵijkϵabcEj

bEk
c; ð7aÞ

eia ¼
Ei

affiffiffiffiffiffiffiffiffiffiffiffiffi
detðEÞp : ð7bÞ

In our study, we reduce the system to spherical symmetry
and, hence, adopt the following spherically symmetric
gravitational densitized triad and connection pair:

Ei
aτi∂a ¼ EIIIτ

3∂X þ ðEIτ
1 þ EIIτ

2Þ sin θ∂θ

þ ðEIτ
2 − EIIτ

1Þ∂ϕ; ð8aÞ
Ai

aτidxa ¼ AIIIðTÞτ3dX þ ðAIτ1 þ AIIτ2Þdθ
þðAIτ2 − AIIτ1 þ cot θτ3Þ sin θdϕ; ð8bÞ

where the τi are the (spherical) SUð2Þ generators.
A similar ansatz holds for the SUð2Þ Yang-Mills electric

field and potentials:

EI
aτI∂a ¼ EIIIτ

3∂X þ ðEIτ
1 þ EIIτ

2Þ sin θ∂θ

þ ðEIτ
2 − EIIτ

1Þ∂ϕ; ð9aÞ
WI

aτIdxa ¼ WIIIτ3dX þ ðWIτ1 þWIIτ2Þdθ
þðWIτ2 −WIIτ1 þ cot θτ3Þ sin θdϕ: ð9bÞ

In the above, all functions (E, A, E, W) are functions of
the interior time, T, only. As discussed in the introduction,
the above momentum-configuration conjugate pairs do not
produce an anomaly in the resulting algebra of gravitational
constraints.
From the set of variables defined in (8a)–(9b), one may

form the EYM action in canonical form:

I ¼ Igrav þ IYM

¼
Z
R
dt

Z
Σ
d3x

��
1

κ
Ei

a _Ai
a þ

1

Q2
E a
I
_WI

a −H
��

¼
Z
R
dt

Z
Σ
d3x

�
1

κ
½Ei

a _Ai
a − NbVb − NSgrav − λiGi�

þ 1

Q2
½EI

a _WI
a þWI

TDaEI
a − NaEI

bFI
ab þ NSYM�

�
;

ð10Þ
with Q the Yang-Mills coupling, which we will set to 1 for
convenience. Here Na is the ADM shift vector and N the
lapse function, and λi an suð2Þ valued Lagrange multiplier,
related to the time component of thegravitational connection.
The other quantities appearing are defined as follows:

Gi ≔ ∂aEi
a þ ϵij

kAj
aEk

a; ð11aÞ

Vb ≔ Ei
aFi

ab − ð1þ γ2ÞKi
bGi; ð11bÞ

Sgrav ≔
Ei

aEj
bffiffiffiffiffiffiffiffiffiffiffiffiffi

detðEÞp ½ϵijkFk
ab − 2ð1þ γ2ÞKi

½aK
j
b��; ð11cÞ

DaEI
a ≔ ∂aEI

a þ ϵIJ
KWJ

aEK
a; ð11dÞ

SYM ≔
ϵabcϵ

ijkEj
bEk

c

8ðdetðEÞÞ3=2 ϵdefϵi
mnEm

eEn
f

× ½EI
aEJ

d þ BI
aBJ

d�δIJ; ð11eÞ

and Fi
ab ≔ ∂aAi

b − ∂bAi
a þ ϵijkA

j
aAk

b with a similar def-
inition for the curvature of the Yang-Mills potential, FI

ab.
Quantities linear in the shift vector, Na, are often called the
vector constraint, and quantities linear in the lapse make up
the scalar constraint (sometimes referred to as the
Hamiltonian constraint). The B a

I are magnetic field compo-
nents, which must be written in terms of the canonical
configuration variable, WI

a:

BI
a ≔

1

2
ϵabcFbc

JδIJ: ð12Þ

Using the ansatz (8a)–(9b) in (11a)–(11e) yields the
following for the Gauss constraints:

