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Smolin’s generally covariantGNewton → 0 limit of 4d Euclidean gravity is a useful toy model for the study
of the constraint algebra in loop quantum gravity (LQG). In particular, the commutator between its
Hamiltonian constraints has a metric dependent structure function. While a prior LQG-like construction of
nontrivial anomaly free constraint commutators for the model exists, that work suffers from two defects. First,
Smolin’s remarks on the inability of the quantum dynamics to generate propagation effects apply. Second, the
construction only yields the action of a single Hamiltonian constraint together with the action of its
commutator through a continuum limit of corresponding discrete approximants; the continuum limit of a
product of two or more constraints does not exist. Here, we incorporate changes in the quantum dynamics
through structural modifications in the choice of discrete approximants to the quantum Hamiltonian
constraint. The new structure is motivated by that responsible for propagation in an LQG-like quantization of
paramatrized field theory and significantly alters the space of physical states. We study the off shell constraint
algebra of the model in the context of these structural changes and show that the continuum limit action of
multiple products of Hamiltonian constraints is (a) supported on an appropriate domain of states, (b) yields
anomaly free commutators between pairs of Hamiltonian constraints, and (c) is diffeomorphism covariant.
Many of our considerations seem robust enough to be applied to the setting of 4d Euclidean gravity.
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I. INTRODUCTION

The construction of a physically viable quantum dynam-
ics for loop quantum gavity (LQG) (see for e.g. [1–5] and
the references therein) constitutes a key open problem. Two
desirable features of such a dynamics are its compatibility
with general covariance and its ability to propagate
perturbations [6]. Here, we focus on the issue of general
covariance in the context of Smolin’s novel weak coupling
limit of Euclidean gravity [7]. General covariance is
expected to be encoded in a representation of the algebra
of Hamiltonian and spatial diffeomorphism constraints [8].
Accordingly, we construct a domain of quantum states for
the model together with the action of constraint operator
products thereon in such a way that the resulting algebra of
constraints exhibits anomaly free constraint commutators.
The model shares several structural aspects with canonical
general relativity and we expect our considerations here to
serve as essential inputs in the construction of a generally
covariant dynamics for LQG.
On the other hand, propagation properties of quantum

dynamics in LQG-like quantizations seem to be related to
certain structural properties of the Hamiltonian constraint
[9]. While we defer an analysis of propagation properties of
the dynamics of this model to future work [10], we note that
the general structural properties believed to be connected

with propagation effects in our study of parametrized field
theory [9] play a key role in our demonstration of an
anomaly free constraint algebra here.
We initiated our study of the quantum constraint algebra

of the model in [11,12]. The phase space of the system
consists of a triplet of Abelian connections and conjugate
electric fields, its dynamics is driven by Hamiltonian and
diffeomorphism constraints with a Poisson Bracket algebra
isomorphic to that of (Euclidean) gravity, and the LQG-like
quantum theory supports a representation of operators
consisting of holonomies of connections around spatial
loops and electric fluxes through spatial surfaces. While the
quantum theory supports a unitary representation of spatial
diffeomorphisms, the action of the Hamiltonian constraint
operator is defined in an indirect manner via a continuum
limit of appropriate discrete approximants. The reason, as
in LQG, is as follows. The classical constraint depends on
the curvature of the connection. While the classical
curvature can be defined via a “shrinking loop” limit of
an approximant constructed out of classical holonomies,
the corresponding quantum holonomy operator limit does
not exist because the background independent quantum
theory cannot distinguish between a bigger loop and its
smaller shrinking versions. However, following [13], it is
nevertheless possible to construct a classical approximant
to the Hamiltonian constraint through a suitable conglom-
eration of such discrete approximants in such a way that the
limit of the action of the corresponding conglomeration of*madhavan@rri.res.in
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operators can be defined despite individual operator limits
being ill defined. Since the limit involves shrinking of
“discrete regulating labels” such as loops and graphs, it is
referred to as a “continuum limit” and the approximants are
referred to as discrete approximants.
The work in Ref. [11] constructs the continuum limit of

the action of a single Hamiltonian constraint and an
anomaly free continuum limit action of the commutator
between two Hamiltonian constraints from suitably defined
discrete approximants. The work in Ref. [12] improves
upon the single Hamiltonian constraint action so as to
render it spatially covariant thus ensuring an anomaly free
commutator of the single Hamiltonian constraint action
with the spatial diffeomorphism constraint. This is achieved
while maintaining the anomaly free nature of the commu-
tator between a pair of Hamiltonian constraints. It is
important to note that the work in [11,12] constructs the
continuum limit of a discrete approximant to the commu-
tator between a pair of Hamiltonian constraints rather
than the commutator between continuum limit products.
More in detail, the product of the action of 2 discrete
approximant single Hamiltonian constraints is constructed,

the commutator of this product is evaluated first and then
the continuum limit is taken. Instead, a better implementa-
tion of the commutator between the quantum constraints
would be to first take the continuum limit of the product of
a pair of discrete single Hamiltonian constraint actions and
then take the commutator of this product. However it turns
out that with the choice of discrete approximants used in
[11,12], while the continuum limit of the discrete commu-
tator action is well defined, the limit of the discrete product
action is not. This is because certain terms with divergent
continuum limits in the discrete product action drop out
when commutation is performed before continuum limit.
Here we significantly improve upon the analysis of

[11,12] as follows. We construct the continuum limit action
of multiple products of Hamiltonian constraints, each such
constraint smeared by a “c-number” lapse i.e. we are able to
compute the action of a string of Hamiltonian constraint
operators ĈðN1Þ::ĈðNmÞ.1 From this action we can com-
pute the action of the operator obtained by replacing, in this
operator string, any number of pairs of successive smeared
Hamiltonian constraint operators by their commutators, i.e.
we can compute actions of operator products of the type

ĈðN1Þ::ĈðNi1−1Þ½ĈðNi1Þ; ĈðNi1þ1Þ�ĈðNi1þ2Þ::ĈðNi2−1Þ½ĈðNi2Þ; ĈðNi2þ1Þ�ĈðNi2þ2Þ…
…:ĈðNij−1Þ½ĈðNijÞ; ĈðNijþ1Þ�ĈðNijþ2Þ::ĈðNmÞ: ð1:1Þ

We show that each of the commutators in this string is
anomaly free in the sense that each can be replaced by the
operator correspondent of the corresponding classical
Poisson bracket (this operator correspondent, as in general
relativity, is itself not a Hamiltonian constraint smeared by
a c-number lapse because of the occurrence of structure
functions in the Poisson bracket algebra). We are also able
to show that the continuum limit action of multiple
products of smeared Hamiltonian constraints is diffeo-
morphism covariant and that the group of finite spatial
diffeomorphisms is implemented in an anomaly free
manner. This is almost but not quite the same as what is
conventionally referred to as the implementation of the
constraint algebra without anomalies in that we do not
concern ourselves with higher order commutators of the
type ½…:½½ĈðN1Þ; ĈðN2Þ�; ĈðN3�;…:; ĈðNjÞ�. We shall re-
turn to this point in the concluding section of this work. Till
then we shall refer to our results as an anomaly free single
commutator implementation of the constraint algebra.

While our basic strategy is the same as in Refs. [11,12]
(referred to here on as P1, P2 respectively), its implemen-
tation here is more complex than in those works. A brief
summary of the strategy, as implemented here, follows. As
in P1, P2 we deal with the Hamiltonian constraint of
density 4=3 smeared with a density weight −1=3 lapse as
this seems essential for nontrivial anomaly free commu-
tators (see, for e.g. Sec. IX in [14] and Chap. 2 of [5]). For
reasons explained above, we first define the action of
suitable discrete approximants to this constraint and then
take the continuum limit. As for LQG [13,15], the action of
these discrete approximants on a charge network state2

receives contributions only from vertices of the charge
net. As in P1, P2, we confine our attention to the case of
charge nets with a single contributing vertex. Since the
lapse function has a nontrivial density weight the action of a
discrete approximant to the constraint (henceforth referred
to as the discrete action of the constraint) can only be
computed with the aid of a coordinate patch around the
contributing vertex. This action on such a charge net state
generates deformations of the state and the “size” of these

1Specifically, we are able to define the action of up to k − 1
products of these constraints where we use the Ck semianalytic
category and k can be chosen to be arbitrarily large. Note this is
similar to the fact that for Ck vector fields one can only define up
to k nested commutators and this is the analog of the Lie algebra
for the group of Ckþ1 diffeomorphsims.

2Charge network states are the Abelian analog of the spin
network basis states of LQG [16] each such state being labeled
by a spatial graph whose edges are labeled by integer valued
“charges.”
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deformations is measured, in a precise sense, by the
coordinate patch associated with the charge net being
acted upon. The continuum limit action then involves
shrinking the size of these deformations away. Thus, the
constraint action depends on a choice of “regulating”’
coordinate patches, one for (the contributing vertex of) each
charge net.
While the discrete action is defined on any charge

network state, the continuum limit of this discrete action
can only be defined on distributional states which are non-
normalizable infinite sums over charge network states and
which lie in the algebraic dual to the finite span of charge
networks states.3 In this work, as in P1, P2 we restrict our
attention to the case where the coefficents in these sums are
nonvanishing only for “single vertex” charge nets of the
type described above. The coefficients in this sum are
determined through the specification of a density weighted
function and a Riemmanian metric on the 3d Cauchy slice.
This is in contrast to the specification of the scalar “vertex
smooth” function [17] of P1, P2. Due to the density weight
of the function and the tensorial nature of the metric, the
evaluation of these coefficients also requires a choice of
coordinate patches at vertices of the charge network states
they multiply. We choose these coordinate patches used to
evaluate these coefficients to be the same as the regulating
coordinate patches chosen above to define the discrete
action of the Hamiltonian constraint. This choice of
coordinate patches then allows the coefficients to be
evaluated and, consequently, the distributional states which
support the continuum limit constraint action to be speci-
fied. It is on this set of distributional states that anomaly
freedom is verified. Each such state will be called an
“anomaly free state” and the set of states will be referred to
as the “anomaly free domain.”
The requirement of anomaly free single commutators is

phrased in terms of an identity (2.11) discovered in P1
which expresses the Poisson bracket between a pair of
classical Hamiltonian constraints in terms of Poisson
brackets between certain phase space functions known
as electric diffeomorphism constraints (this name derives
from their construction as smearings of the diffeomorphism
constraint with electric field dependent vector fields).
Anomaly freedom is the requirement that this identity holds
between the commutator between a pair of Hamiltonian
constraints and the (continuum limit of the) corresponding
electric diffeomorphism commutators. Since the electric
fields in quantum theory are not smooth, the deformations
corresponding to electric diffeomorphisms are “singular”
versions of smooth diffeomorphisms, and, hence, distinct
from the latter. This enables us to focus first on the

construction of an anomaly free single commutator imple-
mentation of the algebra of Hamiltonian constraints and
analyze spatial diffeomorphism covariance of our con-
structions in a second step as follows.
Classical diffeomorphism covariance is encoded in the

Poisson brackets between the diffeomorphism constraint
and the Hamiltonian constraint and between the diffeo-
morphism constraints themselves. The diffeomorphism
constraint generates the action of infinitesimal diffeomor-
phisms on the connection and electric fields. In contrast, in
LQG-like representations the natural operators are those
which implement finite diffeomorphisms. It is possible to
encode the content of the Poisson brackets involving the
diffeomorphism constraint in terms of the action of finite
diffeomorphisms. The Poisson bracket between the diffeo-
morphism constraints is encoded in the requirement that the
group of finite diffeomorphisms connected to identity is
represented faithfully. The Poisson brackets between the
diffeomorphism constraint and the Hamiltonian constraint
are encoded in the requirement that the action of the
Hamiltonian constraint be appropriately diffeomorphism
covariant [see Eq. (12.4)]. Since LQG-like representations
provide a unitary representation of the group of finite
diffeomorphisms, we need to concentrate only on the
diffeomorphism covariance of the Hamiltonian constraint
action on states in the anomaly free domain. It is here that
the metric dependence of states in the anomaly free domain
allows, relative to P2, a qualitatively new mechanism for
the implementation of diffeomorphism covariance of the
continuum limit action of the Hamiltonian constraint.
Recall that this continuum limit action arises as the limit

of the action of discrete approximants to the constraint.
Also recall that this discrete action underlying the con-
tinuum limit action requires, for its definition, the choice of
a regulating coordinate patch around the contributing
vertex of the charge net being acted upon. Hitherto (see
P2), these coordinate patches (and hence the corresponding
discrete deformations generated by the discrete approxim-
ant to the constraint) were chosen once and for all
independent of the choice of the anomaly free state. The
new ingredient in this work is to tie the choice of these
structures to the metric label of the state as follows. Smooth
diffeomorphisms are represented unitarily on the space of
charge network states. Hence they have a well-defined dual
action on any anomaly free state. Consider one such state
with metric label hab. Then it turns out that the dual action
of a finite diffeomorphism ϕ on this state maps the state to a
new anomaly free state with metric label ϕ�hab which is the
push forward of hab by ϕ. Let the choice of coordinate
patch around the contributing vertex v of the charge net
state c when the anomaly free state has metric label hab be
fxg. Similar to the case of LQG spin nets, the unitary action
of the diffeomorphism ϕ on c yields the charge net cϕ with
contributing vertex ϕðvÞ. Then the idea is to choose the
coordinate patch around the contributing vertex of the

3The algebraic dual comprises of linear mappings from this
finite span to the complex numbers; its elements may be thought
of as (in geneneral non-normalizable) sums of charge network
bras.
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charge net state cϕ when the anomaly free state has metric
label ϕ�hab to be ϕ�fxg.
As we shall see in the main body of the paper, tying the

choice of regulating coordinate patches to the metric label
of the state in this “diffeomorphism covariant” manner
results in an elegant and immediate implementation of
diffeomorphism covariance of the continuum limit action of
the Hamiltonian constraint. To summarize, we have a tight
formalism wherein the label of the anomaly free distribu-
tional state dictates the choice of discrete approximant to
the Hamiltonian constraint which in turn defines a discrete
action whose continuum limit is diffeomorphism covariant.
This implementation of diffeomorphism covariance seems
to us to be a robust and beautiful phenomenon with possible
applicability to full blown LQG. This concludes our
summary of the strategy employed in this paper.
Our considerations in the main body of the paper are

based on the contents of P1 and P2. While we shall aim at a
self-contained presentation, the reader interested in a
complete understanding is urged to establish some famili-
arity with P1, P2 especially Secs. 2, 4, 5 and Appendix C4
of P1 and Secs. 3.2 and 3.3 and 5.5 of P2. The reader
interested in only a bird’s eye view of our results may
peruse Secs. II, III, XII and XIII.. Before we proceed to a
description of the layout of the paper, we note that this
model was first studied in an LQG representation in [18]
wherein the authors focussed on the case of 3 dimensions.
The model was studied in 4d in [11,12]. An attempt was
made to apply the lessons learned from these studies,
together with a remarkable identity discovered by Ashtekar
[19] (see also [20] where this identity is reproduced) and
earlier pioneering work by Bruegman [21], to 4d Euclidean
gravity in [20].
The layout of the paper is as follows. In Sec. II we briefly

review the model and the derivation of the discrete
approximants used in P2. In Sec. III we briefly review
the structural lessons learned from the study of propagation
in parametrized field theory [9] and show how to incor-
porate these lessons into a modified choice of discrete
approximants for the action of the Hamiltonian and the
electric diffeomorphism constraint on a certain restricted
class of states. The modifications, though seemingly minor,
are responsible for an anomaly free single commutator
implementation of the constraint algebra. Due to the nature
of the modifications it turns out that the set of restricted
states considered in Sec. III are not large enough for our
purposes because the action of the constraints maps these
states out of this set. Hence it is necessary to define the
discrete constraint action on a slightly larger set. We
develop this for a restricted class of elements of this larger
set in Sec. IV and lift this restriction in Sec. V, wherein we
display our detailed choice for the action on elements of
this larger set (called the ket set in Sec. VI).
In Sec. VI we construct the discrete action of products of

constraint operators. This action derives from multiple

applications of actions each of the type specified in
Sec. V. The specification in Sec. V on elements of the
ket set is not complete in that the coordinate patches
underlying the constraint action remain unspecified. In
Sec. VI we remedy this and provide a complete construc-
tion of the action corresponding to discrete approximants to
products of constraints on elements of the ket set. Finally,
we also indicate as to how the constraints act on states
outside this larger set. It turns out that for our purposes, this
action on the complement of this set does not need to be
specified in great detail; any action which maps the
complement to itself suffices.
In Sec. VII we construct the anomaly free domain of

quantum states. As mentioned earlier the quantum states in
the anomaly free domain are obtained as non-normalizable
sums over kinematic states with certain coefficients. Since
it is mathematically more precise to think of these states as
residing in a dual space, the sum is over “bras” rather than
kets. The set of bras being summed over is referred to as the
bra set. As in P1, P2, for simplicity, we restrict attention to a
bra set in which each bra has a single nontrivial vertex at
which the constraints act. These bras are “bra” correspond-
ents of states of the type encountered in Sec. V. Every state
in the anomaly free domain is labeled by a density weighted
function and a Riemmanian metric on the Cauchy slice.
The coefficient which multiplies a bra in the bra set is
evaluated from the structure of the graph underlying the bra
together with the density weighted function and metric
associated with the anomaly free state. As mentioned
earlier, the continuum limit action of discrete approximant
is defined through the contraction of the discrete deforma-
tions generated by the approximant. The dual action of the
discrete approximant on an anomaly free state transfers this
contraction behavior to the contraction behavior of coef-
ficients which characterize the anomaly free state. We
analyze this behavior in Sec. VIII and Appendixes F, G. 2
as a necessary prerequisite to the computation of the
continuum limit action. In Sec. IX we evaluate the
continuum limit action of a product of two Hamiltonian
constraints on an anomaly free state. This defines the action
of its commutator. Next, we compute the continuum limit
action of the appropriate commutator between two electric
diffeomorphism constraints and demonstrate equality with
the Hamiltonian constraint commutator, thus showing that
the action of a product of two Hamiltonian constraints is
well defined and anomaly free. In Sec. X we extend this
result to the action of higher order products of constraints
so as to show that the commutators in (1.1) are anomaly
free. In Sec. XI we show that the action of the constraint
products of Sec. X is also diffeomorphism covariant. We
briefly summarize and display our results in Sec. XII.
Section XIII is devoted to discussion.
Notation and conventions.—We set the speed light to be

unity but retain factors of ℏ. The analog of spin net states in
LQG are called charge network states here. We refer to a
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charge network state as c or jci depending on our
convenience, even changing from one to the other in the
course of a single calculation. The symbol c is used for the
charge network label (see Sec. II) underlying a charge net
state. We work with the Ck semianalytic category [3,22].
Due to the finite number of English alphabets, the letter k
may occasionally refer to objects other than the differ-
entiability degree; however, the context should make the
usage clear. The Cauchy slice Σ is semianalytic, oriented,
connected and compact without boundary. All semianalytic
charts used are right handed. The pushforward action of a
Ck semianalytic diffeomorphism ϕ is denoted by ϕ� and its
pullback action by ϕ� so that ϕ�ϕ� ¼ 1.

II. REVIEW OF ESSENTIAL BACKGROUND
FROM P1, P2

Almost all the material below is contained in P1. The
only part of P2 we allude to is in the choice of conical
deformations at the end of Sec. II. C below. The only new
material not from P1, P2 is in the last two paragraphs of
Sec. II. B wherein we describe our choice of the inverse
metric determinant operator.

A. Classical description of the model

The phase space variables ðAi
a; Ea

i ; i ¼ 1; 2; 3Þ are a
triplet of Uð1Þ connections and conjugate density weight
one electric fields on the Cauchy slice Σ so that the phase
space is that of aUð1Þ3 gauge theory. We define the density
weight 2 contravariant metric qqab ≔

P
iE

a
i E

b
i , q being the

determinant of the corresponding covariant metric qab. The
phase space functions,

G½Λ� ¼
Z

d3xΛi∂aEa
i ; ð2:1Þ

D½N⃗� ¼
Z

d3xNaðEb
i F

i
ab − Ai

a∂bEb
i Þ; ð2:2Þ

H½N� ¼ 1

2

Z
d3xNq−1=3ϵijkEa

i E
b
jF

k
ab; ð2:3Þ

are the Gauss law, diffeomorphism, and Hamiltonian
constraints of the theory, and where Fi

ab ≔ ∂aAi
b − ∂bAi

a.
The Poisson brackets between the constraints are

fG½Λ�; G½Λ0�g ¼ fG½Λ�; H½N�g ¼ 0; ð2:4Þ

fD½N⃗�; G½Λ�g ¼ G½£N⃗Λ�; ð2:5Þ

fD½N⃗�; D½M⃗�g ¼ D½£N⃗M⃗�; ð2:6Þ

fD½N⃗�; H½N�g ¼ H½£N⃗N�; ð2:7Þ

fH½N�; H½M�g ¼ D½ω⃗� þG½A · ω⃗�;
ωa ≔ q−2=3Ea

i E
b
i ðM∂bN − N∂bMÞ: ð2:8Þ

The last Poisson bracket (between the Hamiltonian con-
straints) exhibits structure functions just as in gravity.
It is useful to define the electric shifts Na

i by

Na
i ¼ NEa

i q
−1=3 ð2:9Þ

and the electric diffeomorphism constraints DðN⃗iÞ by

D½N⃗i� ¼
Z

d3xNa
i E

b
jF

j
ab: ð2:10Þ

Assuming the Gauss law constraint is satisfied, a key
identity derived in P1 is

fH½N�; H½M�g ¼ ð−3Þ
X3
i¼1

fD½N⃗i�; D½M⃗i�g: ð2:11Þ

B. Quantum kinematics

The basic functions of interest are Uð1Þ3 holonomies
associated with oriented closed graphs colored by repre-
sentations of Uð1Þ3 and electric fluxes through surfaces.
Colored graphs are labeled by charge network labels. A
charge network label c is the collection ðγ; q⃗I; I ¼ 1; ; NÞ
where γ is an oriented graph with N edges, the Ith edge eI
colored with a triplet of Uð1Þ charges ðq1I ; q2I ; q3I Þ≡ q⃗I .
The holonomy associated with c is hc,

hc ≔
YN
I¼1

e
iκγqjI

R
eI
Aj
adxa : ð2:12Þ

Here κ is a fixed constant with dimensionsML−1 and γ is a
dimensionless Immirzi parameter. In what follows we shall
choose units such that κγ ¼ 1.
hc is Uð1Þ3 gauge invariant if the total Uð1Þ3 charge

flowing into every vertex is the same as that flowing out
of the vertex, where “into” and “out of” corresponds to
whether the edge in question is incoming or outgoing at the
vertex. In the rest of this paper we restrict our attention
exclusively to gauge invariant charge net labels. The gauge
invariant electric flux through a surface S is EiðSÞ,

EiðSÞ ≔
Z
S
ηabcEa

i : ð2:13Þ

where ηabc is the coordinate 3-form. The holonomy flux
Poisson bracket algebra is closed and represented on the
space of charge network states. Each charge network state
jci is labeled by a charge network label c. Holonomies act

CONSTRAINT ALGEBRA IN SMOLINS’ G → 0 … PHYS. REV. D 97, 106007 (2018)

106007-5



by multiplication and electric flux operators count the
discrete electric flux corresponding to the weighted sum of
the charge carried by edges of c which intersect Si with the
weights being �1; 0 depending on the orientation and
placement of the intersecting edges relative to the (oriented)
surface S.
Next consider the electric shift operator

N̂a
i ¼ NÊa

i q
−1=3 ð2:14Þ

corresponding to the classical expression (2.9). It turns out
that this operator only has a nontrivial action at vertices of
charge net states and to compute its explicit action we need
a regulating coordinate patch at the vertex in question (see
P1). The final expression for the operator action at a vertex
v of the charge net jci is

N̂a
i ðvÞjci ¼ Na

i ðvÞjci ≔
X
Iv

Na
Ivi
jci;

Na
Ivi

≔
3

4π
NðxðvÞÞν−2=3v qiIv ê

a
Iv
: ð2:15Þ

Here Iv refers to the Ivth edge at v, and êaIv to the unit Ivth
edge tangent vector, unit with respect to the coordinates
fxg at v and NðxðvÞÞ denotes the evaluation of the density
weighted lapse N at v in this coordinate system. ν−2=3v is
proportional to the eigenvalue of the q̂−1=3 operator in
equation (2.14). Specifically, a regulated version of this
operator acting at the vertex v of the charge net state jci can
be defined. It has the eigenvalue ν−2=3ϵ2 where ϵ3 is the
coordinate size of a small regulating region around v so that
q̂−1=3ðvÞjci ≔ ðν−2=3v ϵ2Þjci. In P1 this regulated version of
q̂−1=3 is defined through a Thiemann trick [3,13].
In this work we use a slightly different definition of q̂−1=3

as follows. From P1, we have that the regulated metric
determinant operator q̂ acts at v as q̂ðvÞ ¼ ϵ−6q̂locðvÞjci
where, again, ϵ3 is the coordinate size of a small regulating
region around v and where the operator q̂locðvÞ is defined
through

q̂locðvÞjci ¼
1

48
ℏ3

�����X
IJK

ϵIJKϵijkqiIq
j
Jq

k
K

����
�
jci≕ℏ3ðνvÞ2jci

ð2:16Þ

where each of the three sums (over I, J, K) extends over the
valence of v, with I, J, K labeling (outgoing) edges eI, eJ,
eK emanating from v. ϵIJK ¼ 0;þ1;−1 depending on
whether the tangents of eI, eJ, eK are linearly dependent,
define a right-handed frame (with respect to the orientation
of the underlying manifold), or define a left-handed frame,
respectively. We define q̂−1=3ðvÞ by spectral decomposition
of q̂ðvÞ on states with nonzero eigenvalues for q̂locðvÞ so
that on such states ν−2=3v is given by the −2=3rd power of νv

in (2.16). The vertex v for such states will be referred to as a
nondegenerate vertex.4 On the zero eigenvalue subspace
we define it through the Thiemann trick employed in P1.
The result pertinent to the rest of this work is that for the
type of zero eigenvalue states of q̂loc encountered in this
work; the Thiemann trick returns a vanishing eigenvalue for
q̂−1=3ðvÞ. This is similar to the definitions of inverse metric
operators employed in the loop quantum cosmology con-
text of Ref. [23].

C. Discrete Hamiltonian constraint from P1

The action of the discrete approximant to the
Hamiltonian constraint operator of P1 is motivated through
the following heuristics. Given a charge net label, define the
charge net coordinate caiðxÞ:

caiðxÞ ¼ caiðx; feIg; fqIgÞ

¼
XM
I¼1

iqiI

Z
dtIδð3ÞðeIðtIÞ; xÞ_eaI ðtIÞ: ð2:17Þ

The associated holonomy hc can then be written as
hc ¼ exp ðR d3xcai A

i
aÞ. A charge net state can be thought

of heuristically as a wave function of the connection
cðAÞ ¼ hcðAÞ. Holonomy operators then act by multipli-
cation and the electric field operator by functional differ-
entiation so that Êa

i ðxÞ ¼ −iℏ δ
δAi

aðxÞ.
The Hamiltonian constraint in terms of the electric shift is

H½N� ¼ 1

2

Z
Σ
d3xϵijkNa

i F
k
abE

b
j þ

1

2

Z
Σ
d3xNa

i F
i
abE

b
i

¼ 1

2

Z
Σ
d3x

�
−ϵijkð£N⃗j

Ak
bÞEb

i þ
X
i

ð£N⃗i
Ai
bÞEb

i

�
:

ð2:18Þ

Here the second term on the right-hand side of the first line
vanishes classically and the second line is obtained using the
identity Na

i F
k
ab ¼ £N⃗i

Ak
b − ∂bðNc

i A
i
cÞ.

The quantum analog of (2.18) acts on a charge net wave
function. For simplicity, we restrict our attention to charge
nets with a single nondegenerate vertex. The electric shift is
then replaced by its operator analog (2.14) which is, in turn,
replaced by its eigenvalue Na

i ðvÞ (2.15) to yield

Ĉ½N�cðAÞ ¼ −
ℏ
2i
cðAÞ

Z
Σ
d3xAi

aðϵijk£N⃗j
cak þ £N⃗i

cai Þ:

ð2:19Þ

4It turns out that this notion of nondegeneracy is appropriate
for the Grot-Rovelli (GR) vertices of P1, P2 and Sec. III. We shall
encounter a different type of vertex in Sec. IVof this work called a
“CGR” vertex and will discuss the notion of nondegeneracy for
such a vertex in Sec. IV. A
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We refer to Na
i ðvÞ as the quantum shift. While Na

i ðvÞ is nonzero only at the point v on the Cauchy slice Σ, we shall think
of some regulated version thereof which is of small compact support ΔδðvÞ of coordinate size δ3 about v (in
the coordinates we used to define the quantum shift). Expanding the quantum shift into its edge components (2.15) yields

Ĉ½N�cðAÞ ¼
X
Iv

−
ℏ
2i
cðAÞ

Z
△δðvÞ

d3xAi
aðϵijk£N⃗Iv

j
cak þ £N⃗Iv

i
cai Þ: ð2:20Þ

Next, we approximate the Lie derivative by the difference of a small diffeomorphism and the identity as follows:

ð£N⃗I
i
caj ÞAk

a ¼ −
3

4π
NðxðvÞÞν−2=3v qiIv

φð ⃗êI; δÞ�cajAk
a − cajA

k
a

δ
þOðδÞ; ð2:21Þ

where we imagine extending the edge tangents ⃗êI to ΔδðvÞ in some smooth compactly supported way and define φð ⃗êI; δÞ to
be the finite diffeomorphism corresponding to translation by an affine amount δ along this edge tangent vector field. Using
the replacement (2.21) and using the compact support property of the edge tangent vector field to replace the integration
domain ΔδðvÞ by Σ yields

Ĉ½N�cðAÞ ¼ 1

δ

ℏ
2i
cðAÞ 3

4π
NðxðvÞÞν−2=3v

X
Iv

qiIv

Z
Σ
d3x½� � ��Iv;iδ þOðδÞ; ð2:22Þ

½� � ��Iv;1δ ¼ ½ðφca2ÞA3
a − ca2A

3
a� þ ½ðφc̄a3ÞA2

a − c̄a3A
2
a� þ ½ðφca1ÞA1

a − ca1A
1
a�

½� � ��Iv;2δ ¼ ½ðφca3ÞA1
a − ca3A

1
a� þ ½ðφc̄a1ÞA3

a − c̄a1A
3
a� þ ½ðφca2ÞA2

a − ca2A
2
a�

½� � ��Iv;3δ ¼ ½ðφca1ÞA2
a − ca1A

2
a� þ ½ðφc̄a2ÞA1

a − c̄a2A
1
a� þ ½ðφca3ÞA3

a − ca3A
3
a�; ð2:23Þ

where we have written c̄ai ≡ −cai and where we have suppressed the edge label Iv and set φcaj ≡ φð ⃗êIv ; δÞ�caj .
The integral in (2.22) is of order δ and we approximate by its exponential minus the identity to get our final expression:

Ĉ½N�cðAÞ ¼ ℏ
2i
cðAÞ 3

4π
NðxðvÞÞν−2=3v

X
Iv

X
i

qiIv
e
R
Σ
½����Iv;iδ − 1

δ
þOðδÞ: ð2:24Þ

For each fixed ðIv; iÞ the exponential term is a product of
edge holonomies corresponding to the charge net labels
specified through (2.23). This product may be written as
h−1cði;flipÞhcði;flip;Iv;δÞ where cði;flip;Iv;δÞ is the deformation of

cði;flipÞ by φð ⃗êI; δÞ and ci;flip has the same graph as c but
“flipped” charges. To see what these charges are, fix
i ¼ 1 and some edge Iv corresponding to the first line of
(2.23). In cð1;flipÞ, the connection A3

a corresponding to the
third copy of Uð1Þ is multiplied by the charge net ca2
corresponding to the second copy of Uð1Þ. This implies
that in the holonomy hcð1;flipÞ the charge label in the third
copy of Uð1Þ for any edge is exactly the charge label in
the second copy of Uð1Þ3 of the same edge in c i.e. in
obvious notation q3jcð1;flipÞ ¼ q2jc where we have sup-

pressed the edge label. A similar analysis for all the
remaining terms in (2.23) indicates that charges
ðiÞqj; j ¼ 1, 2, 3 on any edge of cði;flipÞ are given by
the following “i flipping” of the charges on the same
edge of c,

ðiÞqj ¼ δijqj −
X
k

ϵijkqk: ð2:25Þ
The exact nature of the deformed charge net cði;flip;Iv;δÞ
depends on the definition of the deformation. Since the
deformation is of compact support around v, the combi-
nation h−1cði;flipÞhcði;flip;Iv;δÞ is just identity except for a small
region around v. From (2.24), this term multiplies cðAÞ.
We call the resulting charge net cði;Iv;δÞ. Our final
expression as derived in P1 for the discrete approximant
to the Hamiltonian constraint then reads

Ĉ½N�δcðAÞ ¼
ℏ
2i

3

4π
NðxðvÞÞν−2=3v

X
Iv

X
i

qiIv
cði;Iv;δÞ − c

δ
:

ð2:26Þ
An identical analysis for the action of the electric
diffeomorphism constraint yields the result

D̂δ½N⃗i�c ¼ ℏ
i
3

4π
NðxðvÞÞν−2=3v

X
Iv

qiIv
1

δ
ðcðIv;δÞ − cÞ ð2:27Þ
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where cðIv;δÞ is obtained from c only by deformation
without any charge flipping so that

ðcðIv;δÞÞai ðxÞ ≔ φð ⃗êIv ; δÞ�cai ðxÞ: ð2:28Þ

It remains to specify the deformation φð ⃗êIv ; δÞ. From the
discussion above this deformation must distort the graph
underling c in the vicinity of its vertex v in such a way that
its vertex is displaced by a coordinate distance δ along the
Ivth edge direction to leading order in δ. Due to the
vanishing of the quantum shift except at v, this regulated
deformation is visualized to abruptly pull the vertex
structure at v in the direction of the Iv the edge. In P1
this was achieved by moving the vertex almost along the
edge by an amount δ but not exactly along it so that the
displaced vertex lay in a δq, q > 1 vicinity of the edge.
The edges connected to the original vertex v were then
pulled along the direction of the displaced vertex. Due to
the “abrupt” pulling, the original edges developed certain
kinks signaling the point from which they were suddenly
pulled. The reader is urged to consult the figures in P1
detailing this. The final picture of the distortion is one in
which the off-edge displaced vertex is connected to a kink
on the Ivth edge by an edge which almost coincides with
the original Ivth, and is connected to the kinks on the
remaining edges by edges which point almost exactly
opposite to the Ivth one, the structure in the vicinity of
the displaced vertex resembling (and in P2 being exactly
that of) the latter set of edges lying along a “downward”
cone with the former edge being upward along the cone
axis. This completes our summary of discrete constraint
action as developed in P1, P2.

III. MODIFIED DISCRETE CONSTRAINT ACTION

In Sec. III. Awe recall some of the structures responsible
for propagation in parametrized field theory [9], discuss
their analogs in the context of theUð1Þ3 model studied here
and argue that constraint actions in P1, P2 do not display
these structural analogs.
In Sec. III. B we indicate how these structural features

can be incorporated into a modified constraint action which
we display in Eqs. (3.10) and (3.11). We shall focus on the
case in which the charge net being acted upon has a single
GR vertex where (as in P1, P2) a GR vertex is defined as
one which has valence greater than 3 and at which no triple
of edge tangents is linearly dependent. In addition we shall
restrict our attention to linear GR vertices; a vertex will
be said to be linear iff there exists a neighborhood of the
vertex equipped with a coordinate patch such that the entire
set of edges at this vertex in this neighborhood are straight
lines in this coordinate patch.5 The constraints generate

displacements and deformations of the vertex structure
around the linear GR vertex. The deformed vertex structure
takes the form of a cone, this conical structure being
defined in terms of the coordinates associated with the
linear structure of the GR vertex. For pedagogical reasons
we shall focus on “downward” conical deformations in this
section. It turns out that it is also necessary to consider
“upward” conical deformations and that the choice of
upward or downward conicality is linked to the positivity
properties of the edge charge labels at the GR vertex.
A complete treatment will be presented in Sec. V.
In Sec. III. C we show the existence of an alternate

choice of charge flips to that defined by Eq. (2.25); as we
shall see later both choices of flips are needed to obtain the
crucial minus sign on the right-hand side of (2.11). In
Sec. III. D we summarize our results. We remind the reader
that as mentioned in Sec. II, all charge nets encountered in
the remainder of the paper are Uð1Þ3 gauge invariant.

A. Structures responsible for propagation

Our comments in this section will be very brief as our
main focus in this work is the construction of an anomaly
free constraint algebra rather than an analysis of propaga-
tion. We intend to analyze the issue of propagation in this
model in future work [10].
Smolin [6] argued that LQG methods necessarily yield

discrete constraint actions whose repeated application on
spin network states create nested structures around the
original vertices of the spin net. These nested deformations
are created independently for each different vertex. As a
result, a deformation near one vertex cannot have any
bearing on that near another vertex and in this sense no
information can propagate from the vicinity of one of the
original vertices of the spin net to another. In Ref. [9], we
showed that while Smolin’s observations are indeed valid,
propagation should be viewed as a property of physical
states lying in the kernel of the constraints rather than as a
property of repeated actions of the discrete approximants to
the constraint on kinematical states. Propagation can be
viewed in terms of the structure of a given physical state as
follows. A physical state is a (in general, kinematically non-
normalizable) sum of kinematic states. We may then view
the physical state as one which encodes propagation effects
if kinematic states in this sum are related by propagation
[9]. Since physical states are solutions of the quantum
constraints, their structure depends on that of the con-
straints which in turn derives from the structure of the
chosen discrete approximants. It was argued in Ref. [9] that
one of the features responsible for propagation was the Ô−1

δ

of these discrete approximants, where Ô is some kinematic
operator which has a finite well-defined action on any spin
net state. Roughly speaking, this structure together with
requirement that a continuum limit exists, ensures that the
sum over kinematic states which represents any physical

5A further technicality which may be ignored for now is that
we also restrict the charge nets here to be “primordial” in the
language of Sec. VI. B.

MADHAVAN VARADARAJAN PHYS. REV. D 97, 106007 (2018)

106007-8



state must have a structure such that if the “offspring” state
Ôjsi is in this sum then the “parent” state jsimust also be in
the sum. While at first sight, Eqs. (2.26) and (2.27) seem to
have this structure, a more careful perusal of these
equations shows that due to gauge invariance

P
Ivq

i
Iv
¼0

so that the −1 term is absent.
Secondly, in the simple context of [9] the analog of spin

network states live on one-dimensional graphs so that any
two successive vertices are connected by an edge. It is this
connection which provides a path for putative propagation
effects i.e. a deformation from one vertex can putatively
propagate to another along this “conducting” edge. In
contrast (2.26) and (2.27) generate deformations which
move off the edges of the graph (see the material at the end
of the Sec. II. C) and this feature is preserved by repeated
actions of the type (2.26) and (2.27).
In view of these remarks we shall modify the discrete

action (2.26) and (2.27) so that (i) there is a nontrivial −1
term in the expression for the discrete constraint action, and
(ii) the displaced vertex φð ⃗êIv ; δÞ · v is along the Ivth edge
of the graph rather than off it.

B. Modified action for linear GR vertices

We implement (i) in Sec. III. B. 1 and (ii) in Sec. III. B. 2.
As mentioned above we shall restrict our considerations to
the context of linear GR vertices. Recall that a linear vertex
is one equipped with a coordinate patch in its neighborhood
with respect to which the edges at the vertex in this
neighborhood appear as straight lines. The vertex will be
said to be linear with respect to such a coordinate patch. In
what follows the coordinate patch used to specify the
deformations generated by constraints is assumed to be one
with respect to which the vertex is linear. The detailed
choice of these coordinates will be discussed in Sec. VI.

1. Addressing the − 1 issue

We refer the reader to Eq. (2.21). Let us scale the
(regulated, compact supported in △δðvÞ) vector field ⃗êIv by

its charge label qiIv and define φðqiI ⃗êIv ; δÞ to be the small
diffeomorphism generated by the resulting vector field
qiI ⃗êIv . If we use this diffeomorphism to approximate the Lie
derivative on the left-hand side of (2.21), we obtain the
equation

ð£N⃗I
i
caj ÞAk

a ¼ −
3

4π
NðxðvÞÞν−2=3v

φðqiIv ⃗êI; δÞ�cajAk
a − cajA

k
a

δ

þOðδÞ: ð3:1Þ

Using Eq. (3.1) as our starting point instead of Eq. (2.21)
and repeating the subsequent argumentation and steps of
Sec. II. C, we see that the qiI factor in (2.24) now disappears
by virtue of the replacement of φð ⃗êI; δÞ by φðqiI ⃗êI; δÞ. As a

result, the holonomy hcði;flip;Iv;δÞ is replaced by hcði;flip;qi
Iv

;Iv;δÞ
,

where cði;flip;qiIv ;Iv;δÞ is the image of cði;flipÞ by φðqiIv ⃗êI; δÞ�:

ðcði;flip;qiIv ;Iv;δÞ
a
j ðxÞ ≔ φðqiI ⃗êI; δÞ�ðcði;flipÞÞaj ðxÞ: ð3:2Þ

Consequently, the deformed charge net cði;Iv;δÞ in (2.26) is
replaced by the charge net cði;qiIv ;Iv;δÞ which is obtained by

the action of the holonomy h−1cði;flipÞhcði;flip;qi
Iv

;Iv;δ
Þ on c. This

leads us to the constraint action

Ĉ½N�δcðAÞ ¼
ℏ
2i

3

4π
NðxðvÞÞν−2=3v

X
Iv

X
i

cði;qiIv ;Iv;δÞ − c

δ
:

ð3:3Þ
An identical analysis for the action of the electric

diffeomorphism constraint yields the result

D̂δ½N⃗i�c ¼ ℏ
i
3

4π
NðxðvÞÞν−2=3v

X
Iv

1

δ
ðcðqiIv ;Iv;δÞ − cÞ; ð3:4Þ

where cðqiIv ;Iv;δÞ is obtained from c only by the action of

φðqiI ⃗êI; δÞ without any charge flipping so that

ðcðqiIv ;Iv;δÞÞ
a
j ðxÞ ≔ φðqiIv ⃗êIv ; δÞ�caj ðxÞ: ð3:5Þ

Clearly this addresses issue (i) of Sec. III. A.

2. Addressing the conducting edge issue

Instead of the off edge placement of the displaced vertex
by φð ⃗êIv ; δÞ as in P1, we place the vertex on the edge eIv . In
view of the considerations of Sec. III. B. 1, the action of
φðqiIv ⃗êIv ; δÞ is defined to displace the vertex v by a
coordinate distance qiIv along the Ivth edge. Denote the
displaced vertex by vqiIv ;Iv;δ. The remaining edges eJv≠Iv are

dragged along in the direction of the Ivth edge so as to
form a downward pointing cone in the vicinity of the cone
vertex at vqiIv ;Iv;δ where “upward” refers to the direction of

the edge eIv and where, as in, P1, P2, all edges at vqiIv ;Iv;δ are

taken to point outwards from vqiIv ;Iv;δ. These remaining

edges develop kinks at the points ṽJv at which the edge
tangents are discontinuous. As in P1, P2 we refer to these
kinks as C0 kinks (for a formal definition see Appendix A.
An explicit construction of the relevant deformation is

provided in Appendix B where the linear GR condition is
used.6 The deformations based on the construction of

6More precisely, as we shall see in Sec. VII, the deformation
constructed in Appendix B is diffeomorphic to that discussed
here. Hence all diffeomormphism invariant properties of the latter
are identical to that of the former.
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Appendix B are displayed in Fig. 1. We shall summarize
the content of this figure in Sec. III. D.
The downward conical deformations of Appendix B

displace the vertex v upward along the Ivth edge. This is
clearly appropriate only if qiIv is positive. If q

i
Iv
is negative it

is necessary to consider deformations which displace v in
the opposite direction. This, in turn, requires the further
construction of an extension of the edge Iv together with an
upward conical deformation of the vertex structure around
v. We shall defer a discussion of such upward conical
deformations and graph extensions to Sec. V in the interests
of pedagogy. Hence the deformations described above are
only valid for deformations along edges for which the
charges labels are positive.
In view of the discussion in Sec. III. A, we refer to the

edge along which the vertex is displaced in the deformed
charge net as the conducting edge in the deformed charge net.
The remaining edges at the displaced vertex in the deformed
charge net which connect the displaced vertex with C0 kinks
will be called nonconducting edges. In the case of
Hamiltonian constraint type deformations, the conducting
edge at the displaced vertex of the deformed charge net
cði;qiIv ;Iv;δÞ splits into 2 parts, a lower conducting edge which

connects the displaced vertex with the vertex v (i.e. with the
vertex of c) and an upper part beyond the displaced vertex.

C. Charge flips

Note that in Sec. II. C we could equally have started with
a minus sign in front of the second term in (2.18) since that
term is nonvanishing. Let us do this. This leads to the
replacement of equation (2.19) by

Ĉ½N�cðAÞ ¼ ℏ
2i
cðAÞ

Z
Σ
d3xAi

að−ϵijk£N⃗j
cak þ £N⃗i

cai Þ: ð3:6Þ

Repeating the subsequent argumentation, we are lead to
define the charge net cð−i; flipÞ instead of cði; flipÞ, with
−i flipped charges ð−iÞqj instead of the i flipped charges of
Eq. (2.25), with these −i flipped charges defined as

ð−iÞqj ¼ δijqj þ
X
k

ϵijkqk: ð3:7Þ

The exponential term in Eq. (2.24) is then replaced, in
obvious notation, by h−1cð−i;flipÞhcð−i;flip;Iv;δÞ and we are lead to,

instead of Eq. (2.26), the expression

Ĉ½N�δcðAÞ ¼ −
ℏ
2i

3

4π
NðxðvÞÞν−2=3v

X
Iv

X
i

qiIv
cð−i;Iv;δÞ − c

δ

ð3:8Þ
where cð−i;Iv;δÞ is exactly the same as cði;Iv;δÞ of (2.26) except
that the i flipped charges of equation (2.25) are replaced by
their −i flipped version in Eq. (3.7). Repeating the consid-
erations of Sec. III. B. 1 we are lead to the final equation:

Ĉ½N�δcðAÞ ¼ −
ℏ
2i

3

4π
NðxðvÞÞν−2=3v

X
Iv

X
i

cð−i;qiIv ;Iv;δÞ − c

δ

ð3:9Þ
where, once again in obvious notation, cð−i;qiIv ;Iv;δÞ is exactly
the same as cði;qiIv ;Iv;δÞ except that the role of i flipping is

replaced by that of −i flipping.
To summarize, we are able to generate an overall minus

sign in the expression (3.9) relative to (3.3) by changing the
charge flip from an i flip to a −i flip. Putting everything
together (and using the notation cðþi;qiIv ;Iv;δÞ ≡ cði;qiIv ;Iv;δÞ we
are lead to two possible discrete actions of the Hamiltonian
constraint:

Ĉ½N�δcðAÞ ¼ � ℏ
2i

3

4π
NðxðvÞÞν−2=3v

X
Iv

X
i

cð�i;qiIv ;Iv;δÞ − c

δ
:

ð3:10Þ
As no charge flipping is involved, the expression for the
electric diffeomorphism constraint remains the same:

D̂δ½N⃗i�c ¼ ℏ
i
3

4π
NðxðvÞÞν−2=3v

X
Iv

1

δ
ðcðqiIv ;Iv;δÞ − cÞ: ð3:11Þ

In view of the considerations of Sec. III. B. 2 the deforma-
tions in Eqs. (3.10) and (3.11) are of the on edge, conical
type. We slightly abuse notation and continue to use the
notation φðqiI ⃗êI; δÞ of Sec. III. B. 1 for the deformation map
corresponding to the modified deformations of Sec. III. B. 2.
In Sec. VII we shall find it necessary to use both the versions
of discrete Hamiltonian action described in (3.10).
Finally, as emphasized in Sec. III. B, the deformations

along the Ivth edge constructed therein are valid only if

FIG. 1. (a) Undeformed GR vertex v of a charge net c with its
Ith and Jth edges as labeled. The vertex is deformed along its Ith
edge in (b) wherein the displaced vertex vI and the C0 kink, ṽJ on
the Jth edge are labeled. (c) Result of a Hamiltonian type
deformation obtained by multiplying the charge net holonomies
obtained by coloring the edges of (b) by flipped images of
charges on their counterparts in c, (a) by negative of these flipped
charges and (a) by the charges on c. If the edges of (b) are colored
by the charges on their counterparts in c then one obtains an
electric diffemorphism deformation.

MADHAVAN VARADARAJAN PHYS. REV. D 97, 106007 (2018)

106007-10



qiIv > 0. For qiIv < 0, we shall define the deformed states
cð�i;qiIv ;Iv;δÞ; cðqiIv ;Iv;δÞ in Eqs. (3.10) and (3.11), in Sec. V.

D. Summary

For the case that qiIv > 0, we display the deformed
charge net cð�i;qiIv ;Iv;δÞ of (3.10) in Fig. 1(c). This charge net
can be visualized as the product of following three
holonomies:

(i) a holonomy labeled by the deformed charge net
colored with flipped charges, hcð−i;flip;Iv;δÞ, shown in
Fig. 1(a);

(ii) a holonomy labeled by an undeformed charge net
based on the same graph [see Fig. 1(a)] as c and
colored with the negative of the flipped charges
h−1cð−i;flipÞ, the negative sign coming from the inverse;

(iii) the original charge net holonomy based on the graph
shown in Fig. 1(a).

As a result, the charge carried by the undeformed counter-
parts of the nonconducting edges at v in cð�i;qiIv ;Iv;δÞ
(namely the edges which connect v to the C0 kinks) have
vanishing ith component. By gauge invariance the charge
along the (lower) conducting edge passing through v in
cð�i;qiIv ;Iv;δÞ also has vanishing ith component. It is then

straightforward to see that, similar to P1, P2, the vertex v is
degenerate in cð�i;qiIv ;Iv;δÞ. Also note that each nonconduct-

ing edge in (i) carries flipped versions of the charges carried
by its undeformed counterpart in c. Hence, using gauge
invariance at the displaced vertex in cð�i;qiIv ;Iv;δÞ, we have

the following remark:
Remark 0.—The difference between the outgoing and

incoming charges along the conducting edge at the
deformed vertex in cð�i;qiIv ;Iv;δÞ is the �i flipped version

of the charge along the Ivth edge in c.Finally, recall that
vertex structure in a sufficiently small vicinity of the
displaced vertex when viewed in terms of the coordinates
associated with the linear vertex v in c takes the following
form. All edges are straight lines. The conducting edge in
cð�i;qiIv ;Iv;δÞ is split into two parts by the displaced vertex.

The remaining (nonconducting) edges at the displaced
vertex form a downward cone. With respect to the down-
ward direction of the cone, the conducting edge splits into
an upper conducting edge and a lower conducting edge.
The deformed charge net cðqiIv ;Iv;δÞ of (3.11) is based on

the same deformed graph as that in (i) above; the only
difference is that the charge labels are unflipped i.e. each
deformed edge in cðqiIv ;Iv;δÞ has the same charge as its

undeformed counterpart in c.

IV. MODIFIED ACTION: LINEAR CGR VERTICES

In the last section we restricted our attention to linear GR
vertices. The action of the Hamiltonian constraint (3.10)

displaces such a vertex along a conducting edge so that
the conducting edge splits into an incoming and outgoing
part at the displaced vertex and the incoming and
outgoing conducting edge tangents comprise a linearly
dependent pair at the displaced vertex [see Fig. 1(c)].
Hence any triple of edge tangents which contains the
incoming and outgoing conducting edge tangents is no
longer linearly independent and the displaced vertex is
not strictly GR. Due to the role played by the conducting
edge in altering the (linear) GR structure of such a vertex,
we shall call it a (linear) conducting edge-altered GR
vertex or a CGR vertex.7

In Sec. IV. A we isolate the structure in the vicinity of
such a vertex, discuss it in detail and define modified
discrete constraint actions for states with such a vertex.
As in the previous section the coordinates with respect
to which the deformations generated by these con-
straints actions are defined will be assumed to be ones
with respect to which the vertex is linear. The detailed
choice of these coordinates will be discussed in
Sec. VI. In Sec. IV. D we define a single notation
which succinctly describes the deformed states pro-
duced by the modified constraint actions both for the
GR and the CGR cases.

A. Linear CGR vertices: Definition and
constraint action

From Sec. III. D, we define a (linear) CGR vertex as
follows. Avertex v of a charge net cwill be said to be linear
CGR if

(i) there exists a coordinate patch around v such that all
edges at v are straight lines;

(ii) the union of two of the edges at v form a single
straight line so that v splits this straight line into
two parts;

(iii) the set of remaining edges together with any one of
the two edges in (i) constitute a GR vertex in the
following sense. Consider, at v, the set of outgoing
edge tangents to each of the remaining edges
together with the outgoing edge tangent to one of
the two edges in (i). Then any triple of elements of
this set is linearly dependent.

We shall call the edges other than those in (ii) as
nonconducting in c and the two edges in (ii) as upper

7Note that the transition from a GR vertex to a CGR vertex by
the Hamiltonian constraint action is not generated by the action
of the deformation map φðqiIv ⃗êIv ; δÞ. Indeed, the graph under-
lying the deformed charge net created by the action of the
deformation map on c displays a single GR vertex as shown in
Fig. 1(b). Rather, the CGR property stems from the fact that
cð�i;qiIv ;Iv;δÞ is constructed not only from the deformed charge net
of Fig. 1(b) but also the undeformed ones based on the graph
shown in Fig. 1(a). Indeed, the electric diffeomorphism constraint
action (3.11) retains the GR nature of the vertex acted upon as
displayed in Fig. 1(b).
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and lower conducting edges in c and refer to the union of
the conducting edges as the conducting line in c.8 Let the
upper conducting edge and the nonconducting edges be
assigned an outward pointing orientation from v in c and
let the lower conducting edge be assigned an incoming
orientation at v in c so that the conducting line acquires a
natural well-defined orientation induced from the con-
ducting edges. Let the number of nonconducting edges
be N − 1. Hence there are N þ 1 edges at v but these
edges define only N distinct oriented straight lines
passing through v in c, one of them being the conducting
line and the remaining N − 1 being the nonconducting
edges. Let Jv ¼ 1; ::; N be an index which numbers these
straight lines. Let the conducting line be the Kvth one. It
follows that the nonconducting edges are assigned indices
fJv; Jv ≠ Kvg. Denote such a nonconducting edge by eJv
for some Jv ≠ Kv and its outgoing charge by qiJv. Denote
the upper conducting edge with outward orientation by
eKv;out, the lower conducting edge with incoming ori-
entation by eKv;in and their respective outgoing and
incoming charges by qiKv;out

and qiKv;in
.

We turn now to a derivation of modified constraint
actions on a state c with a linear CGR vertex using the
notation discussed above. We shall convert the situation
into one in which the lower conducting edge is absent at
v and the upper conducting edge acquires a charge
qiKv;out

− qiKv;in
. The vertex v then becomes GR and we

may then use the deformations described in
Appendix B. 1. In this section we shall restrict our
attention to the case where the net conducting charge
qiKv;out

− qiKv;in
is positive. This restriction is for peda-

gogical reasons which are identical to those which
underlie the applicability of the downward conical
deformations of Sec. III. B to the case of qiIv > 0 (see
the discussion at the end of Sec. III. B). The general
case involving charges with no positivity restrictions
together with the consideration of upward conical
deformations will be discussed in Sec. V.
We are interested in the discrete action of the

constraints at small enough discretization parameter δ
where δ is measured by the coordinate system in (i).
Consider a loop l made up of two edges l1, l2 so that
l ¼ l1 ∘ l2. Let l1 be a segment of the conducting line
running between two of its points p1 and p2 equidistant
from v, where p1 is below v and p2 is above v. Let p1

and p2 be chosen such that the coordinate length of l1 is
Cδ; C > 16qmax

9 where

qmax ¼ max
ði¼1;2;3Þ;ðIv¼1;::;NÞ

jqiIv j: ð4:1Þ

Further, let l1 be oriented so as to run from p1 to p2.
Let l2 be a semicircular arc connecting p2 with p1 such
that its diameter is Cδ. Let l lie in a coordinate plane Pl
such that no nonconducting edge lies in Pl. Define the
holonomy hl to run along l with charge equal to −qKv;in

i.e. hl is charged with the negative of the incoming
charge at v carried by the incoming lower conducting
edge. Note that for any smooth connection Aj

a,

hl ≔ exp i

�
−
X3
j¼1

qjKv;in

Z
l
Aj
adxa

�
∼ 1þOðδ2Þ: ð4:2Þ

Since the classical holonomy hl is unity to order δ2,
multiplication of an approximant to a constraint by hl
continues to yield an acceptable approximant. Accordingly,
we first multiply c by hl. Clearly, this yields the charge net
cl in which, as mentioned above, the lower conducting
edge of c is absent from p1 to v, the upper conducting
edge acquires a charge qiKv;out

− qiKv;in
between v and p2

and the nonconducting edges are untouched. As shown in
Fig. 2, the vertex v in cl then becomes GR and we may
then act on the result by the discrete approximant to the
constraint of interest as in Sec. III, the vertex structure
deformations of cl being constructed along the lines
described in Appendix B. 1.
We act on the result by ĥ−1l . Since the deformation of

Appendix B. 1 is confined to within a ball of radius 2qmaxδ
about v [see (4.1) for the definition of qmax], the semi-
circular arc l2 does not touch the deformed structures, and
due to its placement does not touch the undeformed
structure (for small enough δ) except at p1, p2. Hence
the action of ĥ−1l simply removes the extra segment l2 from
the charge nets generated hitherto and restores the missing
part of the conducting line, so that we have

FIG. 2. Left: vertex structure at the CGR vertex v. The
conducting edges are the Kth ones. Right: effect of multiplication
by the intervening holonomy hl on this vertex structure. The
lower conducting edge at v is removed and the upper conducting
edge is charged with the net conducting charge.

8Here we assume that we are given a specification of which of
the two edges is upper and which is lower; how this specification
arises will be discussed in Sec. V.

9See (a)–(c), Sec. V. A. 2 for the reason for this choice of C.
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Ĉ½N�δcðAÞ ¼ �ĥ−1l
ℏ
2i

3

4π
NðxðvÞÞν−2=3v

X
Iv

X
i

clð�i;qiIv ;Iv;δÞ − cl

δ

¼ � ℏ
2i

3

4π
NðxðvÞÞν−2=3v

�X
Iv≠Kv

X
i

cð�i;qiIv ;Iv;δÞ − c

δ

þ
X
i

cð�i;qiKv;out
−qiKv;in;Kv;δÞ − c

δ

�
: ð4:3Þ

In the second and third lines we have used νv to denote the
volume eigenvalue of cl at its GR vertex v. Note that this is
not the same as the volume eigenvalue for c.10 The fact that
a nontrivial constraint action is only possible if v is
nondegenerate in cl (rather than in c) suggests that we
define our notion of nondegeneracy for a CGR vertex
to be tied to that of the corresponding GR vertex obtained
by modifying the CGR one through the intervention of
the holonomy hl. We shall formalize this definition in
Secs. IV. B and V.
The deformed charge net cð�i;qiIv ;Iv;δÞ for Iv ≠ Kv and for

the case qiIv > 0
11is shown in Fig. 3(c).

It may be viewed as the product of three holonomies: one
of which is deformed and has flipped charges as shown in
Fig. 3(b), a second which is based on the undeformed graph
of Fig. 3(a) with negative of the flipped charges and the last
which is just the holonomy corresponding to c. Due to the
deformations of the GR vertex structure of cl, each of the
edges of clð�i;qiIv ;Iv;δÞ at its nondegenerate vertex other than

the Ivth one meet their undeformed counterparts in C0

kinks. Since there is no lower conducting edge at the vertex
v of clð�i;qiIv ;Iv;δÞ, the subsequent multiplication by ĥ−1l
results in a restoration of this “missing” part of eKv;in

without any further kink. Thus the deformed graph struc-
ture underlying cð�i;qiIv ;Iv;δÞ obtained by first intervening

with ĥl then deforming the resulting GR structure and
finally intervening with ĥ−1l is to (besides generating the
displaced vertex and its attendant vertex structure) deform
the graph underlying c so as to generate a C0 kink on each
nonconducting edge of c other than the Ivth one and to
generate a single C0 kink on the conducting line of c, this

kink lying on the upper conducting edge of cwith the lower
conducting edge having no kink.
Note that the lower conducting edge of c between p1 and

v does not intersect the deformed edges of clð�i;qiIv ;Iv;δÞ. To
see this proceed as follows. Note that the deformation in
Appendix B is constructed first out of straight lines and
then the straight lines at the displaced vertex are “conically”
deformed in a sufficiently small neighborhood of the
displaced vertex. Clearly this neighborhood can always
be chosen to be small enough that the lower conducting
edge is in its complement. Hence if we show that if this
edge does not intersect the initial construction of the
deformation in terms of exclusively straight lines, it does
not intersect their conical deformation. For the initial part of
the construction in Appendix B. 1 (a)–(c) below hold:
(a) Consider the deformation of the upper conducting

edge in c which connects a kink vertex on the upper

FIG. 3. (a) Undeformed CGR vertex v of a charge net c with its
Kth conducting edge and Ith and Jth nonconducting edges as
labeled. (b) Vertex structure of (a) is deformed along its Ith edge
and the displaced vertex vI and the C0 kinks ṽJ , ṽK on the Jth,
Kth edges are as labeled. (c) Result of a Hamiltonian type
deformation. To obtain this result (i) in (b) color the edge from vI
to ṽK with the flipped image of the net conducting charge in c,
that from v to ṽK with the flipped image of the lower conducting
charge at c and the remaining edges with the flipped images of the
charges on their undeformed counterparts in c; (ii) color the edges
of (a) by the negative of the flipped charges on c; (iii) color the
edges of (a) by the charges on c; (iv) multiply the holonomies
corresponding to (i), (ii), (iii). In (b), if the edge from vI to ṽK is
colored with the net conducting charge in c, that from v to ṽK by
the lower conducting charge in c and the remaining edges by the
charges on their counterparts in c one obtains the result of an
electric diffemorphism deformation.

10From (2.16), it follows that the volume eigenvalue is
sensitive only to the structure of c in a small vicinity of v. If
we replace this structure by one which has identical colored
nonconducting edges, no lower conducting edge and an upper
conducting edge which has charge qiKv;out

þ qiKv;in
, the volume

eigenvalue for this structure is the same as that for c. This differs
from that for cl because the vertex structure there has the upper
conducting edge charge as qiKv;out

− qiKv;in
.

11We will tackle the qiIv < 0 case in Sec. V. Hence the
deformed charge nets clð�i;qiIv ;Iv;δÞ for q

i
Iv
< 0 will be constructed

in detail only in that section.
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conducting edge in c to the displaced vertex in
clð�i;qiIv ;Iv;δÞ which lies along the Ivth edge of c at a

position distinct from v. This deformed edge cannot
intersect the lower conducting edge because two
distinct straight lines can intersect at most at a single
point.

(b) Clearly the lower conducting edge of c does not
intersect the Ivth (upper conducting and lower con-
ducting) edge in clð�i;qiIv ;Iv;δÞ except at v, once again

because two distinct straight lines can intersect at most
at a single point.

(c) Consider the Jvth nonconducting edge in c with
Jv ≠ Iv. Its deformation connects a kink vertex on
the Jvth edge to the displaced vertex. From
Appendix B. 1 this deformed edge lies in a plane
containing the Ivth and the Jvth edges. The lower
conducting edge can only intersect this plane at v by
virtue of the fact that v is CGR in c.

From (a)–(c) it follows as claimed that the lower con-
ducting edge between p1 and v does not intersect the
deformed edges of clð�i;qiIv ;Iv;δÞ. It then follows that the

multiplication by ĥ−1l in Eq. (4.3) simply restores this part
of the lower conducting edge without creating any more
intersections.
For the case that Iv ¼ Kv, the deformed charge net

cð�i;qiKv;out−q
i
Kv;in

;Kv;δÞ is displayed in Fig. 4(c). This charge

net can be thought of as the product of three holonomies
[see Figs. 4(a) and 4(b)]. Once again it is easy to see
that the deformed edges of clð�i;qiKv ;Kv;δÞ do not intersect

the lower conducting edge in c from the fact that two
distinct lines can intersect at most at a point. Hence once
again the multiplication by ĥ−1l simply restores this part of
the lower conducting edge without creating any more
intersections.

Similarly, we have

D̂δ½N⃗i�c¼ ĥl;q⃗K;in
ℏ
i
3

4π
NðxðvÞÞν−2=3v

�X
Iv

1

δ
ðclðqiIv ;Iv;δÞ−clÞ

�

¼ℏ
i
3

4π
NðxðvÞÞν−2=3v

�X
Iv≠Kv

1

δ
ðcðqiIv ;Iv;δÞ−cÞ

þ1

δ
ðcðqiKv;out−qiKv;in;Kv;δÞ−cÞ

�
: ð4:4Þ

The charge net which is obtained through a deformation of
c along an edge which is nonconducting in c looks identical
to that in Fig. 3(b) except that the charge labels are identical
to their counterparts in c.12 Similarly, the charge net which
is obtained through a deformation of c along an edge which
is conducting in c looks identical to that in Fig. 4(b) except
that the charge labels are identical to their counterparts in c.

B. The net conducting charge: Remarks

We define the difference between the outgoing upper and
incoming lower conducting charges at a CGR vertex to be
the net conducting charge at that vertex. The following
remarks highlight the significance of this difference of
conducting charges.
In the case of the action of the Hamiltonian constraint

(4.3) we have that:
Remark 1.—The deformed Kvth edge in cð�i;qiIv ;Iv;δÞ

carries the difference between the flipped charges of the
outgoing upper and incoming lower conducting edges in c.
Remark 2.—The displaced vertex in the deformed

charge net cð�i;qiKv;out−q
i
Kv;in

;Kv;δÞ is displaced by an amount

jqiKv;out
− qiKv;in

jδ from v.
Remark 3.—The difference between the charges on the

outgoing upper and incoming lower conducting edges at
the nondegenerate vertex of cð�i;qiKv;out−q

i
Kv;in

;Kv;δÞ is the �i

flipped image of the difference between the charges on the
outgoing upper and incoming lower conducting edges at
the nondegenerate vertex of c.
In the case of the electric diffeomorphism constraint

action (4.4), we have that:
Remark 4.—The deformed Kvth edge in cðqiIv ;Iv≠Kv;δÞ

carries the difference between the charges of the upper and
lower conducting edges in c.
Remark 5.—The displaced vertex in the deformed

charge net cðqiKv;out−qiKv;in;Kv;δÞ is displaced by an amount

ðqiKv;out
− qiKv;in

Þδ from v.
Remark 6.—The difference between the charges on the

outgoing upper and incoming lower conducting edges at

FIG. 4. (b) Vertex structure of (a) is deformed along its Kth
edge and the displaced vertex vK and the C0 kink ṽJ on the Jth
edge are as labeled. (c) Result of a Hamiltonian type deformation
obtained by multiplying the three charge net holonomies obtained
by coloring the edges of (b) by the flipped images of the charges
on their counterparts in c, the edges of (a) by the negative of these
flipped charges and the edges of (a) by the charges on c. If the
edges of (b) are colored by the charges on their counterparts in c
then one obtains an electric diffemorphism deformation.

12Here and below, similar to footnote 11, our comments only
apply to those deformed charge nets cðqiIv ;Iv;δÞ for which qiIv > 0.
The deformed charge nets in (4.4) for which this condition does
not apply will be defined in Sec. V.
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the nondegenerate vertex of cðqiKv;out−qiKv;in;Kv;δÞ is equal to the
difference between the charges on the outgoing upper and
incoming lower conducting edges at the nondegenerate
vertex of c.
Remark 7.—Were it not for the intervention by the

holonomy around the small loop l, this difference in
Remarks (2) and (5) would be replaced by the sum because
the heuristics of Secs. II and III. B indicate a displacement
of the vertex by δðqiKv;out

⃗êKv;out þ qiKv;in
⃗êKv;inÞ with the

outgoing upper conducting edge tangent ⃗êKv;out being equal

to the ingoing lower conducting edge tangent ⃗êKv;in. As will
be apparent in Secs. X and XI this “difference of charges
associated with the conducting edge” plays a key role in
anomaly freedom.
As we have noted in Sec. IV. A, we may obtain this

intervention for the Hamiltonian constraint by starting from
(2.18) and putting in factors of the holonomy around l and
its inverse and then proceeding along the lines of the
subsequent heuristics of Sec. II. C. Since classically, the
holonomy and its inverse cancel (and since, furthermore,
the classical holonomy is unity to higher order terms in δ
than the leading order required by the putative approx-
imant), the intervention leads to an equally acceptable
discrete action. Similar heuristics hold for the electric
diffeomorphism constraint.

C. Nondegeneracy of CGR vertices

From Figs. 3 and 4, and our discussion above it follows
that the displaced vertices in the deformed charge nets
generated by (4.3) and (4.4) are CGR or GR.13 While the
notion of nondegeneracy of a GR vertex is just the
nonvanishing of the volume eigenvalue at the vertex, in
the case of a CGR vertex, the action of the constraints (4.3)
and (4.4) is sensitive to the nondegeneracy of the (GR)
vertex in cl rather than the (CGR) vertex in c. Accordingly,
we define the notion of nondegeneracy of a CGR vertex as
follows:
Definition 1: Nondegeneracy of a CGR vertex.—ACGR

vertex of a charge net c will be said to be nondegenerate
iff the corresponding GR vertex in the charge net cl is
nondegenerate. If the vertex in cl is degenerate we shall say
that the CGR vertex in c is degenerate.14

With the definition of nondegeneracy above, the original
parent CGR vertex v is degenerate in the deformed charge

nets generated by (4.3). To see this, recall that the deformed
charge nets cð�i;qiIv ;Iv≠Kv;δÞ, cðqiKv;out−qiKv;in

;Kv;δÞ in that equa-

tion are obtained from the action of h−1l on clð�i;qiIv ;Iv≠Kv;δÞ,
clðqiKv;out−qiKv;in;Kv;δÞ. The latter are obtained by the

Hamiltonian constraint action on cl at its GR vertex and
hence, as noted in Sec. III. D, the charges on the edges at
the vertex v in these deformed and i flipped charge nets
have vanishing ith component. In particular the edges in
clð�i;qiIv ;Iv≠Kv;δÞ, clðqiKv;out−qiKv;in;Kv;δÞ which connect v to theC

0

kinks have charges with vanishing ith component. Since
the action of h−1l does not affect the charges on the edges at
v which connect v to the C0 kinks, this is also true for these
edges in the charge nets cð�i;qiIv ;Iv≠Kv;δÞ, cðqiKv;out−qiKv;in;Kv;δÞ.
Gauge invariance implies that the net conducting charge
at v in these charge nets also has vanishing ith com-
ponent. Now, independent of which part of the conducting
edge at v we assign as upper/lower, it is straightforward to
check that the appropriate intervention on cð�i;qiIv ;Iv≠Kv;δÞ,
cðqiKv;out−qiKv;in

;Kv;δÞ yields charge nets each of which has the

leftover upper conducting edge at the (now GR) vertex v
colored with the net conducting charge at v. The other
edges at v retain their charges so that all the edge charges at
v now have vanishing ith componet which implies that the
volume eigenvalue after the intervention vanishes. Hence
using the definition of nondegeneracy above, we see that
the CGR vertex v in cð�i;qiIv ;Iv≠Kv;δÞ and in cðqiKv;out−qiKv;in;Kv;δÞ
is degenerate.
In the case of deformations generated by (4.4), the vertex

v is bivalent in the deformed charge nets cðqiIv ;Iv≠Kv;δÞ,
cðqiKv;out−qiKv;in

;Kv;δÞ and hence degenerate.

D. Convenient notation

Given a charge net c with a single nondegenerate linear
GR or CGR vertex v, its deformations by the discrete action
of the Hamiltonian constraint in Eqs. (3.10) and (4.3)
can be specified through the following15:
(a) the edge eIv along which the deformation occurs and

its associated charge label. If v is GR this is just qiIv
and the specification is denoted by ðIv; qiIvÞ. If v is
CGR and the deformation is along the conducting
line in c the appropriate conducting line index Kv
must be specified together with the difference
between the upper and lower conducting edge charges
qiKv;out

− qiKv;in
. If v is CGR but the deformation is

along an edge eIv , Iv ≠ Kv, the specification is, as for
the GR case, ðIv; qiIvÞ.

13Note that in Fig. 4(c), the displaced vertex is generically
CGR; however, it is possible for the charge values to conspire so
that the charge at the lower conducting edge at the displaced
vertex vanishes in which case the displaced vertex would be GR.

14This notion of (non)degeneracy requires the intervention
by hl, which in turn is fixed by the specification of which part of
the conducting edge is upper and which is lower. A unique
specification will be given in Sec. V. Such a specification then
makes the notion of (non)degeneracy of a CGR vertex a well-
defined one.

15While we have only explicitly defined deformed charge nets
for deformations along edges of c which have positive charges, it
turns out that the specifications below also extend to the general
case tackled in Sec. V.
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(b) the charge flip involved which is specified by a sign �
and a Uð1Þ3 index i [which is the same as that of the
charge labels in (a)].

(c) the coordinate patch around v and the nature of the
deformation it specifies including the size of the
deformation parameter δ measured by it.

In Sec. VIII we will see that the coordinate patch is
uniquely specified for every c as is the nature of the
deformation given the value of the deformation parameter δ
and the information in (a), (b). The information in (a), (b) is
known given the charge net label c (which includes all its
edges and charges), the deformation edge/line index Iv, the
Uð1Þ3 index i and a parameter β which takes values þ1 or
−1 corresponding to a þi or −i charge flip. Hence,
suppressing the (unique) specification of the coordinate
patch associated with c, we denote the deformed charge
nets cð�i;qiIv ;Iv;δÞ in (3.10) and (4.3) and cð�i;qiKv;out−q

i
Kv;in

;Kv;δÞ
in (4.3) by the symbol cði;I;β;δÞ where we have suppressed
the v subscript as we shall need this notation only for states
with a single nondegenerate (linear GR or CGR) vertex.
Similarly we denote the charge nets cðqiIv ;Iv;δÞ in (3.11)

and (4.4) and cðqiKv;out−qiKv;in;Kv;δÞ in (4.4) by the symbol

cði;I;0;δÞ where 0 signifies that the deformation is of the
electric deformation type. By allowing β to range over 0 in
addition to �1, we refer to the deformed charge nets in
(3.10), (4.3), (3.11), and (4.4) by the single symbol cði;I;β;δÞ
and say that cði;I;β;δÞ is the ði; I; β; δÞ deformed child of the
parent c. In terms of this notation, Eqs. (3.10) and (4.3) take
the form

Ĉ½N�δcðAÞ ¼ β
ℏ
2i

3

4π
NðxðvÞÞν−2=3v

X
I

X
i

cði;I;β;δÞ − c

δ
;

ð4:5Þ

with β ¼ þ1 or β ¼ −1, and Eqs. (3.11) and (4.4) take the
form

D̂δ½N⃗i�c ¼ ℏ
i
3

4π
NðxðvÞÞν−2=3v

X
I

1

δ
ðcði;I;β¼0;δÞ − cÞ: ð4:6Þ

V. LINEAR GR AND CGR VERTICES:
THE GENERAL CASE

In Secs. III and IV the explicit downward conical
deformations considered were applicable only for those
outgoing edges at the vertex of interest which had charges
with certain positivity properties. The positivity property
for GR vertices was that the outgoing charge had to be
positive and for CGR vertices that the outgoing charge for a
nonconducting edge had to be positive and that the out-
going net conducting charge had to be positive. The
associated downward conicality of the deformation was
defined with respect to an assignation of upward direction,

this direction coinciding with the outgoing edge direction
for GR vertices16 and being arbitrarily prescribed for the
CGR case. Here we shall lift the positivity restrictions on
charges and also remove the arbitrariness in the definition
of upward and downward directions in the CGR case. In
what follows we shall, as in Secs. III and IV, appeal to the
constructions of Appendix B. 1. However, in addition, we
shall also find it necessary to embellish these constructions
with an appropriate placement of kinks through the con-
structions of Appendix B. 2.
We proceed as follows. First in Sec. V. A we formalize

the definitions of upward and downward conical deforma-
tions for GR and CGR vertices. As we shall see, these
deformations will be defined to be downward or upward
conical with respect to an edge orientation determined by
the kink structure in the vicinity of the vertex rather than
with respect to the outward pointing edge tangent. Next, in
Secs. V. B and V. C we tie the choice of downward or
upward conical deformation for GR and CGR vertices to
the sign of the charge labels on the edges at the vertex, with
the definition of upward and downward fixed by the kink
structure in the vicinity of the vertex as in Sec. V. A. The
intricacy of these choices plays a key role in the emergence
of anomaly free commutators in the continuum limit. Had
we not been guided by the anomaly free requirement, it
would have been difficult to home in on these choices. In
Secs. V. B and V. C we also show how each of these choices
is implemented through a corresponding choice of discrete
approximants to the action of the Hamiltonian and electric
diffeomorphism constraints. We summarize our results in
Sec. V. E. In what follows we use the notion of a Cm kink
m ¼ 0, 1, 2 as defined in Appendix A.

A. Upward and downward conically deformed states

1. Linear GR vertex

Let v be a linear GR vertex of the charge net c. Let the
coordinates around v with respect to which v is linear be
fxg. In this section we shall construct upward and down-
ward conically deformed states obtained by subjecting the
graph underlying c to upward and downward conical
deformations. These deformed states are the analogs of
the deformed charge nets depicted in Fig. 1.
A conical deformation of c along the edge eI at the

vertex v of c is one in which the deformed state cI has a
vertex vI displaced with respect to v along the straight line
determined by eI, deformations of the edges eJ≠I which
connect the edges eJ in c to vI, these deformations being
straight lines in the vicinity of vI which form a regular cone

16This choice of upward direction made in Sec. III, even with
the positivity restrictions therein, coincides with the choice
outlined in this section only for special cases of GR vertices,
an example being those which are “primordial” in the language
of Sec. VI. We had pointed out this further restriction of the
considerations of Sec. III to such vertices in footnote 5.
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around the line joing v to vI . To characterize the conical
deformation as downward or upward it is necessary to
specify which direction is up. Accordingly, let V⃗I be a
tangent vector at v which points either parallel to the
outward pointing edge tangent to the edge eI or antiparallel
to the outward pointing edge tangent to the edge eI . Given a
choice of V⃗I, the direction along V⃗I is defined to be upward
and the direction opposite to that of V⃗I is defined to be
downward. A conical deformation of c at v will be called
downward with respect to V⃗I if:
(a) the deformed edges (other than the Ith one) form a

downward cone around the upward direction defined
by V⃗I so that the angle between this upward axis and
any such edge as measured by fxg is greater than
π
2
, and

(b) there is a specific kink structure in the vicinity of the
displaced vertex in the deformed state which is
consistent with the choice of V⃗I in a sense which
we shall describe as we go along.

In particular, if V⃗I is specified as being parallel to the
outward pointing edge tangent ⃗êI at v in c then the
deformations described in Sec. III are downward pointing
because the cone is downward pointing. In addition we use
the construction of Appendix B. 2 to place kinks around the
displaced vertex vI as follows. Using the terminology of
Sec. IV. A, the displaced vertex vI lies on the conducting
line passing through v. We place a C2 kink at a point vI;2 on
this conducting line “beyond” vI so that the part of the
conducting line from vI to vI;2 is oriented parallel to V⃗I .
We also place a C1 kink at a point vI;1 on the part of the
conducting line between v and vI so that the part of the
conducting line from vI to vI;1 is oriented antiparallel to

V⃗I. It follows that the upward direction V⃗I can be inferred
from the position of these kinks from the orientation of the
straight lines (with respect to fxg) from the displaced
vertex vI to these kinks. This is what we mean by the
consistency of the kink placement with the specification of
the choice of V⃗I in (b).
Similarly an upward conical deformation of c at v with

respect to V⃗I is a conical deformation in which the
deformed edges (other than the Ith one) point upwards
so that the angle between any such edge and V⃗I is acute and
such that there is an appropriately defined kink structure
which is consistent with the choice of V⃗I . As an example of
an upward conical deformation, consider the case where,
once again, V⃗I is specified as being parallel to the outgoing
edge tangent ⃗êI at v in c. We define the upward conical
deformation of c along eI at v as follows. First we describe
the deformation of the graph underlying c so as to obtain
the analog of Fig, 1(b). Recall that v is linear with respect to
fxg. Extend the (straight line) edge eI linearly past v in the

ingoing direction opposite to V⃗I. Let the extension, e
ð−;τÞ
I be

of coordinate length τ with τ small enough that eð−;τÞI does
not intersect any part of c other than v.17 Let us consider the
altered vertex structure at v when we include this extension
as an edge at v. Clearly, the addition of this edge to the
existing set of edges at v converts v into a linear CGR
vertex. The deformation of this CGR vertex structure is

similar to that for CGR vertices in section IV with eð−;τÞI
playing the role of the upper conducting edge, and is as
follows. We (a) displace the vertex v by an amount ϵ ¼ τ

2

along eð−;τÞI to the point vI, (b) connect vI to the edges eJ≠I
at the C0 kinks ṽJ by straight lines as described in
Appendix B. 1 and Sec. IV. A, and (c) deform the resulting
vertex structure in a small enough vicinity of vI along the
lines of Appendix B. 1 so as to obtain a regular conical
structure in this vicinity. The deformed graph is then
obtained by removing the parts of the edges of the original
graph between v and the C0 kinks fṽJg as well as the part

of the extension eð−;τÞI beyond vI so that vI is now a GR
vertex. We emphasize here that the deformation detailed
through (a) to (c) does not require any holonomy inter-
vention of the sort provided by hl and its inverse in Sec. IV.
That (a)–(c) can be implemented without the creation of
any further unwanted intersections follows from an argu-
mentation similar to that in Sec. IV. A using the properties
of straight lines and the small compactly supported nature
of the transformations of the type detailed in Appendix B. 1
which render the conical structure regular.
Next, if the deformation is of the “Hamiltonian con-

straint” type, the deformed graph is colored with appro-
priate ðβ; iÞ flipped charges and the displacement ϵ of the
displaced vertex vI is chosen to be jqiIjδ where δ is the
discretization parameter associated with the Hamiltonian
constraint action and qiI is the charge of the outgoing
edge eI in c at v. The holonomy corresponding to this
deformed charge net is multiplied by the inverse charge net
holonomy with ðβ; iÞ flipped charges on the graph under-
lying c together with the holonomy corresponding to c.
The product of these three yield a deformed charge net
generated by the Hamiltonian constraint. We show this
in Fig. 5.
If the deformed charge net is generated by the electric

diffeomorphism constraint at discretization parameter value
δ, its edges bear the same charges as their counterparts in c
and we have, once again, that ϵ ¼ jqiIjδ. The graph under-
lying the deformed charge net is the one shown in Fig. 5(b).
Finally, we apply a construction of the type detailed in

Appendix B. 2 so as to introduce a C2 kink at a point vI;2
between vI and v on the remaining part of eð−;τÞI . From the
arguments of Sec. IV. A and Appendix B, it follows that the

17That such a small enough extension exists follows from the
linear GR nature of the vertex; the linear GR property implies that
the edges eJ≠I of c in the vicinity of their vertex v are straight
lines, none of which are parallel to eI .
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deformed structure does not intersect c except at the points
fv; ṽJ; J ≠ Ig and that the deformed edges form an upward
cone with respect to the specified upward direction V⃗I .
Further, the kink structure in the vicinity of vI is, once
again, such that the oriented line from vI to the C2 kink vI;2
is in the direction of V⃗I Note that in this case there is no
lower conducting edge beyond vI and hence no C1 kink
placement.
Next consider the case where V⃗I is antiparallel to the

outgoing edge tangent ⃗êI at v in c. The downward conical
deformation of c along eI at v with respect to this choice of
V⃗I is exactly the same as the upward conical deformation
with the opposite choice of direction of V⃗I which we
sketched immediately above, except that the C2 kink is
replaced by a C1 kink so that, once again, this placement is
consistent with V⃗I in the sense that the oriented line from vI
to the C1 kink vI;1 is in the direction opposite to that of V⃗I .
Finally consider the case where V⃗I is antiparallel to the

outgoing edge tangent ⃗êI at v in c and conical deformation
is upward of c along eI at v with respect to this choice of
V⃗I. This is exactly the same as the downward conical
deformation with the opposite choice of direction of V⃗I
which we discussed as our first example (and which we
have encountered in Sec. III), except for the placement of
the kinks. In this case, relative to our first example, the
location of the C2, C1 kinks are interchanged so that once
again, this placement is consistent with V⃗I . Thus the
oriented line from vI to the C2 kink vI;2 is in the direction
of V⃗I where as that from vI to the C1 kink vI;1 is in the
direction opposite to V⃗I and vI;2 is placed between v and vI
whereas vI;1 is placed on the other side of vI on eI .

2. Linear CGR vertex

We extend the considerations of Sec. V. A. 1 to the case
where v is a linear CGR vertex of c with linear coordinate
patch fxg and conducting line eK . Let the prescribed
upward direction for the deformation along any noncon-
ducting edge eI be V⃗I and let the prescribed upward
direction for the deformation along the conducting line
be V⃗K .
Recall from Sec. IV that the deformations of the CGR

vertex constructed there involved the conversion of this
vertex to a GR one through the intervention of the
holonomy hl. The loop l has a part which runs along the
conducting line at v in the direction of its upper conducting
edge. Here we use exactly the same intervention with this
straight line part of l oriented along the direction V⃗K i.e. we
use V⃗K to identify the upper and lower conducting edges.
Accordingly, let the net conducting charge at v (namely

the sum of the outgoing charges along the two edges at v
which comprise the conducting line through v) be qiK;net:

qiK;net ≔ qiK;1 þ qiK;2 ð5:1Þ

where both eK;1; eK;2 are taken to be outward pointing at v
in c so that qiK;1; q

i
K;2 are the outward edge charges.18

Without loss of generality, let us designate the outward
pointing edge eK;2 to be parallel to V⃗K . Let the intervening
holonomy hl run around the loop l with l constructed as in
Sec. IV. Let the orientation of l be such that the straight line
part of l runs upward (i.e. in the direction parallel to V⃗K).
Let l with this orientation be charged with qiK;1.
Multiplication by hl converts the CGR vertex into a GR
vertex and the resulting charge net is called, as in Sec. IV,
cl. Note that the Kth edge of cl has charge qiK;net.

19

Since the nonconducting edges are unaffected by this
intervention, we assign the Ith edge of cl (I ≠ K) the same
upward direction V⃗I as for the same edge in c. Similarly for
the Kth edge of cl we assign the same upward direction V⃗K

as for the Kth (i.e. conducting) line of c so that V⃗K is
parallel to the outgoing Kth edge of cl at v. Thus the
assignments fV⃗Ig for the edges at v in c, induce (the same)
assignments for the corresponding edges in cl. The upward
and downward conical deformations of this GR vertex
along the Ith edge of cl with respect to V⃗I are then
constructed as in Sec. V. A. 1 except for the placement of
the kinks. Note that the deformations are small enough that
they are restricted to a coordinate ball whose diameter is
smaller than the length of the straight line part of l and is

FIG. 5. (a) Undefromed GR vertex v of a charge net c with its
Ith and Jth edges as labeled. The Ith edge is extended beyond v
and the vertex is displaced along this extended edge in (b) wherein
the displaced vertex vI and the C0 kink, ṽJ on the Jth edge are
labeled. (c) Result of a Hamiltonian type deformation ði; I; β; δÞ
obtained by multiplying the charge net holonomies obtained by
coloring the edges of (b) by ðβ; iÞ flipped images of charges on
their counterparts in c, (a) by negative of these ðβ; iÞ flipped
charges and (a) by the charges on c. If the edges of (b) are colored
by the charges on their counterparts in c then one obtains an
electric diffemorphism deformation.

18Note that this is exactly the same as the difference between
the outgoing and incoming charges which we used in Sec. IV.

19As in Definition 1, Sec. IV. C, the notion of degeneracy of the
CGR vertex in c relevant to the action of the constraints is that of
the corresponding GR vertex in cl.
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also small enough that the ball does not intersect the curved
part of l. To see this recall that:
(a) for downward deformations, replacing δ in Appen-

dix B. 1 by jqiIjδ for I ≠ K and by jqiK;netjδ for I ¼ K,
the deformation is confined to within ball of size 2jqiIjδ
around v for I ≠ K and within a ball of size 2jqiK;netjδ
for I ¼ K.

(b) for upward deformations also (a) is true; this follows
from the construction of such deformations as detailed
in Sec. V. A. 1. Further the length of the extension e−;τI
of the graph underlying the single GR vertex state cl
(see Sec. V. A. 1) is chosen to be twice that of the
displacement of the vertex v to its displaced position
so that τ ¼ 2jqiIjδ; I ≠ K and 2jqiK;netjδ for I ¼ K.

(c) the length jl1j is chosen to be larger than 16qmax [see
(4.1)] so that jl1j > τ.

In the case of Hamiltonian deformations, the colorings of
the deformed graph and its multiplication by the two graph
holonomies based on the undeformed graph underlying cl
are as in Sec. V. A. 1. For the electric diffeomorphism case
as well we follow Sec. V. A. 1 applied to cl instead of c.
Subsequent to this, as in Sec. IV we multiply the result

by the inverse holonomy h−1l which removes the curved
part of l from the deformed charge nets clði;I;β;δÞ. Finally we
use constructions similar to that in Step 2 of Appendix B to
place a C1 kink and C2 kink around the displaced vertex so
that this placement is consistent with V⃗I in the sense
described in Sec. V. A. 1. Thus the straight line from the
displaced vertex vI to the C2 kink is parallel to V⃗I and that
from vI to the C1 kink is opposite to V⃗I .
This completes our discussion of the linear CGR

vertex case.

B. Choices of deformation: Linear GR vertex

1. Choice of conical deformation type

Let v be a nondegenerate linear GR vertex of c. We are
interested in making a choice of upward or downward
deformation at v when the deformation is specified as
ði; I; β; δÞ where similar to Sec. IV. D, β ≠ 0 specifies a
deformation with ðβ; iÞ flipped charges along the edge eI
with parameter δ and where β ¼ 0 specifies a deformation
with unflipped charges along eI with parameter δ.
Let the outgoing tangent at v along eI be ⃗êI. We define

the nearest vertex on eI to be the first C0, C1 or C2 vertex
which is encountered on eI as eI is traversed in the
outward direction from v in c. From our considerations
in Secs. III, IV and V. A, in the C1, C2 cases the vertex is
bivalent and in the C0 case the vertex can be bi- or trivalent.
In all cases of interest, if the outgoing charge qiI > 0 the

deformation is chosen to downward conical and if qiI < 0

the deformation is chosen to be upward conical. In both
cases the displaced vertex is at a distance jqiIjδ from v. It

turns out that for future purposes, only the following cases
are of interest:
(1) The nearest vertex is C0: Then V⃗I is chosen parallel

to ⃗êI .
(2) The nearest vertex is C1: V⃗I is chosen antiparallel

to ⃗êI .
(3) The nearest vertex is C2: V⃗I is chosen parallel to ⃗êI .
(4) There is no nearest vertex: V⃗I is chosen parallel

to ⃗êI .

2. Choice of discrete approximant to constraint

In this section we describe the choice of discrete
approximants to the constraints for which the ensuing
discrete action implements (1)–(4) of Sec. V. B. 1.
In cases (1), (3), (4) of Sec. V. B. 1 the heuristics of

Secs. II and III can be repeated to conclude that these
deformations are generated by the diffeomorphsim
φðqiI ⃗êIv ; δÞ of Sec. III. B. 1 because V⃗I is in the direction

of ⃗êI and, from the initial part of Sec. V. B. 1, the positive or
negative character of qiI then dictates whether the displaced
vertex is displaced in the direction of ⃗êI or opposite to it. If
the displacement is in the direction of ⃗êI then the defor-
mation corresponding to Eq. (3.5) is downward conical and
if the displacement is in the direction opposite to ⃗êI the
deformation is defined to be upward conical.
In all these three cases, in accordance with the heuristics

of Secs. II and III, if the deformation is generated by the
Hamiltonian constraint, the deformed graph is colored with
appropriate ðβ; iÞ- flipped charges and the displacement ϵ
of the displaced vertex vI in Sec. V. A. 1 is chosen to be
jqiIjδ, where δ is the discretization parameter associated
with the Hamiltonian constraint action. The holonomy
corresponding to this deformed charge net is multiplied,
as in Figs. 1(c) and 5(c) by the inverse charge net holonomy
with ðβ; iÞ flipped charges on the graph underlying c
together with the holonomy corresponding to c. The product
of these three yield a deformed charge net generated by the
Hamiltonian constraint. Any deformed charge net generated
by the electric diffeomorphism constraint at discretization
parameter value δ bears the same charges on each of its
edges as on the counterpart of this edge in c [see Figs. 1(b)
and 5(b)] and we have that ϵ ¼ jqiIjδ. Finally, using the
constructions of Appendix B. 2, C1 or C2 kinks are placed at
appropriate positions around the displaced vertex vI in a
manner consistent with the specification of V⃗I at v in the
sense described in Sec. V. A. 1. We use the notation of
Sec. IV. D to denote the deformed charge nets generated in
this way by cði;I;β;δÞ and cði;I;β¼0;δÞ.
In case (2) of Sec. V. B. 1, the vertex displacement

corresponds to that generated by φð−qiI ⃗êIv ; δÞ due to the

fact that V⃗I is opposite to ⃗êI . In order to remove this conflict
with the considerations of Sec. III. B. 1 [see Eq. (3.5)], it is
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necessary to introduce an intervention of the type used in
Sec. IV. Accordingly, we first multiply the state c by a
holonomy hl̄ around a loop l̄made up of two edges l̄1; l̄2 so
that l̄ ¼ l̄1 ∘ l̄2. Let l̄1 run from p̄1 to p̄2. Here p̄1, p̄2 are
equidistant from v, with p̄1 on the linear extension of eI
past v and p̄2 on eI. Let p̄1 and p̄2 be chosen such that the
coordinate length of l1 is Cδ; C ¼ 8qmax. Let l̄2 be a
semicircular arc connecting p̄2 with p̄1 such that its
diameter is Cδ. Let l̄ lie in a coordinate plane Pl̄ such
that no nonconducting edge lies in Pl̄. Define the holonomy
hl̄ to run along l̄with charge equal to −qiI . Multiplication of
c by this holonomy yields the state cl̄ with a GR vertex. The
Ith outgoing edge of cl̄ has outgoing charge qiI and the
outgoing tangent to this edge is parallel to V⃗I. We now act
with an approximant of the type underlying the action of
Sec. III. B. 1 on cl̄. As discussed in the first paragraph of
this section, the deformation generated by this approximant
is upward (or downward) with respect to V⃗I if qiI is negative
(or positive). At this stage we refrain from placing any C1

or C2 kinks. Next, we multiply the result by the inverse
holonomy h−1

l̄
.20 Finally we place a C1 or a C2 kink

between the displaced vertex and v in a manner consistent
with V⃗I , this placement being achieved through multipli-
cation by a holonomy which is classically close to identity
similar to that employed in Step 2 of Appendix B. Clearly
the end result is equivalent to deforming c as indicated in
Sec. V. B. 1. It turns out that for future purposes the
situation of interest in this case [i.e. Case (2)], is one in
which the other edges at c conform to Case (1). Hence in
this situation, the action of the constraints needs no further
intervention beyond that of hl̄ and its inverse.