Gi ¼ 8π½AIEII − AIIEI�δi3 ¼ 0; ð13aÞ
DaEI

a ¼ 8π½WIEII −WIIEI�δI3 ¼ 0: ð13bÞ
These constraints enforce the fact that in the I–II subspace it
is only the magnitude of a “vector” (eg.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
I þ E2

II

p
, etc.)

which is relevant for the equations of motion. Any rotation
of these vectors is equally acceptable.
In polymer methods, the constraints (13a) and (13b) are

fixed before effective quantization. This is due to the gauge
conditions they employ (also [25,28] and references
therein). We therefore satisfy these constraints with the
choice

EI ¼ 0 ¼ AI and EI ¼ 0 ¼ WI: ð14Þ
With this choice, and (4b), a small calculation reveals that

qθθ ¼ EIII and qXX ¼ E2
II

EIII
; ð15Þ

so that the line element (2) may be written as

ds2¼−N2dT2þ E2
II

EIII
dX2þEIIIðdθ2þ sin2θdϕ2Þ: ð16Þ

With gauge fixing and the automatic satisfaction of the
(smeared) vector constraint due to homogeneity in (8a)–
(9b), we can now write down the Hamiltonian, H ¼R
d3xH, required for the evolution (setting the (arbitrary)

upper limit of the X integral to 1):
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H ¼ N

2πγ2
ffiffiffiffiffiffiffi
EIII

p ½ðA2
II þ γ2ÞEII þ 2AIIAIIIEIII�

þ N

4γ2EIIE
3=2
III

½E2
IIðW2

II − 1Þ2

þ2WII
2WIII

2E2
III þ 2E2

IIE
2
III þ E2

IIIE
2
II�: ð17Þ

(The dimensions of the gravitational and Yang-Mills
contribution are equivalent due to having set G ¼ 1 ¼ c).
In the literature on spherically symmetric Einstein Yang-

Mills, the metric (2) is often taken to have the form
[48,50,60]

ds2¼−
T2

jΔjdT
2þjΔj

T2
σ2dX2þT2ðdθ2þ sin2θdϕ2Þ; ð18Þ

where we have rewritten the traditional form in the interior
coordinate chart. The functions Δ and σ solely depend on T
and the T-domain corresponds to the inequality Δ < 0.
Comparing (18) with (16), one arrives at the following

relationship:

N ¼
ffiffiffiffiffiffiffi
EIII

p
EII

σ; ð19Þ

where in (19) the T dependence in σ is to be replaced with
T →

ffiffiffiffiffiffiffi
EIII

p
[as dictated by the first equation in (15)].

Strictly speaking, the form on N is not of great importance
to the evolution as it plays the role of a Lagrange multiplier
in the action.
The equations of motion are

_AIII ¼ 2
∂H
∂EIII

; ð20aÞ

_EIII ¼ −2
∂H
∂AIII

; ð20bÞ

_AII ¼
∂H
∂EII

; ð20cÞ

_EII ¼ −
∂H
∂AII

; ð20dÞ

_WII ¼
1

4π

∂H
∂EII

; ð20eÞ

_EII ¼ −
1

4π

∂H
∂WII

; ð20fÞ

_WIII ¼
1

4π

∂H
∂EIII

; ð20gÞ

_EIII ¼ −
1

4π

∂H
∂WIII

: ð20hÞ

The explicit equations are rather lengthy, so are omitted, but
they can easily be obtained by performing the differentia-
tions above. At this stage, save for requiring initial
conditions, the system of equations can be solved.

A. Classical vs holonomy corrected evolution

In this subsection, we evolve the system of equa-
tions (20a)–(20h) in both the classical case and the
holonomy corrected one. In both scenarios we start the
evolution away from the classical singularity where we
expect that the classical general relativity solutions to be
valid and therefore use the same (purely classical) initial
conditions for both the classical and holonomy corrected
evolutions. Due to the complexity of the Einstein Yang-
Mills system there is a dearth of analytic solutions available
in the literature. However, there are a number of very
interesting computational studies of the EYM equations
from which one may determine initial conditions, and we
therefore utilize a similar initial ansatz as in [50]. For the
Yang-Mills potentials the following is chosen:

WII ≠ 0; WIII ¼ 0: ð21Þ

It is interesting to note that although (21) corresponds to a
magnetic ansatz in the static case, there exists an induced
electric field in time dependent domains such as studied
here via

EL
a ¼ Ei

aEj
bδijffiffiffiffiffiffiffiffiffiffiffiffiffi

detðEÞp n̂μFK
μbδKL; ð22Þ

with n̂μ the unit normal vector to the Σ hypersurface. In this
case the induced electric field given by (22) is calculated as

EII ¼
ffiffiffiffiffiffiffijΔjp

σ

NT
_WII; ð23aÞ

EIII ¼ 0: ð23bÞ

These are used to calculate the initial electric field values.
We also need to know the gravitational connection com-
ponents, AII and AIII, in order to determine their initial
values. These can be gotten from (4) and (5)–(7b) as

AII ¼ � γ

N
; ð24aÞ

AIII ¼ � γ

2N
_qXXffiffiffiffiffiffiffiffi
qXX

p : ð24bÞ

In order to evolve the system using the above relation-
ships, the following data at the initial time is needed: σinit,
_σinit, Δinit, _Δinit,WII init, _WII init and of course the initial time
itself. All required initial quantities can be formed from
these. [The requirement of the time derivative quantities
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may seem peculiar in the Hamiltonian formalism of a
second-order theory but they are only needed so that one
may calculate EIIinit and AIII init via (23a) and (24b).] As
mentioned previously, these initial conditions are used for
both the classical as well as quantum corrected evolution
since the initial time is not near the classical singular point
where quantum effects are thought to dominate.
A quantity of particular interest is EIII as, from (16), it is

the quantity which determines the volumes of two-spheres
inside the black hole. If EIII → 0 then, as time progresses,
the two-sphere volume shrinks to zero and hence a
singularity of some type will be present. (Although if
energy conditions are violated in the classical case the
singularity might not impede geodesic completeness.)
For the quantum corrected scenarios we replace the

connection components, AII and AIII, in (17) by their
holonomy corrected counterparts as in (1). That is, for
the particular case under study:

AII →
sin ðAIIδXÞ

δX
; ð25aÞ

AIII →
sin ðAIIIδθÞ

δθ
: ð25bÞ

As mentioned in the introduction the quantities δX and δθ
depend on the proper length along the coordinate directions
the holonomy path is taken [75]. We utilize here the
“μ̄0 scheme” introduced in [14]. In early works on singu-
larity avoidance in effective LQG δ was taken to be
constant. However, it was later shown that a constant δ
does not yield a good semiclassical limit [76], and that
relating δ to the proper length yields a correct semiclassical
limit. The μ̄0 specifically has been shown to generally lead
to dynamics which are independent of the size of the X
integral in the Hamiltonian (17) [77]. In the μ̄0 scheme δ is
computed as follows:

aXθ ¼
ffiffiffiffiffiffiffiffi
qXX

p
δXTδθ; ð26aÞ

aθϕ ¼ ðTδθÞ2; ð26bÞ

where abc indicate a small area element in the b–c plane. In
this case, using (15), the quantities are

δX ¼ ðl1Þ2
ffiffiffiffiffiffiffi
EIII

p
l2EII

and δθ ¼
l2ffiffiffiffiffiffiffi
EIII

p ; ð27Þ

with l1 ≔
ffiffiffiffiffiffiffi
aXθ

p
and l2 ≔

ffiffiffiffiffiffiffiaθϕ
p . Often the choice is made

to take l1 ¼ l2 ¼ ffiffiffiffiffiffiffiffiffi
amin

p
, where amin is the minimum value

of loop quantum gravity’s area spectrum. However, there is
no definitive reason to do so. The qualitative result
(bounce) remains for all nonzero choices, although the
deviation from the purely classical evolution is noticeable
earlier for larger values.