C. Choices of deformation: Linear CGR vertex

1. Choice of conical deformation type

Let v be a linear GR vertex of c. Let the deformation of
interest be ði; I; β; δÞ.
Let the conducting edge in c be eK so that v seperates eK

into two parts eK;1 and eK;2. Let us first consider the case
where I ¼ K so that the deformation is along the con-
ducting edge. We first need to determine the vector V⃗K. It
turns out that the cases of interest are such that eK;1 has a
nearest kink which is C1 and eK;2 has a nearest kink which
is C2 or vice versa. In each case we apply the appropriate
criteria [i.e. one of (2),(3) of Sec. V. B. 1 to either the edge
eK;1 oriented in the outgoing direction from v or to the edge
eK;2, also oriented in the outgoing direction from v] to

obtain V⃗K . It is easy to check that irrespective of whether
the criteria are applied to eK;1 or to eK;2, the same choice of

V⃗K ensues. Next, we base our choice of upward or
downward deformation with respect to V⃗K on the sign
of the net conducting charge qiK;net [see (5.1)]. If q

i
K;net > 0

we choose the deformation ði; I ¼ K; β; δÞ of c to be
downward with respect to V⃗K and if qiK;net < 0 we choose

this deformation of c to be upward with respect to V⃗K .
The deformations corresponding to these choices are
constructed as in Sec. V. A. 2.
Next consider the case where I ≠ K. It turns out that the

case of interest is then such that eI has a nearest kink which
is C0. In this case we apply criterion (1) of Sec. V. B. 1 i.e.
we choose V⃗I to be along the outgoing edge direction. We
then choose the deformation to be upward with respect to
V⃗I if the outgoing charge qiI > 0 and downward if qiI < 0.
The deformation is then implemented as in Sec. V. A. 2.

2. Choice of discrete approximant to constraint

The choice of discrete approximants which implement
the choices described in Sec. V. C. 1 is then as follows.
First, as in Sec. V. A. 2, we apply the intervention hl with l
chosen in accord with V⃗K as described in that section. For l
of small enough area the classical holonomy hl is a good
approximant to identity and for small enough δ, the straight
line part of l does not overlap with any nearest kinks on eK .
The intervention yields the state cl with a GR vertex at v.
We then use the appropriate choice of approximant

detailed in Sec. V. B. 2 to generate the chosen (upward
or downward) deformation of cl (according to the assign-
ment fV⃗Ig induced from c to cl as explained in
Sec. V. A. 2)21 except that we refrain from placing the
desired C2, C1 kinks i.e. we do not implement the analog of
Step 2, Appendix B. Since this placement is implemented
via multiplication by a holonomy whose classical corre-
spondent is a good approximant to the identity, the post-
ponement of this implementation does not affect the
viability of the approximant used. We then multiply the
resulting deformed charge net by the inverse holonomy h−1l .
Finally we use the analog of Step 2, Appendix B to place

kinks consistent with the choice of fV⃗Ig. Accordingly,
when I ¼ K, the conducting line of the deformed charge
net is also labeled by K and we place C2, C1 kinks
consistent with the specification of V⃗K for c. When
I ≠ K, the conducting line in the deformed charge net is
along the Ith nonconducting edge (or its extension) of the
undeformed charge net c and we place C2, C1 kinks around

20Note that we have chosen the size of the loop l̄ slightly
smaller than that of l in Sec. IV. Nevertheless, l̄ is still large
enough that an argumentation similar to (a)–(c) of Sec. V. A. 2
shows that no unwanted intersections ensue due to this inter-
vention.

21Note that no edge of cl satisfies criterion (2). The only
possibility is an edge along the conducting line in c; however
only the upper conducting edge is retained in cl, its outward
orientation coinciding with the upward direction.
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the displaced vertex in a manner consistent with the
specification of V⃗I at v in c.

D. (Non)degeneracy of vertex types

Given a GR vertex, constraint operators act nontrivially
at this vertex only if it is nondegenerate, its nondegeneracy
being defined as the nonvanishing of its volume eigenvalue
ν (2.16). At a CGR vertex, the action of a constraint is
sensitive to the (non)degeneracy of the same (but now GR)
vertex in its image by intervention described in Sec. V. A. 2.
It is useful to formalize this notion of degeneracy as a
definition identical to Definition 1, Sec. IV. C. Before doing
so it is useful to catalog the kinds of vertices which are
generated by the deformations of GR and CGR vertices
described in Secs. V. A–V. C with a view to analyzing their
possible nondegeneracy. Since the C1, C2 vertices are
always bivalent and hence degenerate, and since their
placement does not affect the vertex structures at other
vertices, we need only analyze the vertex types generated
prior to their placement.
An exhaustive analysis of such vertex structures is

provided in Appendix C, the catalog of vertex types being
those encountered in Cases 1a, 1b, 2a.1, 2a.2, 2b.1, 2b.2, 3
therein. Figures pertinent to Cases 1a and 1b are Figs. 1 and
5 and to Cases 2a.1 and 2a.2 are Figs. 3, 4. Figures 6 and 7,
pertinent to Cases 2b.1 and 2b.2 are displayed below.22

From the discussion in Appendix C, the figures for Case 3
may be obtained by setting the upper conducting charge
equal to zero in Figs. 4 and 7.
As discussed in Appendix C, and as seen in the relevant

figures, Cases 1a, 1b, 2a.1, 2a.2 and 2b.2 do not present any

new potentially nondegenerate vertices of types other than
GR and CGR. However, as seen in Fig. 6 and discussed in
Appendix C, Case 2b.1 presents two new vertex types, both
associated with parental vertices in deformed children.
These are the four valent vertex of Fig. 6(b) and the N þ 2
valent vertex of Fig. 6(c). The former is a planar vertex and
hence degenerate. The latter is a linear doubly CGR vertex
where we define such a vertex as follows.
Definition 3: Linear doubly CGR vertex.—An N þ 2

valent vertex v of a charge net c will be said to be linear
doubly CGR if:

(i) There exists a coordinate patch around v such that in
a small enough neighborhood of v all edges at v are
straight lines.

(ii) There are two sets of two edges such that the union
of the two edges in each set forms a straight line so
that v splits this line into two parts and such that
the two straight lines corresponding to each of these
two sets have a single isolated intersection at v.
Each of these lines will be called conducting lines,
each conducting line consisting of a pair of con-
ducting edges.

(iii) The set of the remaining N − 2 edges (called non-
conducting edges) together with any one of the two
edges in each pair of (ii) constitute a GR vertex in the
following sense. Consider, at v, the set of out going
edge tangents to each of the remaining edges
together with each of the outgoing edge tangents
to one of the two edges in each pair in (ii). Then any
triple of elements of this set is linearly dependent.

We now formalize the definition of (non)degeneracy of
CGR and doubly CGR vertices.
Definition 4: Nondegeneracy of a CGR vertex.—ACGR

vertex of a charge net c will be said to be nondegenerate
iff the corresponding GR vertex in the charge net cl is

FIG. 7. (a) Undeformed CGR vertex v of a charge net c with its
Kth conducting edge and Jth nonconducting edge as labeled.
(b) Vertex structure of (a) is deformed along an extension of Kth
edge past v and the displaced vertex vK and the C0 kink ṽJ on
the Jth edge are as labeled. With charge colorings similar to
those described in Fig. 4, (c) shows the result of a Hamiltonian
type deformation ði; K; β; δÞ and (b) the result of an electric
diffeomorphism deformation. These deformations are isomorphic
to those in Fig. 4 as can be ascertained by viewing them
upsidedown.

FIG. 6. (a) Undeformed CGR vertex v of a charge net c with its
Kth conducting edge and Ith and Jth nonconducting edges as
labeled. (b) Vertex structure of (a) is deformed along an extension
of Ith edge past v and the displaced vertex vI and the C0 kinks ṽJ,
ṽK on the Jth, Kth edges are as labeled. With charge colorings
similar to those described in Fig. 3, (c) shows the result of a
Hamiltonian type deformation ði; K; β; δÞ and (b) the result of an
electric diffeomorphism deformation. The parental vertex v is
doubly CGR in (c) and is 4 valent and planar in (b).

22These figures are schematic and show the edge intersection
structure at vertices of interest. They do not faithfully reproduce
the deformations of Sec. B. 2 which result in regular conicality of
the deformed vertex, nor do they show the C1, C2 kinks.

CONSTRAINT ALGEBRA IN SMOLINS’ G → 0 … PHYS. REV. D 97, 106007 (2018)

106007-21



nondegenerate. If the vertex in cl is degenerate we shall say
that the CGR vertex in c is degenerate.
This definition provides a unique definition of (non)

degeneracy for the kind of CGR vertices we encounter.
These vertices correspond to the following two cases. In the
first case the CGR vertex in the state c is generated through
a conical deformation of a parent state cp as specified in
Secs. V. A–V. C. In this case, the choice of upward and
downward directions at its displaced vertex and hence the
choice of any intervention if required, is uniquely defined
and Definition 3 may be applied unambiguously to this
vertex. The second case corresponds to a conical deforma-
tion of the parent state cp at its vertex vp such that this
vertex is CGR in c and cp; here we are interested in the
application of Definition 3 to this vertex in c. In this case
we interpret Definition 3 applied to the vertex vp in c to
mean that the degeneracy of this vertex is well defined iff it
is independent of which part of the edge passing through vp
in c is chosen to be upper and lower. Since in our
considerations, such a state c is obtained through a
Hamiltonian constraint type β, i flipped deformation of
cp, it follows from Appendix C that the net charges at vp in
c have vanishing ith component so that vp is degenerate
independent of this choice and hence independent of the
corresponding choice of intervention.
Next, note that a doubly CGR vertex can be rendered GR

through two holonomy interventions hli ; i ¼ 1, 2 with li

chosen to be “semicircular” with the straight line parts of li

being along the ith conducting line defined by the ith set of
edges in (ii), Definition 4. These interventions leave the
N − 2 edges in (iii), Definition 4, unaffected and remove
one of the conducting edges from each conducting line in
(ii). The remaining conducting edge in each line is colored
with the net conducting charge corresponding to that
conducting line. For our purposes the following definition
suffices:
Definition 5: Degeneracy of a doubly CGR vertex.—A

doubly CGR vertex will be said to be degenerate if the
GR vertex obtained by any choice of interventions is
degenerate.
Since the edges in the parental vertex of the deformed

charge net discussed above and in (2b.1), Appendix C are
such that the nonconducting charges and the net conducting
charges all have vanishing ith component, this doubly CGR
vertex is degenerate.

E. Summary and discussion

From our discussion in Sec. V. D and Conclusions 1 and 2,
Appendix C, it follows that the only possibly nondegenerate
vertices which are generated by the action of the constraints
on a nondegnerate linear GR or CGR vertex are also GR or
CGR. Sections V. A–V. C specify the deformation of charge
nets with such vertices provided the vertex structures are
characterized by the kink structures discussed in Secs. V. B. 1

and V. C. 1. As we shall see in Sec. VI, the charge nets
of interest will have a single nondegenerate linear GR or
CGR vertex with a kink structure of the type discussed.
Denoting such a charge net of interest with such a
vertex v by c and its deformed child by the deformation
ði; I; β; δÞ by cði;I;β;δÞ where the deformed charge nets
cði;I;β;δÞ for all choices of I, i, β and sufficiently small δ
have been constructed in Secs. V. A–V. C, the action of
discrete approximants to the Hamiltonian and electric
diffeomorphism constraints is expressed in Eqs. (4.5)
and (4.6). We shall continue to refer to these two
equations with the understanding that they implement
the detailed choices discussed in Secs. V. A–V. C.
The reason we use criteria (1)–(4) rather than simply

choose V⃗I to be in the direction of the outgoing tangent
vector ⃗êI is that the former choice yields anomaly free
continuum limit commutators whereas the latter does not.
To see this requires a detailed study of double deformations
of a charge net by two constraint actions which will be done
in Secs. VI–X. Nevertheless we attempt to provide a brief
explanation here for the choice of V⃗I as opposed to ⃗êI . The
reader is urged to peruse this explanation once again after
reading the entire paper as it may, at this stage, be quite
opaque. Each double deformation generated by two dis-
crete constraint actions on a charge net is composed of a
pair of single conical deformations. Each such single
deformation is along some edge of a parent state and
yields deformed offspring which are conically deformed
along a cone whose axis is determined by the direction of
the parental edge. The continuum limit involves shrinking
two of these single deformations away from “grandchild”
to “immediate parent” to “grandparent.” It turns out that for
certain delicate recombinations of terms to occur as a result
of this process so as to generate an anomaly free result, the
edge directions of the parent and the grandparent must be
correlated (and, as will be seen, in a precise sense,
identical). To ensure that this happens we must ensure a
consistent choice of edge tangent directions in the child-
parent-grandparent genealogy. This choice, it turns out, is
exactly that of V⃗I (which clearly depends on the genetic
trace provided by theC1,C2 kink placement), as opposed to
the choice of outgoing edge tangent ⃗êI (which would be a
purely local choice independent of lineage). Finally, note
that the use of (1)–(4) is tantamount to the replacement of

qiI ⃗êI by qiI;net
⃗V̂I [with qiI;net being the net outgoing charge

along the edge I, see Eq. (5.1) above] in the heuristically
motivated Eq. (3.5). Thus there is a tension; we require the
choice of V⃗I with the net outgoing charge for anomaly free
commutators but the argumentation of Secs. II and III
imply that we must use the outgoing tangent vectors with
the outgoing charges. In order to remove this tension it is
necessary to use the intervention hl̄ of Sec. V. B. 2 so as to
ensure that criteria (1)–(4) are implemented through the use
of valid approximants to the constraints.
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VI. DISCRETE ACTION OF CONSTRAINT
OPERATOR PRODUCTS

In the last two sections we did not specify the choice of
coordinates with respect to which the deformations gen-
erated by the discrete action of the constraints were defined.
In this section we specify these coordinates as well as the
action of constraint operator products of interest along the
lines sketched in Sec. I. It turns out that in view of the single
vertex anomaly free states studied in this paper, the detailed
specification of this action only needs to be made for a
certain set of kets, which we shall refer to as the ket set.
This set corresponds to all the kets which are obtained by
multiple actions of the type (4.5) and (4.6) on certain
primordial kets which themselves are not generated by any
such action on any other state. In Sec. VI. A we generalize
the notation of Sec. IV. D to describe the multiply deformed
kets which are generated by such multiple actions. In
Sec. VI. B we define the ket set. In Sec. VI. C we choose a
reference ket in each diffeomorphism class of kets in the
ket set and a set of reference diffeomorphisms such that
each distinct ket in the diffeomorphism class of a reference
ket is the image of the reference ket by a unique reference
diffeomorphism. We also define certain key structures
known as contraction diffeomorphisms which play a crucial
role in defining the continuum limit by “contracting” the
deformations away.
In Sec. VI. D we define the discrete action of products of

contraint operators on any ket in the ket set through
multiple applications of Eqs. (4.5) and (4.6). These multiple
actions generate multiply deformed kets as discussed in
Sec. VI. A. It remains to specify the coordinates with
respect to which these deformations are defined. We do so
through slightly involved manipulations of the structures
developed in Secs. VI. A, VI. B and VI. C. The end result of
these manipulations is a specification of the coordinates
with respect to which the deformations are defined together
with a definition of the discrete action of products of
constraint operators on any ket in the ket set for arbitrarily
small values of the discretization parameters. The corre-
sponding dual action can then be defined on states in the
algebraic dual space. The continuum limit of this action on
anomaly free states (which reside in the algebraic dual
space to the space of finite linear combinations of charge
nets) will be evaluated in Secs. X and XI.

A. Notation for multiply deformed states

Let c be a state with a single nondegenerate vertex v, this
vertex being either a linear GR or linear CGR vertex with
respect to some choice of coordinates around v.23

The action of a single discrete constraint operator at
discretization parameter δ on c is given by (4.5) and (4.6).
From Conclusion 2 of Appendix C it follows that the
deformed states cði;I;β;δÞ have at most a single nondegenerate
GR or CGR vertex and that this corresponds to the displaced
vertex in each of these states. We shall assume that c is such
that the displaced vertex in each of the deformed states
cði;I;β;δÞ is nondegenerate and that our choice of coordinates
around each displaced vertex is such that the vertex is linear
with respect to this choice. Hence these “singly” deformed
states cði;I;β;δÞ are all single nondegenerate linear GR or CGR
vertex states. The action (4.5) and (4.6) on c yields these
singly deformed states as well as c itself.
The action (4.5) and (4.6) on each of these states (namely

cði;I;β;δÞ, c) is then well defined because each of these states
is a single linear GR or CGR state. Since the actions (4.5)
and (4.6) correspond to the discrete action of a single
constraint, it follows that an action of one of (4.5) or (4.6)
followed by a second action of either (4.5) or (4.6) on c
corresponds to that of a discrete approximant to the product
of two constraints and creates “doubly deformed” states,
singly deformed states and the undeformed state. From
Sec. V it follows that each of the doubly deformed states
has a (doubly displaced) vertex which is once again, either
GR or CGR. We shall assume that this vertex is non-
degenerate and that the associated coordinate system is
such that this vertex is linear; from Conclusion 2, the
doubly deformed states are then again single, nondegen-
erate, linear GR or CGR vertex states. As a result the action
(4.5) and (4.6) is well defined on these states as well. In this
manner any combination of three actions of the type (4.5)
or (4.6) yields triply deformed states, doubly deformed,
singly deformed states and the undeformed state.
Continuing on andmaking an appropriate nondegeneracy

and linearity assumption at every stagewe find that the action
of a product ofn constraint operators can be approximated as
n applications of the type (4.5) or (4.6) and that this results in
states which are m deformed, m ¼ 0; 1; ::; n with m ¼ 0
corresponding to the undeformed state c. The continuum
limit involves contracting these deformations away; it turns
out that mth deformation is contracted away first, then the
m − 1th one and so on all the way to the first deformation.
Hence we shall be interested in multiple deformations such
that the parameter associatedwith the size of each successive
deformation is smaller than its predecessors.
We now develop appropriate notation and genealogical

language related to multiply deformed states. We shall
refer to c as a parent state. As noted in Sec. IV. D any
deformation of c can be specified through the information
ði; I; β; δÞ where, as in that section, for the reasons
explained there, we have suppressed information about
the coordinate patch used to define the deformation. In the
language of Sec. IV. D, this deformation yields the
ði; I; β; δÞ deformed child cði;I;β;δÞ. Generalizing this nota-
tion, we can specify a sequence of m deformations by

23In addition, as shall become clear in Secs. VI. B–VI. D, the
kink structure of the state c under consideration as well as of the
states generated from c via multiple applications of (4.5) and
(4.6) conforms to those alluded to in Sec. V.
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½ðim−1; Im−1; βm; ϵmÞ; ðim−2; Im−2; βm−1; ϵm−1Þ;…::; ði1; I1; β2; ϵ2Þ; ði; I; β1; ϵ1Þ�ϵi < ϵj < for i > j ð6:1Þ

and denote the resulting “mth generation” child of the parent c by

c½ðim−1;Im−1;βm;ϵmÞ;ðim−2;Im−2;βm−1;ϵm−1Þ;…::;ði;I;β1;ϵ1Þ�: ð6:2Þ
This signifies that the child is obtained from the parent c through the sequence

c⟶
i;I;β1;ϵ1 ci;I;β1;ϵ1⟶

i1;I1;β2;ϵ2 c½ði1;I1;β2;ϵ2Þ;ði;I;β1;ϵ1Þ�

………:⟶
im−1;Im−1;βm;ϵm c½ðim−1;Im−1;βm;ϵmÞ;ðim−2;Im−2;βm−1;ϵm−1Þ;…::;ði;I;β1;ϵ1Þ�: ð6:3Þ

Above, we have assumed that the displaced vertex in each
ith generation child with 1 ≤ i ≤ m is nondegenerate and
that the specification of the coordinate system around this
vertex is such that the edges there appear as straight lines,
so that the vertex is linear as well. Further, we have chosen
to enumerate the edges of each charge net in this sequence
in such a way that the enumeration of edges in a child and
in its immediate parent are related as follows. Consider the
charge net cði;I;β1;ϵ1Þ obtained by deforming its immediate
parent c. Each nonconducting edge emanating from the
nondegenerate vertex in cði;I;β1;ϵ1Þ is obtained by deforming,
a corresponding edge in c which emanates from the
nondegenerate vertex of c, the two edges meeting at a
C0 kink. We assign these corresponding edges the same
number i.e. if eI1 ∈ cði;I;β1;ϵ1Þ is the deformation of the edge
eI in c then we have I1 ¼ I. Since there are N − 1 such
pairs of edges, one in the parent and one in the child, the
remaining edge in the parent and in the child also bear the
same number. Clearly, we can extend this enumeration
scheme so that the numbering of edges of any child and
immediate parent in (6.3) are so related. This immediately
implies that given the sequence (6.3), the enumeration
scheme of any charge net in the sequence is uniquely fixed
by the enumeration scheme in c.24

Finally, where it creates no confusion, we will find it
convenient to use the notation

½i; I; β; ϵ�m ≔ ½ðim; Im; βm; ϵmÞ; ðim−1; Im−1; βm−1; ϵm−1Þ;
…::; ði1; I1; β1; ϵ1Þ� ð6:4Þ

so that the state in (6.2) can be written as c½i;I;β;ϵ�m .

B. Primordial states and the ket set

We think of primordial states as being states which
cannot be obtained by a Hamiltonian or electric

diffeomorphism type deformation of any state. Rather than
provide a precise definition, we shall work with concrete
examples and leave a more precise and complete definition
of primordiality to future work. Consider any state with a
single nondegenerate GR N valent vertex. Let all other
vertices of the (coarsest) graph underlying the state be
degenerate and let no such vertex have valence 2; 3; 4;
N; N þ 1 or N þ 2. Let there exist some coordinate patch
around the nondegenerate vertex with respect to which the
edges at this vertex are straight lines in a small neighbor-
hood of the vertex i.e. let the vertex be linear with respect to
some choice of coordinates. Such a state cannot be created
by the discrete action of a constraint because, notwith-
standing that we have defined this action in detail only on a
restricted class of states, we visualize the action of the
deformation maps (see Sec. II of this paper as well as P1,
P2) to only create vertices of valence 2; 3; 4; N;N þ 1;
N þ 2. We shall call such a state as primordial state
provided it is subject to four additional restrictions
described below.
First, we restrict our attention to the case where the

nondegenerate vertex is N valent for some fixed even
integer N. This is for certain technical reasons. Note that
GR and nondgeneracy restrictions imply that N ≥ 4. We
shall return to this point in our final section. In order to
articulate our second (mild) restriction, consider the Uð1Þ3
charge obtained by the action of a ðβ ¼ β1; i ¼ i1Þ flip of
the Uð1Þ3 edge charge label q⃗I ≔ ðq1I ; q2I ; q3I Þ in c. We may
subject the flipped charge set to yet another flip ðβ2; i2Þ. Let
us denote the charge obtained by m such flips ½ðβm; imÞ;
ðβm−1; im−1Þ;…; ðβ1; i1Þ� as q⃗½β;i�m;I with βj ∈ f−1; 1g.
Using this notation we require that the charges on each
edge of c satisfy

X3
k¼1

qkI ≠ 0;
X3
k¼1

qk½β;i�m;I ≠ 0 ∀½β; i�m; ∀I ¼ 1; ::; N

ð6:5Þ

so that the sum of the 3 Uð1Þ charges on each edge as well
as the sum of any multiply flipped image of these charges is
nonvanishing. We also require that

24In the case of CGR vertices we use this numbering for
nonconducting edges and the conducting line; as seen in (3.10)
and (3.11), we do not need to count the upper and lower
conducting edges separately so that this correspondence contin-
ues to hold and the indices Im for all m as well as the index I, all
run from 1; ::; N.
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qkI ≠ 0; qk½β;i�m;I ≠ 0 ∀½β; i�m; ∀I ¼ 1; ::; N;

∀k ¼ 1; 2; 3 ð6:6Þ

It is convenient to extend the notation for ðβ; iÞ flips to the
case that β ¼ 0. Consistent with the fact that no flipping is
associated with an electric diffeorphism type transforma-
tion, we define a ðβ; iÞ flip to be the identity operation when
β ¼ 0. In this case the index i is redundant but we retain it
for convenience in articulating the following definitions
which will be useful for future purposes:

qmin ¼ min
I;½β;i�m ∀ m;I;½β;i�m

����X
3

k¼1

qk½β;i�m;I

����; ð6:7Þ

qmin;1 ¼ min
I;½β;i�m ∀ m;I;k;½β;i�m

jqk½β;i�m;Ij; ð6:8Þ

and

qprimordial
max ¼ max

ði¼1;2;3Þ;ðI¼1;::;NÞ
jqiIj: ð6:9Þ

Since there are only a finite number of flipped images of the
charges on each edge, Eqs. (6.5) and (6.6) are well defined
and imply that qmin; qmin;1 > 0. Note also that since the
charges are integers we have that qmin; qmin;1 ≥ 1. Finally,
note that while (6.9) seems identical to (4.1), these two
definitions are in general distinct in that the charges on the
right-hand side of (6.9) are the edge charges on the
primordial charge net at its nondegenerate vertex whereas
those in the right-hand side of (4.1) are the edge charges for
the edges of the (not necessarily primordial) charge net
under consideration in Secs. IV and V.
Third, we restrict our attention to states which exhibit

linearity with respect to a particular choice of coordinate
patches as follows. Fix a point p0 on the Cauchy slice and a
chart fx0g in some neighborhood of p0. We require that any
state under consideration be such that it is diffeomorphic to
some state which has a nondegenerate vertex at p0 and
which is linear with respect to fx0g.25 The coordinates fx0g
will be referred to as primary coordinates.
Fourth, we restrict our attention to states which satisfy

the following requirement of eternal nondegeneracy: From
Sec. VI. A, any multiple deformation of state yields a state
with a multiply displaced vertex. We require that any
primordial state be such that any multiple deformation of
the primordial state yields a state whose multiply displaced
vertex is nondegenerate. This “eternal nondegeneracy” is a

strong and nontrivial restriction. The implementation of
anomaly freedom in this paper does not go through if this
condition is not satisfied. The classical analog of this
condition is the requirement that the determinant of the
3 metric stay nonzero throughout its evolution. Clearly, if
this condition is violated at any instant (i.e. anywhere on a
Cauchy slice), we cannot compute the classical constraint
algebra. In the Appendix D we show that the simplest GR
vertex, namely one with four edges in conical configura-
tion, provides an example of a state which satisfies these
restrictions.
Consider the entire set of states subject to the above

restrictions. We shall call these states as primordial states.
Clearly, the set Sprimordial of these primordial states is closed
under diffeomorphisms. Next, within each diffeomorphism
class of these primordial states, fix a “reference” primordial
state cP0 which has a nondegenerate vertex at p0 and which
is linear with respect to the primary coordinates fx0g.
Consider all multiple deformations of each of these
reference primordial states, these multiple deformations
being a sequence of single deformations of the type
discussed in Sec. VI. A. More in detail, consider first some
primordial reference state cP0, a neighborhood of its vertex
at p0 being covered by fx0g. Any single deformation of cP0
for sufficiently small deformation parameter is chosen to be
upward or downward conical according to the criteria of
Sec. V. B [in this case we use (4) of Sec. V. B. 1 together
with the sign of the edge charge labels as discussed in that
section to deform upward or downward]. Using the detailed
constructions of Appendix B, and of Secs. III. A, IV. A and
V. A, these deformations are defined for all sufficiently
small values of deformation parameter such that the
deformation is confined to the interior of a coordinate
sphere BΔ0

ðp0Þ of some size Δ0 with BΔ0
ðp0Þ in the

domain of fx0g. It follows that the resulting deformed
children have displaced vertices which are in the domain of
the chart fx0g. These vertices (as mentioned earlier) are GR
or CGR and (by assumption) nondegenerate. They are also
linear with respect to fx0g because of the straight line edge
structure of the cones in the vicinity of these vertices (see
Appendix B for downward conical deformations; that a
similar linearity holds for upward deformations is clear
from their detailed construction in Sec. V. A. 1).
It is easy to check that the criteria of Secs. V. B and V. C

can be applied to these children and that their (appropri-
ately chosen) upward or downward conical deformations
can again be defined for small enough values of deforma-
tion parameter such that the deformation is confined to the
interior of BΔ0

ðp0Þ, and that each of their children have
a single nondgenerate GR or CGR vertex. The detailed
construction of the deformation for small enough values of
deformation parameter implies that the primary coordinate
system fx0g covers a small enough neighborhood of each
of these vertices in which the edges at each such vertex are
straight lines so that the vertex is linear with respect to the

25It seems plausible to us that any state with a single non-
degenerate vertex which is linear with respect to some choice of
coordinate patch must be diffeomorphic to one which is linear
with respect to any prescribed patch. If this is indeed true, this
third restriction does not actually constitute a genuine restriction.
We leave an investigation of this issue to future work.
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primary coordinates. Continuing in this way one can define
multiply deformed states for all sufficiently small defor-
mation parameter sets associated with the multiple defor-
mation such that the multiple deformation lies in the
interior of BΔ0

ðp0Þ. The set of all these deformed children
of cP0 together with cP0 will be said to form a primary
family and each element of such a family will be called a
primary.
By letting cP0 vary over the set of all distinct reference

primordials we obtain the set of all primaries, Sprimary, with
the multiple deformation which generates any primary from
a reference primordial being confined to the interior of
BΔ0

ðp0Þ. Finally consider the set of all diffeomorphic
images of all primaries. This set is the ket set SKet.
To summarize, we let c range over all reference pri-

mordial states in equation (6.3). In that equation we let m
range from 1…∞ and let the deformation sequence range
over all possible choices of deformation specifications for
all possible small enough deformation parameter sets such
that the deformations can be defined through Appendix B
and Sec. V with respect to fx0g and such that the
nondegenerate vertex of every deformed ket in the
sequence is covered by fx0g. Our definition of primordial-
ity ensures that the resulting set of m-deformed children is
such that each child in this set has a a single nondegenerate
vertex. The set of all these multiply deformed children
together with their primordial reference ancestors comprise
the set of primaries. The ket set SKet comprises of the set of
all diffeomorphic images of all primaries.
Note that since each element of the ket set is a

diffeomorphic image of some primary, its nondegenerate
vertex is linear with respect to the corresponding diffeo-
morphic image of fx0g. We note again that from the
considerations of Sec. V it follows that this vertex is a
(linear) nondegenerate GR or CGR vertex and that from
Conclusion 2 of Appendix C this is the only nondegenerate
vertex of that element. Finally, it is straightforward to
check, using the deformations detailed in Sec. V that each
element is such that the criteria of Sec. V. B. 1 and V. C. 1
can be applied so that any further deformation of this
element with respect to an appropriately specified coor-
dinate patch is well defined. We develop the specification
of this coordinate patch for any given element of the ket set
in Secs. VI. B–VI. D.

C. Reference states, reference diffeormorphisms
and contraction diffeomorphisms

Within each diffeomorphism class of elements of SKet
choose one state as a reference state subject to the
restriction that the state must be a primary i.e. the reference
state must lie in Sprimary. A charge net label with subscript 0
indicates a reference charge net. For the case of the
diffeomorphism class of primordial states we choose the
reference state to be as in Sec. VI. B. Next for each distinct
element c of each diffeomorphism class ½c0� of a reference

charge net c0 choose a reference diffeomorphism α such
that α maps c0 to c i.e. in “ket” notation we have

ÛðαÞjc0i ¼ jci ð6:10Þ

where ÛðαÞ is the unitary operator representing the action
of α.
Next we define contraction diffeomorphisms. To do so,

consider a ket c in the ket set with some linear coordinate
system fyg at its nondegenerate vertex v. Let us deform it
by the deformation ði; I; β; δ0Þ where the detailed nature of
the deformation is as in Appendix B and Sec. V. In
particular, the coordinate patch used to specify the defor-
mation (and the deformation parameter δ0) is fyg (i.e. we
set fxg ¼ fyg in Appendix B and in Sec. V) and the
displaced vertex and the C0 kink vertices created by the
deformation are each at a coordinate distance jqiI;netjδ0 from
the parent vertex [here qiI;net is the net charge as defined in
(5.1) and Appendix C]. We would like to “contract” the
deformation away so that the displaced vertex and these
kinks approach the parent vertex v in a prescribed manner.
Further, wewould like the cone angle for the deformation at
the displaced vertex to become narrower in line with our
visualization of the deformation being that of a singular
pulling of these edges along the Ith edge (see Sec. II).
This contraction is achieved through the action of the

contraction diffeomorphism Φδ;Q;L;M;p1;p2;p3

c;fygði;I;β;δ0Þ , defined for

small enough δ0, for which the following properties hold:
(i) The contraction diffeomorphism is a semianalytic

diffeomorphism connected to identity.
(ii) It moves the displaced vertex vi;I;δ0 along the straight

line (in the coordinates fyg) between vi;I;δ0 and v to
the point vi;I;δ located at a coordinate distance
jqiI;netjδ ≪ jqiI;netjδ0 from the parent vertex v.

(iii) (a) The C1, C2 kinks in cði;I;β;δ0Þ have an area α20 ≪
δ20 (see Appendix B. 2). The contraction diffeomor-
phism shrinks the area of these kinks to α ≪ δ2.

(iii) (b) It moves the C0 kink ṽL; L ≠ I along the edge eL
of c to a distance δp1 from the parent vertex v. It
moves the C0 kink ṽM;M ≠ I;M ≠ L along the
edge eM of c to a distance Qδp2 from v (for some
Q > 0 which we specify later). It moves each of the
remaining (N-3) kinks along its nonconducting edge
to a distance δp3 from v.

(iv) In a small vicinity of the (new position of) the
displaced vertex it narrows the cone angle between
the edges at that vertex by a linear deformation
generated by the diffeomorphism G defined below.

(v) It maps c to itself and maps the straight line from v
to vi;I;δ0 (in the coordinates fyg) to itself.

(vi) It is identity outside a sphere of size 2jqiI;netjδ0
around v.

The construction of the contraction diffeomorphism is
along the lines sketched in P1, P2. We proceed as follows.
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For convenience let us rotate the coordinate system fyg so
that y3 runs (and increases) along the line from the parent
vertex v to the displaced vertex vi;I;δ0 . Let the segment of this
line between vi;I;δ0 and vi;I;δ be lδ0;δ;I. Let lϵ be a straight line
which contains lδ0;δ;I and whose end points aϵ, bϵ lie at a
distance ϵ from vi;I;δ0 ; vi;I;δ respectively, ϵ ≪ δ0; δ. Consider
a small cylinder Cϵ;τ with axis lϵ and radius τ, τ ≪ δ; δ0.
Consider two such cylinders with parameters ϵ1, ϵ2 and τ1,
τ2 with ϵ1 > ϵ2; τ1 > τ2 and with ϵ1, τ1 small enough that
Cϵ1;τ1 does not intersect any edge emanating from v apart
from the Ith one between v and vi;I;δ0 . Consider the vector
field ξa ¼ ð ∂

∂y3Þa. Let f be a function compactly supported in
Cϵ1;τ1 such that it is unity in Cϵ2;τ2 . Let ϕðfξ; tÞ be the 1
parameter set of diffeomorphisms generated by the vector
field fξa. Clearly, for an appropriate value of t ¼ t0 the
diffeomorphism ϕðfξ; t0Þ≡ ϕi;I;δ;δ0 translates vi;I;δ0 to vi;I;δ
so that property (ii) is achieved. This diffeomorphism also
respects properties (v), (vi).
Next, note that within Cϵ2;τ2 this is a rigid translation so

that the translated edges at vi;I;δ are straight lines in a small
neighborhood of vi;I;δ. Hence within a small enough
neighborhood of vi;I;δ we can now apply the “scrunching”
diffeomorphismG of Eq. C. 8, Appendix C4, P1. From that
work we have that within a small neighborhood of Vi;I;δ

of vi;I;δ, G acts as

ðy1ðGðpÞÞ − y1ðvi;I;δÞÞ ¼ δq−1ðy1ðpÞ − y1ðvi;I;δÞÞ;
ðy2ðGðpÞÞ − y2ðvi;I;δÞÞ ¼ δq−1ðy2ðpÞ − y2ðvi;I;δÞÞ;
ðy3ðGðpÞÞ − y3ðvi;I;δÞÞ ¼ ðy3ðpÞ − y3ðvi;I;δÞÞ: ð6:11Þ

Here q ≫ 1, p is a point in Vi;I;δ, yiðpÞ refers to the ith
coordinate value at p, GðpÞ is the image of p by G and as
mentioned above we have rotated our coordinates so that y3

runs along the line joining v to vi;I;δ0 . Thus property (iv) is
achieved. In addition, from P1,G is identity outside a small
neighborhood of vi;I;δ, and in particular is identity at all the
edges of c other than the Ith one at v, maps the Ith one at v
to itself (if v is CGR in c and if the J ≠ I edges are non-
conducting in c, then it maps the upper and lower Ith con-
ducting edges to themselves) and is identity in a neighbor-
hood of v. In addition, from 5., Appendix C, P1 the vector
field generating G (a) is supported only in an small
neighborhood of vi;I;δ and (b) when restricted to the straight
line from v to vi;I;δ0 always points along this line wherever
it is nonvanishing. Hence G respects properties (v), (vi).
Property (iii) (b) can be achieved in a similar way as

(ii) by considering ξJ to be along the appropriate edge eJ,
J ≠ I of c, constructing suitable neighborhoods of seg-
ments of this edge, smearing ξJ with suitable functions of
compact support and using the finite diffeomorphisms ϕJ
generated by the resulting vector field to achieve the
required result. Clearly these diffeomorphisms also respect
properties (v), (vi). Property (iii) (a) can be achieved

through the action of a diffeomorphism ϕα which we
shall construct at the end of this section. The product of
all the semianalytic diffeomorphisms ðQJ≠IϕJÞGϕi;I;δ;δ0ϕα

yields the required semianalytic diffeomorphism satisfying
(i)–(v). so that we have

Φδ;Q;L;M;p1;p2;p3

c;fygði;I;β;δ0Þ ¼
�Y

J≠I
ϕJ

�
Gϕi;I;δ;δ0ϕα; ð6:12Þ

jcði;β;δÞi ¼ ÛðΦδ;Q;L;M;p1;p2;p3

c;fygði;I;β;δ0Þ Þjcði;β;δ0Þi: ð6:13Þ

Before we construct ϕα, it is useful for future purposes to
derive Eq. (6.15) below. First note that from Appendix B
and Sec. V, the displaced vertex is in a region covered by
the coordinates fyg. Next, consider the coordinate system
fyðδÞg obtained by the pushforward of the coordinates fyg
by the contraction diffeomorphism:

fyðδÞg ¼ ðΦδ;Q;L;M;p1;p2;p3

c;fygði;I;β;δ0Þ Þ�fyg: ð6:14Þ

From (6.13) it follows that fyðδÞg provides a coordinate
patch around the displaced vertex of cði;I;β;δÞ. From the fact
that ϕα is the identity in a neighborhood of the vertex vi;I;δ0
(see the end of this section) together with the fact that the
displaced vertex vi;I;δ and its immediate vicinity is obtained
by a rigid translation followed by the linear transformation
(6.11), we have that the Jacobian between the fyðδÞg and
fyg coordinates at the displaced vertex is

∂yðδÞμðpÞ
∂yνðpÞ

����
p¼vi;I;δ

¼ δμνδ−ðq−1Þ μ ¼ 1; 2

¼ δμν μ ¼ 3: ð6:15Þ
Recall that the fyg coordinates at v are such that the Ith
edge at v in c runs along the third coordinate direction.
To free us from this assumption let the coordinates at
v be fxg with fxg related to fyg by a rotation Rc which
points y3 along the Ith edge. Then it is straightforward to
see that the Jacobian between the coordinates fxðδÞg ≔

ðΦδ;Q;L;M;p1;p2;r
c;fygði;I;β;δ0Þ Þ�fxg and the coordinates fxg is

∂xðδÞμðpÞ
∂xνðpÞ

����
p¼vi;I;δ

¼ ðRcGR−1
c Þμν ð6:16Þ

where

Gμ
ν ¼ δμνδ−ðq−1Þ μ ¼ 1; 2

¼ δμν μ ¼ 3: ð6:17Þ
Note that from property (v) and from the fact that the y3

coordinate direction coincides with the straight line joining
v to vi;I;δ0 (in the fyg coordinates), it follows that when
restricted to this straight line, the third coordinate of the
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coordinate system fyðδÞg also points along this line [indeed
for the subset of this line lying within Vi;I;δ, this fact can be
explicitly verified from (6.11).)].
Finally, we construct ϕα. Let a C1 or C2 kink nearest to

vi;I;δ0 in cði;I;β;δ0Þ be located at some v̄. Consider two small
spheres of radii 3α0; 2α0 around this kink and a semi-
analytic function which vanishes outside the larger sphere
and is unity inside the smaller sphere. Smear the dilatation
vector field

P
3
i¼1ðyi − yiðv̄ÞÞð ∂

∂yiÞa with this function and

exponentiate the action of this vector field to obtain a 1
parameter family of semianalytic diffeomorphisms. Clearly
for an appropriate parameter value the size of the kink can
be shrunk as required in (iii) (a) to α. Similarly shrink the
second C1 or C2 kink if present. Let the diffeomorphism
which shrinks these kinks be ψα. It is straightforward to see
that the application of this diffeomorphism confines the
departure from linearity, of the edge carrying the kink, to a
sphere of radius 2α around the kink. We shall choose α as
required below.
Next, we need to ensure that the action of ϕi;I;δ;δ0 (which

acts immediately after ϕα in the contraction process)
preserves the size of these kinks. Clearly we need only
focus on any such kink if it is present at some v̄ between
vi;Iδ0 and v.

26 If such a kink is present we use a construction
similar to that for ϕi;I;δ;δ0 to move the kink to a distance
δ̄ ≪ ϵ2 from vi;Iδ0 through a rigid translation along the
straight line joining v to vi;I;δ0 , where ϵ2 has been defined
above in the construction of ϕi;I;δ;δ0 .
More in detail, let v̄1 be on the straight line segment from

v to v̄ at a distance 3α from v̄ with α ≪ δ̄.27 Let v1 be at a
distance δ̄ − 3α from vði;I;δ0Þ on the straight line segment
from v to vi;I;δ0 . Let the straight line segment from v̄1 to v1
be l1. Let l1ϵ̄ be a straight line which contains l1 and whose
end points āϵ̄; b̄ϵ̄ lie at a distance ϵ̄ from v̄1; v1 respectively.
Consider a small cylinder Cϵ̄;τ̄ with axis l1ϵ̄ and radius τ̄.
Consider two such cylinders with parameters ϵ̄1; ϵ̄2 and
τ̄1; τ̄2 with ϵ̄1 > ϵ̄2; τ̄1 > τ̄2. We shall further restrict
ϵ̄1 ≪ α ≪ τ̄2 ≪ τ2. Choose ϵ̄1; τ̄1 to be small enough that
Cϵ̄1;τ̄1 does not intersect the graph underlying cði;I;β;δ0Þ
except along its edge from v to vði;I;β;δ0Þ. Consider the
vector field ξa ¼ ð ∂

∂y3Þa. Let f̄ be a function compactly

supported in Cϵ̄1;τ̄1 such that it is unity in Cϵ̄2;τ̄2 . Let ϕðf̄ξ; tÞ
be the 1 parameter set of diffeomorphisms generated by the
vector field fξa. Clearly, for an appropriate value of t ¼ t0
the diffeomorphism ϕðf̄ξ; t0Þ≡ ϕ̄ translates the kink to its
desired position. We set ϕα ≔ ϕ̄ ∘ψα.

D. Discrete action of product of operators

1. Action on elements of the ket set

Consider the operator product
Q

n
i¼1 ÔiðNiÞ where

ÔiðNiÞ is either a Hamiltonian constraint operator or
electric diffeomorphism constraint operator smeared with
Lagrange multiplier Ni, with operators ordered such that
ÔiðNiÞ is to the left of ÔiðNjÞ if i < j in the string of
operators corresponding to the product. We are interested in
the action of a discrete approximant to this operator product
on a state c in the ket set. The discrete approximant we use
is

Q
n
i¼1 Ôi;δiðNiÞ where the discretization parameters δi

are such that δi < δj for i < j and the action of Ôi;δiðNiÞ is
given by (4.5) or (4.6) depending on whether ÔiðNiÞ is a
Hamiltonian or electric diffeomorphism constraint. Recall
that we did not adequately specify the coordinates with
respect to which these individual discrete actions were
defined. Here we shall do so indirectly through a number of
steps. At the end of this multistep procedure we shall have a
complete definition of�Yn

i¼1

Ôi;δiðNiÞ
�
jci ð6:18Þ

including a specification of the coordinates used.

Step 1: (6.18) as a weighted sum of deformed states.—We
define each discrete operator action in the product through
(4.5) or (4.6) keeping the choice of coordinates as yet
unspecified. Clearly the result is a weighted sum of
deformed kets. Our task in this step is to find these weights.
We shall use the notation for deformed kets developed in
Sec. VI. A. Any deformed ket takes the form of an mth
generation child of c, 1 ≤ m ≤ n. The deformation oper-
ation which produces this child from c is specified by the
deformation sequence:

½ðim−1; Im−1; βjm ; δjmÞðim−2; Im−2; βjm−1 ; δjm−1Þ;…::;

ði1; I1; βj2 ; δj2Þði; I; βj1 ; δj1Þ�
jk < j1 iff k > l; ji ∈ f1; ::; ng ð6:19Þ

where ifm ¼ 1 we only have the deformation ði; I; βj1 ; δj1Þ.
The kth deformation in this sequence is ðik−1; Ik−1; βjk ; δjkÞ.
It corresponds to the deformation generated by the operator
Ôjk;δjk

ðNjkÞ on the k − 1th generation child:

c½ðik−2;Ik−2;βjk−1 ;δjk−1 Þ;…::;ði;I;βj1 ;δj1 Þ� ð6:20Þ
where if this operator is a Hamiltonian constraint we have
chosen the flip βjk to define its action. As is implicit in the
discussion of Sec. VI. A, given the deformation sequence
(6.19), the edges and internal charge indices at the non-
degenerate vertex of the kth generation children are denoted
with a subscript k and the edges and internal charge indices

26Here we assume that we have chosen ϵ1, α small enough that
any nearest C2 or C1 kink beyond vi;I;δ0 does not intersect the
cylinder Cϵ1;τ1 which is used to define ϕi;I;δ;δ0 .27We choose δ̄ to be much smaller than the distance between
the kink v̄ and vi;I;δ0 .
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of the parent vertex in c by i, I. The numbering scheme
used is also that discussed in Sec. VI. A so that the
enumeration of edges of any child is related to that for c.
As emphasized before we have not yet made explicit our

choices of coordinateswith respect towhich the deformations
are defined. Let us see in more detail as to exactly where we
need these choices to be made so as to provide a complete
specification of the deformed child (6.20). Consider the
deformation sequence (6.19). The sequence starts with the
right most deformation ði; I; βj1 ; δj1Þ acting on the parent c.
The singly deformed child it generates acts as the parent state
for the next deformation ði1; I1; βj2 ; δj2Þ. In this way proceed-
ing from right to left, each successive deformation acts on the
deformed state generated by the sequence to its right and
produces a parent state for the deformation to its left.
Therefore, in order to specify each of these deformations
we need to specify the coordinate patch for the nondegenerate
vertex of the state producedby the deformation sequence to its
right. Hence in order to specify the deformed child (6.20) we
need to specify coordinate patches for each of the deformed
states in the “lineage” connecting (6.20) to c.
The deformed states produced in (6.18) consist of states

of the form (6.2) for all choices of index sets fi1; i2; ::; img
such that the inequalities in the second line of (6.2) hold,
and for all m ∈ f1; ::; ng. From our discussion in the
previous paragraph, it follows that for a complete speci-
fication of all the deformed states in this set, we need a
specification of a coordinate patch around each nondegen-
erate vertex for each mth generation child with m ranging
from 1; ::; n − 1. In addition we must also, of course,
specify the coordinate patch around the nondegenerate
vertex of c. We shall see that in the final step of our
procedure (see Sec. VI. D. 1. c below), we will have a
specification of all these coordinate patches.
The notation (6.19) is a cumbersome one. Hence, similar

to (6.4), if there is no confusion in doing so, we will often
find it convenient to abbreviate the deformation sequence
in (6.2) through

½i; I; β; δ�m ≡ ½ðim−1; Im−1; βjm ; δjmÞ;…; ði; I; βj1 ; δj1Þ�:
ð6:21Þ

Thus the deformed states produced in (6.18) consist of the
states c½i;I;β;δ�m for all choices of ½i; I; β; δ�m and m such that
1 ≤ m ≤ n. Clearly, (6.18) can be expanded out as a sum
over all these states so that we have

�Yn
i¼1

Ôi;δiðNiÞ
�
jci

¼
�Yn

i¼1

δi

�
−1 X

½i;I;β;δ�m;m¼1;::;n

C½i;I;β;δ�m jc½i;I;β;δ�mi þ C0jci:

ð6:22Þ

Here the coefficients C½i;I;β;δ�m can be computed using (4.5)
and (4.6) in (6.18). We do not need the explicit form of
these coefficients here so we refrain from displaying them.
Instead we restrict ourselves to a few remarks regarding
their structure. Each coefficient is constructed out of the
various factors which appear in each application of (4.5)
or (4.6) in (6.18). In particular each coefficient has in it a
product over all the n lapse functions in (6.18). Each lapse
is evaluated at a vertex of one of the states in the lineage
defined by the sequence using the coordinate patch
specified at that vertex. Note that this is the only coordinate
choice dependent feature of the coefficients. The remaining
contributions come from various sign factors and overall ℏ
dependent numerical factors in (4.5) and (4.6). The sign
factors arise from the β factors in (4.5) and from the fact
that some of the actions of the constraints come from the−1
term (see Sec. III. B. 1) in (4.5) and (4.6).
To summarize, the discrete action of the operator product

of interest on any ket in the ket set can be written as a
weighted sum over all its deformed children. The weights
(i.e. the coefficients C½i;I;β;δ�m; C0) in this sum can be
explicitly computed but we do not need an explicit
computation in all generality for our purposes here. A
complete evaluation of the coefficients and a complete
specification of the deformed children requires a choice of
coordinate patch around each nondegenerate vertex of
each child c½i;I;β;δ�m; ∀ ½i; I; β; δ�m;m ¼ 1; ::n as well as
around the vertex of c. The coordinate choice dependence
of each coefficient derives solely from its dependence on
the density weighted lapse functions.
In the next step we shall define each of the deformed

children of c as the image of a corresponding deformation
of the reference state c0 by the reference diffeomorphism
which maps c0 to c. Since we are interested in the
continuum limit, it will suffice to define these deformations
for small enough fϵi; i ¼ 1; ::; ng where ϵi ≪ δi; i ¼ 1; ::n
and ϵi < ϵj for i < j from which we define

�Yn
i¼1

Ôi;ϵiðNiÞ
�
jci

¼
�Yn

i¼1

ϵi

�
−1 X

½i;I;β;ϵ�m;m¼1;::;n

C½i;I;β;ϵ�m jc½i;I;β;ϵ�mi þ C0jci:

ð6:23Þ

Step 2: Contraction of deformed reference states.—Each of
the deformed states appearing on the right-hand side of
(6.22) is labeled by some deformation sequence ½i; I; β; δ�m.
Replace each such deformation sequence ½i; I; β; δ�m,

½i; I; β; δ�m ≡ ½ðim−1; Im−1; βjm ; δjmÞ;…; ði; I; βj1 ; δj1Þ�
ð6:24Þ
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by the corresponding sequence:

½i; I; β; δ0�m ≡ ½ðim−1; Im−1; βjm ; δ0jmÞ;…; ði; I; βj1 ; δ0j1Þ�;
ð6:25Þ

where we have chosen the partameters fδ0j; j ¼ 1; ::; mg to
be sufficiently small in a sense to be described below. Next,
let c0 be the reference state for c. and consider the set
Sfδ0ig;c0 of all descendants of c0 obtained by deforming c0
by all such correspondent sequences:

Sfδ0ig;c0 ≔ fc0½i;I;β;δ0�m ∀ ½i; I; β; δ0�m;m ¼ 0; 1; ::; ng:
ð6:26Þ

Here the parameters fδ0j; j ¼ 1; ::; mg have been chosen
sufficiently small that every element of Sfδ0ig;c0 is a primary.
Now, each element of the above set (apart from c0) is some
mth generation child of c0. We define the coordinates
with respect to which the multiple deformation sequence
½i; I; β; δ0�m is constructed to be fx0g. As discussed in the
construction of primaries in Sec. VI. B, for sufficiently
small deformation parameters δ0i; i ¼ 1; ::n, these defor-
mations are well defined and the coordinate patch fx0g can
be used as a linear coordinate patch for every nondegen-
erate vertex of every element of Sfδ0ig;c0 .
Next consider a set of deformation parameters fϵig such

that each ϵi ≪ δ0i and ϵi < ϵj for i < j. Let us fix some
particular deformation sequence

½i; I; β; δ0�m ≡ ½ðim−1; Im−1; βjm ; δ0jmÞ;…; ði; I; βj1 ; δ0j1Þ�
ð6:27Þ

and the corresponding sequence

½i;I;β;ϵ�m≡ ½ðim−1;Im−1;βjm ;ϵjmÞ;…;ði;I;βj1 ;ϵj1Þ�: ð6:28Þ

We now construct a contraction diffeomorphism which
maps c0½i;I;β;δ0�m to c0½i;I;β;ϵ�m . This diffeomorphism will be
constructed as a product of contraction diffeomorphisms
of the type defined in Sec. IV. C. We shall use the index
notation as explained in Step 1 so that the subscript k
attached to the edge index signifies that the edge in question
is one which is obtained as a result of k successive
deformations; similary this subscript attached to the inter-
nal index of a Uð1Þ3 charge signifies that the charge in
question labels such a generation k edge. Additionally we
shall refer to the part of the deformation sequence from the
1st deformation to the kth one within the specific defor-
mation sequence (6.27) as ½i; I; β; δ0�km so that

½i; I; β; δ0�km ≡ ½ðik−1; Ik−1; βjk ; δ0jkÞ;…; ði; I; βj1 ; δ0j1Þ�;
ð6:29Þ

with the kth generation child produced in this sequence
from the ancestor c0 denoted as

c0½i;I;β;δ0�km ≡ c0½ðik−1;Ik−1;βjk ;δ0jk Þ;…;ði;I;βj1 ;δ0j1 Þ�: ð6:30Þ

The states c0½i;I;β;δ0�km ; k ¼ 1; ::; m will be said to form the
lineage for the sequence (6.27). The states c0½i;I;β;δ0�k−1m

;
c0½i;I;β;δ0�km will be called “successive” with c0½i;I;β;δ0�k−1m

being
the immediate parent of c0½i;I;β;δ0�km . We shall use a similar
notation and language in relation to the deformation
sequence (6.28).
Finally we introduce a hatted index notation as follows.

Consider the kth transition ðik−1; Ik−1; βjk ; δ0jkÞ which
produces the child c0½i;I;β;δ0�km from the parent c0½i;I;β;δ0�k−1m

.
The edge indices at the nondegenerate vertex of the child
are distinguished by the subscript k and at that of the parent
by k − 1. The parental edge along which the transition
occurs is the Ik−1th one. Consider the edges eJk in the child
with Jk ≠ Ik−1 (recall that the numbering of the edges of the
child is correlated with that of the parent as described in
Sec. VI. A). We shall denote such indices with a hat so
that Ĵk signifies Ĵk ≠ Ik−1 in the above transition. Clearly,
hatted indices index those edges which are nonconducting
in c0½i;I;β;δ0�km and any such edge connects the nondegenerate
vertex of the child with a C0 kink.
Next, fix some p ≫ 1, recall that q ≫ 1 is defined in

equation (6.11), and proceed iteratively as follows:
(i) First consider the contraction diffeomorphism

Φδ;Q;L;M;p1;p2;p3

c;fygði;I;β;δ0Þ and perform the replacements

δ → ϵj1 ; c → c0;

fyg → fx0g L;M → Ĵ1; K̂1;

p1 →
2

3
ðq − 1Þj1p; p2 →

2

3
ðq − 1Þj1ðpþ 1Þ;

p3 →
2

3
ðq − 1Þj1ðpþ 1Þ þ 4

3
ðq − 1Þj1: ð6:31Þ

We shall specify the factor Q as we go along. Q will
depend on
(a) the operator sequence Sj1 ¼fÔ1ðN1Þ;::;Ôj1ðNj1g

starting from the first leftmost operator in the operator
product (6.18) and terminating at the j1th one,
(b) the charges of the child c0ði;I;βj1 ;ϵj1 Þ ≡ c0½i;I;β;ϵ�1m at its

nondegenerate vertex.
(c) the charges of the parent c0 at its nondegenerate

vertex.
Denoting c0 by c½i;I;β;ϵ�0m we denote this dependence

through

Q≡Qðc0½i;I;β;ϵ�0;1m
; Sj1 ; Þ: ð6:32Þ
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Accordingly, we replace the label Q by the label Sj1 and
rewrite the contraction diffeomorphism as

Φϵj1 ;fx0g;Ĵ1;K̂1

c
0½i;I;β;ϵ�0m

;ði;I;β;δ0Þ;Sj1
: ð6:33Þ

The notation indicates that (a) the parent c0 ≡ c0½i;I;β;ϵ�0m is
deformed through ði; I; β; δ0Þ and the deformation param-
eter δ0 of the resulting child is contracted to the value
ϵj1 , both parameters being measured by the parental
coordinates system fx0g, (b) theQ factor is that determined
by the charges of this child, its parent and the operator
sequence Sj1 (c) the kinks at Ĵ1; K̂1 are placed in accordance
with the values of p1, p2 in (6.31). Here to avoid notational
clutter we have suppressed the labels p1, p2, p3.
Note that the parental coordinate system fx0g covers a

neighborhood of the displaced vertex of the uncontracted
child c0½i;I;β;δ0�1m . The diffeomorphism (6.33) maps this
displaced vertex to its counterpart in the contracted child
c0½i;I;β;ϵ�1m . Hence the push forward of the parental coor-
dinate system fx0g yields a coordinate system around
the displaced vertex in the child cði;I;βj1 ;ϵj1 Þ ≡ c½i;I;β;ϵ�1m .
Suppressing various dependences to avoid notational clut-
ter and keeping in mind that we are discussing the
contraction of the specific deformation sequence (6.27)
to that in (6.28) we denote this coordinate system
by fxϵj10 g

fxϵj10 g ≔
�
Φ

ϵj1 ;fx0g;Ĵ1;K̂1

c
0½i;I;β;ϵ�0m

;ði;I;β;δ0ÞSj1

��
fx0g: ð6:34Þ

We shall use this coordinate system associated with this
first generation child to define the next transition in which
this child acts as the parent for a second generation child in
(ii) below.
(ii) In the contraction diffeomorphism Φδ;Q;L;M;p1;p2;p3

c;fygði;I;β;δ0Þ
replace

δ → ϵj2 ; c → c0½i;I;β;ϵ�1m;

fyg → fxϵj10 g L;M → Ĵ2; K̂2;

p1 →
2

3
ðq − 1Þj2p; p2 →

2

3
ðq − 1Þj2ðpþ 1Þ;

p3 →
2

3
ðq − 1Þj2ðpþ 1Þ þ 4

3
ðq − 1Þj2: ð6:35Þ

Similar to (i) Q depends on the operator sequence Sj2 ¼
fÔ1ðN1Þ; ::; Ôj2ðNj2g starting from the first leftmost oper-
ator in the operator product (6.18) and terminating at the
j2th one, as well on the charges of the ½i; I; β; ϵ�2m and
½i; I; β; ϵ�1m children of c0 at their nondegenerate vertices so

that Q≡Qðc0½i;I;β;ϵ�2;1m
; Sj2Þ and we rewrite the contraction

diffeomorphism as

Φ
ϵj2 ;fx

ϵj1
0

g;Ĵ2;K̂2

c
0½i;I;β;ϵ�1m

;ði1;I1;βj2 ;δ0j2 Þ;Sj2
: ð6:36Þ

From the substitution fyg → fxϵj10 g in (6.35) above, it
follows that the coordinate system with respect
to which the discretization parameters δ0j2 ; ϵj2 are measured
in the transition from the parent c0½i;I;β;ϵ�1m to the child

c0½i;I;β;ϵ�2m is the parental coordinate system fxϵj10 g defined
in (6.34).
More in detail, consider the uncontracted images of this

parent and child; these are the states c0½i;I;β;δ0�1m , c0½i;I;β;δ0�2m of
Eq. (6.30). Consider the image of both of these states by the
contraction diffeomorphism Eq. (6.33). The image of the
parent simply yields the parent c0½i;I;β;ϵ�1m at parameter ϵj1 as
described in (i). Clearly, by virtue of the properties of
diffeomorphic images, the image of the child c0½i;I;β;δ0�2m by
this diffeomorphism defines a state which bears the same
relation to its parent c0½i;I;β;ϵ�1m as c0½i;I;β;δ0�2m bears to its parent
c0½i;I;β;δ0�1m . It follows that the image of c0½i;I;β;δ0�2m by (6.33) is a
child at parameter δ0j1 of c0½i;I;β;ϵ�1m where the parameter δ0j1 is

now measured by the pushforward coordinate system fxϵj10 g
of (6.34). It follows that this child is obtained through the
deformation ði1; I1; βj2 ; δ0j2Þ of its parent c0½i;I;β;ϵ�1m with

respect to the coordinates fxϵj10 g. The contraction diffeo-
morphism (6.36) acts on this child, contracts the parameter
value δ0j2 and produces the child c0½i;I;β;ϵ�2m at parameter value

ϵj2 with δ0j2 ; ϵj2 measured by the parental coordinates fxϵj10 g
associated with the parent c0½i;I;β;ϵ�1m .
Clearly one can now define a coordinate around the

nondegenerate vertex of c0½i;I;β;ϵ�2m as the pushforward of this
coordinate patch fxϵj10 g by the contraction diffeomorphism
of (6.36) i.e. we define

fxϵj1 ϵj20 g

≔
�
Φ

ϵj2 ;fx
ϵj1
0

g;Ĵ2;K̂2

c
0½i;I;β;ϵ�1m

;ði1;I1;βj2 ;δ0j2 Þ;Sj2

�
�
fxϵj10 g

¼
�
Φϵj2 ;fx

ϵj1
0

g;Ĵ2;K̂2

c
0½i;I;β;ϵ�1m

;ði1;I1;βj2 ;δ0j2 Þ;Sj2
Φϵj1 ;fx0g;Ĵ1;K̂1

c
0½i;I;β;ϵ�0m

;ði;I;β;δ0Þ;Sj1

��fx0g:
ð6:37Þ

This coordinate patch in turn is used to define the next
transition in the sequence. We can then iterate this
procedure. The structure obtained at the kth step is
described in (iii).
(iii) At the kth step the arguments of Φδ;Q;L;M;p1;p2;p3

c;fygði;I;β;δ0Þ are

replaced as
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δ → ϵjk ; c → c0½i;I;β;ϵ�k−1m
; fyg → fxϵj1…ϵjk−1

0 g L;M → Ĵk; K̂k;

p1 →
2

3
ðq − 1Þjkp; p2 →

2

3
ðq − 1Þjkðpþ 1Þ; p3 →

2

3
ðq − 1Þjkðpþ 1Þ þ 4

3
ðq − 1Þjk ð6:38Þ

with Q depending on the operator sequence Sjk ¼ fÔ1ðN1Þ; ::; ÔjkðNjkÞg and on the charges of c0½i;I;β;ϵ�km , c0½i;I;β;ϵ�k−1m
at their

nondegenerate vertices so that Q≡Qðc0½i;I;β;ϵ�k;k−1m
; SjkÞ and we rewrite the contraction diffeomorphism as

Φ
ϵjk ;fx

ϵj1
::ϵjk−1

0
g;Ĵk;K̂k

c
0;½i;I;β;ϵ�k−1m

;ðik−1;Ik−1;βjk ;δ0jk Þ;Sjk
ð6:39Þ

with the coordinate patch around the nondegenerate vertex of c0½i;I;β;ϵ�km defined to be

fxϵj1 ::ϵjk0 g ≔
�
Φ

ϵjk ;fx
ϵj1

::ϵjk−1
0

g;Ĵk;K̂k

c
0;½i;I;β;ϵ�k−1m

;ðik−1;Ik−1;βjk ;δ0jk Þ;Sjk

��fxϵj1 ::ϵjk−10 g

¼
�
Φ

ϵjk ;fx
ϵj1

::ϵjk−1
0

g;Ĵk;K̂k

c
0;½i;I;β;ϵ�k−1m

;ðik−1;Ik−1;βjk ;δ0jk Þ;Sjk
…Φϵj1 ;fx0g;Ĵ1;K̂1

c
0½i;I;β;ϵ�0m

;ði;I;β;δ0Þ;Sj1

��fx0g: ð6:40Þ

(iv) Finally after the mth step we define the desired composite contraction diffeomorphism:

Φ
ϵj1 ::ϵjm ;ðĴ1;K̂1Þ;::;ðĴm;K̂mÞ
c0½i;I;β;δ0 �m ;Sj1

≔
�Ym

k¼2

Φ
ϵjk ;fx

ϵj1
::ϵjk−1

0
g;Ĵk;K̂k

c
0;½i;I;β;ϵ�k−1m

;ðik−1;Ik−1;βjk ;δ0jk ÞSjk

�
Φ

ϵj1 ;fx0g;Ĵ1;K̂1

c
0½i;I;β;ϵ�0m

;ði;I;β;δ0Þ;Sj1
ð6:41Þ

where the product is ordered from right to left in
increasing k and where have labeled the left-hand side
by the sequence Sj1 because the sequence Sj1 contains all
Sjk ; k > 1 so that the label Sj1 subsumes the set of labels
fSjk ; k ≥ 1g. This composite contraction diffeomorphism
contracts the δ0 parameters to their corresponding ϵ
values so that we have

jc0½i;I;β;ϵ�mi ≔ Û
�
Φϵj1 ::ϵjm ;ðĴ1;K̂1Þ;::;ðĴm;K̂mÞ

c0½i;I;β;δ0 �m ;Sj1

�
jc0½i;I;β;δ0�mi

ð6:42Þ

where ÛðΦÞ refers to the unitary implementation of
the diffeomorphism Φ. The superscripts ϵj1 ::ϵjm indicate
that the deformations have been contracted down from
δ0j1 ; ::; δ0jm in the deformation sequence (6.27) to
ϵj1 ; ::; ϵjm in the deformation sequence (6.28). The action
of the deformation sequence (6.28) on c0 creates a series
of C0 kinks in c0½i;I;β;ϵ�m , one set of (N − 1) kinks for

each deformation. The superscript ðĴ1; K̂1Þ; ::; ðĴm; K̂mÞ
in (6.42) refers to the two preferred C0 kinks created by
each such deformation. The preferred kinks ðṽĴk ; ṽK̂k

Þ
created by the kth deformation are brought to the
specific coordinate distances specified by (iii) above

[see also (iii) of Sec. VI. C].28 These coordinate dis-
tances are measured by the coordinate system fxϵj1 ::ϵjk−10 g
associated with the nondegenerate vertex of the
deformed state obtained by the action of the deforma-
tion ½i; I; β; ϵ�k−1m on c0, this vertex serving as the parent
vertex for the next deformation ðik; Ik; βjk ; ϵjkÞ in the
sequence ½i; I; β; ϵ�m. We shall see in Sec. X and XI that
the placement of these kinks plays a key role in
obtaining an anomaly free algebra.

Step 3: Deformed states as images of contracted reference
states.—The reference state c0 of Step 2 above is related to
the state c by the action of some reference diffeomorphism
α via the Eq. (6.10). We define

jc½i;I;β;ϵ�mi ≔ ÛðαÞjc0½i;I;β;ϵ�mi: ð6:43Þ
This provides a definition of all the charge nets on the right-
hand side of Eq. (6.23). Here the coordinate patch around
the nondegenerate vertex of the state c½i;I;β;ϵ�m obtained
through the action of the deformation sequence ½i; I; β; ϵ�m
on c is defined to be the image of the coordinate patch

28The choice of these preferred kinks is made, at the moment,
arbitrarily; in Sec. VIII we shall sum over these choices.
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around the nondegenerate vertex of c0½i;I;β;ϵ�m [obtained by
setting k ¼ m in (6.40)] by the diffeomorphism α.
Recall that the coefficient C½i;I;β;ϵ�m in (6.23) acquires a

coordinate dependence solely from the dependence of this
coefficient on the lapse functions. Each lapse function
is evaluated at some nondegenerate vertex of one of the
states which define the lineage of c½i;I;β;ϵ�m . Since we have
provided a unique choice of coordinate patches for every
such vertex, every coefficient on the right-hand side of
(6.23) can be evaluated.
Having provided a unique and well-defined evaluation of

every coefficient in (6.23), we have a complete specifica-
tion of the action of the operator product

Q
n
i¼1 Ôi;ϵiðNiÞ for

sufficiently small discretization parameters fϵi;i¼1;::;ng.

2. Summary

In order to define the discrete action of multiple con-
straint operators of a state c in the ket set of Sec. VI. B, it is
necessary to define multiple deformations of c. This is done
in three stages. In the first stage, multiple deformations of
the reference state c0 are defined with respect to the
reference coordinate system fx0g at small enough param-
eter values as measured by fx0g. These deformations are
built out of a sequence of single deformations each
constructed in detail along the lines of Appendix B and
Sec. V. A. In the second stage, these parameters and the
associated deformations are contracted through the action
of contraction diffeomorphisms. This process involves the
iterated action of individual contraction diffeomorphisms.
The deformation which yields each contracted child in a
deformation sequence is then a deformation which is
defined with respect to the coordinates associated with
the contracted parent. In the third stage, all the contracted
children, now obtained at any small enough set of param-
eter values, are imaged by the reference diffeomorphism
connecting c0 to c and these images define the desired
multiple deformations of c.
In the second stage described in Sec. VI. D. 1, the

deformation of the parental state c0½i;I;β;ϵ�k−1m
in a deforma-

tion sequence ½i; I; β; ϵ�m of (6.28) by the deformation
ðik−1; Ik−1; βjk ; ϵjkÞ yields the child c0½i;I;β;ϵ�km . The deforma-
tion is defined with respect to the coordinate system
fxϵj1 ;::;ϵjk−10 g associated with the parental state. In this
manner the deformation which yields any child c0½i;I;β;ϵ�m
through the specific deformation sequence ½i; I; β; ϵ�m
applied to c0 is uniquely and completely well defined in
terms of the sequence of coordinate systems fxϵj1 ;::;ϵjk0 g;
k ¼ 1; 2; ::m − 1, together with fx0g. Further, the contrac-
tion procedure also results in the nondegenerate vertex of
the child c0½i;I;β;ϵ�m being equipped with the coordinates

fxϵj1 ;::;ϵjm0 g. As is easy to check, the procedure used in the
second stage to construct these coordinate patches for
any deformation of c0 only depends on the deformation

sequence which defines the deformation. Thus given c0 and
any deformation sequence, the deformed state comes
equipped with a coordinate patch which is a pushforward
of the reference coordinate patch fx0g associated with c0
by an appropriately constructed composite contraction
diffeomorphism, this diffeomorphism being uniquely fixed
by the specification of the deformation sequence (including
the specification of the preferred set of C0 kinks, see
footnote 28).
In the third stage the images of each of these coordinate

systems by the reference diffeomorphism which maps c0
to c yield coordinate systems which provide a clear
coordinate interpretation for the deformations generated
by the discrete action of the operator productQ

n
i¼1 Ôi;ϵiðNiÞ. In particular this procedure yields a unique

coordinate patch associated with the nondegenerate vertex
of each state in the expansion (6.23). It is useful to give
these coordinate patches a name to distinguish them from
other coordinate patches we shall encounter. We shall
refer to the coordinate patches associated with the non-
degenerate vertex of each of the deformed states which
occur on the right-hand side of (6.23) as contraction
coordinates because of the role of contraction diffeo-
morphisms in their definition. In Sec. VIII we shall
encounter a different set of coordinates which we shall
call reference coordinates.
Recall that the only coordinate dependence of the coef-

ficients in the expansion (6.23) arises from the evaluation of
lapse functions. The occurrence of these lapse functions
traces back to the dependence of the quantum shift on the
lapse, this lapse being evaluated with respect to the coor-
dinates associated with the vertex of the state on which the
quantum shift operator acts. Indeed, it is these coordinates in
terms of which the deformations generated by the quantum
shift are defined. From this it is straightforward to see that the
evaluation of such a lapse function must be done in terms of
the contraction coordinates associated with its argument.
Next, let us discuss how the mapping, via contraction

diffeomorphisms in Sec. VI. D. 1. a and reference diffeo-
morphisms in Sec. VI. D. 1. c, of deformed reference
states can be interpreted as the discrete action of con-
straints. First consider the discrete action of the constraint
product of interest on a state c ¼ c0 which is itself a
reference state so that α ¼ 1. Focus on some contracted
child-parent pair c0½i;I;β;δ�m−1;m

m
and the corresponding

“primary” child-parent pair c0½i;I;β;δ0�m−1;m
m

. Recall from
Secs. VI. D. 1 and VI. D. 1. b that c0½i;I;β;δ�m−1

m
; c0½i;I;β;δ�m

are the images of c0½i;I;β;δ0�m−1
m

; c0½i;I;β;δ0�m by appropriate
composite contraction diffeomorphisms of the form (6.41).
We refer to these diffeomorphisms here, respectively, as
ϕm−1;ϕm. Also recall that the actions of ϕm;ϕm−1 are
related by that of a single contraction diffeomorphism
constructed in Sec. VI. C, which we denote by ϕ1 so that
ϕm ¼ ϕ1ϕm−1. We now show that the child c0½i;I;β;δ�m−1

m
can
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be viewed as being generated by the discrete action of a
constraint on the parent c0½i;I;β;δ�m . In our arguments below
we shall initially refrain from creating and placing any C1,
C2 kinks around the vertex of the child. We shall also set
ϕα ¼ 1 in the definition of the contraction diffeomorphism
[see (6.12)] which we have denoted here by ϕ1. We shall
return to a discussion of the placement of these kinks and
justify this initial “switching off” of ϕα after we complete
our argumentation below.
First, let the parental (nondegenerate) vertex be GR

without any need for an intervention. That the contracted
child is created by the discrete action of a constraint
on its parent in this case, follows immediately from
Secs. VI. D. 1. a and VI. D. 1. b and our discussion of
contraction coordinates above. To see this we note the
following using obvious notation:

(i) c0½i;I;β;δ�m−1
m

¼ ϕm−1ðc0½i;I;β;δ0�m−1
m

Þ is the parent of in-
terest.

(ii) ϕm−1ðc0½i;I;β;δ0�mÞ is the deformed child generated by
the discrete action of the appropriate constraint
(Hamiltonian, if βjm ≠ 0 and electric diffeomor-
phism if βjm ¼ 0) at parameter δ0jm with this param-
eter measured by the contraction coordinates the
parent in (i).

(iii) c0½i;I;β;δ�m ¼ϕmðc0½i;I;β;δ0�mÞ¼ϕ1ðϕm−1ðc0½i;I;β;δ0�mÞÞ is
the contracted child obtained by contracting the
child in (ii) from parameter value δ0jm down to δjm
where these parameters are measured by the con-
traction coordinates of the parent in (i).

It is important to note, from the construction of the
contraction diffeomorphism in Sec. VI. C that ϕ1 preserves
the parent in (i) so that the process in (iii) can be viewed
as a contraction of the child while preserving the identity of
the parent.
Next consider the case where an intervention is required

so that the parental vertex is either CGR or GR of the type
conforming to Case 2 in Sec. V. B. 1. As seen in Sec. V,
the transition from primary parent to primary child now
requires an intervention. Let the intervention holonomy hl0
be based on the loop l0. Then this transition unfolds
through the following steps:
(a) holonomy intervention by hl0 on the primary parent

c0½i;I;β;δ0�m−1
m

yielding the parental state cðl0Þ
0½i;I;β;δ0�m−1

m
with

a GR vertex,
(b) generation of the child cðl0Þ

0½i;I;β;δ0�m ,
(c) multiplication by h−1l0 .
Recall that we want to show that the parent c0½i;I;β;δ�m−1

m
and

child c0½i;I;β;δ�m are related through the discrete action of a
constraint. Such an action requires a holonomy interven-
tion. Since the parent is the image of the primary parent by
ϕm−1, it follows that the loop l labeling such an intervention
must be the image of l0 by the same diffeomorphism so that
l ≔ ϕm−1ðl0Þ. We may then view the child c0½i;I;β;δ�m as

being generated from its parents through the following
steps, analogous to (a)–(c) above:

(a’) A holonomy intervention by hl on the contracted
parent c0½i;I;β;δ�m−1

m
¼ ϕm−1ðc0½i;I;β;δ0�m−1

m
Þ with

l ¼ ϕm−1ðl0Þ. This intervention yields the state

ϕm−1ðcðl0Þ0½i;I;β;δ0�m−1
m

Þ with a GR vertex.

(b’1) Generation of the δ0 child ϕm−1ðcðl0Þ0½i;I;β;δ0�mÞ from its

parent ϕm−1ðcðl0Þ0½i;I;β;δ0�m−1
m

Þ, where δ0 is measured by the

contraction coordinates ϕ�
m−1fx0g associated with the

contracted parent c0½i;I;β;δ�m−1
m

.
(b’2) Contraction of this δ0 child by the action of ϕ1

resulting in the δ child ϕmðcðl0Þ0½i;I;β;δ0�mÞ.
(c’) multiplication by the inverse holonomy h−1l .

Clearly, the steps (a’)–(c’) above can be viewed as
corresponding to the discrete action of a constraint pro-
vided the contraction diffeomorphism ϕ1 preserves the

parental state ϕm−1ðcðl0Þ0½i;I;β;δ0�m−1
m

Þ while contracting its child.
If this is so and if ϕ1 preserves l, it is easy to check that the
steps (a’)–(c’) yield the child c0½i;I;β;δ�m .

29 Both of these
are ensured if we choose the “cylinder” supports of the
various diffeomorphisms constructed in Sec. VI. C, whose
product (6.12) yields the single contraction diffeomorphism
denoted here by ϕ1, to be small enough that ϕ1 preserves
the graph underlying c0½i;I;β;δ�m−1

m
as well as the intervention

loop l. It is straightforward to check that these supports can
be so chosen and we so choose them.
It only remains to discuss the placement of C1, C2 kinks.

Any such kink, if present in the child, is either on an edge
between the parental and displaced vertex or “beyond” the
displaced vertex. If there is a segment beyond the displaced
vertex this segment must belong to the parental graph, and
if an intervention is required, also belong to the straight line
part of the intervention loop. The contraction diffeomor-
phism (specifically the diffeomorphism ψα of Sec. VI. C)
preserves this part of the parental edge and the intervention
loop. The straight line joining the parental vertex to the
displaced vertex must either be present or absent in its
entirety in each of the following elements: the parental
graph, the straight line part of the intervening loop, the
deformed graph prior to the kink placement. In each
case the contraction diffeomorphism (specifically ϕα of
Sec. VI. C) preserves this straight line. Hence we may, as
above, first consider the deformations without kink place-
ments (in which case ϕα behaves as if it were the identity)
and then at the end place these kinks so as to mimic the
result of imaging the primary child by ϕm. Since ϕ1 also
contracts the kink sizes, these kinks can be thought of as

29To see this note that c0½i;I;β;δ�m ¼ ϕmðc0½i;I;β;δ0�mÞ ¼
ϕmðh−1l0 c

ðl0Þ
0½i;I;β;δ0�mÞ ¼ h−1ϕ1ϕm−1ðl0Þðϕ1ϕm−1ðcðl0Þ0½i;I;β;δ0�mÞÞ ¼ h−1ϕ1ðlÞ ×

ðϕ1ϕm−1ðcðl0Þ0½i;I;β;δ0�mÞÞ.
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being placed by an appropriate holonomy which is an
adequate approximant to identity to leading order in the
contracted parameter value as measured by the parental
contraction coordinates. This is why we had to demand and
implement property (iii)(a) of the contraction diffeomor-
phism in Sec. VI. C. In this manner, the procedure of
constructing a contracted child from its parent can be
thought of as being implemented by a discrete constraint
action. Finally, in the case that α ≠ 1 it is easy to see, by
taking the α image of the contracted child-parent pair, that
the child can be thought of being generated by the action of
a discrete constraint action on the parent where the parental
coordinates are the α image of the contracted parent as in
Sec. VI. D. 1. a.
Note.—We have slightly abused our notation for multi-

ple deformations. The notation was set up so that each
individual deformation was defined as in Appendix B and
Sec. V. A. These individual deformations do place the
displaced vertex at the correct location. However the C0

kinks are positioned differently [they lie at distances of
order of the deformation paramter δ rather than at the
positions detailed in (iii), Sec. VI. C]. In this section (i.e.
Sec. VI) the contraction diffeomorphisms have been used
not only to contract the displaced vertex to its desired
poistion but to also place the kinks at their desired positions
[see (iii) of Sec. VI. C] as well as to “stiffen” the cone
angle [see (6.17)]. Indeed such positioning and stiffening
is more in line with the picture developed in P1, P2 of
the deformation map φðqiI ⃗êI; δÞ [see (3.5)] as a singular
diffeomorphism which pulls the edges along the Ith one. In
Sec. VIII we shall augment the notation used in this section
so as to include the specification of the preferred kink
locations; the stiffening will be implicitly assumed without
recourse to explicit notation.

E. Action of constraint operators on state
not in the ket set

Since the ket set is closed under diffeomorphisms, any
ket not in this set must have some diffeomorphism invariant
characteristic which distinguishes it from elements of the
ket set. We would like to define the action of constraint
operators on such a ket so that this diffeomorphism
invariant characteristic is preserved. However, since we
do not explicitly know what this characteristic is given
such a ket, we use a blunt and inelegant definition of the
deformations generated by the constraints on such a ket.
This definition deforms kets in such a way that the
deformed offspring kets are in the complement of the
ket set if the parent kets being deformed are also in
the complement. This can be done, for example, by
defining the deformation map (see last line of Sec. VI. C
for a definition of the deformation map) to nontrivially
knot one (or more) of the deformed edges at the offspring
vertex. Another possibility would be to define the defor-
mations to be “off edge” as in P1, P2.

In the remainder of the paper we assume that some such
definition has been employed so as to ensure that the
discrete action of constraint operators preserves the com-
plement of the ket set.

VII. THE ANOMALY FREE DOMAIN OF STATES

A state in the anomaly free domain resides in the
algebraic dual space to the space of finite linear combina-
tions of charge nets. Such a state can be represented as a
kinematically non-normalizable sum over charge net
bras. The anomaly free domain will be constructed as
the linear span of basis states. To each basis state we
associate a set of bras such that the basis state is a sum over
bras in this associated “bra set.” The set of kets corre-
sponding to this bra set is a subset of the ket set we
constructed in Sec. VI. B. We discuss our choice of bra set
in Sec. VII. A and we construct basis states in Sec. VII. B.
In what follows we often denote the bra hcj by c to avoid
notational clutter.

A. Bra set

Let cP0 be the bra correspondent of some primordial
reference ket in the ket set of Sec. VI. B. Consider the set of
N edges at the nondegenerate vertex p0 of cP0 and the
(unordered) set of N Uð1Þ3 charge labels, one for each of
these edges. Next consider the set Sprimordial;P0 of all
primordial reference states each of whose elements satisfy
either of the restrictions below on their edge charge sets
at p0:

(i) the unordered set of edge charge labels at the vertex
p0 of each such state is identical to the correspond-
ing set for cP0.

(ii) there exists some flip ½i; β�m such that the set of
(unordered) edge charge labels at the vertex p0 of
each such state is the flipped image of the corre-
sponding set for cP0 by this flip [here we have used
the notation of (6.5) for charge flips].

Recall that any primordial is subject to the restrictions
detailed in Sec. VI. B. Hence only those states which have
the prescribed unordered edge charge sets of type (i) or
(ii) and satisfy these restrictions are elements of
Sprimordial;P0. Next, fix an element cP̄0 of Sprimordial;P0 and
consider the set Sprim;P̄0 of all its primaries (i.e. all its
children and itself) together with all their diffeomorphic
images. Consider the set BP0 of all elements of Sprim;P̄0 as
we vary cP̄0 over Sprimordial;P0. This set constitutes our
bra set.
The set has the following property. Let c ∈ BP0 and let

c0 be its reference state (we use the bra correspondents of
the reference kets of Sec. VI. B to define reference bras).
Let cP00 be a primordial reference state such that c0 is a
multiple deformation of cP00. Then the property of BP0
alluded to is that cP00 ∈ Sprimordial;P0.
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To see this, note the following. Since c0 is diffeomorph-
ically related to c, we have that c0 is also in BP0. Recall
from Sec. VI. B that c0 must be a primary because it is a
reference state. Hence it must be obtained as some multiple
deformation of some reference primordial in the ket set.
From Appendix C, the unordered net edge charge set at the
nondegenerate vertex of c0 is the same as some multiply
flipped image of the unordered edge charge set of any
reference primordial ancestor whose multiple deformations
give rise to c0. By construction [see (i) and (ii) above], any
such ancestor is in BP0.
To appreciate the kind of situations covered by the proof

let us suppose that we drop (i) and (ii) and choose the bra
set to be composed of all diffeomorphic images of the
primary family (including cP0) emanating from cP0. As
before the reference state c0 for any element c of this bra set
must be a primary and hence obtained by some multiple
deformation of some reference primordial in the ket set. Let
this primordial be cP00. Consider the case where c0 is
obtained as a single electric diffeomorphism type defor-
mation of cP00. Next note that by construction it must be the
case that c0 is diffeomorphic to a primary cprim emanating
from cP0. Note also that from the kink structure of cprim, it
must be the case that cprim is also a single electric diffeo-
morphism deformation of cP0.

30 If we could use this fact
that c0 is diffeomorphic to cprim to conclude that cP00 is
diffeomorphic to cP0 then, from the definition of (primor-
dial) reference states, we could conclude that cP00 and cP0
are identical. Note however that because the deformation is
of an electric diffeomorphism type, the nondegenerate
vertex of cP0 as well as the vertex structure in a small
vicinity of this vertex is absent from the graph underlying
cprim and, similarly, the nondegenerate vertex of cP00 as well
as the vertex structure in a small vicinity of this vertex is
absent from the graph underlying c0. Hence we cannot
directly conclude that the diffeomorphism which maps c0
to cprim necessarily maps cP00 to cP0.

31

In the context above, the property cP00 ∈ Sprimordial;P0 is
crucial for the well defined-ness of the dual action of an
electric diffeomorphism operator on anomaly free states
associated with BP0. As shall be apparent in Secs. X and
XI, for this action to be well defined, it must be the case that
the discrete action of this operator on any charge net c is
such that either the (bra correspondents of) c and all its
single electric diffeomorphism deformations are absent in
BP0 or c and all its deformations are all present in BP0. If in

the above example involving an electric diffeomorphism,
we had that cP00 above was not in BP0, the fact that its first
electric diffeomorphism deformation was in BP0 would
then lead to an ill-defined-ness of the dual action of an
electric diffeomorphism operator on a typical anomaly free
state associated with BP0.
More in general the restrictions (i), (ii) of the edge charge

set of the primordials in BP0 can be used to conclude that all
possible ancestors of any c ∈ BP0 (by a possible ancestor
we mean state on which multiple constraint actions lead to
the creation of c) and all possible children of c (by which
we mean all multiple deformations of c generated by
multiple constraint actions) are in BP0 (here we freely
switch between ket and bra correspondents of the state c).
To see this, note that by construction (see Sec. VI) all
possible ancestors and offspring of c are in the ket set.
Recall again that all reference states must be primaries and
consider for c ∈ BP0 any ancestor ca of c and its reference
state ca0. By definition of ancestry it must be true that
deformations of this ancestor reference state (with respect
to fx0g) yield a state diffeomorphic to the reference state,
c0, for c. It follows from Appendix C that any reference
primordial for the reference state ca0 of the ancestor must
have an edge charge set related to that of any reference
primordial ancestor of c0 by (i) or (ii). Since any reference
primordial for c0 is in BP0 so must any reference primordial
state for the ancestor reference state ca0. It follows from the
construction of BP0 that the ancestor reference state and,
hence the ancestor, must also be in BP0. Finally, note that
by construction, if c is in BP0 then all its offspring are also
in BP0. This follows directly from the fact that by definition
any such offspring is diffeomorphic to a primary which
emanates from the same primordial reference state as one
which yields the reference state c0 for c. The fact that all
possible ancestors and offspring of any element of c are
necessarily in BP0 ensures the well defined-ness of the dual
actions, on anomaly free states associated with BP0, of
those constraints which are necessary for a demonstration
of anomaly free commutators.32

B. Basis states

Let f be a density weight − 1
3
semianalytic function on

the Cauchy slice Σ and let hab be a semianalytic
Riemannian metric such that hab has no conformal sym-
metries. Let g be a function on ΣmðN−1Þ of the type specified
in Appendix G. As detailed in Appendix G. 1, this function
is determined by the network of geodesic distances, as
defined by hab, between every pair of its arguments. Thus g
is determined once hab is specified.

30cprim must have N − 1 C0 kinks; any state with mðN − 1Þ
such kinks is an m deformation of a primordial. Since cprim has
only a single vertex of valence N and none of valence N þ 1, this
deformation is of electric diffeomorphism type.

31We do not rule out that it may be possible to do so using a
more involved argument; since we have not constructed any such
argument, we prefer to cover the adverse consequences, sketched
below, of the possible absence of such an argument through our
construction of BP0 in the first paragraph.

32Of course we could have chosen the (bra correspondent) of
the entire ket set as our bra set as it would obviously satisfy the
required property. However this would unnecessarily cut down on
the size of the space of anomaly free states.

MADHAVAN VARADARAJAN PHYS. REV. D 97, 106007 (2018)

106007-36



A basis state Ψf;hab;P0
associated with the bra set BP0 is

constructed as a sum over all the elements of BP0 where
the coefficient of each such element c̄ in this sum is
determined by f; hab as follows. Let the reference state for
c̄ be c̄0 and let the reference diffeomorphism which maps c̄0
to c̄ be ᾱ so that

jc̄i ¼ ÛðᾱÞjc̄0i: ð7:1Þ

Since the coordinate patch fx0g is associated with the
nondegenerate vertex of c̄0, we define the coordinate patch
associated with the nondegenerate vertex of c̄ to be

fxᾱg ≔ ᾱ�fx0g: ð7:2Þ

We shall refer to this coordinate patch as a reference
coordinate patch to distinguish it from the contraction
coordinate patches defined at the end of Sec. VI. D. 2.
Next, note that c̄0 is a primary and hence is either

identical to, or obtained by, some multiple deformation of
some reference primordial in BP0. While it is possible, in
principle, that this reference primordial is not unique,33 the
number m of deformations of any primordial ancestor
which yields c̄0 is unique. To see this, note that from the
nature of the deformations detailed in Secs. III, IV and V,
each single deformation generates a set of N − 1 C0 kinks.
Hence the number of C0 kinks in c̄0, and hence c̄, must be
mðN − 1Þ for some whole number m which corresponds to
the number of deformations of an appropriate reference
primordial which yields c̄0 (if m ¼ 0, c̄ is primordial).
Next, with respect to the reference coordinates (7.2) let

us denote the (outward) unit edge tangents at the non-
degenerate vertex vm of c̄ by fêaIm ; Im ¼ 1; ::; Ng where
“unit” is with respect to the (reference) coordinate norm.
As discussed earlier if vm is CGR we shall count the upper
and lower conducting edges as a single edge, where the
notion of upper and lower is fixed from the kink structure in
the vicinity of vm as outlined in Sec. V. For the conducting
edge we may choose the (outward pointing) upper con-
ducting edge tangent.34 Define

HIm ≔ k ⃗êImk ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðvmÞêaIm êbIm

q
; ð7:3Þ

hIm ¼
X

Jm;Km≠Im

k ⃗êJmk
k ⃗êKm

k
; ð7:4Þ

and let fðvmÞ be the evaluation of the density weighted
function f at the vertex vm in the reference coordinates (i.e.

in the coordinate system fxᾱg). Next, consider the
mðN − 1ÞC0 kinks on c̄. We evaluate gc̄ on the arguments
corresponding to these kinks where we have defined gc̄ in
Appendix G. Then the coefficient multiplying c̄ in the sum
over state representation of Ψf;hab;P0

is

ðΨf;hab;P0
jc̄i ¼ gc̄

�X
Im

hImHIm

�
fðvmÞ ð7:5Þ

where for any element of the algebraic dual Ψ, we write its
action on a charge net state jbi as ðΨjbi.35 The formal sum
over states representation of the state ðΨf;hab;P0

j is

ðΨf;hab;P0
j ¼

X
hc̄j∈BP0

�
gc̄

�X
Im

hImHIm

�
fðvmÞ

�
hc̄j; ð7:6Þ

where we have implicitly used Eqs. (7.1) and (7.2) to
evaluate the quantities gc̄; hIm ; HIm; fðvmÞ on the right-
hand side.
Finally we note the following key property of the right-

hand side of (7.5):
Invariance property.—Let the coordinates appropriate to

the evaluation of the right-hand side of (7.5) be defined
through (7.2) i.e. let the right-hand side of (7.5) be
evaluated with respect to the reference coordinates for c̄.
Consider a second coordinate system fyg around the
nondegenerate vertex vm of c̄ such that the Jacobian matrix

Jðfxᾱg; fygÞμν ≔ ∂xμᾱ∂yν be such that its evaluation at vm is a
constant times a rotation i.e.

Jðfxᾱg; fygÞμνÞjvm ¼ CRμ
ν ð7:7Þ

for some C > 0 and some SOð3Þ matrix R. Then the
evaluation of the right-hand side is the same whether the
coordinates used are fxᾱg or fyg.
This is easily verified by inspection. It is straightforward

to check that, in obvious notation,

fðvmÞjfyg ¼C−1fðvmÞjfxᾱg; HIm jfyg ¼CHIm jfxᾱg: ð7:8Þ

The first equality follows from the density −1=3 nature of f
and the second from the fact the coordinate vector lengths
are invariant under rotations of the coordinates and scale
inversely with scaling of the coordinates. Further since hIm
involves ratios of norms of coordinate tangents, it is
invariant under such a transformation. Finally, from its
definition in Appendix G, gc̄ is coordinate independent.

33While it may indeed be unique, we have not investigated the
matter and hence must allow for this possibility.

34Since (7.3) depends on the edge tangent norm, the choice of
these orientations does not matter; we provide the above choices
for concreteness.

35Recall an element of the algebraic dual is a linear map from
the finite span of charge net states to the complex numbers. We
shall use the notation Ψ or ðΨj for such elements depending on
our convenience.
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VIII. CONTINUUM LIMIT: FINAL FORM AND
CONTRACTION BEHAVIOR ON ANOMALY

FREE DOMAIN

In Sec. VI we defined the contraction of deformations of
states from larger discretization parameter to smaller ones
using contraction diffeomorphisms. The contraction moves
the nondegenerate vertex from a larger coordinate distance
from its immediate parent vertex (in appropriate coordi-
nates as explained in Sec. VI. D. 2) to a smaller one.
However the contraction also has a “fine structure” involv-
ing the positioning of the C0 kinks generated by the
transformation which produces the state in question from
its parent. Each choice of this fine structure yields an
acceptable discrete approximant for the constraint action. In
Sec. VIII. A we democratically sum over these fine struc-
tures and display our final choice of discrete approximant
for the action of a single constraint in Eqs. (8.5) and (8.6)
which replace Eqs. (4.5) and (4.6). Constraint product
actions can then easily be defined based on the machinery
developed in Sec. VI. In Sec. VIII. B we display the dual
action of the constraint product on basis states in the
anomaly free domain and define its continuum limit. The
contraction of deformations of kets is then transferred to
that of the bras in the bra set of Sec. VII. A and thence to the
coefficients which multiply these bras (see Sec. VII. B).
The evaluation of the continuum limit then depends on the
contraction behavior of these coefficients. We detail this
behaviour in Sec. VIII. C. A complete specification of the
contraction behaviour requires a specification of the Q
factors in the definition of the contraction diffeomorphism
of Sec. VI. C. We discuss this in Sec. VIII. D. With this, we
are ready to compute the continuum limit action of
constraint products in Secs. IX and X.