It is also possible to implement finite plaquette size
effects on the Yang-Mills potentials from a Wilson loop
approach. The rationale is that the derivation of the
holonomy corrections (see appendix for a brief overview)
is independent of whether the SUð2Þ field-strength tensor is
a gravitational one or not. Here we will consider both
corrected and uncorrected Yang-Mills potentials. First we
will consider no Wilson loop corrections. The argument,
inspired by lattice gauge theory, for ignoring these correc-
tions at low-order is as follows. Consider a Taylor expan-
sion of the potential WB (B ∈ fII; IIIg) on a finite element
sized lattice [78], in this case presumably due to the discrete
area spectrum introduced by loop quantum gravity:

WBðnþ aÞ ¼ WBðnÞ þ δ∂aWB þOðδ2Þ; ð28Þ

where δ represents the lattice spacing in the direction of the
“hop” (in this case the “a” direction). It may have different
values for different hopping directions. As a crude approxi-
mation let us take our Yang-Mills field to be defined as its
averaged value between two neighboring lattice points,
although the result of the argument is independent of the
exact position one chooses. Then, using (28),

WBðxÞ ¼
WBðnÞ þWBðnþ aÞ

2

¼ WBðnÞ þ
δ

2
∂aWBðnÞ þOðδ2Þ: ð29Þ

Since the WB are homogeneous, the partial derivative
correction in (29) will not contribute. Also due to homo-
geneity, the field at the midpoint, x, is the same as at the
initial lattice point, n. The electric field similarly does not
pick up a correction at this level (whether taken as a
variable in its own-right, or seen as the time derivative of
the Yang-Mills potential). Therefore, at this level of
approximation, no corrections occur on the potential due
to finite differencing. This is also compatible with loop
quantum cosmology and effective LQG Reissner-
Nordström studies where the quantum effects of matter
are not manifest explicitly, but in their coupling to the
effective theory via the quantum corrected equations of
motion.
In Figs. 1 and 2, we illustrate several evolutions for initial

conditions of EYM black holes which do not possess large
metric fluctuations in their purely classical counterparts
[50]. From these solutions, one may see the quantum
bounce in Figs. 1 and 2(a) where EIII does not go to zero for
the holonomy corrected evolution. On the left side of the
evolution (the “classically forbidden” region) EIII oscillates
in a damped manner. This is reminiscent of the behavior in
holonomy corrected Schwarzschild vacuum black holes.
The Yang-Mills potential, WII, is illustrated in Figs. 1 and
2(b). In Figs. 1, 2(c), and (d), the electric field component is
shown. As the corrected evolution progresses to the left one
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can see that EII’s magnitude grows monotonically.
Admittedly this is the coordinate value of the electric field,
EII ¼ −Eϕ

1 , but one may project this into the orthonormal

frame, which yields ÊII≔−Eϕ̂
1 ¼−Eϕ

1T sinθ, whose magni-
tude grows even more drastically2 One effect on the
geometry is the large growth in the R subspace as the
evolution progresses. This may be seen in Figs. 1 and 2(e),
where the proper length scale factor for the X direction
is illustrated,

ffiffiffiffiffiffiffiffi
qXX

p
. This scale factor grows monotonically

as the evolution progresses (becoming approximately
linear asymptotically). In Figs. 1 and 2(f), the lapse
function is shown to asymptote to a constant. Therefore,

asymptotically, on the far side of the bounce, the geometry
approaches that of the following line element:

ds2 ¼ −N2
0dT

2 þ α0TndX2 þ β20ðdθ2 þ sin2θdϕ2Þ; ð30Þ
where the subscript 0 indicates a constant quantity. It is
interesting to note that, at least qualitatively, this is not
unlike the behavior of a loop quantum corrected pure
vacuum black hole [12,14,36], as well as those with
cosmological constant and nontrivial topologies [39],
indicating that there may be some sort of uniqueness
theorem in the long-time limit for holonomy corrected
black holes. In all cases, there is a quantum bounce, and the
qualitative behavior on the other side of the bounce in the
EYM scenarios studied here mimics the behavior in [14,39],
both of which utilized the μ̄0 scheme. That is, EIII tends to a