A. Final form of discrete constraint action

The discrete action of the constraint product (6.23) is
based on the single constraint actions (4.5) and (4.6) at
sufficiently small parameter value ϵ so that the single
constraint actions are

Ĉ½N�ϵc¼β
ℏ
2i

3

4π
NðxðvÞÞν−2=3v

X
I

X
i

cði;I;β;ϵÞ−c

ϵ
; ð8:1Þ

D̂ϵ½N⃗i�c¼
ℏ
i
3

4π
NðxðvÞÞν−2=3v

X
I

1

ϵ
ðcði;I;β¼0;ϵÞ−cÞ: ð8:2Þ

The deformed kets in (6.23) arise as a result of repeated
applications of (8.1) and (8.2). These kets are defined
through the contraction of their images at larger discretiza-
tion parameter values as explained in Sec. VI. The con-
traction procedure involves a contraction of kink vertices to
precisely defined locations. These locations are specified
by a choice of two edges in the child, cði;I;β;ϵÞ, each of which
is distinct from the edge along which the child vertex is

displaced [this is reflected in the dependence of the
contraction diffeomorphism on the ‘hatted’ indices in,
for example, Eq. (6.42)]. As a result, a deformed ket
cði;I;β;ϵÞ is characterized not only by the labels ði; I; β; ϵÞ
which describe the main features of the deformation such as
the location of the displaced vertex but also the labels
Ĵ1; K̂1 which describe the fine structure of the location of
the kinks.36 Hence a more complete notation replaces the
label set ði; I; β; ϵÞ by ði; I; Ĵ1; K̂1; β; ϵÞ. Of course a
complete set of labels pertinent to multiply deformed kets
is, for example, that in Eq. (6.42). However, to display the
single constraint actions in a more complete way than in
(8.1) and (8.2) it suffices to use the abbreviated set of
symbols ði; I; Ĵ1; K̂1; β; ϵÞ so that Eqs. (8.1) and (8.2) take
the form

Ĉ½N�ϵc ¼ β
ℏ
2i

3

4π
NðxðvÞÞν−2=3v

X
I

X
i

cði;I;Ĵ1;K̂1;β;ϵÞ − c

ϵ
;

ð8:3Þ

with β ¼ þ1 or β ¼ −1, and

D̂ϵ½N⃗i�c ¼ ℏ
i
3

4π
NðxðvÞÞν−2=3v

X
I

1

ϵ
ðcði;I;Ĵ1;K̂1;β¼0;ϵÞÞ − cÞ:

ð8:4Þ

Since each choice of hatted indices provides an acceptable
discrete action which is derivable from the heuristics of
Sec. II, summing over these choices also yields an
acceptable discrete action. Accordingly we may repeat
the considerations of Sec. VI based on the following form
of single constraint actions:

Ĉ½N�ϵc ¼ β
ℏ
2i

3

4π
NðxðvÞÞν−2=3v

X
I

X
Ĵ1;K̂1

1

ðN − 1ÞðN − 2Þ

×
X
i

cði;I;Ĵ1;K̂1;β;ϵÞ − c

ϵ
; ð8:5Þ

with β ¼ þ1 or β ¼ −1, and

D̂ϵ½N⃗i�c ¼ ℏ
i
3

4π
NðxðvÞÞν−2=3v

X
I

X
Ĵ1;K̂1

1

ðN − 1ÞðN − 2Þ

×
1

ϵ
ðcði;I;Ĵ1;K̂1;β¼0;ϵÞ − cÞ: ð8:6Þ

The NðN − 1Þ factors stem from the choice of 2 of the
N − 1 edges which bear the C0 kinks created in the

36The subscript 1 refers to the fact that the hatted indices
number nonconducting edges of the child cði;I;β¼0;ϵÞ which, here,
is obtained by a single deformation its parent c; see the discussion
after Eq. (6.27) for the definition of hatted indices.
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deformation of the parent. Equations (8.5) and (8.6) are the
final form of the single constraint actions which we shall
use. Once again, similar to Sec. VI. D we can expand the
action of the constraint operator product ½Qn

i¼1 Ôi;ϵiðNiÞ� on

the state c through repeated applications of (8.5) and (8.6)
to obtain an expression of the form (6.23) except that the
label set must now, in obvious notation, be embellished by
the specification of the hatted indices so that we have

�Yn
i¼1

Ôi;ϵiðNiÞ
�
jci ¼

�Yn
i¼1

ϵi

�
−1 X

½i;I;Ĵ;K̂;β;ϵ�m;m¼1;::;n

C½i;I;β;Ĵ;K̂;ϵ�m jc½i;I;Ĵ;K̂;β;ϵ�mi þ C0jci ð8:7Þ

where we have abbreviated

½i; I; Ĵ; K̂; β; ϵ�m ≡ ½ðim−1; Im−1; βjm ; Ĵm; K̂m; ϵjmÞ;…; ði; I; Ĵ1; K̂1; βj1 ; ϵj1Þ�: ð8:8Þ

Each c½i;I;Ĵ;K̂;β;ϵ�m is defined exactly as in Sec. VI. C. Thus,
each c½i;I;Ĵ;K̂;β;ϵ�m is the α image (where as before αmaps the
reference ket c0 to c) of the state c0½i;I;Ĵ;K̂;β;ϵ�m and each
c0½i;I;Ĵ;K̂;β;ϵ�m is obtained as the image of the state c0½i;I;β;δ0�m
through Eq. (6.42), the state c0½i;I;β;δ0�m being defined by
repeated conical deformations with respect to the coordi-
nate system fx0g, each of the type described in Appendix B
and Sec. V. Note that the deformations of Appendix B
and Sec. V do not have a further fine structure labeled by
hatted indices so that c0½i;I;β;δ0�m is defined as the result of
the deformation ½i; I; β; δ0�m of Eq. (6.25) applied to the
reference state c0.
The discussion of the coordinates underlying the

deformed states c½i;I;Ĵ;K̂;β;ϵ�m is exactly that of
Secs. VI. D. 1. a and VI. D. 2. The coefficient C½i;I;Ĵ;K̂;β;ϵ�m
in (8.7) acquires a coordinate dependence solely from
the dependence of this coefficient on the lapse functions.
Each lapse function is evaluated at some nondegenerate
vertex of one of the states which define the lineage of
c½i;I;Ĵ;K̂;β;ϵ�m . Since the considerations of Sec. VI. D (see
especially Secs. VI. D. 1. c and VI. D. 2) have provided a
unique choice of coordinate patches for every such vertex,
every coefficient on the right-hand side of (8.7) can be
evaluated.

B. Dual action on anomaly free domain

The dual action of ðQn
i¼1 Ôi;ϵiðNiÞÞ on a basis state

Ψf;hab;P0
is defined as

ðΨf;hab;P0
j
�Yn

i¼1

Ôi;ϵiðNiÞ
�
jci: ð8:9Þ

The action of the operator product ðQn
i¼1 ÔiðNiÞÞ is then

defined by the continuum limit:

�
lim
ϵn→0

�
lim

ϵn−1→0
…

�
lim
ϵ1→0

ðΨf;hab;P0
j
�Yn

i¼1

Ôi;ϵiðNiÞ
�
jci

�
::

��
:

ð8:10Þ

The continuum limit action exists if Eq. (8.10) holds for all
charge net states jci. From Sec. VI. E, this limit vanishes
for all c which are not in the ket set. Indeed, it follows from
the discussion in Sec. VII. A that this limit also vanishes if
(the bra correspondent of) c is not in the bra set BP0

associated with the anomaly free state Ψf;hab;P0
. Hence we

need only analyse the continuum limit for states c (whose
bra correspondents) are in the bra set BP0

. For such states
we expand out the discrete operator product action as in
(8.7), so that we have

ðΨf;hab;P0
jð
Yn
i¼1

ÔiðNiÞÞci lim
ϵn→0

…ð lim
ϵ1→0

ðΨf;hab;P0
jð
Yn
i¼1

Ôi;ϵiðNiÞÞjciÞ::Þ

¼ lim
ϵn→0

ð lim
ϵn−1→0

…ð lim
ϵ1→0

ð
Yn
i¼1

ϵiÞ−1
� X

½i;I;Ĵ;K̂;β;ϵ�m;m¼1;::;n

C½i;I;Ĵ;K̂;β;ϵ�mðΨf;hab;P0
jc½i;I;Ĵ;K̂β;ϵ�mi þ C0ðΨf;hab;P0

jciÞÞ::
�
: ð8:11Þ

Clearly, in order to compute this limit we need to know the
limiting behavior of the coefficients C½i;I;Ĵ;K̂β;ϵ�m and of the
“amplitudes” ðΨf;hab;P0

jc½i;I;Ĵ;K̂;β;ϵ�mi. The limiting behavior
of the coefficients stems from the dependence of the
coefficients on the coordinate dependent lapse function

evaluations, these coordinates being dependent on the ϵ
parameters. The limiting behavior of the amplitudes can
be computed from that of the expression (7.5) and the
limiting behavior of the functions f, g and the (reference)
coordinate dependent unit edge tangents. In the next
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section we compute this limiting “contraction” behavior of
the amplitudes.

C. Contraction behavior of amplitudes

In this section we are interested in the behavior of

ðΨf;hab;P0
jc½i;I;Ĵ;K̂;β;ϵ�mi ð8:12Þ

for small ϵjm . We shall restrict attention to the particular
deformation sequence ½i; I; Ĵ; K̂; β; ϵ�m in this section. As in
Secs. VI, VIII. A the deformed state c½i;I;Ĵ;K̂;β;ϵ�m will be
assumed to have been generated by the discrete action of
the operator product ðQn

i¼1 Ôi;ϵiðNiÞÞ on the state c [see
(8.7)]. Hence the sizes of the contraction parameters are
defined with respect to the contraction coordinates of
Sec. VI (see the end of Sec. VI. D. 2). More in detail, the
contraction coordinates which specify the magnitude of ϵjm
are those associated with the immediate parent c½i;I;β;ϵ;Ĵ;K̂�m−1

m

of the state c½i;I;Ĵ;K̂;β;ϵ�m . On the other hand, the amplitude
(8.12) is evaluated using the reference coordinates asso-
ciated with c̄≡ c½i;I;Ĵ;K̂;β;ϵ�m in (7.5).
Therefore we proceed as follows. First we transit from

the reference coordinates associated with c½i;I;Ĵ;K̂;β;ϵ�m to the
contraction coordinates associated with this state. It turns
out that the evaluation (7.5) is the same irrespective of
which one of these coordinate systems we use. This is a key
result and can be traced back to the definition of deforma-
tions developed in Sec. VI. Next, using the fact (6.40)
that contraction coordinates for a deformed state and its
immediate parent are related by a contraction diffeomor-
phism, we are able to compute the amplitude (8.12) in
terms of the contraction coordinates of the immediate
parent. Since the size of the parameter ϵjm is measured
by these coordinates, we are able to evaluate the small ϵjm
behavior of this amplitude.
As noted in Sec. VIII. B, if c ∉ BP0

then all amplitudes
on the right-hand side of (8.11) vanish. Hence hereon
we focus on the nontrivial case c ∈ BP0

so that
c½i;I;Ĵ;K̂;β;ϵ�m ∈ BP0

.

1. Step 1: Transition from reference to contraction
coordinates of c½i;I;Ĵ;K̂;β;ϵ�m

Let the reference ket for the state c½i;I;Ĵ;K̂;β;ϵ�m be
ðc½i;I;Ĵ;K̂;β;ϵ�mÞ0. Let the reference diffeomorphism be
α½i;I;Ĵ;K̂;β;ϵ�m so that similar to (6.10) we have

jc½i;I;Ĵ;K̂;β;ϵ�mi ≔ Ûðα½i;I;Ĵ;K̂;β;ϵ�mÞjðc½i;I;Ĵ;K̂;β;ϵ�mÞ0i; ð8:13Þ

so that the associated reference coordinate system around
the nondegenerate vertex vm of c½i;I;Ĵ;K̂;β;ϵ�m is

ðα½i;I;Ĵ;K̂;β;ϵ�mÞ�fx0g: ð8:14Þ

We now turn to the contraction coordinates for
c½i;I;Ĵ;K̂;β;ϵ�m . Let the reference ket for c be c0 and let the
reference diffeomorphism which maps c0 to c be α so that
(6.10) holds. Note that we have not restricted c0 to be a
primordial. The state c½i;I;Ĵ;K̂;β;ϵ�m is obtained as the image of
the state c0½i;I;Ĵ;K̂;β;ϵ�m by α. Recall that c0½i;I;Ĵ;K̂;β;ϵ�m is
obtained through the action of a composite contraction
diffeomorphism on the state c0½i;I;β;δ0�m as in Eq. (6.42).37

The state c0½i;I;β;δ0�m is a primary which is obtained by
deforming the reference state c0 m times, each these
deformations being defined with respect to the reference
coordinates fx0g and each of these deformations being of
the type detailed in Appendix B and Sec. V.38 It follows
from (iv), Sec. VI. D. 1. b that the contraction coordinates
around the nondegenerate vertex of c0½i;I;Ĵ;K̂;β;ϵ�m are
obtained as the image of the primary coordinates fx0g
around the nondegenerate vertex of c0½i;I;β;δ0�m by the
composite contraction diffeomorphism of (6.42) defined
by (6.41). We denote the contraction coordinates for
c0½i;I;Ĵ;K̂;β;ϵ�m by fxϵj1 ::ϵjm0 g.39 We then have that

fxϵj1 ::ϵjm0 g ≔
�
Φϵj1 ::ϵjm ;ðĴ1;K̂1Þ;::;ðĴm;K̂mÞ

c½i;I;β;δ0 �m ;Sj1

��fx0g ð8:15Þ

and that the contraction coordinates for c½i;I;Ĵ;K̂;β;ϵ�m are

fxϵj1 ::ϵjmα g ≔ α�fxϵj1 ::ϵjm0 g
¼ α�

�
Φϵj1 ::ϵjm ;ðĴ1;K̂1Þ;::;ðĴm;K̂mÞ

c½i;I;β;δ0 �m ;Sj1

��fx0g: ð8:16Þ

Our task is to compute the Jacobian between the
reference coordinates (8.14) and the contraction coordi-
nates (8.16). This is computed in the Appendix E wherein it
is shown that the Jacobian between the two coordinate
systems takes the form of a constant times a rotation matrix.
From the invariance property of Sec. VII. B it then follows
that we can as well evaluate (8.12) using the contraction
coordinates (8.16).

37In the more complete notation introduced in Sec. VIII. A the
left-hand side states in these equations would also have a hatted
indice specification.

38These deformations do not have the additional specification
of hatted indices because the placement of the associated C0

kinks in Appendix B and Sec. V does not require this additional
specification.

39This is similar to the notation used in (6.40). Recall that
(6.40) was defined for k < m. Extending the notation in (6.40) for
k ¼ m, it can be easily checked that (6.41) together with (6.40)
for k ¼ m − 1 imply Eq. (6.40) for k ¼ m.
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2. Step 2: Transition to contraction coordinates
of immediate parent

The immediate parent of c½i;I;Ĵ;K̂;β;ϵ�m is c½i;I;β;ϵ;Ĵ;K̂�m−1
m

. The
contraction coordinates for this immediate parent are the α
image of those for the state c0½i;I;β;ϵ;Ĵ;K̂�m−1

m
. Accordingly,

taking the α image of (6.40)) with k ¼ m − 1, we have that
these contraction coordinates are

fxϵj1 ::ϵjm−1
α g ≔ α�fxϵj1 ::ϵjm−1

0 g:

The relationship between the contraction coordinates of the
child-parent pair c0½i;I;Ĵ;K̂;β;ϵ�m, c0½i;I;β;ϵ;Ĵ;K̂�m−1

m
can be readily

inferred from Eqs. (6.40) (with k ¼ m − 1), (8.15), (6.41),
(8.16) and (8.17), so that we have that

fxϵj1 ::ϵjmα g ¼ α�fxϵj1 ::ϵjm0 g ð8:17Þ

¼ α�
�
Φϵjm ;fx

ϵj1
::ϵjm−1

0
g;Ĵm;K̂m

c
0½i;I;β;ϵ�m−1

m
;ðim−1;Im−1;βjm ;δ0jm Þ;Sjm

��fxϵj1 ::ϵjm−1
0 g:

ð8:18Þ

The above equation simply expresses the (α image of
the) fact that the contraction coordinates of any deformed
state and its immediate parent are related by the action
of a contraction diffeomorphism defined in Sec. VI. C.
Indeed the iterative procedure used in Sec. VI. D. 1. b
implements this very fact. Next, from the fact that for
any diffeomorphism γ and any coordinate systems fxg; fyg
we have that

∂ðγ�xÞμ
∂ðγ�yÞν

����
γðpÞ

≕
∂xμ
∂yν

����
ðpÞ

; ð8:19Þ

it follows that the Jacobian between the contraction
coordinates of offspring and immediate parent is given
exactly by that of Eq. (6.16) with the identifications

xδ ≡ x
ϵj1 ::ϵjm
α ; x≡ x

ϵj1 ::ϵjm−1
α ; δ≡ ϵjm : ð8:20Þ

Recall from the discussion at the beginning of this sub-
section as well as from Sec. VI. D. 2 that the contraction
parameter ϵjm is measured with respect to the parental

contraction coordinates x
ϵj1 ::ϵjm−1
α . Hence the contraction

behavior of the amplitude can be inferred from the behavior
of the quantities hIjm ; HIjm

; f; gc½i;I;Ĵ;K̂;β;ϵ�m
(see Sec. VI) in

these parental contraction coordinates. This a straightfor-
ward though lengthy exercise and we relegate it to the
appendixes. Specifically, we compute the contraction
behavior of the first three quantities in Appendix F using
the Jacobian in Eq. (6.16) and that of the last quantity in
Appendix G. 2.

D. Specification of Q factors

Recall that Q is one of the parameters specifying
a contraction diffeomorphism [see (iii), Sec. VI. C].
We had briefly discussed its specification in Step 2 of
Sec. VI. D. 1. b. Here we summarize its dependences [see
(6.32)] in a bit more detail. Our explicit choices for Q will
be displayed in Secs. IX and X wherein the rationale for
these choices will be self-evident.
Recall that we are interested in a state which is produced

by the action of some specific product of Hamiltonian and
electric diffeomorphism constraint operators (6.18) on a
state c. This state is produced through some deformation
sequence applied to its ancestor c. We are interested in the
contraction of this state to its immediate parent in this
deformation sequence. Using the notation of Sec. VI. C, let
the state be an mth generation offspring c½i;I;Ĵ;K̂;β;δ�m where
we have used the augmented notation with the hatted
indices as explained in (8.8), and let its parent be
c½i;I;Ĵ;K̂;β;δ�m−1

m
and let the parameter being contracted away

be δjm . ThenQ depends on the net edge charges of the child
and the parent at their nondegenerate vertices as well as the
sequence of operators starting from the first operator to the
jmth one i.e. on the sequence

Sjm ¼
Yδjm
i¼1

Ôi;δiðNiÞ: ð8:21Þ

Since the charges at the vertices of c½i;I;Ĵ;K̂;β;δ�m ,
c½i;I;Ĵ;K̂;β;δ�m−1

m
are the same as the charges on their (diffeo-

morphically related) δ0 counterparts, we express the
dependence Q for this contraction in the following equiv-
alent notations:

Qðc½i;I;β;δ�m−1;m
m

; SjmÞ≡Qðc0½i;I;β;δ0�m−1;m
m

; SjmÞ
≡Qðc0½i;I;β;δ0�m; c0½i;I;β;δ0�m−1

m
; SjmÞ:

ð8:22Þ
The individual constraint operators in the above sequence

can be of two types, namely a Hamiltonian constraint or an
electric diffeomorphism constraint in the kthUð1Þ3 direction
with k ¼ 1, 2, 3. Let us denote these constraint types as h
and dk, k ¼ 1, 2, 3 respectively so that the constraint type of
an operator ĈðNÞ is h and that of D̂ðNkÞ is dk. We shall say
that the constraint type ti of the operator ÔiðNiÞ [or of its
discrete approximant Ôi;δiðNiÞ] is either h or dk. It then turns
out that the information in Sjm relevant for the specification
of Q is the sequence of constraint types ðt1;…tjmÞ. We shall
redesignate the symbol Sjm to denote the ordered set of
constraint types ðt1;…tjmÞ:

Sjm ≡ ðt1;…tjmÞ: ð8:23Þ
Henceforth we shall interpret Sjm in (8.22) through (8.23).
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Q also depends on the cone angle θ which characterizes
the conical deformations of reference states, these defor-
mations being constructed using the primary coordinates
fx0g. This cone angle is fixed for all deformations of
reference states in the bra set which labels an anomaly free
state. To avoid notational clutter we will suppress explicit
notational reference to the dependence of Q on θ.

IX. ANOMALY FREE PRODUCT OF TWO
HAMILTONIAN CONSTRAINTS

In Sec. IX. Awe compute the continuum limit action of a
product of two Hamiltonian constraints. In Sec. IX. B we
compute the commutator between two electric diffeomor-
phism constraints and thereby demonstrate the anomaly
free nature of the commutator between the pair of
Hamiltonian constraints whose product is computed in
Sec. IX. A. The computations are long but straightforward.
We shall only highlight the main steps.
Note.—In the remainder of the main body of the paper,

unless mentioned otherwise, all the edge charges consid-
ered will be net charges where, as in Appendix C we define
the net charge as follows:
Definition: Net edge charge.—The net charge qinetI on a

conducting edge eI at the nondegenerate vertex of a charge
net is the sum of the outgoing upper and lower conducting
charges; if the edge eI is nonconducting we shall define its
lower conducting charge to be zero so that the net charge
qinetI on such an edge is just its outgoing charge qiI.
In what follows we shall drop the net subscript; all

charges henceforth, unless mentioned otherwise, will be
net charges and the net charge associated with an Ith edge
will be denoted simply by qiI.

A. Product of two Hamiltonian constraints

1. Notation

We compute the continuum limit (8.10) when n ¼ 2 and
ÔiðNiÞ; i ¼ 1, 2 are Hamiltonian constraint operators. We
restrict our attention to the case that c in (8.10) is in the bra
set because, as mentioned in Sec. VIII. A, for c not in the
bra set, the dual action vanishes. In Eq. (8.10), we set

N1 ≡M; β1 ≡ βM; N2 ≡ N; β2 ≡ βN;

ϵ1 ≡ δ̄; ϵ2 ≡ δ: ð9:1Þ

As we shall see, the discrete action of this Hamiltonian
constraint operator product generates the doubly deformed
states c½i;I;Ĵ;K̂;β;δ�2 , the singly deformed states c½i;I;Ĵ;K̂β;δ�1 and
cðj;J;R̂1;Ŝ1;βM;δ̄Þ, and c. Here we have defined the transitions:

½i; I; Ĵ; K̂;β;δ�2 ¼ ½ði1; I1; Ĵ2; K̂2;βM; δ̄Þ; ði; I; Ĵ1; K̂1;βN;δÞ�;
ð9:2Þ

½i; I; Ĵ; K̂; β; δ�1 ¼ ði; I; Ĵ1; K̂1; βN; δÞ: ð9:3Þ

The singly deformed state cðj;J;R̂1;Ŝ1;βM;δ̄Þ is distinct from
the singly deformed state (9.3) and is obtained through the
deformation ðj; J; R̂1; Ŝ1; βM; δ̄Þ of c. In particular, the
parameter for this transformation is δ̄ whereas that for
(9.3) is δ.
The above transitions are exactly those described in

Secs. VI. D augmented with the hatted indices of (8.8). To
see this, use (9.1). It is then straightforward to see that by
setting, in (8.8),

m ¼ 2; j2 ¼ 1; j1 ¼ 2; we obtain ½i; I; Ĵ; K̂; β; δ�2;
ð9:4Þ

m ¼ 1; j1 ¼ 2; we obtain ½i; I; Ĵ; K̂; β; δ�1; ð9:5Þ

m ¼ 1; j1 ¼ 1; i ¼ j; I ¼ J; Ĵ1 ¼ R̂1;

K̂1 ¼ Ŝ1; we obtain ðj; J; R̂1; Ŝ1; βM; δ̄Þ: ð9:6Þ

The contraction coordinates associated with the states
obtained by applying the deformations (9.4)–(9.6) are,
denoted respectively (in abbreviated notation) in Sec. VI. C
and in Step 2 of Sec. VIII. C by fxϵ2;ϵ1α g; fxϵ1α g; fxϵ2α g and the
coordinates for c by fxαg. Here we set

fxαg≡ fxg; fxϵ1α g≡ fxδ̄g;
fxϵ2α g≡ fxδg; fxϵ2;ϵ1α g≡ fxδ;δ̄g: ð9:7Þ

The notation we use for the nondegenerate vertex of

c is v; cðj;J;R̂1;Ŝ1;βM;δ̄Þ is vðj;J;δ̄Þ;

c½i;I;Ĵ;K̂β;δ�1 is v½i;I;δ�1 ; c½i;I;Ĵ;K̂;β;δ�2 is v½i;I;β;δ�2 : ð9:8Þ

Wherever required explicitly, we denote the density weighted
object B evaluated at point p in the coordinate system fyg
by Bðp; fygÞ.

2. Calculation

From (8.5) we have

Ĉ½N�δc ¼ βN
3ℏ
8πi

Nðv; fxgÞν−2=3v

X
i;I;Ĵ1;K̂1

c½i;I;Ĵ;K̂;β;δ�1 − c

ðN − 1ÞðN − 2Þδ ;

ð9:9Þ

Ĉ½M�δ̄Ĉ½N�δc ¼ βN
3ℏ
8πi

Nðv; fxgÞν−2=3v

×
X

i;I;Ĵ1;K̂1

Ĉ½M�δ̄c½i;I;Ĵ;K̂;β;δ�1 − Ĉ½M�δ̄c
ðN − 1ÞðN − 2Þδ :

ð9:10Þ
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Using (8.5) again,

Ĉ½M�δ̄c½i;I;Ĵ;K̂;β;δ�1 ¼ βM
3ℏ
8πi

Mðv½i;I;δ�1 ; fxδgÞν−2=3v½i;I;δ�1

×
X

i1;I1;Ĵ2;K̂2

c½i;I;Ĵ;K̂;β;δ�2 − c½i;I;Ĵ;K̂;β;δ�1
ðN − 1ÞðN − 2Þδ̄ ;

ð9:11Þ

⇒ ðΨf;hab;P0
jĈ½M�δ̄c½i;I;Ĵ;K̂;β;δ�1i

¼βM
3ℏ
8πi

Mðv½i;I;δ�1 ;fxδgÞν−2=3v½i;I;δ�1

×
X

i1;I1;Ĵ2;K̂2

ðΨf;hab;P0
jc½i;I;Ĵ;K̂;β;δ�2i−ðΨf;hab;P0

jc½i;I;Ĵ;K̂;β;δ�1i
ðN−1ÞðN−2Þδ̄ :

ð9:12Þ
Using (7.5),

ðΨf;hab;P0
jc½i;I;Ĵ;K̂;β;δ�2i ¼ gc½i;I;Ĵ;K̂;β;δ�2fðv½i;I;β;δ�2 ; fx

δ;δ̄gÞ

×

�X
L2

hL2
HL2

�
ð9:13Þ

where we have used Steps 1 and 2, Sec. VIII. C to evaluate
the amplitude with respect to the contraction coordinates at
v½i;I;β;δ�2 . Next, we evaluate its contraction behavior.
From Appendix G. 2, and using q ≪ 1, we have, as

δ̄ → 0,

X
Ĵ2;K̂2

gc½i;I;Ĵ;K̂;β;δ�2 ¼ gc½i;I;Ĵ;K̂;β;δ�1 ðδ̄Þ
2
3
ðq−1ÞQðc½i;I;β;δ0�2;12

; S1Þ

× hI1ð1þOðδ̄2ÞÞ ð9:14Þ

where we have used (9.1) and (9.4) to set j ¼ 1
in Eq. (G12).
From Appendix F, a straightforward computation yields

X
L2

hL2
HL2

¼ ½ðN −1ÞðN − 2Þð2þ cos2θþðN − 3ÞjcosθjÞ�

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðv½i;I;β;δ�2ÞV̂

ðδÞa
I1

V̂ðδÞb
I1

q
þOðδ̄2Þ ð9:15Þ

where, as in Appendix F, V̂ðδÞa
I1

is the constant extension in
the chart fxδg of the unit upward direction for the I1th edge

of the immediate parent c½i;I;Ĵ;K̂;β;δ�1 . Here c½i;I;Ĵ;K̂;β;δ�1 is the
immediate parent of c½i;I;Ĵ;K̂;β;δ�2 . This immediate parent has

contraction coordinates fxδg from (9.7) and unit upward

direction for its I1th edge V̂ðδÞa
I1

. This vector is extended in
an open neighborhood of the parental vertex v½i;I;δ�1 by
defining its components in the chart fxδg at any point p in
this neighborhood to be the same as its components at
the parental vertex, this neighborhood being large enough
to contain the child vertex v½i;I;β;δ�2 . Finally we have, from
(F15) that

fðv½i;I;β;δ�2 ; fxδ;δ̄gÞ ¼ ðδ̄Þ−2
3
ðq−1Þfðv½i;I;β;δ�2 ; fxδgÞ: ð9:16Þ

We choose the Q factor above to be

Qðc0½i;I;β;δ0�2;12
; S1Þ

≔
NðN − 1ÞðN − 2Þ

½ðN − 1ÞðN − 2Þð2þ cos2θ þ ðN − 3Þj cos θjÞ� :

ð9:17Þ

Clearly,Q > 0 as required. From (9.13), (9.14)–(9.17), and
setting

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðv½i;I;β;δ�2ÞV̂

ðδÞa
I1

V̂ðδÞb
I1

q
≡ k ⃗V̂ðδÞ

I1 kv½i;I;β;δ�2 ð9:18Þ

we have

X
i1;I1;Ĵ2;K̂2

ðΨf;hab;P0
jc½i;I;Ĵ;K̂;β;δ�2i

¼ NðN − 1ÞðN − 2Þgc½i;I;Ĵ;K̂;β;δ�1
X
i1;I1

hI1k ⃗V̂
ðδÞ
I1 kv½i;I;β;δ�2

× fðv½i;I;β;δ�2 ; fxδgÞ þOðδ̄2Þ: ð9:19Þ

From (7.5), the second amplitude in (9.12) is

ðΨf;hab;P0
jc½i;I;Ĵ;K̂;β;δ�1i

¼ gc½i;I;Ĵ;K̂;β;δ�1
fðv½i;I;β;δ�1 ; fxδgÞ

�X
L1

hL1
HL1

�
: ð9:20Þ

From (9.19) and (9.20) and the fact that v½i;I;β;δ�2 is

displaced by an amount qi1I1 δ̄ in the direction ⃗V̂
ðδÞ
I1 from

v½i;I;δ�1 , we have that

X
i1;I1;Ĵ2;K̂2

ðΨf;hab;P0
jc½i;I;Ĵ;K̂;β;δ�2i ¼ 3NðN − 1ÞðN − 2ÞðΨf;hab;P0

jc½i;I;Ĵ;K̂;β;δ�1i þ δ̄NðN − 1ÞðN − 2Þgc½i;I;Ĵ;K̂;β;δ�1

×
X
i1;I1

hI1q
i1
I1
V̂ðδÞa
I1

ð∂ak ⃗V̂
ðδÞ
I1 kpfðp; fxδgÞÞjp¼v½i;I;δ�1

þOðδ̄2Þ ð9:21Þ
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where similar to Appendix F, we have set

k ⃗V̂ðδÞ
I1 kp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðpÞV̂ðδÞa

I1
ðpÞV̂ðδÞb

I1
ðpÞ

q
ð9:22Þ

with V̂ðδÞa
I1

ðpÞ being the constant extension of V̂ðδÞa
I1

at v½i;I;δ�1 . The partial derivative ∂a can be taken with respect to any

coordinates as its tangent space index a is contracted with that of V̂ðδÞa
I1

. If we take it to be the coordinate derivative with

respect to fxδg then it passes through V̂ðδÞa
I1

ðpÞ and only acts on hab; f. Using (9.21) in (9.12) and taking the limit δ̄ → 0,
we have that

lim
δ̄→0

ðΨf;hab;P0
jĈ½M�δ̄c½i;I;Ĵ;K̂;β;δ�1i ¼ βM

3ℏN
8πi

Mðv½i;I;δ�1 ; fxδgÞν
−2=3
v½i;I;δ�1

× gc½i;I;Ĵ;K̂;β;δ�1

X
i1;I1

hI1q
i1
I1
V̂ðδÞa
I1

ð∂ak ⃗V̂
ðδÞ
I1 kpfðp; fxδgÞÞjp¼v½i;I;δ�1

: ð9:23Þ

Using the notation of Appendix F, we may write this concisely as

lim
δ̄→0

ðΨf;hab;P0
jĈ½M�δ̄c½i;I;Ĵ;K̂;β;δ�1i ¼ βM

3ℏN
8πi

ν−2=3v½i;I;δ�1 gc½i;I;Ĵ;K̂;β;δ�1

X
i1;I1

hI1q
i1
I1
ðH1

I1
ðp ¼ v½i;I;δ�1ÞÞ: ð9:24Þ

Next consider the term Ĉ½M�δ̄c in (9.10). We have, using (8.5),

Ĉ½M�δ̄c ¼ βM
3ℏ
8πi

Mðv; fxgÞν−2=3v

X
j;J;R̂1;Ŝ1

cðj;J;R̂;Ŝ;βM;δ̄Þ − c

ðN − 1ÞðN − 2Þδ̄ : ð9:25Þ

A similar analysis yields

lim
δ̄→0

ðΨf;hab;P0
jĈ½M�δ̄ci ¼ βM

3ℏN
8πi

Mðv; fxgÞν−2=3v gc
X
j;J

hJq
j
JV̂

a
Jð∂ak ⃗V̂Jkpfðp; fxgÞÞjp¼v ð9:26Þ

which can be written in the notation of Appendix F as

lim
δ̄→0

ðΨf;hab;P0
jĈ½M�δ̄ci ¼ βM

3ℏN
8πi

ν−2=3v gc
X
j;J

hJq
j
JðH1

Jðp ¼ vÞÞ: ð9:27Þ

In the above calculation the Q factor is the same as that in (9.17):

Qðc0ðj;J;βM;δ0Þ; c; S1Þ ≔
NðN − 1ÞðN − 2Þ

½ðN − 1ÞðN − 2Þð2þ cos2θ þ ðN − 3Þj cos θjÞ� ; ð9:28Þ

and we have used Eq. (G12) in conjunction with Eqs. (9.1) and (9.6). Note that the Q factor in (9.28) and the Q factor
in (9.17) are labeled by the same sequence label S1 ¼ h (see Sec. VIII. D for a discussion of this labeling). It follows from
this fact, together with the charge independence of the Q factor in (9.28) and the discussion in Sec. VIII. D, that the Q
factors in (9.28) and (9.17) must necessarily be identical.
Finally, we need to the compute the contraction limit δ → 0 of (9.24). From Appendix G. 2, and using q ≪ 1, we have,

as δ → 0,

X
Ĵ1;K̂1

gc½i;I;Ĵ;K̂;β;δ�1
¼ gcðδÞ43ðq−1ÞQðc0½i;I;β;δ0�0;11

; S2ÞhIð1þOðδ2ÞÞ ð9:29Þ

where we have used (9.1) and (9.5) to set j ¼ 2 in Eq. (G12). Using Eqs. (F14) and (F27) from Appendix F, as well as (F16),
we have that as δ → 0,
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X
i1;I1

hI1q
i1
I1
ðH1

I1
ðp ¼ v½i;I;δ�1ÞÞ

¼ δ−
4
3
ðq−1ÞfðMðv½i;I;δ�1 ; fxgÞV̂a

I ∂aðfðv½i;I;δ�1 ; fxgÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðv½i;I;δ�1ÞV̂a

I V̂
b
I

q
Þ

× ½ðN − 1ÞðN − 2Þqi1I1¼I þ
�X

I1≠I
qi1I1

�
ðN − 2Þð1þ cos θð1þ cos2θ þ ðN − 3Þj cos θjÞ�Þ þOðδ2Þg

¼ δ−
4
3
ðq−1ÞfðMðv½i;I;δ�1 ; fxgÞqi1I1¼IV̂

a
I ∂aðfðv½i;I;δ�1 ; fxgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðv½i;I;δ�1ÞV̂a

I V̂
b
I

q
Þ

× ½ðN − 1ÞðN − 2Þ − ðN − 2Þðcos θÞð1þ cos2θ þ ðN − 3Þj cos θjÞ�Þ þOðδ2Þg ð9:30Þ

where we have used gauge invariance applied to the net charges to go from the first equality to the second.
Next, we choose the Q factor in (9.29) to be

Qðc0½i;I;β;δ0�0;11
; S2Þ ¼

ν−2=3v

ν−2=3v½i;I;δ�1

3NðN − 1ÞðN − 2Þ
½ðN − 1ÞðN − 2Þ − ðN − 2Þðcos θÞð1þ cos2θ þ ðN − 3Þj cos θjÞ� : ð9:31Þ

It is straightforward to check that (using the facts thatN ≥ 4, j cos θj < 1Þ, as required, thisQ factor is positive. Note that forQ
to be well defined, we need the nondegenaracy condition νv½i;I;δ�1 ≠ 0 (see the relevant discussion in the beginning of
Sec. VI. B).
Next, using (9.29)–(9.31) in (9.24) yieldsX

Ĵ1;K̂1

limδ̄→0ðΨf;hab;P0
jĈ½M�δ̄c½i;I;Ĵ;K̂;β;δ�1i

¼ 3ðNÞðN − 1ÞðN − 2ÞβM
3ℏN
8πi

ν−2=3v gchI
X
i1

qi1I1¼I

�
Mðv½i;I;δ�1 ; fxgÞV̂a

I ∂a

�
fðv½i;I;δ�1 ; fxgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðv½i;I;δ�1ÞV̂a

I V̂
b
I

q ��

þOðδ2Þ: ð9:32Þ

In the above equation note that qi1I1¼I refers to the charge on the I1 ¼ Ith edge of c½i;I;Ĵ;K̂;β;δ�1 . This charge is related to the
charge on the Ith edge of c by an ði; βMÞ flip. Hence, depending on whether βM ¼ �1 we have from (2.25) and (3.7) that

qi1I1¼I ¼ ðiÞqi1I ¼ δii1qi1I ∓ X
k

ϵii1kqkI : ð9:33Þ

Two identities, key to the anomaly free result, follow from the above equation:

X
i;i1

qi1I1¼I ¼
X
i

qiI ð9:34Þ

and

X
i;i1

qi1I1¼Iq
i
I ¼

X
i

ðqiIÞ2: ð9:35Þ

Using (9.33) in (9.32) we have

X
Ĵ1;K̂1

lim
δ̄→0

ðΨf;hab;P0
jĈ½M�δ̄c½i;I;Ĵ;K̂;β;δ�1i

¼ 3ðNÞðN − 1ÞðN − 2ÞβM
3ℏN
8πi

ν−2=3v gchI
X
i1

ðiÞqi1I
�
Mðv½i;I;δ�1 ;fxgÞV̂a

I ∂a

�
fðv½i;I;δ�1 ;fxgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðv½i;I;δ�1ÞV̂a

I V̂
b
I

q ��
þOðδ2Þ:

ð9:36Þ

Next, we expand the second line of (9.36) in a Taylor approximation and sum over i, I to obtain
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X
I

hI
X
i

X
i1

ðiÞqi1I
�
Mðv½i;I;δ�1 ; fxgÞV̂a

I ∂a

�
fðv½i;I;δ�1 ; fxgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðv½i;I;δ�1ÞV̂a

I V̂
b
I

q ��

¼
X
I

hI

�X
i;i1

ðiÞqi1I
�
Mðv; fxgÞV̂a

I ∂a

�
fðv; fxgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðvÞV̂a

I V̂
b
I

q ��

þ δ
X
i;i1

ðiÞqi1I ðqiIV̂b
I ∂b

�
Mðp; fxgÞ

�
V̂a
I ∂a

�
fðp; fxgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðpÞV̂a

I V̂
b
I

q ������
p¼v

	
þOðδ2Þ

¼
X
I

hI

�X
i

qiI
�
Mðv; fxgÞV̂a

I ∂a

�
fðv; fxgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðvÞV̂a

I V̂
b
I

q ��

þ δ
X
i

ððqiIÞ2V̂b
I ∂b

�
Mðp; fxgÞ

�
V̂a
I ∂a

�
fðp; fxgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðpÞV̂a

I V̂
b
I

q ������
p¼v

	
þOðδ2Þ: ð9:37Þ

Here we have used the identities (9.34) and (9.35) to obtain the second equality from the first.
Next, consider the dual action of (9.10) on the anomaly free state in the limit δ̄ → 0:

lim
δ̄→0

ðΨf;hab;P0
jĈ½M�δ̄Ĉ½N�δci ¼ βN

3ℏ
8πi

Nðv; fxgÞν−2=3v
1

ðN − 1ÞðN − 2Þδ
� X

i;I;Ĵ1;K̂1

lim
δ̄→0

ðΨf;hab;P0
jĈ½M�δ̄c½i;I;Ĵ;K̂;β;δ�1i

�

−
X

i;I;Ĵ1;K̂1

ðΨf;hab;P0
jĈ½M�δ̄ciÞ: ð9:38Þ

The second line of (9.38) can be evaluated using (9.37). The zeroth order term in δ in this expansion is precisely
3ðNÞðN − 1ÞðN − 2Þ times the right-hand side of (9.26). In the term on the third line of (9.38), the amplitude is exactly that
of (9.26) and the indices i; Ĵ1; K̂1 are dummy indices for this amplitude so that the amplitude is simply multiplied by a factor
of N (coming from the sum over I), ðN − 1ÞðN − 2Þ (from the sum over the hatted indices) and 3 (from the sum over i).
Hence the zeroth order term of the second line cancels the contribution from the third line and this is what allows the δ → 0
limit of the left-hand side in the first line to exist.
Note.—This cancellation is precisely due to the −1 structure introduced in Sec. III, this structure being motivated by

considerations of “propagation.”
Finally taking the δ → 0 limit of (9.38), we obtain

ðΨf;hab;P0
jĈ½M�Ĉ½N�ci ¼ 3βNβM

�
3ℏN
8πi

�
2

Nðv; fxgÞν−4=3v gc

×

�X
i;I

hIð
�
qiIÞ2V̂b

I ∂b

�
Mðp; fxgÞðV̂a

I ∂a

�
fðp; fxgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðpÞV̂a

I V̂
b
I

q ������
p¼v

	
: ð9:39Þ

Next, as in Appendix F. 3, it is convenient to define the quantity Hl
Lm
ðN1; N2; ::; N3;pÞ associated with Eq. (8.9) as

follows. Let c in (8.9) be in the bra set (as in this section). Let the contraction coordinate associated with the nondegenerate
vertex of its mth generation descendant, c½i;I;Ĵ;K̂;β;ϵ�m , be denoted by fzg so that fzg ≔ fxϵj1 ::ϵjmg. Then we define

Hl
Lm
ðN1; ::; Nl;pÞ ≔

Yl
i¼1

Nl−iþ1ðp; fzgÞV̂al−iþ1

Lm
ðpÞ∂al−iþ1

�
fðp; fzgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðpÞV̂a

Lm
ðpÞV̂b

Lm
ðpÞ

q �
ð9:40Þ

where the product is ordered from left to right in order of increasing i and the point p is in a small enough neighborhood of

the nondegenerate vertex of c½i;I;Ĵ;K̂;β;ϵ�m wherein the unit (with respect to fzg) upward direction ⃗V̂Lm
associated with the

Lmth edge at this vertex admits the constant extension ⃗V̂Lm
ðpÞ as discussed in Appendix F. 3.40

40It is straightforward to check that if we express Eq. (9.40) in terms of the notation and the right to left ordering convention for
Q

used in Appendix F. 3 that (9.40) takes the form of (F18).
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Making contact through (9.1) with (9.40), Eq. (9.39) can
be written succinctly as

ðΨf;hab;P0
jĈ½M�Ĉ½N�ci¼ 3βNβM

�
3ℏN
8πi

�
2

ν−4=3v gc

×
X
i

X
I

ðqiIÞ2hIH2
I ðM;N;p¼ vÞ;

ð9:41Þ

from which the commutator can be written as

ðΨf;hab;P0
j½Ĉ½M�; Ĉ½N��ci ¼ 3βNβM

�
3ℏN
8πi

�
2

ν−4=3v gc

×
X
i

X
I

ðqiIÞ2hIðH2
I ðM;N;

p ¼ vÞ −H2
I ðN;M;p ¼ vÞÞ:

ð9:42Þ

B. Electric diffeomorphism commutator

1. Notation

We compute the continuum limit of the electric diffeo-
morphism commutator. Accordingly we consider the action
of (8.9) on a state c when n ¼ 2 and ÔiðNiÞ; i ¼ 1, 2 are
electric diffeomorphism constraint operators. We compute
the commutator from the ensuing product of discrete
approximants and then take the continuum limit. Similar
to Sec. IX. A. 1, and for the reason articulated there we
restrict attention to the case that c is in the bra set. For this
section we use notation similar to that in Sec. IX. A. 1.
However, the notation denotes transitions and their asso-
ciated structures which are appropriate to the action of
the electric diffeomorphism constraints and hence are
often distinct from those appropriate to the Hamiltonian
constraint in Sec. IX. A. 1.
We use the notation (9.1) in (8.9) so that once again we

have

N1 ≡M; β1 ≡ βM; N2 ≡ N; β2 ≡ βN;

ϵ1 ≡ δ̄; ϵ2 ≡ δ: ð9:43Þ

The discrete action of the electric diffeomorphism con-
straint operator product generates the doubly deformed
states c½i;I;Ĵ;K̂;δ�2 , the singly deformed states c½i;I;Ĵ;K̂;δ�1 and
cði;J;R̂1;Ŝ1;δ̄Þ and c. Here we have defined the transitions:

½i; I; Ĵ; K̂; δ�2 ¼ ½ði1; I1; Ĵ2; K̂2; β ¼ 0; δ̄Þ;
ði; I; Ĵ1; K̂1; β ¼ 0; δÞ�; ð9:44Þ

½i; I; Ĵ; K̂; δ�1 ¼ ði; I; Ĵ1; K̂1; β ¼ 0; δÞ; ð9:45Þ

ði; J; R̂1; Ŝ1; δ̄Þ ¼ ði; J; R̂1; Ŝ1; β ¼ 0; δ̄Þ: ð9:46Þ

We set in (8.8)

m ¼ 2; j2 ¼ 1; j1 ¼ 2; to obtain ½i; I; Ĵ; K̂; δ�2;
ð9:47Þ

m ¼ 1; j1 ¼ 2; to obtain ½i; I; Ĵ; K̂; δ�1; ð9:48Þ

m ¼ 1; j1 ¼ 1; I ¼ J; Ĵ1 ¼ R̂1; K̂1 ¼ Ŝ1;

to obtain ði; J; R̂1; Ŝ1; δ̄Þ: ð9:49Þ

The contraction coordinates associated with the states
obtained by applying the deformations (9.47)–(9.49) are,
denoted respectively (in abbreviated notation) in Sec. VI. C
and in Step 2 of Sec. VIII. C by fxϵ2;ϵ1α ; g; fxϵ2α g; fxϵ1α g and
the coordinates for c by fxαg. Similar to (9.7), we set

fxαg≡ fxg; fxϵ2α g≡ fxδg; fxϵ1α g≡ fxδ̄g;
fxϵ2;ϵ1α g≡ fxδ;δ̄g: ð9:50Þ

The notation we use for the nondegenerate vertex of

c is v; cði;J;R̂1;Ŝ1;δ̄Þ is vði;J;δ̄Þ;

c½i;I;Ĵ;K̂;δ�1 is v½i;I;δ�1 ; c½i;I;Ĵ;K̂;δ�2 is v½i;I;δ�2 : ð9:51Þ

2. Calculation

Applying (8.6) to c we obtain

D̂δ½N⃗i�c ¼ ℏ
i
3

4π
NðxðvÞÞν−2=3v

X
I

X
Ĵ1;K̂1

1

ðN − 1ÞðN − 2Þ
1

δ
ðc½i;I;Ĵ;K̂;δ�1 − cÞ ð9:52Þ

so that

D̂δ̄½M⃗i�D̂δ½N⃗i�c ¼ ℏ
i
3

4π
NðxðvÞÞν−2=3v

X
I

X
Ĵ1;K̂1

1

ðN − 1ÞðN − 2Þ
1

δ
ðD̂δ̄½M⃗i�c½i;I;Ĵ;K̂δ�1 − D̂δ̄½M⃗i�cÞ: ð9:53Þ

Using (8.6) again,
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D̂δ̄½M⃗i�c½i;I;Ĵ;K̂δ�1 ¼
3ℏ
4πi

Mðv½i;I;δ�1 ; fxδgÞν
−2=3
v½i;I;δ�1

X
I1;Ĵ2;K̂2

c½i;I;Ĵ;K̂;δ�2 − c½i;I;Ĵ;K̂;δ�1
ðN − 1ÞðN − 2Þδ̄ ; ð9:54Þ

⇒ ðΨf;hab;P0
jD̂½M⃗i�δ̄c½i;I;Ĵ;K̂;δ�1i ¼

3ℏ
4πi

Mðv½i;I;δ�1 ; fxδgÞν−2=3v½i;I;δ�1

X
I1;Ĵ2;K̂2

ðΨf;hab;P0
jc½i;I;Ĵ;K̂;δ�2i − ðΨf;hab;P0

jc½i;I;Ĵ;K̂;δ�1i
ðN − 1ÞðN − 2Þδ̄ : ð9:55Þ

Using (7.5),

ðΨf;hab;P0
jc½i;I;Ĵ;K̂;δ�2i ¼ gc½i;I;Ĵ;K̂;δ�2fðv½i;I;δ�2 ; fx

δ;δ̄gÞ
�X

L2

hL2
HL2

�
ð9:56Þ

where we have used Steps 1 and 2, Sec. VIII. C to evaluate the amplitude with respect to the contraction coordinates at
v½i;I;δ�2 . Next, we evaluate its contraction behavior.
From Appendix G. 2, and using q ≫ 1, we have, as δ̄ → 0

X
Ĵ2;K̂2

gc½i;I;Ĵ;K̂;δ�2 ¼ gc½i;I;Ĵ;K̂;δ�1 ðδ̄Þ
2
3
ðq−1ÞQðc0½i;I;δ0�2;12

; S1ÞhI1ð1þOðδ̄2ÞÞ ð9:57Þ

where we have used (9.43) and (9.47) to set j ¼ 1 in Eq. (G12).
From Appendix F, a straightforward computation identical to that used in deriving (9.15) yields

X
L2

hI2HL2
¼ ½ðN − 1ÞðN − 2Þð2þ cos2θ þ ðN − 3Þj cos θjÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðv½i;I;δ�2ÞV̂

ðδÞa
I1

V̂ðδÞb
I1

q
þOðδ̄2Þ ð9:58Þ

where, as in Appendix F, V̂ðδÞa
I1

is the constant extension in the chart fxδg of the unit upward direction for the I1th edge of the
immediate parent c½i;I;Ĵ;K̂;δ�1 . Similar to (9.16), from (F15), we have that

fðv½i;I;δ�2 ; fxδ;δ̄gÞ ¼ ðδ̄Þ−2
3
ðq−1Þfðv½i;I;δ�2 ; fxδgÞ: ð9:59Þ

We choose the Q factor for this electric diffeomorphsim type transition to be identical to that of (9.17) so that

Qðc0½i;I;δ0�2;12
; S1Þ ≔

NðN − 1ÞðN − 2Þ
½ðN − 1ÞðN − 2Þð2þ cos2θ þ ðN − 3Þj cos θjÞ� ð9:60Þ

where c0½i;I;δ0�2;12
denote the δ0 images [see (6.25) and (6.26) and Sec. VIII. D] of the electric diffeomorphism children

c½i;I;Ĵ;K̂;δ�2;1
2
. Note that in principle theQ factors in (9.60) and (9.17) could be chosen to be distinct from each other because in

the former case the sequence label S1 corresponds to di whereas in the latter case S1 ¼ h.
From (9.56), (9.57)–(9.60), and setting, similar to Sec. IX. A. 2,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðv½i;I;δ�2ÞV̂

ðδÞa
I1

V̂ðδÞb
I1

q
≡ k ⃗V̂ðδÞ

I1 kv½i;I;δ�2 ð9:61Þ

we have

X
I1;Ĵ2;K̂2

ðΨf;hab;P0
jc½i;I;Ĵ;K̂;δ�2i ¼ NðN − 1ÞðN − 2Þgc½i;I;Ĵ;K̂;δ�1

X
I1

hI1k ⃗V̂
ðδÞ
I1 kv½i;I;δ�2fðv½i;I;δ�2 ; fx

δgÞ: ð9:62Þ
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From (7.5), the second amplitude in (9.55) is

ðΨf;hab;P0
jc½i;I;Ĵ;K̂;δ�1i ¼ gc½i;I;Ĵ;K̂;δ�1fðv½i;I;δ�1 ; fx

δgÞ
�X

L1

hL1
HL1

�
: ð9:63Þ

Similar to the derivation of (9.21), from (9.62) and (9.63), we have that

X
I1;Ĵ2;K̂2

ðΨf;hab;P0
jc½i;I;Ĵ;K̂;δ�2i ¼ NðN − 1ÞN − 2ÞðΨf;hab;P0

jc½i;I;Ĵ;K̂;δ�1i

þ δ̄NðN − 1ÞðN − 2Þgc½i;I;Ĵ;K̂;δ�1
X
I1

hI1q
i1¼i
I1

V̂ðδÞa
I1

ð∂ak ⃗V̂
ðδÞ
I1 kpfðp; fxδgÞÞjp¼v½i;I;δ�1

þOðδ̄2Þ

ð9:64Þ

where

k ⃗V̂ðδÞ
I1 kp ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðpÞV̂ðδÞa

I1
ðpÞV̂ðδÞb

I1
ðpÞ

q
ð9:65Þ

with V̂ðδÞa
I1

ðpÞ being the constant extension of V̂ðδÞa
I1

at v½i;I;δ�1 . As in Sec. IX. A. 2, the partial derivative ∂a can be taken with

respect to any coordinates as its tangent space index a is contracted with that of V̂ðδÞa
I1

; if we take it to be the coordinate

derivative with respect to fxδg then it passes through V̂ðδÞa
I1

ðpÞ and only acts on hab; f. Using (9.64) in (9.55) and taking the
limit δ̄ → 0, we have that

lim
δ̄→0

ðΨf;hab;P0
jD̂½M⃗i�δ̄c½i;I;Ĵ;K̂;δ�1i ¼

3ℏN
4πi

Mðv½i;I;δ�1 ;fxδgÞν−2=3v½i;I;δ�1gc½i;I;Ĵ;K̂;δ�1

X
I1

hI1q
i1¼i
I1

V̂ðδÞa
I1

ð∂ak ⃗V̂
ðδÞ
I1 kpfðp;fxδgÞÞjp¼v½i;I;δ�1

:

ð9:66Þ

In the notation of Appendix F, we may write this as

lim
δ̄→0

ðΨf;hab;P0
jD̂½M⃗i�δ̄c½i;I;Ĵ;K̂;δ�1i ¼

3ℏN
4πi

ν−2=3v½i;I;δ�1 gc½i;I;Ĵ;K̂;δ�1

X
I1

hI1q
i1¼i
I1

ðH1
I1
ðp ¼ v½i;I;δ�1ÞÞ: ð9:67Þ

Next consider the term D̂½M⃗i�δ̄c in (9.53). From (8.6),

D̂½M⃗i�δ̄c ¼ 3ℏ
4πi

Mðv; fxgÞν−2=3v

X
J;R̂1;Ŝ1

cði;J;R̂;Ŝ;δ̄Þ − c

ðN − 1ÞðN − 2Þδ̄ ; ð9:68Þ

As can be seen from (9.53) and (9.68), the term D̂½M⃗i�δ̄c does not contribute to the commutator because it is multiplied by a
product of lapse functions evaluated at the same point v. Nevertheless it is instructive to evaluate it for reasons which will
become clear towards the end of this section. A similar analysis to that involved in obtaining (9.67) yields

lim
δ̄→0

ðΨf;hab;P0
jD̂½M⃗i�δ̄ci ¼

3ℏN
4πi

Mðv; fxgÞν−2=3v gc
X
J

hJqiJV̂
a
Jð∂ak ⃗V̂Jkpfðp; fxgÞÞjp¼v ð9:69Þ

which can be written in the notation of Appendix F as

lim
δ̄→0

ðΨf;hab;P0
jD̂½M⃗i�δ̄ci ¼

3ℏN
4πi

ν−2=3v gc
X
J

hJqiJðH1
Jðp ¼ vÞÞ: ð9:70Þ

In the above calculation the Q factor is the same as that in (9.60):

CONSTRAINT ALGEBRA IN SMOLINS’ G → 0 … PHYS. REV. D 97, 106007 (2018)

106007-49



Qðc0ði;J;δ0Þ; c0; S1Þ ≔
NðN − 1ÞðN − 2Þ

½ðN − 1ÞðN − 2Þð2þ cos2θ þ ðN − 3Þj cos θjÞ� ; ð9:71Þ

and we have used (9.43) and (9.49) to set j ¼ 1 in Eq. (G12). Note that the sequence label S1 is identical for (9.60) and
(9.71). The charge independence of theQ factor (9.60) together with the discussion in Sec. VIII. D implies that theQ factor
for (9.71) must necessarily be the same as that for (9.60).
Next we compute the contraction limit δ → 0 of (9.67). From Appendix G. 2, and using q ≫ 1, we have, as δ → 0,X

Ĵ1;K̂1

gc½i;I;Ĵ;K̂;δ�1
¼ gcðδÞ43ðq−1ÞQðc0½i;I;δ0�0;11

; S2ÞhIð1þOðδ2ÞÞ ð9:72Þ

where we have used (9.43) and (9.48) to set j ¼ 2 in Eq. (G12). From Eqs. (F14), (F27) and (F16), as δ → 0 we have
X
I1

hI1q
i1¼i
I1

ðH1
I1
ðp ¼ v½i;I;δ�1ÞÞ

¼ δ−
4
3
ðq−1Þ

�
ðMðv½i;I;δ�1 ; fxgÞV̂a

I ∂a

�
fðv½i;I;δ�1 ; fxgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðv½i;I;δ�1ÞV̂a

I V̂
b
I

q �

× ½ðN − 1ÞðN − 2Þqi1¼i
I1¼I þ

�X
I1≠I

qi1¼i
I1

�
ðN − 2Þð1þ cos θð1þ cos2θ þ ðN − 3Þj cos θjÞ�Þ þOðδ2Þ

	

¼ δ−
4
3
ðq−1ÞfðMðv½i;I;δ�1 ; fxgÞqi1¼i

I1¼IV̂
a
I ∂a

�
fðv½i;I;δ�1 ; fxgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðv½i;I;δ�1ÞV̂a

I V̂
b
I

q �
× ½ðN − 1ÞðN − 2Þ − ðN − 2Þðcos θÞð1þ cos2θ þ ðN − 3Þj cos θjÞ�Þ þOðδ2Þg ð9:73Þ

where we have used gauge invariance to go from the first equality to the second.
Next, we choose the Q factor in (9.72) to be

Qðc½i;I;δ0�0;11
; S2Þ ¼

ν−2=3v

ν−2=3v½i;I;δ�1

ANðN − 1ÞðN − 2Þ
½ðN − 1ÞðN − 2Þ − ðN − 2Þðcos θÞð1þ cos2θ þ ðN − 3Þj cos θjÞ� ð9:74Þ

where we shall specify the positive constant A shortly and where, as in (9.31), N > 3; j cos θj < 1 implies thatQ is positive.
Note that in (9.74), we have S2 ¼ ðdi; diÞwhereas in (9.31), S2 ¼ ðh; hÞ so that theQ factors for these two equations can be
(and are) chosen to be distinct from each other.
Using (9.72)–(9.74) in (9.67) yields

X
Ĵ1;K̂1

lim
δ̄→0

ðΨf;hab;P0
jD̂½M⃗i�δ̄c½i;I;Ĵ;K̂;δ�1i ¼ AðNÞðN − 1ÞðN − 2Þ3ℏN

4πi
ν−2=3v

× gchIq
i1¼i
I1¼I

�
Mðv½i;I;δ�1 ;fxgÞV̂a

I ∂a

�
fðv½i;I;δ�1 ;fxgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðv½i;I;δ�1ÞV̂a

I V̂
b
I

q ��
þOðδ2Þ:

ð9:75Þ

In the above equation note that qi1I1¼I refers to the charge on the ðI1 ¼ IÞth edge of c½i;I;Ĵ;K̂;δ�1 . Since the transition involved is
of electric diffeomorphism type, there is no charge flipping so that this charge is equal to the charge on the Ith edge of c so
that we have

qi1¼i
I1¼I ¼ qiI: ð9:76Þ

Using (9.76) in (9.75) we have

X
Ĵ1;K̂1

lim
δ̄→0

ðΨf;hab;P0
jD̂½M⃗i�δ̄c½i;I;Ĵ;K̂;δ�1i¼AðNÞðN−1ÞðN−2Þ3ℏN

4πi
ν−2=3v gc

×hIqiI
�
Mðv½i;I;δ�1 ;fxgÞV̂a

I ∂a

�
fðv½i;I;δ�1 ;fxgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðv½i;I;δ�1ÞV̂a

I V̂
b
I

q ��
þOðδ2Þ: ð9:77Þ
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Expanding the second line of (9.77) in a Taylor approximation and summing over I, we obtain

X
I

hIqiI
�
Mðv½i;I;δ�1 ; fxgÞV̂a

I ∂a

�
fðv½i;I;δ�1 ; fxgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðv½i;I;δ�1ÞV̂a

I V̂
b
I

q ��

¼
X
I

hI
n
qiI
�
Mðv; fxgÞV̂a

I ∂a

�
fðv; fxgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðvÞV̂a

I V̂
b
I

q ��

þ δðqiIÞ2V̂b
I ∂b

�
Mðp; fxgÞ

�
V̂a
I ∂a

�
fðp; fxgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðpÞV̂a

I V̂
b
I

q ������
p¼v

o
þOðδ2Þ: ð9:78Þ

Next, consider the dual action of (9.53) on the anomaly free state in the limit δ̄ → 0:

lim
δ̄→0

ðΨf;hab;P0
jD̂½M⃗i�δ̄D̂½N⃗i�δci ¼

3ℏ
4πi

Nðv; fxgÞν−2=3v
1

ðN − 1ÞðN − 2Þδ
� X

I;Ĵ1;K̂1

lim
δ̄→0

ðΨf;hab;P0
jD̂½M⃗i�δ̄c½i;I;Ĵ;K̂;δ�1i

�

−
X

I;Ĵ1;K̂1

ðΨf;hab;P0
jD̂½M⃗i�δ̄ciÞ: ð9:79Þ

The second line of (9.79) can be evaluated using (9.78). The zeroth order term in δ in this expansion is AðNÞðN − 1ÞðN − 2Þ
times the right-hand side of (9.69). In the term on the third line of (9.79), the amplitude is exactly that of (9.69) and the
indices I; Ĵ1; K̂1 are dummy indices for this amplitude so that the amplitude is simply multiplied by a factor of N (coming
from the sum over I) and ðN − 1ÞðN − 2Þ (from the sum over the hatted indices). Hence the zeroth order term of the second
line cancels the contribution from the third line only if we set A ¼ 1.
On the other hand, as mentioned above the term on the third line of (9.79) does not contribute to the commutator. Hence

we are not restricted to the choice A ¼ 1 if we are only interested in the commutator. This commutator is

lim
δ→

lim
δ̄→0

ðΨf;hab;P0
jðD̂½M⃗i�δ̄D̂½N⃗i�δ − N ↔ MÞjci ¼ 3ℏ

4πi
ν−2=3v lim

δ→0

1

ðN − 1ÞðN − 2Þδ

×

�� X
I;Ĵ1;K̂1

lim
δ̄→0

ðΨf;hab;P0
jNðv; fxgÞD̂½M⃗i�δ̄c½i;I;Ĵ;K̂;δ�1i

�

−
� X

I;Ĵ1;K̂1

lim
δ̄→0

ðΨf;hab;P0
jMðv; fxgÞD̂½N⃗i�δ̄c½i;I;Ĵ;K̂;δ�1iÞ

	
: ð9:80Þ

Using (9.78) in (9.80), taking the δ → 0 limit and leaving A undetermined (and in particular, not necessarily equal to
unity), we obtain V̂a

I

ðΨf;hab;P0
j
X3
i¼1

½D̂½M⃗i�; D̂½N⃗i��ci ¼ A

�
3ℏN
4πi

�
2

ν−4=3v gc

�X
i;I

hIðqiIÞ2½Nðv; fxgÞV̂b
I ð∂bMðp; fxgÞÞ

−Mðv; fxgÞV̂b
I ð∂bNðp; fxgÞÞ�½V̂a

I ∂aðfðp; fxgÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðpÞV̂a

I V̂
b
I

q
Þ�jp¼v

	
: ð9:81Þ

Making contact through (9.43) with (9.40) this can be written succinctly as

ðΨf;hab;P0
j
X3
i¼1

½D̂½M⃗i�; D̂½N⃗i�ci ¼ A

�
3ℏN
4πi

�
2

ðν−4=3v Þgc
X
i

X
I

hIðqiIÞ2ðH2
I ðM;N;p ¼ vÞ −H2

I ðN;M;p ¼ vÞÞ: ð9:82Þ

Comparing this with (9.42), we obtain

ðΨf;hab;P0
j
X3
i¼1

½D̂½M⃗i�; D̂½N⃗i�ci ¼
4A

3βMβN
ðΨf;hab;P0

j½Ĉ½M�; Ĉ½N�ci: ð9:83Þ

Comparing this with (2.11), we obtain an anomaly free commutator if:
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(a) we choose successive actions of the Hamiltonian
constraint to have opposite flips so that βM ¼ −βN
so that βMβN ¼ −1;

(b) we choose A ¼ 1
4
.

Making these choices we obtain the desired anomaly
free result. Note that because we have been obliged to
choose A ≠ 1, the continuum limit product of two electric
diffeomorphism constraints is not defined; only their
commutator is well defined. However, the electric diffeo-
morphism constraint operator is not one of the constraint
operators used to generate the constraint algebra; its role is
restricted to the demonstration of an anomaly free com-
mutator between a pair of Hamiltonian constraints in
accord with (2.11). Hence the ill defined-ness of the
product of two electric diffeomorphism constraint operators
is not an obstruction to our treatment of the constraint
algebra.

X. MULTIPLE PRODUCTS OF HAMILTONIAN
CONSTRAINTS

In Sec. X. A we derive, through an inductive proof,
the expression for the action of multiple products of
Hamiltonian constraint operators on an anomaly free state.
In Sec. X. B we show that the action derived in X. A yields
anomaly free single commutators (see Sec. I for our usage
of the term “anomaly free single commutator”). Since the
detailed calculations below are similar to those of Sec. IX,
we shall only highlight the main steps of these calculations
in our exposition.

A. Multiple products of Hamiltonian
constraints: Derivation

1. Introductory remarks

We note the following:
(1) The discrete action of a product of n Hamiltonian

constraints in (8.9) requires a choice of β (which
characterizes the charge flips) for each constraint
action. In the rest of this work, we choose β ¼ βi for
the ith Hamiltonian constraint in (8.9) to beþ1 if i is
odd and −1 if i is even. This is consistent with the
choice made in Sec. IX. A for the case of n ¼ 2.

(2) Note that Eq. (8.9) is evaluated through the two steps
outlined in Sec. VIII. C so that the coordinate patch
with respect to which the amplitude of a deformed
child generated by the operator product is evaluated
is the appropriate contraction coordinate patch.
Only for the undeformed state c, the amplitude is
evaluated with respect to the reference coordinates
associated with c.

(3) Recall that the cone angle is acute or obtuse depend-
ing on whether the deformations are upward or
downward. Hereon we will tailor our choice of
cone angle to the choice of bra set so that j cos θj
is fixed and the same for all deformations of ket

correspondents of members of the bra set and is
chosen such that

j cos θjð3Nqprimordial
max Þ < 1 ð10:1Þ

with qprimordial
max defined as in (6.9), where the set

of edge charges in that equation can be taken to
be those of any primordial charge net in the bra
set.41 Note that this condition is equivalent to the
condition

j cos θjð3NqnetmaxÞ < 1 ð10:2Þ

where

qnetmax ¼ max
ði¼1;2;3Þ;ðI¼1;::;NÞ

jqiIj ð10:3Þ

where the charges qiI are the net edge charges
42 at the

nondegenerate vertex of any element of the bra set.
It is easy to check that this equivalence follows
immediately from Appendix C together with the
definition of the bra set in Sec. VII. A.

(4) Equations (6.7) and (6.8)are defined as conditions
on primordial charges. Appendix C shows that the
net charges and primordial charges on correspond-
ing edges are identical or flipped images of each
other. Hence the Eqs. (6.7) and (6.8)) also hold for
net charges on multiply deformed children of pri-
mordial charge nets and we shall so interpret them
when we refer to them hereon.

2. Summary of choices

It is useful to note that from Secs. VI. B, VI. C, VI. E
and (3) of Sec. X. A. 1, that the action (8.9) is fixed once the
following choices have been made:
(a) The set of primordial states Sprimordial.
(b) A primary coordinate patch fx0g around a point p0.
(c) A set of primordial reference states, one for each

diffeomorphism class of states in Sprimordial, the non-
degenerate vertex of each such reference state being
located at p0 and linear with respect to fx0g. These
primordial reference states are divided into exhaustive
and mutually exclusive classes, each class defining a
bra set so that members of each class have the same set
of unordered edge charges. For each class we choose a
cone angle θ which satisfies (10.1).

41The value of qprimordial
max is independent of the choice of

primordial charge net in the bra set since any such primordial
has the same set of unordered edge charges (see Sec. VII. A).

42This notation is consistent with the Note at the beginning of
Sec. IX; note that this equation is in general distinct from (4.1)
because the charges on the right-hand side of that equation refer
to the actual edge charges not the net edge charges.
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(d) A reference state for each distinct diffeomorphism
class of elements of Sprimary, each such reference state
itself being an element of Sprimary.

43

(e) A choice of reference diffeomorphism, one for each
element c of the ket set, which maps the reference state
c0 for this element c, to c.

(f) A choice of deformation such that any (single or
multiple) deformation of any element of the comple-
ment of the ket set is also in this complement.

Once the choices (a)–(f) are made, the formalism is rigid
in that the choice of upward/downward conical deforma-
tions is fixed as in Sec. V, the contraction procedure is fixed
as in Sec. VI. C, the discrete action of operator products is
fixed as in Sec. VI. D with the sign flips chosen in accord
with (1) above, the anomaly free basis states are chosen as
in Sec. VII and the continuum limit is defined as
in Eq. (8.10).

3. Notation

Recall that the Cauchy manifold is a Ck-semianalytic
manifold for some k ≫ 1. We compute the continuum limit
(8.10) for arbitrary n < k with ÔiðNiÞ; i ¼ 1; ::; n being
Hamiltonian constraint operators. We restrict our attention
to the case that c in (8.10) is in the bra set because, as
mentioned in Sec. VIII. A, for c not in the bra set, the dual
action vanishes.
We denote the nondegenerate vertex of c by v and its

associated reference coordinate patch by fxg. We shall be
interested in a proof by mathematical induction. In the
course of that proof, it will suffice to develop notation only
for singly deformed states. The single deformations of
interest will be denoted as

½i; I; Ĵ; K̂; β; δ�1 ¼ ði; I; Ĵ1; K̂1; β; δÞ: ð10:4Þ

The vertex of the singly deformed state c½i;I;Ĵ;K̂;β;δ�1 is
denoted by v½i;I;δ�1 and its associated contraction coordinate
patch by fxδg. In the induction proof it will turn out that the
single deformation of (10.4) will play the role of the first of
mþ 1 deformations applied to c. Accordingly, in relation
to the notation of Sec. VI. C, in this section we have set

fxαg≡ fxg; j1 ¼ mþ 1; ϵj1 ≡ δ; fxϵj1α g≡ fxδg:
ð10:5Þ

As usual, wherever required explicitly, we denote the
density weighted object B evaluated at point p in the
coordinate system fyg by Bðp; fygÞ. We shall also make
extensive use of the notation developed in Appendix F.

4. Proof by induction

Let n be a positive integer with n ≤ k − 1 where k is the
differentiability class of the semianalytic Cauchy slice.
Define kn as

kn ¼
n − 1

2
if n is odd;

kn ¼
n
2

if n is even: ð10:6Þ

Let c be in the bra set and let the ith net charge at the Ith
edge at its nondegenerate vertex v be qiI . Define

jq⃗Ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

ðqiIÞ2
vuut : ð10:7Þ

Claim.—The continuum limit of the dual action of a
product of n Hamiltonian constraints when n is even is

ðΨf;hab;P0
j
�Yn

i¼1

ĈðNiÞ
�
jci

¼ ð−3Þkn
�
3ℏN
8πi

�
n
ðν−2

3Þngc
X
I

jq⃗IjnhIHn
I ðN1; ::; Nn; vÞ;

ð10:8Þ

and the continuum limit of the dual action of a product of n
Hamiltonian constraints when n is odd is

ðΨf;hab;P0
j
�Yn

i¼1

ĈðNiÞ
�
jci

¼ ð−3Þkn
�
3ℏN
8πi

�
n
ðν−2

3Þngc
X
I

jq⃗Ijn−1
�X3

i¼1

qiI

�

× hIHn
I ðN1; ::; Nn; vÞ; ð10:9Þ

and where we have used Eq. (9.40) to define
Hn

I ðN1; ::; Nn;pÞ so that

Hn
I ðN1; ::;Nn;vÞ ¼

�Yn
i¼1

Nn−iþ1ðp;fxgÞV̂an−iþ1

I ðpÞ∂an−iþ1

�

× ðfðp;fxgÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðpÞV̂a

I ðpÞV̂b
I ðpÞ

q
Þ
����
p¼v

ð10:10Þ

and the product is ordered from left to right in increasing i.

43Recall that Sprimary is the set of primaries generated from
reference primordials through repeated conical deformations of
the type constructed in Appendix B and Sec. V with respect to
fx0g so that Sprimary is determined once (a)–(b) above are fixed. In
particular the cone angles characterizing the conical deformations
are fixed by (b). Recall also that the ket set Sket comprises of all
diffeomorphic images of elements in Sprimary and hence is also
determined once (a)–(b) are fixed.
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Proof by induction.—Step 1: In Sec. IX. Awe have shown that (10.9) holds for n ¼ 1 [see (9.27)] and that (10.8) holds
for n ¼ 2 [see (9.41)]. More in detail, clearly, we have shown (10.9) holds for n ¼ 1 and that (10.8) holds for n ¼ 2 for any
choice of (a)–(f), Sec. X. A. 2 with c being in a bra set resulting from these choices.
Step 2: Assume that (10.8) holds for n ¼ m, m even, for any choice of (a)–(f), Sec. X. A. 2. Then we show below that

(10.9) holds for n ¼ mþ 1 for any choice of (a)–(f), Sec. X. A. 2. We have that

ðΨf;hab;P0
j
�Ymþ1

i¼1

ĈðNiÞ
�
jci ¼ lim

δ→0
ðΨf;hab;P0

j
�Ym

i¼1

ĈðNiÞ
�
ĈδðNmþ1Þjci: ð10:11Þ

Using (8.5) we obtain

ðΨf;hab;P0
j
�Ym

i¼1

ĈðNiÞ
�
ĈδðNmþ1Þjci ¼ ð−1Þm 3ℏ

8πi
NðxðvÞÞν−2=3v

1

ðN − 1ÞðN − 2Þδ
X

i;IĴ1;K̂1

ððΨf;hab;P0
j

×

�Ym
i¼1

ĈðNiÞ
�
jc½i;I;Ĵ;K̂;β;δ�1i − ðΨf;hab;P0

j
�Ym

i¼1

ĈðNiÞ
�
jciÞ: ð10:12Þ

Here the ð−1Þm factor is unity form even in accord with (1),
Sec. X. A. 1.44 The second amplitude in the last line of
(10.12) is given by (10.8) with n ¼ m. The first amplitude
(within the summation symbol) looks as if it could be
evaluated through a direct application of (10.8). However
from (2), Sec. X. A. 1, the coordinates associated with
c½i;I;Ĵ;K̂;β;δ�1 are the contraction coordinates whereas (10.8) is
applicable only if these coordinates were reference coor-
dinates. Recall however that we have assumed (10.12) for
any choice of (a)–(f). Our strategy is then to make choices
for (a)–(f) such that (10.8) is directly applicable to the first
term in the context of such choices.
We proceed as follows. Consider some fixed choice of

(a)–(f) in Sec. X. A. 2, for which (10.8) is used to evaluate
the second term in the last line of (10.12). In this fixed
choice, as in Sec. VI, let c0 be the reference state for c, let
the reference diffeomorphism which maps c0 to c be α, let
the deformation of c0 with respect to the primary coor-
dinates fx0g at parameter δ0 be c0ði;I;β;δ0Þ and let the
contraction image of c0ði;I;β;δ0Þ by the appropriate contrac-
tion diffeomorphism be c0½i;I;Ĵ;K̂;β;δ�1 so that c½i;I;Ĵ;K̂;β;δ�1 is
the image by α of c0½i;I;Ĵ;K̂;β;δ�1 . Using (10.5) this contraction
diffeomorphism from (6.33) is

Φ
ϵj1¼mþ1¼δ;fx0g;Ĵ1;K̂1

c0;ði;I;β;δ0Þ;Sj1¼mþ1
≡ ϕ ð10:13Þ

where for notational simplicity in this step (i.e. Step 2),
we have denoted the contraction diffeomorphism on the
left-hand side of (10.13) by ϕ. Now consider the choices
(a’)–(c’) below which are images of the fixed choice made
above by the diffeomorphism ϕ. These ϕ choices are then
as follows:

(a’) The set of primordials Sϕ;primordial is chosen to be the
image of the set Sprimordial of primordials chosen in
accordance with choice (a); since Sprimordial is closed
under diffeomorphisms we have that Sϕ;primordial is
equal to Sprimordial.

(b’) The primary coordinate patch is ϕ�fx0g around the
point ϕðp0Þ.

(c’) The set of primordial reference states is just the set
of images byϕ of the fixed choice (c) of reference primo-
rdials. The cone angles, as measured by the primary
coordinates in (b’), for deformations of primordial
reference states are chosen to be identical to the choices
in (c) for their diffeomorphically related counterparts.

Next, note that the set of primaries, Sϕ;primary, are now
generated from the reference primordials of (c’) through
conical deformations with respect to ϕ�fx0g; it follows that
Sϕ;primary consists of the images of the elements of Sprimary

by ϕ. The ket set generated from Sϕ;primary is then identical
to the ket set SKet generated from Sprimary because the ket set
is closed under the action of diffeomorphisms. Next, con-
sider the diffeomorphism class ½c½i;I;Ĵ;K̂;β;δ�1 � of c½i;I;Ĵ;K̂;β;δ�1 .
Clearly we have that ½c½i;I;Ĵ;K̂;β;δ�1 � ¼ ½c0ði;I;β;δ0Þ�. Further,
since c0ði;Iβ;δ0Þ ∈ Sprimary, Eq. (10.13) and (c’) above
imply that c0½i;I;Ĵ;K̂;β;δ�1 ∈ Sϕ;primary. Hence may choose
c0½i;I;Ĵ;K̂;β;δ�1 to be a reference state for c½i;I;Ĵ;K̂;β;δ�1. Recall
that c½i;I;Ĵ;K̂;β;δ�1 is the image by α of c0½i;I;Ĵ;K̂;β;δ�1
Accordingly we choose (d’) and (e’) as follows:

(d’) We choose the reference state for ½c½i;I;Ĵ;K̂;β;δ�1 � to be
c0½i;I;Ĵ;K̂;β;δ�1 and choose reference states for other diffeo-
morphism classes of elements of the ket set arbitrarily.

(e’) We choose the reference diffeomorphism for
c½i;I;Ĵ;K̂;β;δ�1 to be α and choose the remaining reference
diffeomorphisms arbitrarily.

Finally, since the ket set is unaltered we retain the choice of
(f) i.e. we set (f’) to be the same as the fixed choice (f)
above. It is then easy to see that the bra set BP0

chosen with

44The equation as it is written would also be valid for m odd
where from (1), Sec. X. A. 1 we require an overall −1 ¼ ð−1Þm
factor coming from our choice of the mþ 1th β flip when m is
odd.
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respect to (a)–(f) is also a valid bra set with respect to
(a’)–(f’).
Accordingly we consider the same bra set BP0 as before

and choose hab; f also as before and obtain a state Ψϕ
f;h;P0

based on its amplitude evaluations in the context of the
choices (a’)–(f’) above. Our choices (a’)–(f’) [especially
(d’), (e’)] ensure that the reference coordinates for
c½i;I;Ĵ;K̂;β;δ�1 in the context of these choices is the same
as the contraction coordinates for this state in the
context of the fixed choices for (a)–(f) above. It is then
straightforward to check that the contraction coordinates

for any deformed state generated by the action of
ðQm

i¼1 ĈϵiðNiÞÞ on c½i;I;Ĵ;K̂;β;δ�1 in the context of choices
(a’)–(f’) coincides with the contraction coordinates for the
same deformed state when it is generated by the action of
ðQm

i¼1 ĈϵiðNiÞÞĈδðNmþ1Þ on c. It follows that the evaluation
of (10.8) in accordancewith Sec.X. A. 2 in the context of the
choices (a’)–(f’), and, with c replaced by c½i;I;Ĵ;K̂;β;δ�1 and

withΨf;h;P0
replaced byΨϕ

f;h;P0
, coincides precisely with the

first term (within the summation symbol) in the last line of
Eq. (10.12). It then follows from (10.8) that

ðΨf;hab;P0
j
�Ym

i¼1

ĈðNiÞ
�
jc½i;I;Ĵ;K̂;β;δ�1i ¼ ð−3Þkm

�
3ℏN
8πi

�
m
ðν−2

3
v½i;Iδ�1 Þmgc½i;I;Ĵ;K̂;β;δ�1

X
L1

jq⃗L1
jmhL1

Hm
L1
ðN1; ::; Nm; v½i;I;δ�1Þ; ð10:14Þ

where, using the notation (10.5) and(9.40), the coordinate dependent parts of Hm
L1
ðN1; ::; Nm; v½i;I;δ�1 are evaluated with

respect to the coordinates fxδg which serve both as the reference coordinates for the state c½i;I;Ĵ;K̂;β;δ�1 in the choice scheme
(a’)–(f’) or as the contraction coordinates in the fixed choice scheme of (a)–(f) above. We now revert back to the latter
interpretation of these coordinates.
Using the contraction behavior of hL1

; Hm
L1
; gc½i;I;Ĵ;K̂;β;δ�1

derived in Appendixes F, G. 2 together with (10.5), we obtain,

as δ → 0

X
Ĵ1;K̂1

ðΨf;hab;P0
j
�Ym

i¼1

ĈðNiÞ
�
jc½i;I;Ĵ;K̂;β;δ�1i

¼ ð−3Þkm
�
3ℏN
8πi

�
m
ðν−2

3
v½i;Iδ�1 ÞmgcQðc0½i;I;β;δ0�1;01

; Smþ1ÞhI

×

�
jq⃗L1¼IjmðN − 1ÞðN − 2Þ þ cosmðθÞ

�X
L1≠I

jq⃗L1≠Ijm
�
ðN − 2Þð1þ cos2θ þ ðN − 3Þj cos θj

	

×

�Ym
i¼1

Nam−iþ1

m−iþ1ðp; fxgÞV̂am−iþ1

I ðpÞ∂am−iþ1
ðfðp; fxgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðpÞV̂a

I ðpÞV̂b
I ðpÞ

q
Þjp¼v½i;I;δ�1

�
þOðδ2Þ: ð10:15Þ

We set

Qðc0½i;I;β;δ0�1;01
; Smþ1Þ

¼ ðν−2
3

v Þm
ðν−2

3
v½i;Iδ�1 Þm

� ðNÞðN − 1ÞðN − 2Þjq⃗Ijm
fjq⃗L1¼IjmðN − 1ÞðN − 2Þ þ cosmðθÞðPL1≠Ijq⃗L1≠IjmÞðN − 2Þð1þ cos2θ þ ðN − 3Þj cos θjg

�
: ð10:16Þ

Here q⃗I refers to the charge on the Ith edge at v in c and q⃗L1
to the charge on the L1th edge at v½i;I;δ�1 in c½i;I;Ĵ;K̂;β;δ�1 . Sincem

is even, the Q factor above is manifestly positive as required. With this choice of Q we obtain

X
Ĵ1;K̂1

ðΨf;hab;P0
j
�Ym

i¼1

ĈðNiÞ
�
jc½i;I;Ĵ;K̂;β;δ�1i

¼ ð−3Þkm
�
3ℏN
8πi

�
m
ðν−2

3
v ÞmgcNðN − 1ÞðN − 2ÞhIjq⃗Ijm

×
Ym
i¼1

Nam−iþ1

m−iþ1ðp; fxgÞV̂am−iþ1

I ðpÞ∂am−iþ1
ðfðp; fxgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðpÞV̂a

I ðpÞV̂b
I ðpÞ

q
jp¼v½i;I;δ�1

þOðδ2Þ: ð10:17Þ
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As in our treatment of similar terms in Sec. IX, we expand the right-hand side of the above equation in a Taylor
approximation in powers of δ.45 It is easy to see that the zeroth order contribution exactly cancels the contribution from the
second term in (10.12). The first order term provides the only contribution to (10.12) which survives in the δ → 0 limit. It is
straightforward to check that taking this limit of (10.12), we obtain

ðΨf;hab;P0
j
�Ym

i¼1

ĈðNiÞ
�
ĈδðNmþ1Þjci

¼ ð−3Þkm
�
3ℏN
8πi

�
mþ1

ðν−2
3

v Þmþ1gc
X
i;I

�
jq⃗IjmNmþ1ðp; fxgÞhIqiI

× V̂a
I ðpÞ∂a

�Ym
i¼1

Nam−iþ1

m−iþ1ðp; fxgÞV̂am−iþ1

I ðpÞ∂am−iþ1
ðfðp; fxgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðpÞV̂a

I ðpÞV̂b
I ðpÞ

q
Þ
�

p¼v

	
: ð10:18Þ

From (10.6) it follows that when m is even km ¼ kmþ1. Using the notation (9.40) together with this fact in (10.18) yields

ðΨf;hab;P0
j
�Ymþ1

i¼1

ĈðNiÞ
�
jci ¼ ð−3Þkmþ1

�
3ℏN
8πi

�
mþ1

ðν−2
3

v Þmþ1gc
X
i;I

fjq⃗Ijm−1qiIhIH
mþ1
I ðN1; ::; Nmþ1; vÞ ð10:19Þ

which is the desired result (10.9) with n ¼ mþ 1.
Since the fixed choice (a)–(f) underlying this derivation is arbitrary and since the assumed form for n ¼ m holds for any

such choice, the result (10.19) also holds for any choice of (a)–(f).
Step 3: Assume that (10.9) holds for n ¼ m, m odd, for any choice of (a)–(f). Then we show below that (10.8) holds for

n ¼ mþ 1 for any choice of (a)–(g). The first part of our analysis is identical to the first part of the analysis in Step 2. Note
that in Step 2, Eqs. (10.11)–(10.13) hold regardless of whether m is odd or even [see footnote 44 with regard to the validity
of (10.11) when m is odd]. The second amplitude in the last line of (10.12) is now given by (10.9) with n ¼ m. To apply
(10.9) to the first amplitude in the last line of (10.12) we repeat the analysis subsequent to (10.12) till (but not inclusive of)
(10.14). The choices (a’)–(f’) allow us to apply (10.9) also to the first amplitude in the last line of (10.12). Accordingly, this
term evaluates to

ðΨf;hab;P0
j
�Ym

i¼1

ĈðNiÞ
�
jc½i;I;Ĵ;K̂;β;δ�1i¼ð−3Þkm

�
3ℏN
8πi

�
m
ðν−2

3
v½i;Iδ�1 Þmgc½i;I;Ĵ;K̂;β;δ�1

X
L1

jq⃗L1
jm−1

�X
i1

qi1L1

�
hL1

Hm
L1
ðN1;::;Nm;v½i;Iδ�1Þ;

ð10:20Þ

where, similar to (10.14), using the notation (10.5) and (9.40), the coordinate dependent parts ofHm
L1
ðN1; ::; Nm; v½i;I;δ�1Þ are

evaluated with respect to the coordinates fxδg. Once again, using the contraction behavior of hL1
; Hm

L1
; gc½i;I;Ĵ;K̂;β;δ�1

derived in

Appendixes F, G. 2 together with (10.5), we obtain, as δ → 0

X
Ĵ1;K̂1

ðΨf;hab;P0
j
�Ym

i¼1

ĈðNiÞ
�
jc½i;I;Ĵ;K̂;β;δ�1i

¼ ð−3Þkm
�
3ℏN
8πi

�
m
ðν−2

3
v½i;Iδ�1 ÞmgcQðc0½i;I;β;δ0�1;01

; Smþ1ÞhI
�
jq⃗L1¼Ijm−1

�X
i1

qi1L1¼I

�
ðN − 1ÞðN − 2Þ

þ cosmðθÞ
�X

L1≠I
jq⃗L1≠Ijm−1

�X
i1

qi1L1

��
ðN − 2Þð1þ cos2θ þ ðN − 3Þj cos θj

	

×

�Ym
i¼1

Nam−iþ1

m−iþ1ðp; fxgÞV̂am−iþ1

I ðpÞ∂am−iþ1

�
fðp; fxgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðpÞV̂a

I ðpÞV̂b
I ðpÞ

q �
jp¼v½i;I;δ�1

�
þOðδ2Þ: ð10:21Þ

45This Taylor expansion is valid provided mþ 1 ≤ k − 1.
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We set

Qðc0½i;I;β;δ0�1;01
; Smþ1Þ

¼ ðν−2
3

v Þm
ðν−2

3
v½i;Iδ�1 Þm

×
3ðNÞðN − 1ÞðN − 2Þjq⃗Ijm−1ðPi1q

i1
L1¼IÞ

½jq⃗L1¼Ijm−1ðPi1q
i1
L1¼IÞðN − 1ÞðN − 2Þ� þ ½cosmθðPL1≠Ijq⃗L1

jm−1ðPi1q
i1
L1
ÞÞðN − 2Þð1þ cos2θ þ ðN − 3Þj cos θj� :

ð10:22Þ

For θ constrained by Eqs. (10.1) and (10.2), it is straightforward to check that the sign of the denominator is that of its first
term jq⃗L1¼Ijm−1ðPi1q

i1
L1¼IÞðN − 1ÞðN − 2Þ which is then the same as the sign of the numerator so that Q is positive. Note

that Q in (10.22) is different from that in (10.16); this is not a problem because their associated constraint strings Smþ1 are
different in that in one case m is even and in the other m is odd. Note that because the transition ½i; I; Ĵ; K̂; β; δ�1 is a
Hamiltonian constraint generated one [with β ¼ −1 in accord with (1), Sec. X. A. 1], we have that

qi1I1¼I ¼ ðiÞqi1I ¼ δii1qi1I þ
X
k

ϵii1kqkI ð10:23Þ

where the left-hand side refers to the Ith edge charge in the child c½i;I;Ĵ;K̂;β;δ�1 and the right-hand side to the Ith edge charge in
the parent c. Using (10.22) and (10.23) in (10.21), together with the fact that the norm of the charge vector is flip
independent, we obtain

X
Ĵ1;K̂1

ðΨf;hab;P0
j
�Ym

i¼1

ĈðNiÞ
�
jc½i;I;Ĵ;K̂;β;δ�1i

¼ ð−3Þkm
�
3ℏN
8πi

�
m
ðν−2

3
v Þmgc3NðN − 1ÞðN − 2Þ

× hIjq⃗Ijm−1
�X

i1

ðiÞqi1I

�Ym
i¼1

Nam−iþ1

m−iþ1ðp; fxgÞV̂am−iþ1

I ðpÞ∂am−iþ1

�
fðp; fxgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðpÞV̂a

I ðpÞV̂b
I ðpÞ

q ����
p¼v½i;I;δ�1

þOðδ2Þ:

ð10:24Þ

Expanding in a Taylor approximation subject to footnote 45 we obtain

X
I

X
i

X
Ĵ1;K̂1

ðΨf;hab;P0
j
�Ym

i¼1

ĈðNiÞ
�
jc½i;I;Ĵ;K̂;β;δ�1i

¼ ð−3Þkm
�
3ℏN
8πi

�
m
ðν−2

3
v Þmgc3NðN − 1ÞðN − 2Þ

X
i;I

hIjq⃗Ijm−1
�X

i1

ðiÞqi1I

�

×

�Ym
i¼1

Nam−iþ1

m−iþ1ðp; fxgÞV̂am−iþ1

I ðpÞ∂am−iþ1

�
fðp; fxgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðpÞV̂a

I ðpÞV̂b
I ðpÞ

q ����
p¼v

þ δqiIV
a
I ∂a

�Ym
i¼1

Nam−iþ1

m−iþ1ðp; fxgÞV̂am−iþ1

I ðpÞ∂am−iþ1

�
fðp; fxgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðpÞV̂a

I ðpÞV̂b
I ðpÞ

q
Þ
����

p¼v

	
þOðδ2Þ: ð10:25Þ

Using (9.34), it is straightforward to see that the contribution, to (10.12) [withm odd in (10.12)], of the zeroth order term in
δ in (10.25) cancels with the contribution, to (10.12) of the second term in the last line of (10.12). Hence only the first order
term in δ in (10.25) contributes to (10.12). Using (9.35) and (10.25) in (10.12) yields
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ðΨf;hab;P0
j
�Ym

i¼1

ĈðNiÞ
�
ĈδðNmþ1Þjci

¼ ð−3Þkm
�
3ℏN
8πi

�
mþ1

ðν−2
3

v Þmþ1ð−3Þgc
X
i;I

�
jq⃗Ijm−1ðqiIÞ2Nmþ1ðp; fxgÞhI

× V̂a
I ðpÞ∂a

�Ym
i¼1

Nam−iþ1

m−iþ1ðp; fxgÞV̂am−iþ1

I ðpÞ∂am−iþ1

�
fðp; fxgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðpÞV̂a

I ðpÞV̂b
I ðpÞ

q ��
p¼v

	
ð10:26Þ

where the overall ð−3Þ factor comes from the 3 in the numerator of (10.22) and the ð−1Þm ¼ −1 factor in (10.12).
From (10.6) it follows that when m is odd kmþ1 ¼ km þ 1. Using this fact together with the definition of the charge vector
norm (10.7) and the notation (9.40), in (10.26) yields

ðΨf;hab;P0
j
�Ymþ1

i¼1

ĈðNiÞ
�
jci ¼ ð−3Þkmþ1

�
3ℏN
8πi

�
mþ1

ðν−2
3

v Þmþ1gc
X
i;I

jq⃗Ijmþ1hIH
mþ1
I ðN1; ::; Nmþ1; vÞ ð10:27Þ

which is the desired result (10.8) with n ¼ mþ 1.
Once again, since the fixed choice (a)–(f) underlying this

derivation is arbitrary and since the assumed form for
n ¼ m holds for any such choice, the result (10.27) also
holds for any choice of (a)–(f).
Steps 1, 2 and 3 above complete the proof of the Claim.

The caveat in footnote 45 restricts the validity of the proof
to the case that n ≤ k − 1, consistent with the Claim.

B. Anomaly free single commutators

In Sec. X. B. 1 we summarize our notation. In
Sec. X. B. 2 we compute the action of a multiple product
of Hamiltonian constraints multiplied by a single electric
diffeomorphism constraint. We use this in Sec. X. B. 3 to
compute the action of a multiple product of Hamiltonian
constraints multiplied by a single commutator between a pair
of electric diffeomorphism constraints. We show that the
result is the same as that of the action of this product of
Hamiltonian constraints multiplied by the appropriate com-
mutator between a pair ofHamiltonian constraints. Hence this
single commutator between a pair of Hamiltonian constraints
is anomaly free in the sense that it can be replaced, within the
particular string of operators under consideration, by the
commutator between a pair of electric diffeomorphism con-
straints in line with (2.11). In Sec. X. C we use this result to
show that each of the commutators in (1.1) is anomaly free in
the sense that each of themcanbe replacedbya corresponding
appropriate electric diffeomorphism commutator.