E III

II

II

FIG. 1. An evolution of the two-sphere scale factor (EIII), the
Yang-Mills potential (WII), and the Yang-Mills electric field (EII)
for both classical and holonomy corrected evolution equations. In
the quantum corrected case the volume of two-spheres does not
shrink to zero, as may be seen in (a), indicating the quantum
bounce. Gravitational holonomy corrections only.

E III

II

II

FIG. 2. Another evolution of the two-sphere scale factor (EIII),
the Yang-Mills potential (WII), and the Yang-Mills electric field
(EII) for both classical and holonomy corrected evolution equa-
tions. In the quantum corrected case the volume of two-spheres
does not shrink to zero, as may be seen in fig. (a), indicating the
quantum bounce. Gravitational holonomy corrections only.

2In the non-Abelian, case a ϕ component of an electric field is
not incompatible with spherical symmetry [79].
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constant on the far side of the bounce in the long-time
evolution. It was later shown that the resulting spacetime on
the other side of the bounce for the spherically symmetric
black holes and higher genus black holes can be interpreted
as Nariai and Bertotti-Robinson type with properties quite
different from the prebounce conditions [80].
Next, we consider the same evolutions as above but in

the case where we implement Wilson loop corrections on
the Yang-Mills field. The rationale for this is that the
correction argument, as outlined in the appendix, can just as
easily be applied to the Yang-Mills field strength as the
gravitational one. This will implement some low-order
“quantum” corrections due to the field potential propagat-
ing on a lattice structure due to the discrete area/volume

structure of loop quantum gravity. These corrections are
summarized as

WII →
sin ðWIIδXÞ

δX
; ð31aÞ

WIII →
sin ðWIIIδθÞ

δθ
: ð31bÞ

It should be noted though that the corrections (31a)–(31b)
for nonzero δ may interfere with the SUð2Þ gauge invari-
ance of the Yang-Mills equations of motion. We show the
resulting evolutions in Figs. 3 and 4.

(a) The two-sphere scale factor
EIII.

(b) The Yang-Mills potential
II.

(c) The Yang-Mills electric
field II near the classical sin-
gular point.

II

(d) The long time evolution
of the Yang-Mills electric field

II.

q
xx

(e) The scale factor

N

(f) The lapse function .

E III

II

II

FIG. 3. An evolution of the two-sphere scale factor (EIII), the
Yang-Mills potential (WII), and the Yang-Mills electric field (EII)
for both classical and holonomy corrected evolution equations. In
the quantum corrected case the volume of two-spheres does not
shrink to zero, as may be seen in fig. (a), indicating the quantum
bounce. Gravitational holonomy corrections and Yang-Mills
Wilson loop corrections.

(a) The two-sphere scale factor
EIII.

(b) The Yang-Mills potential
II.

(c) The Yang-Mills electric
field II near the classical sin-
gular point.

II

(d) The long time evolution
of the Yang-Mills electric field

II.

q
xx

(e) The scale factor

N

(f) The lapse function .

EIII

II

II

FIG. 4. Another evolution of the two-sphere scale factor (EIII),
the Yang-Mills potential (WII), and the Yang-Mills electric field
(EII) for both classical and holonomy corrected evolution equa-
tions. In the quantum corrected case the volume of two-spheres
does not shrink to zero, as may be seen in fig. (a), indicating the
quantum bounce. Gravitational holonomy corrections and Yang-
Mills Wilson loop corrections.
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By comparing Figs. 3 and 4 to Figs. 1 and 2, we note that
implementing Wilson loop corrections makes very little
difference to the system. A careful analysis shows that the
Wilson loop corrections lower the EIII curve slightly, hence
impeding the quantum bounce, but the effect is negligible.