1. Notation

We denote the nondegenerate vertex of c by v and its
associated reference coordinate patch by fxg. As in
Sec. X. A it will suffice to develop notation only for singly
deformed states. The single deformations of interest will be
denoted as

½i; I; Ĵ; K̂; β ¼ 0; δ�1 ¼ ði; I; Ĵ1; K̂1; δÞ: ð10:28Þ
The vertex of the singly deformed state c½i;I;Ĵ;K̂;δ�1 is denoted
by v½i;I;δ�1 and its associated contraction coordinate patch
by fxδg. The single deformation of (10.28) will play the
role of the first of mþ 1 deformations applied to c in
Sec. X. B. 2 and the role of the first of mþ 2 deformations
in Sec. X. B. 3. Accordingly, in relation to the notation of
Sec. VI. C, in Sec. X. B. 2 we set

fxαg≡ fxg; j1 ¼ mþ 1; ϵj1 ≡ δ; fxϵj1α g≡ fxδg;
ð10:29Þ

and in Sec. X. B. 3 we set

fxαg≡ fxg; j1 ¼ mþ 2; ϵj1 ≡ δ; fxϵj1α g≡ fxδg:
ð10:30Þ

2. Single electric diffeomorphism

In this Sec. we evaluate the action of ðQm
i¼1 ĈðNiÞÞ×

D̂ðN⃗mþ1iÞ. We have that

ðΨf;hab;P0
j
�Ym

i¼1

ĈðNiÞ
�
D̂ðN⃗mþ1iÞjci ¼ lim

δ→0
ðΨf;hab;P0

j
�Ym

i¼1

ĈðNiÞ
�
D̂δðN⃗mþ1iÞjci: ð10:31Þ

Using (8.6) we obtain

ðΨf;hab;P0
j
�Ym

i¼1

ĈðNiÞ
�
D̂δðN⃗mþ1iÞjci

¼ 3ℏ
4πi

NðxðvÞÞν−2=3v
1

ðN−1ÞðN−2Þδ
X
IĴ1;K̂1

�
ðΨf;hab;P0

j
�Ym

i¼1

ĈðNiÞ
�
jc½i;I;Ĵ;K̂;δ�1i−ðΨf;hab;P0

j
�Ym

i¼1

ĈðNiÞ
�
jci

�
: ð10:32Þ
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We use (10.8) and (10.9) to evaluate the amplitudes in the last line. The second amplitude admits a direct application of
these equations with some fixed choice for (a)–(f), Sec. X. A. 2. These equations are applied to the evaluation of the first
amplitude with the choices (a’)–(f’) outlined in Step 2, Sec. X. A. 4 except that we set β ¼ 0 there. The calculational details
differ slightly for m even and m odd.
Case A: m even.—Using the contraction behavior of various quantities in Appendixes F, G. 2 and the notation (10.29) and
(9.40), we obtain

X
Ĵ1;K̂1

ðΨf;hab;P0
j
�Ym

i¼1

ĈðNiÞ
�
jc½i;I;Ĵ;K̂;δ�1i

¼ ð−3Þkm
�
3ℏN
8πi

�
m
ðν−2

3
v½i;Iδ�1 ÞmgcQðc0½i;I;δ0�1;01

;Smþ1ÞhI
�
jq⃗L1¼IjmðN − 1ÞðN − 2Þþ cosmðθÞ

�X
L1≠I

jq⃗L1≠Ijm
�

× ðN − 2Þð1þ cos2θþðN − 3ÞjcosθjÞ
	Ym

i¼1

Nam−iþ1

m−iþ1ðp;fxgÞV̂am−iþ1

I ðpÞ∂am−iþ1
ðfðp;fxgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðpÞV̂a

I ðpÞV̂b
I ðpÞ

q
Þjp¼v½i;I;δ�1

þOðδ2Þ: ð10:33Þ
We set

Qðc0½i;I;δ0�1;01
; Smþ1Þ

¼ ðν−2
3

v Þm
ðν−2

3
v½i;Iδ�1 Þm

� ðNÞðN − 1ÞðN − 2Þjq⃗Ijm
fjq⃗L1¼IjmðN − 1ÞðN − 2Þ þ cosmðθÞðPL1≠Ijq⃗L1≠IjmÞðN − 2Þð1þ cos2 θ þ ðN − 3Þj cos θjÞg

�
: ð10:34Þ

For m even, clearly Q is positive.46

Expanding the contribution of (10.33) to (10.32) in a Taylor approximation in powers of δ subject to footnote 45, the
zeroth order contribution cancels the contribution from the second term in the last line of (10.32). Only the first order
contribution remains in the δ → 0 limit in (10.32) and we obtain

ðΨf;hab;P0
j
�Ym

i¼1

ĈðNiÞ
�
D̂ðN⃗mþ1iÞjci ¼ lim

δ→0
ðΨf;hab;P0

j
�Ym

i¼1

ĈðNiÞ
�
D̂δðN⃗mþ1ijci

¼ ð−3Þkm2
�
3ℏN
8πi

�
mþ1

ðν−2
3

v Þmþ1gc
X
I

jq⃗IjmqiIhIHmþ1
I ðN1; ::; Nmþ1; vÞ ð10:35Þ

where we have used the notation (9.40) so that

Hmþ1
I ðN1; ::; Nmþ1; vÞ ≔

Yl
i¼1

Nl−iþ1ðp; fxgÞV̂al−iþ1

Lm
ðpÞ∂al−iþ1

ðfðp; fxgÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðpÞV̂a

Lm
ðpÞV̂b

Lm
ðpÞ

q
Þ
���
p¼v

: ð10:36Þ

The reader may skip to Sec. X. B. 3 wherein we continue on to the electric diffeomorphism commutator calculation for m
even in Sec. X. B. 3.

Case B: m odd.—Using Appendixes F, G. 2 and the notation (10.29) and (9.40), we obtainX
Ĵ1;K̂1

�
Ψf;hab;P0

j
�Ym

i¼1

ĈðNiÞ
�
jc½i;I;Ĵ;K̂;δ�1i

¼ ð−3Þkm
�
3ℏN
8πi

�
m
ðν−2

3
v½i;Iδ�1 ÞmgcQðc0½i;I;δ0�1;01

; Smþ1ÞhI
�
jq⃗L1¼Ijm−1

�X
i1

qi1L1¼I

�
ðN − 1ÞðN − 2Þ

þ cosmðθÞ
�X

L1≠I
jq⃗L1

jm−1
�X

i1

qi1L1

��
ðN − 2Þð1þ cos2θ þ ðN − 3Þj cos θjÞ

	

×

�Ym
i¼1

Nam−iþ1

m−iþ1ðp; fxgÞV̂am−iþ1

I ðpÞ∂am−iþ1
ðfðp; fxgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðpÞV̂a

I ðpÞV̂b
I ðpÞ

q ��
p¼v½i;I;δ�1

þOðδ2Þ: ð10:37Þ

46Note that theQ factors in (10.34) and (10.22) are identical functions of their associated child-parent charges. In principle they could have
been chosen to differ from each other because their sequence labels differ in that themþ 1th operator type is h for (10.22) and di for (10.34).
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We set

Qðc0½i;I;δ0�1;01
;Smþ1Þ

¼ ðν−2
3

v Þm
ðν−2

3
v½i;Iδ�1 Þm

ðNÞðN−1ÞðN−2Þjq⃗Ijm−1ðPjq
j
IÞÞ

jq⃗L1¼Ijmð
P

i1q
i1
L1¼IÞðN−1ÞðN−2ÞþcosmðθÞðPL1≠Ijq⃗L1

jm−1ðPi1q
i1
L1
ÞÞðN−2Þð1þcos2θþðN−3ÞjcosθjÞ :

ð10:38Þ

Since the transition ½i; I; Ĵ; K̂; δ�1 is an electric diffeomorphism type, we have that

qiL1¼I ¼ qiI: ð10:39Þ

Using this with (10.1) and (10.2) implies that Q > 0. Expanding the contribution of (10.37) to (10.32) in a Taylor
approximation in powers of δ subject to footnote 45, the zeroth order contribution cancels the contribution from second term
in the last line of (10.32). Only the first order contribution remains in the δ → 0 limit in (10.32) and we obtain

ðΨf;hab;P0
j
�Ym

i¼1

ĈðNiÞ
�
D̂ðN⃗mþ1iÞjci ¼ lim

δ→0
ðΨf;hab;P0

j
�Ym

i¼1

ĈðNiÞ
�
D̂δ

�
N⃗mþ1ijci

¼ ð−3Þkm2
�
3ℏN
8πi

�
mþ1

ðν−2
3

v Þmþ1gc
X
I

jq⃗Ijm−1
�X

j

qjI

��
qiIhIH

mþ1
I ðN1; ::; Nmþ1; vÞ

ð10:40Þ
where, as in (10.35), we have used the notation (9.40).

3. Electric diffeomorphism commutator

In this section we evaluate the action of ðQm
i¼1 ĈðNiÞÞ½D̂ðN⃗mþ1iÞ; D̂ðN⃗mþ2iÞ�. We have that

ðΨf;hab;P0
j
�Ym

i¼1

ĈðNiÞ
�
½D̂ðN⃗mþ1iÞ; D̂ðN⃗mþ2iÞ�jci

¼ lim
δ→0

ðΨf;hab;P0
j
�Ym

i¼1

ĈðNiÞ
�
ðD̂ðN⃗mþ1iÞ; D̂δðN⃗mþ2iÞ − D̂ðN⃗mþ2iÞ; D̂δðN⃗mþ1iÞÞjci: ð10:41Þ

Using (8.6) we obtain

ðΨf;hab;P0
j
�Ym

i¼1

ĈðNiÞ
�
D̂ðN⃗mþ1iÞD̂δðN⃗mþ2ijci

¼ 3ℏ
4πi

Nmþ2ðv; fxgÞν−2=3v
1

ðN − 1ÞðN − 2Þδ

×
X
IĴ1;K̂1

�
ðΨf;hab;P0

j
�Ym

i¼1

ĈðNiÞ
�
D̂ðN⃗mþ1iÞjc½i;I;Ĵ;K̂;δ�1i − ðΨf;hab;P0

j
�Ym

i¼1

ĈðNiÞ
�
D̂ðN⃗mþ1iÞjci

�
: ð10:42Þ

We may use (10.35) and (10.40) to evaluate the amplitudes in the last two lines. The second amplitude admits a direct
application of these equations with some fixed choice for (a)–(f), Sec. X. A. 2. It is straightforward to check that the
application of (10.35) and (10.40) to the evaluation of the second amplitude results in an expression with an overall factor
Nmþ2ðv; fxgÞNmþ1ðv; fxgÞ. It then follows from (10.41) that this term does not contribute to the commutator and, hence,
we disregard it.
Equations (10.35) and (10.40) may be applied to the evaluation of the first amplitude with the choices (a’)–(f’) outlined in

Step 2, Sec. X. A. 4 except that, once again, we set β ¼ 0 there. The calculational details for this contribution differ slightly
for m even and m odd.
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Case A: m even.—Using (10.35) as indicated above to evaluate the first amplitude in the last line of (10.42), we obtain its
contraction limit using the Appendixes F, G. 2 together with (10.30) to be

X
Ĵ1;K̂1

ðΨf;hab;P0
j
�Ym

i¼1

ĈðNiÞ
�
D̂ðN⃗mþ1iÞjc½i;I;Ĵ;K̂;δ�1i

¼ ð−3Þkm2
�
3ℏN
8πi

�
mþ1

ðν−2
3

v½i;Iδ�1 Þmþ1gcQðc0½i;I;δ0�1;01
; Smþ2ÞhIfjq⃗L1¼IjmqiL−1¼IðN − 1ÞðN − 2Þ

þ cosmþ1ðθÞ
�X

L1≠I
jq⃗L1

jmqiL1

�
ðN − 2Þð1þ cos2θ þ ðN − 3Þj cos θjÞg

×

�Ymþ1

i¼1

Nam−iþ1

m−iþ1ðp; fxgÞV̂am−iþ1

I ðpÞ∂am−iþ1
ðfðp; fxgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðpÞV̂a

I ðpÞV̂b
I ðpÞ

q
Þ
���
p¼v½i;I;δ�1

�
þOðδ2Þ: ð10:43Þ

Note that the transition ½i; I; Ĵ; K̂; δ�1 is an electric diffeomorphism type deformation so that

qiL1¼I ¼ qiI: ð10:44Þ

We set for some A > 0:

Qðc0½i;I;δ0�1;01
; Smþ2Þ

¼ ðν−2
3

v Þmþ1

ðν−2
3

v½i;Iδ�1 Þmþ1

AðNÞðN − 1ÞðN − 2Þjq⃗IjmqiI
fjq⃗L1¼IjmqiL1¼IðN − 1ÞðN − 2Þ þ cosmþ1ðθÞðPL1≠Ijq⃗L1

jmqiL1
ÞðN − 2Þð1þ cos2θ þ ðN − 3Þj cos θjg :

ð10:45Þ

Equation (10.44) together with (10.1) and (10.2) once again implies that Q > 0. Next, we expand (10.43) in a Taylor
expansion in powers of δ. It is easy to check that the zeroth order term does not contribute to the commutator (10.42). Only
the first order term contributes. Using this first order term in (10.42) and taking the contraction limit, we obtain

ðΨf;hab;P0
j
�Ym

i¼1

ĈðNiÞ
�
½D̂ðN⃗mþ1iÞ; D̂ðN⃗mþ2iÞ�jci

¼ ð−3ÞkmA4
�
3ℏN
8πi

�
mþ2

ðν−2
3

v Þmþ2gc
X
I

jq⃗IjmðqiIÞ2hI
�
Nmþ2ðp; fxgÞV̂a

I ðpÞ∂a

×

�Ymþ1

i¼1

Nam−iþ1

m−iþ1ðp; fxgÞV̂am−iþ1

I ðpÞ∂am−iþ1
ðfðp; fxgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðpÞV̂a

I ðpÞV̂b
I ðpÞ

q �
− Nmþ2ðp; fxgÞ ↔ Nmþ1ðp; fxgÞ

	
p¼v

:

ð10:46Þ

Summing over i in (10.46) and using the notation (9.40) and the definition of the charge norm (10.7), we obtain

ðΨf;hab;P0
j
�Ym

i¼1

ĈðNiÞ
�
½D̂ðN⃗mþ1iÞ; D̂ðN⃗mþ2iÞ�jci

¼ ð4AÞð−3Þkm
�
3ℏN
8πi

�
mþ2

ðν−2
3

v Þmþ2gc
X
I

fjq⃗Ijmþ2hIðHmþ2
I ðN1; ::; Nmþ1; Nmþ2; vÞ −Hmþ1

I ðN1; ::; Nmþ2; Nmþ1; vÞ:

ð10:47Þ

On the other hand, replacing the commutator
P

i½D̂ðN⃗mþ1iÞ; D̂ðN⃗mþ2iÞ� with ½ĈðNmþ1Þ; ĈðNmþ2Þ� and noting thatmþ 2 is
even, we obtain, from (10.8)
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ðΨf;hab;P0
j
�Ym

i¼1

ĈðNiÞ
�
½ĈðNmþ1Þ;ĈðNmþ2Þ�jci

¼ð−3Þkmþ2

�
3ℏN
8πi

�
mþ2

ðν−2
3Þmþ2gc

X
I

jq⃗Ijmþ2hIðHmþ2
I ðN1; ::;Nmþ1;Nmþ2;vÞ−Hmþ1

I ðN1; ::;Nmþ2;Nmþ1;vÞÞ: ð10:48Þ

From (10.6) we have that kmþ2 ¼ km þ 1. It is then easy to see that an anomaly free commutator results if we choose
A ¼ 1=4 in (10.47).

Case B: m odd.—Using (10.40) as indicated above to evaluate the first amplitude in the last line of (10.42), we obtain its
contraction limit using the Appendixes F, G. 2 and Eq. (10.30) as

X
Ĵ1;K̂1

ðΨf;hab;P0
j
�Ym

i¼1

ĈðNiÞ
�
D̂ðN⃗mþ1iÞjc½i;I;Ĵ;K̂;δ�1i

¼ ð−3Þkm2
�
3ℏN
8πi

�
mþ1

ðν−2
3

v½i;Iδ�1 Þmþ1gcQðc0½i;I;δ0�1;01
; Smþ2ÞhI

�
jq⃗L1¼Ijm−1

�X
j1

qj1L1¼I

�
qi1¼i
L−1¼IðN − 1ÞðN − 2Þ

þ cosmþ1ðθÞ
�X

L1≠I
jq⃗L1

jm−1
�X

i1

qi1L1

�
qi1¼i
L1

�
ðN − 2Þð1þ cos2θ þ ðN − 3Þj cos θjÞ

	

×

�Ymþ1

i¼1

Nam−iþ1

m−iþ1ðp; fxgÞV̂am−iþ1

I ðpÞ∂am−iþ1
ðfðp; fxgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðpÞV̂a

I ðpÞV̂b
I ðpÞ

q
Þ
���
p¼v½i;I;δ�1

�
þOðδ2Þ: ð10:49Þ

Note that the transition ½i; I; Ĵ; K̂; δ�1 is an electric diffeomorphism type deformation so that

qi1¼i
L1¼I ¼ qiI: ð10:50Þ

We set for some A > 0

Qðc0½i;I;δ0�1;01
;Smþ2Þ

¼ ðν−2
3

v Þmþ1

ðν−2
3

v½i;Iδ�1 Þmþ1

×
AðNÞðN−1ÞðN−2Þjq⃗Ijm−1ðPjq

j
IÞqiI

jq⃗L1¼Ijm−1ðPi1q
i1
L1¼IÞqiL1¼IðN−1ÞðN−2Þþcosmþ1ðθÞðPL1≠Ijq⃗L1

jm−1ðPi1q
i1
L1
ÞqiL1

ÞðN−2Þð1þcos2θþðN−3ÞjcosθjÞ:

ð10:51Þ

Equation (10.50) together with (10.1) and (10.2) once again implies thatQ > 0. Expanding (10.43) in a Taylor expansion in
powers of δ, it is easy to check that the zeroth order term does not contribute to the commutator (10.42). Only the first order
term contributes. Using this first order term in (10.42) and taking the contraction limit, we obtain

ðΨf;hab;P0
j
�Ym

i¼1

ĈðNiÞ
�
½D̂ðN⃗mþ1iÞ; D̂ðN⃗mþ2iÞ�jci

¼ ð−3ÞkmA4
�
3ℏN
8πi

�
mþ2

ðν−2
3

v Þmþ2gc
X
I

jq⃗Ijm−1
�X

j

qjI

�
ðqiIÞ2hI

�
Nmþ2ðp; fxgÞV̂a

I ðpÞ∂a

×

�Ymþ1

i¼1

Nam−iþ1

m−iþ1ðp; fxgÞV̂am−iþ1

I ðpÞ∂am−iþ1

�
fðp; fxgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðpÞV̂a

I ðpÞV̂b
I ðpÞ

q �
− Nmþ2ðp; fxgÞ ↔ Nmþ1ðp; fxgÞ

	
p¼v

:

ð10:52Þ

Summing over i in (10.52) and using the notation (9.40) and the definition of the charge norm (10.7), we obtain
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ðΨf;hab;P0
j
�Ym

i¼1

ĈðNiÞ
�
½D̂ðN⃗mþ1iÞ;D̂ðN⃗mþ2iÞ�jci

¼ð4AÞð−3Þkm
�
3ℏN
8πi

�
mþ2

ðν−2
3

v Þmþ2gc
X
I

fjq⃗Ijmþ1

�X
j

qjI

�
hIðHmþ2

I ðN1;::;Nmþ1;Nmþ2;vÞ−Hmþ1
I ðN1;::;Nmþ2;Nmþ1;vÞ:

ð10:53Þ

On the other hand, replacing the commutator
P

i½D̂ðN⃗mþ1iÞ; D̂ðN⃗mþ2iÞ� with ½ĈðNmþ1Þ; ĈðNmþ2Þ� and noting thatmþ 2 is
odd, we obtain, from (10.9)

ðΨf;hab;P0
j
�Ym

i¼1

ĈðNiÞ
�
½ĈðNmþ1Þ; ĈðNmþ2Þ�jci

¼ ð−3Þkmþ2

�
3ℏN
8πi

�
mþ2

ðν−2
3Þmþ2gc

×
X
I

jq⃗Ijmþ1

�X
j

qjI

�
hIðHmþ2

I ðN1; ::; Nmþ1; Nmþ2; vÞ −Hmþ1
I ðN1; ::; Nmþ2; Nmþ1; vÞ: ð10:54Þ

From (10.6) we have that kmþ2 ¼ km þ 1. It is then easy to
see that, once again, an anomaly free commutator results if
we choose A ¼ 1=4 in (10.53).

C. Multiple single anomaly free commutators

Consider the action of the operator in Eq. (1.1) on
the anomaly free state Ψf;hab;P0

. In this section we show
this action is invariant under the replacement of each
Hamiltonian constraint commutator in (1.1) by a corre-
sponding electric diffeomorphism commutator, this
replacement being a quantum implementation of the
anomaly free condition (2.11). We proceed as follows.
First we further develop the notation for operator

sequence labels of Q factors developed in Sec. VIII. D
as follows. Consider the sequence

ðh; ::; h|fflffl{zfflffl}
m1

; t1; t1; h; ::; h|fflffl{zfflffl}
m2

; t2; t2; h; ::; h|fflffl{zfflffl}
mn

; tn; tn; h; ::; h|fflffl{zfflffl}
pn

Þ ð10:55Þ

where each ti is either h or dk, k ∈ 1; 2; 3 and mi, pn are
whole numbers. The Q factors which we define below only
depend on whether or not a ti is Hamiltonian or electric
diffeomorphism; the particular component of the electric
diffeomorphism does not matter. Since the β factors for the
Hamiltonian constraint are such that β2 ¼ 1 and since β ¼ 0
for an electric diffeomorphism, we denote the essential part
of the sequence above through the symbol σn as follows:

σnðm1; m2; ::; mn; β
2
1; ::; β

2
n;pnÞ: ð10:56Þ

Thus, the specification of the arguments of σn allow us to
reconstruct the sequence (10.55) up to irrelevant (for the Q

factors of interest) ambiguities regarding the specific com-
ponents of electric diffeomorphism operators in such a
sequence. Next, consider any operator product of the type
Ôϵ1;::;ϵqn

ðM1; ::;MqnÞ corresponding to a discrete approxim-

ant for the operator product ÔðM1; ::;MqnÞwhere each of the
operators in the operator product are either Hamiltonian or
electric diffeomporphism operators similar to the operator
product in (6.18). Let the sequence associated with this
operator product beSqn and any subsequence of this sequence
of operators from the first to the jkth, jk ≤ qn be Sjk .
Next consider a “big” operator product consisting of the

sequence of operators of type (10.56) followed by the
operator product Ôϵ1;::;ϵqn

ðM1; ::;MqnÞ where the latter
occurs to the right of the former and so acts first on any
charge net c. We denote the operator sequence for such a
big product by

Sðσðm1; m2; ::; mn; β
2
1; ::; β

2
n;pnÞ;SqnÞ

≡ σðm1; m2; ::; mn; β
2
1; ::; β

2
n;pnÞ;Sqn : ð10:57Þ

If, in this big operator product, we replace
Ôϵ1;::;ϵqn

ðM1; ::;MqnÞ by an operator consisting of the

product of the first jk operators in Ôϵ1;::;ϵqn
ðM1; ::;MqnÞ,

then we denote the sequence corresponding to the new big
operator product by

Sðσnðm1; m2; ::; mn; β
2
1; ::; β

2
n;pnÞ;SjkÞ

≡ σnðm1; m2; ::; mn; β
2
1; ::; β

2
n;pnÞ;Sjk : ð10:58Þ

We shall be interested in Q factors for child-parent
contractions c½i;I;Ĵ;K̂;β;ϵ�k−1;kk

where the child and parent states
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are generated by the action of Ôϵ1;::;ϵqn
ðM1; ::;MqnÞ on

some charge net c and when the operator product sequence
label for Q is of the type (10.56) or (10.57). The Q factor
for such a situation in the case wherein all the operators in
(10.55) are Hamiltonian [so that all the β2i are unity in
(10.56)] is, using the above notation in conjunction with
that of Sec. VIII. D, then

Qðc0½i;I;β;δ0�k−1;kk
; Sðσnðm1; m2; ::; mn; 1; 1; ::1;pnÞ;SjkÞÞ

≡Qðc0½i;I;β;δ0�k−1;kk
; σnðm1; m2; ::; mn; 1; 1; ::1;pnÞ;SjkÞ:

ð10:59Þ

We define theQ factors labeled by the sequence (10.58) for
the transition c½i;I;β;δ0�k−1;kk

to be such that these Q factors for

all choices of σn in (10.58) are the same as that in (10.59):

Qðc0½i;I;β;δ0�k−1;kk
; σnðm1; m2; ::; mn; β

2
1; ::; β

2
n;pnÞ;SjkÞ

≔ Qðc0½i;I;β;δ0�k−1;kk
; σnðm1; m2; ::; mn; 1; 1; ::1;pnÞ;SjkÞ;

∀jk ∈ f1; ::; qng; qn > 0; ∀ β2i ∈ f0; 1g;
∀ pn;mi; i ¼ 1; ::; n ð10:60Þ

where pn and mi, i ¼ 1; ::; n range over the set of whole
numbers.
It is straightforward to see that the kinds of operator

products implicated in a demonstration that operator strings
of the type (1.1) have anomaly free single commutators are
exactly those for which the sequence labels are of the type
(10.56). We now construct such a demonstration through an
inductive proof on the index n which occurs in (10.56).
Note that the index n corresponds to the number of single
commutators involved.
First consider the case n ¼ 1. Let Ôϵ1;::;ϵr1

ðM1; ::;Mr1Þ;
r1 > 0 be a product of r1 Hamiltonian constraints. Then
using Sec. X. B together with Eq. (10.60) with q1 ≔ r1 it
follows that for any r1 > 0 we have that

ðΨf;hab;P0
j
�Ym

i¼1

ĈðNiÞ
�
½ĈðNmþ1Þ; ĈðNmþ2Þ�Ôϵ1;::;ϵr1

× ðM1; ::;Mr1Þjci

¼ ð−3Þ
X
i

ðΨf;hab;P0
j
�Ym

i¼1

ĈðNiÞ
�

× ½D̂ðN⃗mþ1iÞ; D̂ðN⃗mþ2iÞ�Ôϵ1;::;ϵr1
ðM1; ::;Mr1Þjci:

ð10:61Þ

From Sec. X. B, the above equation also holds if we replace
Ôϵ1;::;ϵr1

ðM1; ::;Mr1Þ by the identity operator. Taking the

continuum limit of (10.61) we see that the result on
anomaly free single commutators holds for the case that

n ¼ 1 with p1 ¼ r1 in (10.56). Similarly taking the
continuum limit of the equation obtained by replacing
Ôϵ1;::;ϵr1

ðM1; ::;Mr1Þ by the identity operator in (10.61), this
result also holds for the case that n ¼ 1 and p1 ¼ 0. Thus we
have established the desired result for the case that n ¼ 1
which corresponds to the case of a single commutator.
Next let us assume that the anomaly free single com-

mutator property holds for all operator strings with
sequences (10.55) for some n ¼ s. More in detail consider
an operator product consisting of m1 Hamiltonian con-
straints and a Hamiltonian constraint commutator followed
by m2 Hamiltonian constraints and a Hamiltonian con-
straint commutator, all the way up to ms Hamiltonian
constraints and the sth Hamiltonian constraint commutator,
followed by a product of ps Hamiltonian constraints. Then
the assumption is that in any such product any subset of
these Hamiltonian commutators can be replaced by sums
over electric diffeomorphism commutators in accordance
with (2.11). From this assumption we now show that the
same statement hold for n ¼ sþ 1.
First define

Ôðσnðm1; m2; ::; mn; 1; 1.:; 1;pnÞÞ

≔
Yn
j¼1

��Ymj

i¼1

ĈðNiÞ
�
½ĈðAjÞ; ĈðBjÞ�

��Ypn

k¼1

ĈðFkÞ
�

ð10:62Þ

where the sequence on the left-hand side has all its β2i as
unity. Next, define the operator

Ôðσnðm1; m2; ::; mn; β
2
1; ::; β

2
n;pnÞÞ ð10:63Þ

as follows. For each i for which β2i ¼ 0 in σnðm1; m2; ::;
mn; β

2
1; ::; β

2
n;pnÞ, replace the ith Hamiltonian constraint

commutator in (10.62) by an appropriate sum over electric
diffeomorphism commutators consistent with (2.11). Note
that this ÔðσnÞ notation is consistent with (10.56) in that
each of the constraint operator products obtained by
expanding out the commutators in (10.63) correspond to
the (same) sequence σnðm1; m2; ::; mn; β

2
1; ::; β

2
n;pnÞ. In this

notation our assumption for n ¼ s may be written as

ðΨf;hab;P0
jÔðσsðm1; m2; ::; ms; 1.:; 1;psÞÞjci

¼ ðΨf;hab;P0
jÔðσsðm1; m2; ::; ms; β

2
1; ::; β

2
s ;psÞÞjci

∀ fβ2i ; mi; i ¼ 1; ::; sg and ∀ps: ð10:64Þ

Next let Ô1
ϵ1;ϵ2ðG1; G2Þ be the discrete approximant to

the Hamiltonian constraint commutator ½ĈðG1Þ; ĈðG2Þ�
and let Ô2

ϵ1;ϵ2ðG1; G2Þ be the discrete approximant to
the appropriate sum over electric diffeomorphism commu-
tators through (2.11). Since the action of these discrete
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approximants is a finite linear combination of charge nets
with Q factors as defined in (10.60), it follows for α ¼ 1, 2
that

ðΨf;hab;P0
jÔðσsðm1; m2; ::; ms; 1.:; 1;psÞÞÔα

ϵ1;ϵ2ðG1; G2Þjci
¼ ðΨf;hab;P0

jÔðσsðm1; m2; ::; ms; β
2
1; ::; β

2
s ;psÞÞ

Ôα
ϵ1;ϵ2ðG1; G2Þjci ∀ fβ2i ; i ¼ 1; ::; sg: ð10:65Þ

It is then straightforward to see that taking the continuum
limit of the left-hand and right-hand sides and applying the
anomaly free single commutator result of Sec. X. B yields
the result

ðΨf;hab;P0
jÔðσsþ1ðm1; m2; ::; msþ1; 1.:; 1;psþ1 ¼ 0ÞÞjci

¼ ðΨf;hab;P0
jÔðσsþ1ðm1; m2; ::; msþ1; β

2
1; ::; β

2
sþ1;

psþ1 ¼ 0ÞÞjci ∀ fβ2i ; i ¼ 1; ::; sþ 1g ð10:66Þ

where we have set ps ≔ msþ1. Next consider the approx-
imant Ôϵ⃗ ≔

Qpsþ1

t¼1 ĈϵtðPtÞ to a product of psþ1 ≠ 0

Hamiltonian constraint operators. Again using (10.60)
we may substitute jci in (10.66) by the finite linear
combination of charge nets Ôϵ⃗jci. Taking the continuum
limits of the resulting equations, we obtain

ðΨf;hab;P0
jÔðσsþ1ðm1; m2; ::; msþ1; 1.:; 1;psþ1ÞÞjci

¼ ðΨf;hab;P0
jÔðσsþ1ðm1; m2; ::; msþ1; β

2
1; ::; β

2
sþ1;

psþ1ÞÞjci ∀ fβ2i ; i ¼ 1; ::; sþ 1g; ð10:67Þ

which is the desired result for n ¼ sþ 1. This completes
our inductive proof of an anomaly free single commutator
implementation of the algebra of Hamiltonian constraints.
It only remains to show that this implementation is diffeo-
morphism covariant. We show this in the next section.

XI. DIFFEOMORPHISM COVARIANCE

We implement diffeomorphism covariance of the con-
tinuum limit action of products of constraint operators on
any anomaly free basis state by tailoring the underlying
discrete action to the metric label of the basis state being
acted upon. This idea, of tailoring the action of a discrete
approximant to an operator to the state it acts upon, is a
familiar one in the case that the states lie in the kinematic
Hilbert space of LQG (see for example [3,13,24], and also
Sec. II of this paper). Here we apply this idea to the space of
kinematically non-normalizable anomaly free states.
As a prelude to the detailed technical description in

Secs. XI. A and XI. B below, we now describe the broad
idea behind this implementation. Recall from Sec. VII. B
that an anomaly free basis state is labeled by a density−1=3
function f, a metric with no conformal symmetries hab and
a choice of bra set BP0. Given this state Ψf;hab;P0

we can

construct all its amplitudes i.e. all the complex numbers
ðΨf;hab;P0

jci for any charge net c. It then turns out that we
can construct enough information about the metric hab
from these amplitudes so as to distinguish this metric from
any of its diffeomorphic images. If we restrict the space of
permissible metric labels for anomaly free basis states to be
the space of all diffeomorphic images of hab, this means
that the metric label of any anomaly free basis state can be
uniquely identified from the state itself through its ampli-
tudes. In this sense the state “knows” about its metric label.
Hence it is meaningful to define the discrete action of
constraint operators on this state in such a way that this
discrete action depends on the metric label of the state.
It turns out that the dual action of the unitary operator

corresponding to a diffeomorphism ϕ maps a state with
metric label hab to one with metric label hϕab, where h

ϕ
ab is

the image of hab by ϕ. The idea is then to use the metric
label hϕab to identify the diffeomorphism ϕ, since, due to the
lack of (conformal) isometries, any permissible metric label
is uniquely associated with the diffeomorphism which
maps hab to this label. Then for this metric label hϕab we
choose the primary coordinates and reference diffeomor-
phisms to be appropriate images, by ϕ of the primary
coordinates and reference diffeomorphisms chosen for the
state labeled by hab. These “image” structures are then used
to regulate and define constraint operator products along
the lines of Sec. VI and V. It can then be shown that this
diffeomorphism covariant choice of regulating structures
leads to a diffeomorphism covariant continuum limit action
of products of constraints.
In Sec. XI. Awe formulate and prove a precise statement

which shows that anomaly free basis states have the
requisite sensitivity to their metric labels. In Sec. XI. B
we use this sensitivity to define a covariant choice of
reference structures and express the action of finite diffeo-
morphisms on anomaly free states in the context of this
covariant choice. In Sec. XI. C we demonstrate that this
covariant choice results in an implementation of diffeo-
morphism covariance of the continuum limit action of
products of constraints. For the remainder of this section we
shall restrict attention to − 1

3
density scalars f which vanish

at most at a finite number of points in Σ.47

A. Metric label sensitivity of an anomaly free state

Let h0ab be a metric which has no conformal symmetries.
LetHh0 be the space of all diffeomorphic images of h0ab by
all Ck semianalytic diffeomorphisms. Let h1ab; h2ab be two
distinct elements of Hh0 . Note that the two metrics cannot
be conformally related everywhere because they are

47This is for technical simplicity; it seems plausible to us that
our considerations can be generalized for the case where f is not
restricted in this manner. We leave such a generalization for future
work.
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distinct, diffeomorphic to each other and have no conformal
symmetries. Hence there exists a point a ∈ Σ, and, from the
fact that the metrics are Ck−1, a neighborhood Uða; δÞ of a
for some small enough δ > 0 such that in a fixed coordinate
patch fyg in this neighborhood, we have that

���� h1ij
h

1
3

1

−
h2ij

h
1
3

2

���� > C: ð11:1Þ

The above inequality holds for every point inUða; ϵÞ, for at
least one fixed pair i; j ∈ f1; 2; 3g and for some fixed
positive constant C. Here our notation is such that sij
denotes the coordinate components of the metric sab in the
chart fyg and s denotes its determinant in this chart. Thus
Eq. (11.1) indicates that at least one component, in any
fixed semianalytic chart, of the (conformally invariant)
metric densities in this equation differ by some minimum
non zero amount in a small enough neighborhood of at least
one point of the Cauchy slice.48

Next, consider an anomaly free state which is labeled by
some element sab of Hh0 . We now show that at any point
p ∈ Σ this metric can be reconstructed, up to an overall
scaling at p, to arbitrary accuracy from the amplitudes of
the anomaly free state. Accordingly, fix a point p on the
Cauchy slice Σ and consider some choice set (a)–(f) of
Sec. X. A. With this choice set consider a primordial state c
such that c ∈ BP0 and such that c has its nondegenerate
vertex at p with reference coordinate patch fxg. The action
of a single electric diffeomorphism on c generates the child,
c1 ≡ cði;I;Ĵ;K̂;β¼0;δÞ where δ is measured by fxg. From
Sec. VII, the amplitude ðΨf;sab;P0

jc1i of the anomaly free
state Ψf;sab;P0

for the state c1 is evaluated using fx1g where
fx1g denotes the reference coordinate patch for c1 around
v1. In view of the fact that f vanishes only at a finite
number of points, it follows that we can choose δ such that
f is nonvanishing at v1 and we so choose δ.
Next, consider any diffeomorphism χ which is identity in

some neighborhood of v1 and consider the state c1χ which
is the image of c1 by χ. Let the reference coordinate patch
for c1χ be denoted by fx1χg. It is straightforward to see that
the Lemma in P2 implies that we can use the coordinates
χ�fx1g to evaluate the amplitude ðΨf;sab;P0

jc1;χi instead
of the reference coordinates fx1χg. Note however that
since χ is identity in a vicinity of v1, this is the same as
evaluating the amplitude with respect to fx1g. Since the
coordinate dependent part of the amplitude is f

P
hIHI

(see Sec. VII. B) and since this part only depends on the
vertex structure of c1χ at v1 it follows that

ðΨf;sab;P0
jc1;χi ¼ Bgc1χ ; ð11:2Þ

ðΨf;sab;P0
jc1i ¼ Bgc1 ð11:3Þ

whereB ¼ f
P

L1
hL1

HL1
and the coordinate dependent eva-

luation of the function f at v1 and the coordinate dependent
normalization of the edge tangent vectors ⃗êJ1 at v1 are with
respect to fx1g as argued above, both for c1 and for c1χ.
Next, we construct diffeomorphisms which are identity

in a neighborhood of v1 but which move the C0 kinks of c1
to certain desired positions. Since these diffeomorphisms
are of the type χ above, the amplitudes for the diffeomor-
phic images of c1 by these diffeomorphisms satisfy (11.3)
and, therefore, serve to evaluate the function g [see (G1),
Appendix G] when its arguments have been placed at these
desired positions. By placing these arguments at positions
close enough to p, we may use the contraction behavior of
g (see Appendix G. 2) to extract the information about the
metric label sab in the vicinity of the point p. Accordingly
we proceed as follows.
First, note that in the state c1 the C0 kink ṽĴ1 lies at a

distance δp1 from p along the Lth edge of c with L ¼ Ĵ1,
the C0 kink ṽK̂1

lies at a distance Qδp2 from p along Mth

edge of c with M ¼ K̂1. The values of p2, p1 are given in
the Appendix G. 2. The exact specification and value of Q
is not needed here. The remaining C0 kinks lie within a
distance δp3 of p where p3 > p2 (see Appendix G. 2), all
these distances being measured by fxg. Next, consider
any ϵ ≪ δ. Clearly we can apply diffeomorphisms of the
type constructed in (iii), Sec. VI. C to move kinks at
coordinate distances δp1 ; Qδp2 ; δp3 to coordinate distances
ϵp1 ; Qϵp2 ; ϵp3 . Further, these diffeomorphisms can be con-
structed in such a way that they are identity in a neighbor-
hood of v1. Let us apply these diffeomorphisms to c1.
Next consider the region Rϵ;τ bounded by two spherical

shells of radius Qϵp2 � τ around the vertex p of c, with
τ ≪ ϵp3 . Let ξ⃗ϵ be any semianalytic vector field which is
tangent to the sphere of radiusQϵp2 around p and let Fϵ;τ be
a semianalytic function which is 1 on this sphere and which
vanishes outside Rτ. By choosing ξϵ appropriately we can
use an appropriate finite diffeomorphism generated by the
vector field Fϵ;τξ⃗ϵ to move the point ṽK̂1

to any desired
location on the sphere of radius Qϵp2 while leaving the
positions of the remaining kinks unaltered. More in detail
by moving this kink by such a diffeomorphism ϕu;ϵ to a
position on this sphere such that the straight line from the
origin of the sphere at p to this position has unit tangent ⃗û,
we obtain, from Appendix G. 2 that

gc1ϕu;ϵ ¼ ϵp2−p1Q
k ⃗ûk
k ⃗êĴ1k

ð1þOðϵp2−p1ÞÞgc ð11:4Þ

where the metric norms are calculated at the point p.
Clearly ϕu;ϵ is of the type χ in (11.3). It follows that as
ϵ → 0, we have that

48It is straightforward to see that transiting from one fixed
coordinate chart to another only affects the value of the constant
C and the choice of i, j in (11.1).
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ðΨf;sab;P0
jc1ϕu;ϵ

i ¼ Bϵp2−p1Q
k ⃗ûk
k ⃗êĴk

ð1þOðϵp2−p1ÞÞgc

ð11:5Þ

⇒ B1sabûaûbð1þOðϵðp2−p1ÞÞ ¼ ððΨf;sab;P0
jc1ϕu;ϵ

iÞ2
ϵ2ðp2−p1Þ

ð11:6Þ

where B1 ≔ Q2B2

sabêaĴ ê
b
Ĵ

and gc ¼ 1 because c is primordial and

has no C0 kinks. Note that B1 is independent of the position
⃗û. By varying the position ⃗û and by choosing ϵ as small as
we wish, clearly we can reconstruct the metric at p up to an
overall factor to any desired accuracy. More in detail, let us
suppress the labels on the right-hand side of (11.6) which
do not vary with ⃗û; ϵ and set

ððΨf;sab;P0
jc1ϕu;ϵ

iÞ2
ϵ2ðp2−p1Þ ≔ Fð ⃗û; ϵÞ: ð11:7Þ

Clearly, from appropriate linear combinations of evalua-
tions of F for six appropriately chosen values ⃗ûα; α ¼
1; ::; 6 we can reconstruct the six coordinate components of
the metric sab upto an overall factor to any desired
accuracy:

B1sμν þOðϵðp2−p1ÞÞ ¼
X
α

λαμνFð ⃗ûα; ϵÞ: ð11:8Þ

Since ⃗ûα; λαμν;α ¼ 1; ::; 6; μ; ν ¼ 1, 2, 3 are fixed and
independent of ϵ, we retain only the ϵ dependence of
the right-hand side of the above equation and set

X
α

λαμνFð ⃗ûα; ϵÞ≕ sϵμν ð11:9Þ

so that we have that

B1sμν þOðϵðp2−p1ÞÞ ¼ sϵμν ð11:10Þ

⇒ ðB1Þ3sþOðϵðp2−p1ÞÞ ¼ sϵ ð11:11Þ

⇒ ðB1Þ−1s−1
3 þOðϵðp2−p1ÞÞ ¼ ðsϵÞ−1

3 ð11:12Þ

where we have used s; sϵ to denote the determinants of
sμν; sϵμν. Multiplying the left- and right-hand sides of
Eqs. (11.12), (11.10) we get

sμν
s
1
3

¼ sϵμν
ðsϵÞ13 þOðϵðp2−p1ÞÞ: ð11:13Þ

Since fxg is an admissible semianalytic chart on Σ, we can
transit to any other fixed ϵ independent semianalytic chart.

Since the Jacobian factors are independent of ϵ, Eq. (11.13)
holds in any such chart in obvious notation. Next, taking
the limit as ϵ → 0 of (11.13) and letting p vary over Σ, it
follows that the conformally invariant metric density sμν

s
1
3

can

be reconstructed on all of Σ from the set of amplitudes
defined by any anomaly free stateΨf;sab;P0

with metric label
sab. Note that this result is independent of the choice
scheme used to define Ψf;sab;P0

(recall that a choice of
reference coordinates is needed to evaluate the amplitudes
which define Ψf;sab;P0

).
Next, we use the machinery developed above to prove

the following statement:
Statement.—Consider a choice scheme S1 and anomaly

free basis state Ψf1;h1ab;P1
0
defined in this choice scheme for

the scalar density, metric and bra set labels f1, h1ab; BP1
0

where f1 vanishes at most at a finite number of points,
h1ab ∈ Hh0 and BP1

0
is an admissible bra set in the scheme

S1. Likewise consider a second choice scheme S2 and
anomaly free basis state Ψf2;h2ab;P2

0
with f2 vanishing at

most at a finite number of points, h2ab ∈ Hh0 and BP2
0

admissible in S2. Let h1ab ≠ h2ab. Then Ψf1;h1ab;P1
0
≠

Ψf2;h2ab;P2
0
where the inequality indicates that the two states

are distinct in the sense of distributions.
Proof.—First suppose BP1

0
≠ BP2

0
. Let c be such that

c ∈ BP1
0
; c ∉ BP2

0
. Let f1 ≠ 0 at the nondegenerate vertex

of c (if it vanishes replace c by some diffeomorphic image
of c such that f1 ≠ 0 at the nondegenerate vertex of this
image and rename this state as c). Then ðΨf1;h1ab;P1

0
jci ≠ 0

but ðΨf2;h2ab;P2
0
jci ¼ 0 so the 2 states are different.

Next consider the case BP1
0
¼ BP2

0
and denote BP1

0
¼

BP2
0
≡ BP0

. In what follows we shall frequently refer to the

argumentation (11.2)–(11.13) in the first part of this
section. Consider a primordial state c in BP0

, and the
electric diffeomorphism deformation of c in scheme S1.
Call the deformed ket c1. Proceed as in the first part of this
section replacing f; sab by f1, h1ab so as to obtain (11.13)
with sab replaced by h1ab.
Next, consider the amplitude ðΨf2;h2ab;P0

jc1i evaluated in
the scheme S2 (we emphasize that c1 is still the deformed
child produced in scheme S1 from its parent c). Let the
reference coordinates for the evaluation be fx2g. Now if f2
vanishes at v1 we have ðΨf2;h2ab;P0

jc1i ¼ 0 whereas
ðΨf1;h1ab;P0

jc1i ≠ 0 so that the two anomaly free states
are again distinct. Next, let f2 ≠ 0 at v1. Consider again the
action of a diffeomorphism χ which is identity in the
vicinity of v1 on c1. Once again the Lemma of P2 implies
that we may continue to use fx2g for amplitude evaluations
ðΨf2;h2ab;P2

0
jc1χi. It is easy to check that the subsequent

analysis also holds so that we have (11.2)–(11.13) with the
replacements f2, h2ab for f; sab in those equations. Thus we
have derived the equations:
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h1μν

h
1
3

1

þOðϵðp2−p1ÞÞ ¼ hϵ1μν
ðhϵ1Þ

1
3

; ð11:14Þ

h2μν

h
1
3

2

þOðϵðp2−p1ÞÞ ¼ hϵ2μν
ðhϵ2Þ

1
3

ð11:15Þ

where
hϵ
1μν

ðhϵ
1
Þ13
is exactly the same function of the amplitudes

ðΨf1;h1ab;P0
jc1ϕu;ϵ

i as
hϵ
2μν

ðhϵ
2
Þ13

is of the amplitudes

ðΨf2;h2ab;P0
jc1ϕu;ϵ

i as can be seen from (11.7).
Next, recall that the left-hand sides of (11.14) and

(11.15) are both evaluated at the vertex p of c. Choose
c to be such that its vertex p lies in Uða; δÞ so that (11.1)
holds at p. It directly follows that by choosing ϵ small
enough in (11.14) and (11.15), the right-hand sides of these
equations differ. This implies that there must be at least
one value of α ∈ f1; 2; ::; 6g such that the amplitudes
ðΨf1;h1ab;P0

jc1ϕuα ;ϵ
i, ðΨf2;h2ab;P0

jc1ϕuα ;ϵ
i of the two anomaly

free states on the same charge net c1ϕuα ;ϵ
differ. Hence the

two states are distinct and this concludes the proof.
The statement which we have proved above implies that

given two distinct metric labels hab; h0ab ∈ Hh0 , we are
free to choose two different choice schemes, one for the
definition of anomaly free states with metric label hab and
for the definition of the discrete action of constraints on
these states, and a second for anomaly free states with
metric label h0ab and for the definition of the discrete action
of constraints on these states. This freedom of choice leads
to no inconsistency because we are guaranteed that two
states with distinct metric labels are distinct. We shall use
this freedom in the next section.