III. CONCLUDING REMARKS

In this manuscript, we studied homogeneous Einstein–
Yang-Mills black hole interiors (of topology R × S2)
subject to low-order holonomy corrections inspired by
loop quantum gravity. Specifically, the evolution was
performed in the “improved quantization” scheme known
as the μ̄0 scheme [75]. The classical solutions’ two-sphere
volume tends to zero as the evolution progresses, whereas
the holonomy corrected evolution experiences a “quantum
bounce” as is also found in holonomy corrected vacuum
black holes. Past the classical singular point, for long-time
corrected evolution, the volume of two-spheres experiences
damped oscillations, asymptoting to a constant. There is a
similarity in this long-time behavior to holonomy corrected
pure vacuum black holes of spherical as well as nontrivial
topologies. It is possible that this long-term behavior is,
therefore, universal. The R sector, on the other hand,
expands indefinitely. Interestingly, we find that the magni-
tude of the Yang-Mills induced electric field grows mono-
tonically without bound on the far side of the bounce. This
illustrates the complexity of the nonlinear nature of gravity
and the Yang-Mills field where the electric field can be
sourced by this nonlinearity. Implementing finite plaquette-
size corrections to the Yang-Mills field Wilson loop does
not introduce a great change to the system.
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APPENDIX: HOLONOMY CORRECTIONS:
BRIEF REVIEW

As briefly mentioned previously, the connection is an ill-
defined variable in the quantum theory and must be
replaced by the holonomized (Wilson) loop of the con-
nection. However, the quantum theory also predicts a finite
spectrum for the area operator and, hence, the loop may not
be shrunk down to be of vanishing size. So, one may
develop a semiclassical theory by taking the classical
Hamiltonian and replacing all instances of the connection
Ai

a with its holonomized loop. Instead of shrinking the
loop to zero size, we shrink it to a small finite size, and this
gives rise to the holonomy correction. Full details may be
found in a combination of [78,77].

The holonomy of the connection along some path α may
be written as

hα ¼ exp

�Z
α
τiAi

adxa
�
:

It is assumed that the connection is constant on a small
enough interval, which is considered the order of the Planck
length. Hence, the holonomy of distance δ in the ∂a
direction is

hðδÞa ≈ exp½δτiAi
a� ¼ 1 cos

�
δAj

a

2

�
þ 2τj sin

�
δAj

a

2

�
:

ðA1Þ
Now, we construct the holonomy in a closed loop (see

Fig. 5), α ¼ □ab, such that

hðδÞ
□ab

¼ hðδÞa hðδÞb hðδÞ−1a hðδÞ−1b

¼ exp½δ2ð∂aAb − ∂bAa þ ½Aa; Ab�Þ þOðδ3Þ�
¼ exp½δ2Fk

abτk þOðδ3Þ�
¼ 1þ τkδ

2Fk
ab þOðδ3Þ: ðA2Þ

Hence,

Fk
ab ≈ −2

tr½τkðh□ab
− 1Þ�

δ2
: ðA3Þ

Now, the above trace can be computed using Eq. (A1),
and it evaluates to

tr½τkðh□ab
− 1abÞ� ¼ −ϵkij

sinðδAi
aÞ sinðδAj

bÞ
2

; ðA4Þ

and so

FIG. 5. Illustration of the holonomized loop hðδÞ
□ab

which brings
the connection Ai

a in a small loop of side length. δ.
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Fk
ab ¼ ϵkij

sinðδAi
aÞ sinðδAj

bÞ
δ2

; ðA5Þ

whereas, classically, under the small loop approximation,
we had that

Fk
ab ¼ ϵkijAi

aAj
b;

so the holonomy correction can be summarized as the
replacement

Ai
a →

sinðδAi
aÞ

δ
; ðA6Þ

such that in the limit where δ → 0, we regain the
classical case.
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