B. Diffeomorphism covariant regulating choices

In what follows we refer to a particular implementation of
the choice scheme (a)–(f) summarized in (2), Sec. X. A. 1 by
the letter S or by addending suitable symbols/subscripts to S;
for example S1 or S0 etc. In Sec. XI. B. 1 we define a
covariant choice of such schemes by tying each such choice
scheme to the metric label of the anomaly free basis state
under consideration. In Sec. XI. B. 2 we derive the action of
a diffeomorphism on an anomaly free basis state.

1. Covariant choice schemes

Consider, as in Sec. XI. A the space Hh0 of metrics
diffeomorphic to h0ab. Let h0ab be associated with some
choice scheme S0. We shall use the notation of Secs. VI. B
and VI. C for the reference structures associated with this
choice. Accordingly, the metric and the associated primary
coordinate patch, the reference state for the diffeomorphism
class of states of c, the reference diffeomorphism mapping
this reference state to c and the reference coordinate patch
for c are

h0ab; fx0g; c0; α; α�fx0g: ð11:16Þ

Let hab ∈ Hh0 . Since h0ab has no (conformal) symmetries
there exists a unique diffeomorphism ϕ such that
hab ¼ ϕ�h0ab. We define the choice scheme Sh associated
with this metric to be the images by ϕ of the choice scheme
S0

49 so that the metric, the associated primary coordinate
patch, the reference state for the diffeomorphism class of
states of cϕ, the reference diffeomorphism mapping this
reference state to cϕ and the reference coordinate patch for
cϕ are

hab ¼ ϕ�h0ab; ϕ�fx0g; ϕ ∘ c0; ϕ ∘ α ∘ϕ−1; ϕ�α�fx0g
ð11:17Þ

where we have denoted the image of c by the diffeo-
morphism ϕ by cϕ ≡ ϕ ∘ c so that ÛðϕÞjci ¼ jcϕi ¼
jϕ ∘ ci. Here, we have chosen the cone angle as measured
by fx0g for conical deformations c0½i;I;β;δ0 of any c0 in the
scheme S0 to be the same as that measured by ϕ�fx0g
for conical deformations ϕ ∘ c0½i;I;β;δ0 of ϕ ∘ c0 in the
scheme Sh.
Note that the choice schemes fSh; hab ∈ Hh0g yield the

same set of primordials and the same ket set. Further if we
choose the bra set BP0 in scheme S0 then this same bra set is
admitted as a bra set in the choice scheme Sh for
any hab ∈ Hh0.
Accordingly consider the anomaly free state Ψf;hab;BP0

.
We shall adopt a covariant regulator scheme for the
definition of the constraint operator products of Secs. IX
and X by which we mean that the discrete action of any
such operator on Ψf;hab;BP0

is defined with respect to the
choice scheme Sh. More in detail, let

ÔðfNi; ϵi; i ¼ 1; ::mgÞ≡ ÔðfNi; ϵigÞ ≔
�Ym

i¼1

Ôi;ϵiðNiÞ
�
;

ϵi < ϵj iff i < j; ð11:18Þ
where the product is ordered from left to right in increasing i
and each Ôi;ϵiðNiÞ is chosen to be the discrete approximant to
aHamiltonian or electric diffeomorphism constraint operator,
so that the resulting operator product ÔðfNi; ϵigÞ is of the
type encountered in Secs. IX and X. Then the action of this
operator on any stateΨf;hab;BP0

with hab ∈ Hh0 , evaluated on
any charge net c yields the amplitude:

ðΨf;hab;P0
jÔðfNi; ϵigÞjci ð11:19Þ

where this amplitude is evaluated as in Secs. IX and X
with respect to choice scheme Sh. Denoting the continuum
limit operator defined through the discrete approximant

49The choice (f) in Sec. X. A. 2 will be assumed to be the same
for Sh and S0.
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ÔðfNi; ϵigÞ by ÔðfNigÞ we have that
ðΨf;hab;P0

jÔðfNigÞjci
≔ ð lim

ϵm→0
ð lim
ϵn−1→0

…ð lim
ϵ1→0

ðΨf;hab;P0
jÔðfNi; ϵigÞjci ð11:20Þ

where the discrete action amplitude on the right-hand side is
defined with respect to the scheme Sh.
It is straightforward to see that the following property

holds in this covariant regulator scheme. Consider the
metric label hab ∈ Hh0 and its image ϕ�hab by the diffeo-
morphism ϕ. Given a state c, let its reference coordinates,
reference state and reference diffeomorphism mapping
this reference state to c for the choice scheme associated
with hab be

fxghc; ch0; αhc: ð11:21Þ

Then the reference coordinates, reference state and refer-
ence diffeomorphism for the state cϕ for the choice scheme
associated with ϕ�hab is

fxgϕ�h
cϕ ¼ϕ�fxghc; ðcϕ�h

ϕ Þ0¼ϕ∘ch0; αϕ
�h

cϕ ¼ϕ∘αhc ∘ϕ−1:

ð11:22Þ

2. Action of finite diffeomorphisms
on anomaly free states

Hereon, we need to keep track of metric labels and
associated reference structures. Accordingly, we use (11.21)
to rewrite (7.5) so that the evaluation of the amplitude
ðΨf;hab;P0

jc > in the choice scheme Sh is

ðΨf;hab;P0
jci¼gcðhab;fṽgÞ

�X
I

hIHI

�
jhab;v;fxghc fðv;fxghcÞ:

ð11:23Þ

Here I indexes the edges at the nondegenerate vertex v of c.
The notation gcðhab; fṽgÞ tells us the function g of Sec. G is
evaluated at the C0 kinks of c and the geodesic distances
between these kinks are determined by the metric hab. The
subscript hab; c to the sum over I indicates that the edge
tangents which go into the definition of HI, hI are unit with
respect to the fxghc coordinates and are evaluated at v with
respect to the metric hab.
In this notation we have, once again in the Sh scheme that

ðΨf;hab;P0
jÛ†ðϕÞjci

¼ gc
ϕ−1

ðhab; fϕ−1ðṽÞgÞ;�X
I

hIHI

�
jhab;ϕ−1ðvÞ;fxghc

ϕ−1
fðϕ−1ðvÞ; fxghcϕ−1 Þ:

ð11:24Þ

Next, from (11.21) and (11.22), note that in the Cϕ�h
scheme the reference coordinates for c ¼ ϕ ∘ cϕ−1 are
ϕ�fxghc

ϕ−1
. This implies that

ðΨϕ�f;ϕ�hab;P0
jci

¼ gcðϕ�hab; fṽgÞ;�X
I

hIHI

�
jϕ�hab;v;ϕ�fxghc

ϕ−1
fðv;ϕ�fxghc

ϕ−1
Þ: ð11:25Þ

Using the properties of pushforwards by diffeomorphisms
and that fact that ϕ ∘ cϕ−1 ¼ c, we have that

gcðϕ�hab; fṽgÞ ¼ gcϕ−1 ðhab; fϕ−1ðṽÞgÞ; ð11:26Þ

ðϕ�fÞðv;ϕ�fxghcϕ−1 Þ ¼ fðϕ−1ðvÞ; fxghcϕ−1 Þ: ð11:27Þ

It is also straightforward to see, from the properties of
pushforwards and the definition of hI, HI, that�X

I

hIHI

�
jϕ�hab;v;ϕ�fxghc

ϕ−1
¼

�X
I

hIHI

�
jhab;ϕ−1ðvÞ;fxgch

ϕ−1

:

ð11:28Þ

From (11.26), (11.27) and (11.28) together with (11.24)
and (11.25), it follows that

ðΨf;hab;P0
jÛ†ðϕÞjci ¼ ðΨϕ�f;ϕ�hab;P0

jci: ð11:29Þ

This equality holds for every c in the bra set BP0. Further
both sides vanish for any c ∉ BP0. Hence we have the
following equality of anomaly free basis states:

ÛðϕÞΨf;hab;P0
¼ Ψϕ�f;ϕ�hab;P0

: ð11:30Þ

C. Action of products of constraints and
finite diffeomorphisms

As explained in the Introduction, the Poisson bracket
relation (2.8) between a pair of Hamiltonian constraints is
replaced by (2.11) and this relation is implemented in
quantum theory in Secs. IX and X. Here we are interested in
the remaining Poisson bracket relations (2.6) and (2.7)
between the diffeomorphism constraints and between the
diffeomorphism and Hamiltonian constraints. In LQG
the primary operators related to diffeomorphisms are the
unitary operators which implement finite diffeomorphisms
generated by the diffeomorphism constraints rather than the
diffeomorphism constraints themselves. Hence in quantum
theory we replace (2.6) and (2.7) by the relations

Ûðϕ1ÞÛðϕ2Þ ¼ Ûðϕ1 ∘ϕ2Þ; ð11:31Þ

Û†ðϕÞĈ½N�ÛðϕÞ ¼ Ĉ½ϕ�N�: ð11:32Þ
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These relations are to be imposed on the algebra generated
by arbitrary products of finite diffeomorphism unitaries and
Hamiltonian constraint operators. Hence we are interested
in the imposition of these relations within operator products
of the form

�Ym1

i1¼1

Ûðψ i1Þ
�
Ôð1Þ

� Ym2

i2¼m1þ1

Ûðψ i2Þ
�
Ôð2Þ…

×

� Ymn

in¼mn−1þ1

Ûðψ inÞ
�
ÔðnÞ

�Ym1

i1¼1

Ûðψ inþ1
Þ
�

ð11:33Þ

where the ψ’s are semianalytic diffeomorphisms and the
Ô’s are products of Hamiltonian constraint operators.
Note also that we would like to show that the relation

(2.11) is also valid within each such product of Hamiltonian
constraint operators. More in detail, by considering appro-
priate linear combinations of products of the type (11.33),
we may define a product where, now, each Ô in (11.33)
contains products of single commutators between pairs of
Hamiltonian constraints i.e. we may consider multiple
products of single commutators of the type in (1.1) and
Sec. X. C. We may then obtain a new operator product
by replacing each of these commutators by appropriate

electric diffeomorphism commutators as indicated by
(2.11) and we would like to show that the first operator
products with Hamiltonian constraint commutators equals
this new product obtained by these replacements. Hence we
are interested in computing the action of operator products
of the form (11.33) where each Ô can be (a) a product of
Hamiltonian constraints, (b) a product of the type (1.1) or
(c) the product in (b) with the replacement of Hamiltonian
commutators by appropriate electric diffeomorphism ones.
Since LQG provides a representation of the relation

(11.31) on its kinematic Hilbert space, it immediately
follows that this relation is automatically implemented
on the space of distributions through dual action. Since
the anomaly free states are distributions, it follows that this
relation is already imposed. Given that this relation is
imposed it is easy to see that operator products of the form
(11.33) are equivalent to products of the form

Ûðϕ1Þ†Ôð1ÞÛðϕ1ÞÛðϕ2Þ†Ôð2ÞÛðϕ2Þ…
× ÛðϕnÞ†ÔðnÞÛðϕnÞÛðϕnþ1Þ ð11:34Þ

where the ϕ’s are semianalytic diffeomorphisms. The
imposition of (11.32) and (2.11) on such operator products
yields the relation

ðÛðϕ1Þ†Ôð1ÞðfNi1 ; i1 ¼ 1; ::; m1gÞÛðϕ1ÞÞðÛðϕ2Þ†Ôð2ÞðfNi2 ; i2 ¼ m1 þ 1; ::; m2gÞÛðϕ2ÞÞ
…ðÛðϕnÞ†ÔðnÞðfNin ; in ¼ mn−1 þ 1; ::; mngÞÛðϕnÞÞÛðϕnþ1Þ

¼ Ôð1Þðfϕ1�Ni1 ; i1 ¼ 1; ::; m1gÞÔð2Þðfϕ2�Ni2 ; i2 ¼ m1 þ 1; ::; m2gÞ
::ÔðnÞðfϕn�Nin ; in ¼ mn−1 þ 1; ::; mngÞÛðϕnþ1Þ: ð11:35Þ

Note that each ÔðiÞ operator is the continuum limit of
some discrete approximant of the type (11.18), each
such product being defined in some choice scheme Si.
We show below that this choice scheme, and hence the
(continuum limit) action of the operator product (11.34) is
uniquely fixed from the following two inputs: Input (A):
Any such choice scheme Si must be consistent with the
covariant choice scheme defined in Sec. XI. B. 1. By this
we mean that any amplitude ðΨf̄;h̄ab;P̄0

jÔðfNi; ϵigÞjci with
ÔðfNi; ϵigÞ defined as in (11.18) must be evaluated in the
choice scheme Sh̄ [see the discussion around (11.19)]. Input
(B): The discrete action of any such discrete approximant
of the type (11.18) in any choice scheme on a charge net c
yields a finite linear combination of charge nets [see (a)–(f)
of Sec. X. A. 2].
Accordingly, in what follows we shall restrict our

attention to the covariant choice scheme defined in
Sec. XI. B. 1. In Sec. XI. C. 1 we prove a key identity.
In Sec. XI. C. 2 we derive the action of the operator product
(11.34) from the inputs (A) and (B) above together with the

identity proved in Sec. XI. C. 1. The resulting action will be
seen to implement the relation (11.35) on the domain of
anomaly free states.

1. A key identity

Claim.—Let ÔðfNi; ϵigÞ be defined as in (11.18). Then
the following identity holds for all, f; fNig; c and all
hab ∈ Hh0 :

ðΨf;hab;P0
jÛ†ðϕÞÔðfNi; ϵigÞÛðϕÞjci

¼ ðΨf;hab;P0
jÔðfðϕ�NiÞ; ϵigÞjci þOðϵ⃗Þ ð11:36Þ

where Oðϵ⃗Þ indicates a quantity which vanishes in the
continuum limit:

lim
ϵm→0

lim
ϵn−1→0

… lim
ϵ1→0

Oðϵ⃗Þ ¼ 0: ð11:37Þ
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Proof.—From (11.29), (11.30) and (B) above, it follows
that

ðΨf;hab;P0
jÛ†ðϕÞÔðfNi; ϵigÞÛðϕÞjci

¼ ðΨϕ�f;ϕ�hab;P0
jÔðfNi; ϵigÞÛðϕÞjci: ð11:38Þ

Introduce the following notation for the action, on the
anomaly free stateΨf̄;h̄ab;P0

, of the continuum limit operator

ÔðfNiÞ obtained from its discrete approximant
ÔðfNi; ϵigÞ:

ðΨf̄;h̄ab;P0
jÔðfNi; i¼1; ::;mgÞjsi≔Amðf̄; h̄;fNig;s;fxgh̄s Þ:

ð11:39Þ

Here the left-hand side is defined as a continuum limit of
its discrete approximant as in (11.20). The right-hand side
is the appropriate explicitly calculated amplitude50 from
(10.8) and (10.9) with the substitutions f̄; h̄; s; fxgh̄s for
f; h; c; fxg in those expressions. The resulting expression
depends on the arguments f̄; h̄; fNig; s; fxgh̄s . Since we
work within the covariant choice scheme, the coordinates
fxgh̄s with respect to which the explicit expression is
defined are determined by h̄ab and s; nevertheless despite
this redundancy, it is useful for pedagogical purposes to
retain this argument in Am.
From the definition of the continuum limit it follows that

the corresponding discrete action can be written as

ðΨf̄;h̄ab;P0
jÔðfNi; ϵigÞjsi

¼¼ Amðf̄; h̄; fNig; s; fxgh̄s Þ þOðϵ⃗Þ: ð11:40Þ

Setting jcϕi ≔ ÛðϕÞjci, Eqs. (11.38) and (11.40) imply
that

ðΨf;hab;P0
jÛ†ðϕÞÔðfNi; ϵigÞÛðϕÞjci

¼ Amðϕ�f;ϕ�h; fNig; cϕ; fxgϕ
�h

cϕ Þ þOðϵ⃗Þ: ð11:41Þ

From (11.22) it follows that

Amðϕ�f;ϕ�h; fNig; cϕ; fxgϕ
�h

cϕ Þ
¼ Amðϕ�f;ϕ�h; fNig; cϕ;ϕ�fxghcÞ: ð11:42Þ

Using the properties of pullbacks by diffeomorphisms
together with definitions of the various quantities which
figure in the explicit expressions (10.8) and (10.9), it is
straightforward to see that

Amðϕ�f;ϕ�h; fNig; cϕ;ϕ�fxghcÞ
¼ Amðf; h; fϕ�Nig; c; fxghcÞ: ð11:43Þ

Using the appropriate substitutions in (11.40) we have that

Amðf; h; fϕ�Nig; c; fxghcÞ
¼ ðΨf;hab;P0

jÔðfðϕ�NiÞ; ϵigÞjci þOðϵ⃗Þ: ð11:44Þ

The claimed identity (11.36) immediately follows from
Eqs. (11.41), (11.42), (11.43) and (11.44).
Key identity: As a corollary, we have the following key

identity which we shall use repeatedly in the next section:

ðΨf;hab;P0
jÔðfNi; ϵigÞÛðϕÞjci

¼ ðΨϕ�f;ϕ�hab;P0
jÔðfðϕ�NiÞ; ϵigÞjci þOðϵ⃗Þ: ð11:45Þ

To see this, substitute f, h by ϕ�f;ϕ�h in (11.36) to
obtain

ðΨϕ�f;ϕ�hab;P0
jÛ†ðϕÞÔðfNi; ϵigÞÛðϕÞjci

¼ ðΨϕ�f;ϕ�hab;P0
jÔðfðϕ�NiÞ; ϵigÞjci þOðϵ⃗Þ: ð11:46Þ

From Input (B), ÔðfNi; ϵigÞÛðϕÞjci is a finite linear
combination of charge nets so that we may apply
(11.29) to the left-hand side of (11.46) and obtain

ðΨϕ�f;ϕ�hab;P0
jÛ†ðϕÞÔðfNi; ϵigÞÛðϕÞjci

¼ ðΨf;hab;P0
jÔðfNi; ϵigÞÛðϕÞjci: ð11:47Þ

Equation (11.45) immediately follows from (11.47)
and (11.46).
An alternative way to state the Claim is to dispense with

Inputs (A) and (B) and instead state that if (a), (b) below
hold then Eqs. (11.36) hold where (a), (b) are as follows:
(a) We define the amplitude evaluation of any anomaly

free basis state labeled by any metric h̄ab ∈ Hh0 on any
state c̄ to be with respect to the scheme Sh̄.

(b) We choose the discrete action of the operator approx-
imant ÔðfNi; ϵigÞ on the left-hand side (lhs) of (11.36)
to be evaluated in the Sϕ�h scheme and that of the
operator approximant Ôðfðϕ�NiÞ; ϵigÞ on the right-
hand side (rhs) in the Sh scheme.

It is straightforward to repeat the steps of the proof with
inputs (a) and (b) and thereby prove the claim. Similarly,
the corollary can be restated as follows. Let (a) hold and let
the discrete action of ÔðfNi; ϵigÞ on the lhs of (11.45) be
in the Sh scheme and that of Ôðfðϕ�NiÞ; ϵigÞ on the rhs in
the Sϕ�h scheme. Then Eq. (11.45) holds. Once again the
proof is basically a straightforward repetition of the proof
of the corollary sketched above.

50Recall that we have shown in Sec. X. C that this amplitude is
consistent with (2.11).
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2. Action of the operator product in Eq. (11.34)

In this section we evaluate the action of the operator (11.34) on the anomaly free state Ψf;hab;BP0
. This action is obtained

from that of the left-hand side of (11.35) on this state:

ðΨf;hab;BP0
jðÛðϕ1Þ†Ôð1ÞðfNi1 ; ϵi1 i1 ¼ 1; ::; m1gÞ

× Ûðϕ1ÞÞðÛðϕ2Þ†ðÔð2ÞðfNi2 ; ϵi2 ; i2 ¼ m1 þ 1; ::; m2gÞÛðϕ2ÞÞ
…ðÛðϕnÞ†ÔðnÞðfNin ; ϵin ; in ¼ mn−1 þ 1; ::; mngÞÛðϕnÞÞÛðϕnþ1Þjci: ð11:48Þ

In order to evaluate this discrete action we use Input (A), (B) above iteratively as follows. For any charge net s we have that

ðΨf;hab;BP0
jðÛðϕ1Þ†Ôð1ÞðfNi1 ; ϵi1 ; i1 ¼ 1; ::; m1gÞÛðϕ1ÞÞjsi

¼ ðΨf;hab;BP0
jÔð1Þðfϕ1�Ni1 ; ϵi1 ; i1 ¼ 1; ::; m1gÞÛðϕ2Þ†js1i þO1ðϵ⃗ð1ÞÞ

¼ ðΨϕ�
2
f;ϕ�

2
hab;BP0

jÔð1Þðfϕ�
2ϕ1�Ni1 ; ϵi1 ; i1 ¼ 1; ::; m1gÞjs1i þO1ðϵ⃗ð1ÞÞ

¼ ðΨϕ�
2
f;ϕ�

2
hab;BP0

jÔð1Þðfϕ�
2ϕ1�Ni1 ; ϵi1 ; i1 ¼ 1; ::; m1gÞÔð2ÞðfNi2 ; ϵi2 i2 ¼ m1 þ 1; ::; m2gÞÛðϕ2Þjs2i þO1ðϵ⃗ð1ÞÞ

¼ ðΨf;hab;BP0
jÔð1Þðfϕ1�Ni1 ; ϵi1 ; i1 ¼ 1; ::; m1gÞÔð2Þðfϕ2�Ni2 ; ϵi2 ; i2 ¼ m1 þ 1; ::; m2gÞjs2i þO2ðϵ⃗ð2ÞÞ þO1ðϵ⃗ð1ÞÞ

ð11:49Þ

where we have used (11.36) in the second line, (11.45)
in the third and fifth lines and where we have defined
s1, s2, by

jsi ¼ Ûðϕ2Þ†js1i; js1i
≔ Ôð2ÞðfNi2 ; ϵi2; i2 ¼ m1 þ 1; ::; m2gÞÛðϕ2Þjs2i:

ð11:50Þ

The symbol O1ðϵ⃗ð1ÞÞ denotes a term which vanishes in
the partial continuum limit which sends the parameters
ϵ1; ϵ2; ::ϵm1

to zero (in that order) while keeping ϵj; j > m1

fixed. Similarly the term O2ðϵ⃗ð2ÞÞ vanishes in the partial
continuum limit over fϵi; i ¼ 1; ::; m2g while keeping
ϵj; j > m2 fixed. Clearly this procedure may be iterated
to obtain an expression for (11.48). It is easy to check that
the continuum limit of this expression yields the evaluation
of the right-hand side of Eq. (11.35) on the anomaly
free state.
Note that the application of Inputs (A), (B) to the

calculation above fixes the choice scheme for the definition
of each of ÔðjÞðNij ; ϵijÞ in (11.48) to be Sϕ�

j h
. We may also

restate the result by dispensing with Inputs (A) and (B) and
instead state that if (a), (b) below hold, then (11.35) holds.
Here (a) is identical to (a), Sec. XI. C. 1 and (b) is as
follows: (b) In Eq. (11.48) let the choice scheme for the
definition of the discrete action of ÔðjÞðNij ; ϵijÞ be chosen
to be Sϕ�

j h
. It is straightforward to see that a proof may be

constructed by basically repeating the steps which lead us
from (11.48) to (11.49), iterating, and then taking the
continuum limit. Viewed in this way, defining anomaly free

states through (a) above, we have shown that there exist
discrete actions of operator approximants whose continuum
limit action lead to the relationship (11.35).
The considerations in this section show that the operator

actions of Secs. IX and X are consistent with Eqs. (11.31),
(11.32) so that we have a diffeomorphism covariant
anomaly free single commutator implementation of the
constraint algebra. More in detail given any two operator
strings of the type (11.33) related by the substitution of
commutators between Hamiltonian constraints by the
appropriate combination of electric diffeormorphism
commutators, we (a) first convert the strings to the form
(11.34) through (11.31), (b) use (11.32) to remove all the
ÛðϕiÞ; Û†ðϕiÞ; i ¼ 1; ::; n − 1 operators from the string and
(c) appeal to the anomaly free single commutator results of
Secs. IX and X. The steps (a)–(c) show that we have a
diffeomorphism covariant anomaly free single commutator
implementation of the constraint algebra.

XII. BRIEF SUMMARY OF RESULTS

Consider an operator product of the form

Ô ¼
�Ym1

i1¼1

Ûðψ i1Þ
�
Ôð1Þ

� Ym2

i2¼m1þ1

Ûðψ i2Þ
�
Ôð2Þ…

×

� Ymn

in¼mn−1þ1

Ûðψ inÞ
�
ÔðnÞ

�Ym1

i1¼1

Ûðψ inþ1
Þ
�

ð12:1Þ

where (a) the ψ ’s are semianalytic diffeomorphisms, (b) the
ÔðiÞ’s are products of Hamiltonian constraint operators of
each of density weight 4=3 and each smeared by a lapse of
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density weight −1=3, and (c) the total number of
Hamiltonian constraints in the operator product (12.1) is
less than k, the Cauchy slice Σ being a Ck semianalytic
manifold. Such an operator product has a well-defined dual
action on any anomaly free basis state Ψf;hab;P0

, this dual
action being inferred from the amplitudes

ðΨf;hab;P0
jÔjci; ∀ c ð12:2Þ

where c ranges over the set of all charge net states. These
amplitudes are such that the relations

Ûðϕ1ÞÛðϕ2Þ ¼ Ûðϕ1 ∘ϕ2Þ; ð12:3Þ

Û†ðϕÞĈ½N�ÛðϕÞ ¼ Ĉ½ϕ�N� ð12:4Þ

hold so that any individual operator string, within the
big operator product (12.1), which is of the form of the
left-hand side of (12.3) or (12.4) can be replaced, in
the amplitude evaluation (12.2), by the corresponding
right-hand side and vice versa.
An anomaly free basis state Ψf;hab;P0

is a linear combi-
nation of charge net bras, these bras comprising the bra set
BP0

. The coefficients of these bras in this linear combina-
tion are determined by a scalar density f of weight −1=3
which vanishes at most at a finite number of points, and a
metric hab with no conformal symmetries. The explicit
action of a product of n ≤ k − 1 Hamiltonian constraints on
the anomaly free basis state Ψf;hab;P0

is given, for n even
and c ∈ BP0 by

ðΨf;hab;P0
j
�Yn

i¼1

ĈðNiÞ
�
jci

¼ ð−3Þn2
�
3ℏN
8πi

�
n
ðν−2

3Þngc
X
I

jq⃗IjnhIHn
I ðN1; ::; Nn; vÞ;

ð12:5Þ

and for n odd and c ∈ BP0 by

ðΨf;hab;P0
j
�Yn

i¼1

ĈðNiÞ
�
jci

¼ ð−3Þn−12
�
3ℏN
8πi

�
n
ðν−2

3Þngc
X
I

jq⃗Ijn−1

×

�X3
i¼1

qiI

�
hIHn

I ðN1; ::; Nn; vÞ; ð12:6Þ

where

Hn
I ðN1; ::;Nn;vÞ≔

�Yn
i¼1

Nan−iþ1

n−iþ1ðp;fxgÞV̂an−iþ1

I ðpÞ∂an−iþ1

�

× ðfðp;fxgÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðpÞV̂a

I ðpÞV̂b
I ðpÞ

q
Þ
���
p¼v

ð12:7Þ

and where the products above are ordered from left to right
in increasing i. Here the reference coordinate patch (around
the nondegenerate vertex v of c) associated with the metric
hab is fxg. The vertex structure is such that the edges of the
charge net c in a small vicinity of v are straight lines in the
fxg coordinates. The Ith such edge has unit coordinate
edge tangents V̂a

I with V̂
a
I pointing outward or inward from

v depending on the kink structure of c in the vicinity of v.
These edge tangents are extended to constant (with respect
to fxg) vector fields at any point p in the vicinity of v in
Eq. (12.7). The ith edge charge on the edge I is denoted by
qiI and ν is the “volume” eigenvalue at v in c. The function
gc depends on the network of geodesic distances, as
measured by hab, between all pairs of C0 kinks in c; a
C0 kink is a point at the intersection of two edges such that
the edge tangents of the two edges at this point are not
proportional to each other. For c ∉ BP0 the right-hand sides
of (12.5) and (12.6) vanish.
Equations (12.6) and (12.7) are consistent with anomaly

free single commutators. By this we mean that (a) these
equations can be used to compute the action, on an anomaly
free basis state, of any operator string of the form (1.1), and,
(b) each of the commutators in the resulting expression can
be replaced by the appropriate electric diffeomorphism
commutators in accordance with (the quantum correspond-
ent of) Eq. (2.11).
The action of a diffeomorphism ϕ on the anomaly free

basis state Ψf;hab;P0
yields the state Ψϕ�f;ϕ�hab;P0

:

ðΨf;hab;P0
jÛ†ðϕÞjci ¼ ðΨϕ�f;ϕ�hab;P0

jci ð12:8Þ

where ϕ� is the pushforward action of ϕ.
The explicit action of any operator product of the form

(12.1) can be obtained from (12.5), (12.6), (12.8) through a
judicious use of the identities (12.3) and (12.4) and the fact
that the reference coordinate patch fyg associated with the
metric ϕ�hab for the state ÛðϕÞjci is the pushforward of the
reference coordinate patch fxg associated with the metric
hab for the state c so that fyg ¼ ϕ�fxg.

XIII. DISCUSSION

A. Characterization of anomaly free domain

In the previous section we showed that the finite span of
anomaly free basis states constitute an arena wherein the
constraint algebra admits a diffeomorphism covariant and
anomaly free implementation. We refer to this finite span as
the anomaly free domain DAF. We know very little about

CONSTRAINT ALGEBRA IN SMOLINS’ G → 0 … PHYS. REV. D 97, 106007 (2018)

106007-73



this domain. For example given all the amplitudes ðΨjci of
a stateΨ ∈ DAF, we do not know of any operational way of
using these amplitudes to reconstruct the expansion of Ψ in
terms of anomaly free basis states. We do not even know if
this expansion is unique. On the other hand, the action of
the constraint operators depends on the basis expansion by
virtue of the covariant choice scheme wherein the regula-
tion (and hence continuum limit action) of constraint
operators depends on the metric label of the basis state
being acted upon. Hence if the expansion in basis states is
not unique neither is the definition of the action of the
constraints. Nevertheless given any such expansion, the
Hamiltonian constraint commutators can be replaced by
appropriate electric diffeomorphism constraint commuta-
tors and the action of the constraint operator products in
(11.34) is diffeomorphism covariant within the context of
this particular basis state expansion. If there are several
such expansions then defining all operators of interest
with respect to any one fixed expansion ensures that the
relations between these operators are consistent with
anomaly free commutators and diffeomorphism covari-
ance. It is in this sense that (11.31), (11.32) and (2.11) hold.

B. Physical states and their off shell deformations

The anomaly free states introduced in Sec. VII and used in
Secs. VIII–XI do not satisfy the Hamiltonian constraint as
can be seen from Eq. (9.27). They also do not satisfy the
diffeomorphism constraint, as can be seen from Eq. (11.30).
Hence they are off shell states. We would like to see them as
off shell deformations of on shell states. The simplest way to
do this is to define the distribution Ψsol;P0

:

ðΨsol;P0
j ¼

X
hc̄j∈BP0

hc̄j: ð13:1Þ

It is then easy to check that the action of the distribution
Ψsol;P0

on (9.25) vanishes independent of which hab ∈ Hh0
is used to regulate the constraint in that equation. More in
detail, if we fix any hab ∈ Hh0 and use the choice scheme
Sh, we have that the continuum limit of the resulting
Hamiltonian constraint on Ψsol;P0

vanishes. Further, by
inspection, Ψsol;P0

is invariant under the (dual) action of
operators which implement finite diffeomorphisms. Hence
Ψsol;P0

is a solution to all the constraints and constitutes a
physical state.
Next, consider the following one parameter family of

states based on the bra set BP0:

Ψf;hab;P0;τ ¼ Ψsol;P0
þ τΨf;hab;BP0

; τ > 0: ð13:2Þ

Clearly, Ψf;hab;P0;τ is an off shell state such that its action on
operator products of the type (11.34) is diffeomorphism
covariant and implements anomaly free single commuators.
Further, Ψf;hab;P0;τ can be deformed into the physical state

Ψsol;P0
by allowing τ to vanish. Thus the one parameter set

of states fΨf;hab;P0;τ; τ > 0g constitute an off shell defor-
mation of the physical state Ψsol;P0

such that on these states
the implementation of the constraint algebra is diffeo-
morphism covariant and displays anomaly free single
commutators. More generally, we may consider any state
Ψ in DAF and construct Ψτ ¼ Ψsol;P0

þ τΨ as off shell
deformations of Ψsol;P0

. The comments of Sec. XIII. A
above then apply to the manner in which the implementa-
tion of the constraint algebra on such states is consistent
with (11.31), (11.32) and (2.11).

C. Contrast with the conventional notion of anomaly
free constraint algebras

As mentioned in the Introduction, the conventional
notion of anomaly free constraint algebras also includes
multiple (as opposed to single) anomaly free commutators.
In the absence of structure functions, this conventional
notion is powerful and appropriate as it (a) typically
incorporates a representation of some underlying Lie group
of gauge tranformations and (b) ensures that there is a
sufficiently large space of physical states.
In contrast, in the case of gravity, as is well known, the

4d diffeomorphism group (and its Lie algbera of vector
fields) is not represented through the constraint algebra
because a spatial slice with respect to one spacetime metric
is generically not spatial with respect to the image of this
metric by a diffeomorphism. Further, due to the presence of
structure functions, the multiple Poisson brackets between
constraints, while weakly vanishing, yield constraints with
more and more complicated phase space dependent lapses
and shifts rather than simple Lie algebra like structures.
Thus property (a) of the Lie group case seems absent so that
the motivation for anomaly free multiple commutators
stems in this context mainly from (b). However, if we
drop the requirement of anomaly free multiple commuta-
tors, we may nevertheless directly check (b) i.e. the
conventional notion with regard to (b) may be viewed
only as a sufficient rather than necessary condition for a
nontrivial physical state space. Another reason to question
the need for anomaly free multiple commutators is that they
represent properties which are higher that leading order in ℏ
and hence their implementation seems to be unnecessary
from a naive view of obtaining the correct classical limit.
Our view point is then as follows. While the constraints

do not offer a representation of 4d diffeomorphisms, there
exists a subset of constraints whose algebra is that of 3d
diffeomorphisms. Accordingly we seek quantum represen-
tation of the group of 3d diffeomorphisms and LQG
provides this. Next, even though the 4d diffeomorphism
Lie algebra is unavailable, one can nevertheless interpret
the single Poisson bracket (2.8) as the representation of 4d
deformations in spacetime of the 3d Cauchy slice [8]. More
in detail, in Ref. [8] it is shown that commutator of a pair of
such infinitesimal geometric deformations normal to the
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Cauchy slice to leading order exactly mirrors the single
Poisson bracket (2.8).51 Hence we seek to represent these
single Poisson brackets in an anomaly free manner through
(2.11). After doing this we may then check (b) i.e. we may
check if we have a large enough solution space. While the
work in this paper suggests that the constraint action is
compatible with a large enough solution space, a con-
firmation of this suggestion rests on Sec. XIII. G below.

D. Dependence of solution space
on regulating choices

The key regulating choice is that of the primary coordinates
when the metric label is h0, other choices being fixed through
our covariant regulator choice requirement. This preferred
choice seems to lead to the existence of preferred structural
properties of physical states in that such states are combina-
tions of charge net bras which are multiple deformations of
primordial bras, these multiple deformations being defined
with respect to this choice of primary coordinates. Hence it
would be advisable to see if we could build on the work here
so that our considerations yield physical states which are
combinations of multiply deformed charge net bras these
multiple deformations arising from all possible choices of
linear coordinates for primordial states.

E. Structural inputs in our demonstration
of anomaly free commutators

1. Interventions

The interventions by judiciously chosen holonomies in
order to define deformations in Secs. IV and V play an
essential role in our demonstration of the existence of
anomaly free commutators. These interventions are far
from obvious and could not have been arrived at without
guidance from the requirement of anomaly freedom. Thus
the requirement of anomaly free commutators plays a key
role in homing in on the (hopefully) correct choice of
(discrete approximants to) the Hamiltonian constraint.

2. Gauge invariance

Uð1Þ3 gauge invariance plays a key role in our consid-
erations; without it, the results of Appendix C which related
net charges to primordial ones would not hold. As a result of
the interventions in Sec. XIII. E. 1, it is the properties of the
net charges (as opposed to the charges themselves) which
become important (see the Note and related discussion at
the beginning of Sec. IX). Uð1Þ3 gauge invariance then
plays a key role in our considerations; without it, the results

of Appendix C which relate net charges to primordial ones
would not hold and there would no longer be a correlation
between properties of primordial charges and those of net
charges. This would negatively impact many important
structures/concepts such as the definition of nondegener-
acy of CGR vertices, the properties of the bra set discussed
Sec. VI. B, the invariance of the inequalities (6.7) and (6.8)
under the replacement of primordial charges by net
charges, and the equivalence of (10.1) with (10.2).

3. Linearity

Linearity of charge net vertices plays a key role in our
constructions. It allows for unambiguous extensions of
graphs, such extensions being required for the construction
of certain conical deformations (see Sec. V). It also allows
for a natural definition of “along edge” vertex displace-
ments (see Sec. III. B. 2). This definition together with the
linearity of the scrunching diffeomorphism G (6.17) leads
to constant Jacobian factors which can be pulled out when
analyzing the contraction behavior of the function Hl

m in
(F26) and (F27). This contraction behavior neatly dovetails
with that of the function gc. All this would be impacted if
we did not have linearity. Our proof of the validity of the
replacement of reference coordinates by contraction coor-
dinates for amplitude evaluations relies on the invariance of
the regular conicality of deformations under rigid trans-
lations; this, too, relies crucially on linearity.
It is not clear to us if our constructions can be generalized

if we drop the requirement of linear vertices; however, any
such putative construction would be incredibly baroque.
The linearity property implies that higher order moduli
vanish [25]; since no physically interesting operators in
LQG to date involve higher order moduli, linearity does not
seem to signify a strong physical restriction. Linearity also
plays a role in interpretations of kinematic states [26] and in
the application of the Minkowski theorem to our consid-
erations in P1 [27].

4. Restrictions on charge labels

As mentioned earlier the “eternal nondegeneracy”
restriction on all members of a primary family is a key
property without which it would be difficult to proceed.
However, it may be worthwhile to think about how this
restriction may be weakened or removed. The restriction
(6.6) seems to be an overkill and likely can be removed
without damaging our final results; this should be con-
firmed. The restrictions (6.6) and (6.5) seem to play a role
only for the products involving more than two constraints
(see Sec. X). In this regard, see Sec. XIII. F below.

5. Restriction on valence

We have restricted our attention to the case that the
valence N of any primordial at its nondegenerate vertex is
even. The reason is that any regular conical deformation of a

51It would be of interest to see if this correspondence also holds
between multiple Poisson brackets and higher order contributions
to the commutator between infinitesimal geometric deformations;
if the correspondence breaks down due to “embedding depend-
ence” [8], this would provide added justification for dropping the
requirement of anomaly free multiple commutators.
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GR vertex with N odd results in a vertex which is not GR.
This follows from the fact that the projections perpendicular
to the cone axis of the edges pointing along the cone for a
regular conical configuration separate into pairs which point
opposite to each other. This in turn is due to the fact that π is
an integer multiple of the azimuthal angle ϕ ¼ 2π

N−1 between
successive projections i.e. π ¼ N−1

2
ϕ.

The GR property is used crucially in the proof of the
Lemma in Sec. III of P2, this Lemma being used in the
arguments of Sec. VIII. C involving the replacement of
reference coordinates by contraction coordinates. If N is
odd, let us assume that there do exist charge nets which
satisfy eternal nondgeneracy under repeated conical defor-
mations. It should still be possible to replace reference by
contraction coordinates by restricting attention to charge
nets in the ket set which have no vertex symmetries. By this
we mean that the only diffeomorphism which maps any
such charge net to itself is necessarily identity in the
vicinity of the nondegenerate vertex of the charge net.
This can be achieved, for example, by arranging for the
primordial charges on distinct edges to be unequal to
each other, provided the various charge restrictions in
Sec. XIII. E. 4 can be show to hold. A careful check must
also be made that all other considerations in this work go
through for the N odd case. While these issues need careful
investigation, we believe that with suitable genericity
assumptions which lead to the absence of vertex sym-
metries, it should be possible to generalize our work to the
case of N odd.

6. Role of the C1, C2 kinks

The reader is urged to peruse the last paragraph of
Sec. V. E wherein the necessity of correlation of the upward
direction between members of a lineage is emphasized. The
upward directions at any parent vertex are inferred from the
positioning of the C1, C2 and C0 kinks about the parent
vertex and the placement of kinks around the child vertex is
correlated with the set upward directions at the parent vertex.
While the C0 kinks occur naturally from our picture of the
deformations generated by the constraints as the ‘abrupt
pulling of edges along some particular edge, we have
introduced the C1, C2 kinks purely as diffeomorphism
invariant markers for the reconstruction of consistent upward
directions. Their presence stems from our desire to exercise
adequate control on the calculations in this work. However
we feel that they constitute an inessential technical overkill
and that it should be possible to do away with them.

F. Products of more than two constraints

It seems unlikely to us that the treatment of products of
multiple constraint products in Sec. X will go through for the
SUð2Þ case of Euclidean gravity. This is because the analogs
of an ith charge component is the ith component of a left or
right invariant vector field on SUð2Þ i.e. the analogs of these

charges are gauge variant operators. Hence it seems difficult
to define the Q factors in Eqs. (10.22) and (10.38). On the
other hand all the ingredients in our treatment are fixed
already by the requirements of an anomaly free commutator
for the case of two constraints (see Sec. IX). Given these
ingredients, the −1 structure of the constraints ensures that
any solution to the constraints is of the type discussed in
Sec. XIII. B above. Hence even if we manage to generalize
only the considerations of Sec. IX (and Sec. XIII) to the
SUð2Þ case, it would constitute significant progress.

G. Multivertex states

The extension of our results to the multivertex case is a
key open problem. It is only in the context of such an
extension that we can analyze propagation in the sense of
Smolin [6,9]. In [10] we make reasonable assumptions on
the solution space emerging from such a putative extension
and analyze the issue of propagation.

H. Semianalytic assumption

We have assumed that semianalytic vector fields gen-
erate semianalytic diffeomorphisms and used this
assumption in many of our constructions. An important
open technical problem is to construct a proof of the
validity of this assumption.

I. Speculations on role of the metric label

Anomaly free basis states have a metric label which plays
a key role in our implementation of diffeomorphism covari-
ance. We have restricted metric labels to have no conformal
symmetries; is it possible to allow for metric labels with
(asymptotic) symmetries such as (asympotitically) flat met-
rics? Can these metric labels have any other fundamental
role to play (for example in coupling to matter or in
considerations of Lorentz invariance or semiclassicality)?
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APPENDIX A: DEFINITION OF C0, C1, C2 KINKS

C0 kink: Let 2 semianalytic Ck edges e and f intersect
at a point p. Let the edge tangent at p, in some para-
metrization t of e, be _ea. Let the edge tangent at p in some
parametrization s of f be _fa. Then p is called a C0 kink if
_ea; _fa are linearly independent. Clearly this property is
invariant under diffeomorphisms.
Next, consider e, f as above. Let the intersection point p

be the end point of e and the beginning point of f. Consider
a semianalytic coordinate patch in an open neighborhood
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of p. Dots will refer to derivatives of coordinate compo-
nents of points of e, f with respect to their respective
parameters t, s at the point p.
p is a C1 kink iff:
(a1) There exists λ1 > 0 such that _fa ¼ λ1 _ea.
(b1) There exists no λ2 such that f̈a − ðλ1Þ2ëa ¼ λ2 _ea.
p is a C2 kink iff:
(a2) There exists λ1 > 0 such that _fa ¼ λ1 _ea.
(b2) There exists λ2 such that f̈a − ðλ1Þ2ëa ¼ λ2 _ea.
(c2) There exists no λ3 such that ⃛fa − ðλ1Þ3 ⃛ea−

3λ1λ2ëa ¼ λ3 _ea.
Here the conditions (a1), (a2) ensure that there exists a

reparametrization of e such that first order parameter
derivatives of e, f coincide at p. The condition (b1) implies
that no reparametrization of e, for which the first order
parameter derivatives of e, f coincide at p, is such that the
second order parameter derivatives coincide. The condi-
tions (b2), (c2) imply that such a reparametrization exists
but no such reparametrization can also make the third order
parameter derivatives of e, f coincide at p. It is straightfor-
ward to verify that these conditions are invariant under
change of semianalytic coordinate patch around p (assum-
ing, that the differentiability degree k of the semianalytic
manifold is greater than 3) as well as under change of
parametrizations of e, f. A straightforward consequence is
that the defining properties of C1, C2 kinks are diffeo-
morphism invariant.

APPENDIX B: REGULAR DOWNWARD
CONICAL DEFORMATIONS OF LINEAR

GR VERTEX STRUCTURE

The deformation is constructed in two steps. The first,
described in Sec. B. 1, endows the deformation with a
regular cone structure with the nonconducting edges in the
vicinity of the displaced vertex lying along a downward
regular cone with axis along the conducting edge. Here by
regular we mean that if we take the outward pointing upper
conducting edge as the z axis then the nonconducting edges
are at equispaced azimuthal angles around this axis along
the cone. In the second step described in Sec. B. 2 we
introduce a Cm kink m ∈ f1; 2g on the upper conducting
edge. The same techniques used below can be adapted to
(a) construct regular downward conical deformations of
linear CGR vertex structures as discussed in Sec. IV, (b) use
(a) as in Sec. V. A. 1 to construct regular upward conical
deformations of linear GR vertex structures, and, (c) use (b)
to construct regular upward linear CGR vertex structures as
in Sec. V. A. 2.

1. Step 1: Obtaining a regular cone about
the conducting line

Let c be a charge net with a single linear nondegenerate
GR vertex v with N edges, N being even. We are interested
in deforming this charge net along its Ith edge to obtain the

deformed charge net c̄. If the deformation is generated by
the Hamiltonian constraint this deformed charge net c̄ is
obtained as the product of three charge net holonomies; the
first holonomy is based on the deformed graph depicted in
Fig. 1(b) and the second and third on the undeformed graph
of Fig. 1(a) underlying c. If the deformation is generated by
an electric diffeomorphism, the charge net is based only on
the deformed graph depicted in Fig. 1(b) but is colored
differently from the first holonomy for the Hamiltonian
constraint alluded to above. The displaced vertex of c̄ is
CGR if the deformation is generated by the Hamiltonian
constraint and GR if the deformation is generated by an
electric diffeomorphism. Hence only in the former case do
we have a conducting line and an upper conducting edge.
Nevertheless, in this section we abuse this terminology
slightly and refer to the edge in c̄ along which the
deformation has taken place, variously, as the conducting
line, conducting edge or upper conducting edge.
In this section we construct the precise deformation

which leads to the deformed graph structure of Fig. 1(b).
Since we are exclusively concerned with graph structure
near the deformed vertex, we shall not be interested in the
colorings of c, c̄ in this section. We shall use the language
“deformation of c” to mean “deformation of the graph
underlying c so as to yield the deformed part of the graph
near the deformed vertex in the graph underlying c̄.”
Let fxg be the chosen (linear) coordinate patch around v

so that there is a small enough coordinate ball, B2δðvÞ of
radius 2δ around v whose surface intersects each edge
emanating from v only once and such that these edges
within this ball are straight lines. In what follows all our
considerations will be restricted to this ball and we shall
freely use coordinate structures with respect to fxg such as
(the restriction to this ball of) planes, lines, rigid rotations
etc. In what follows we shall also use the notation BτðpÞ to
denote a coordinate ball of radius τ around the point p.
Let eI be the edge of c at v along which the deformation

is to be constructed. We use hatted indices to denote the
edges of c at v other than the Ith so that such an edge is
denoted eĴ; Ĵ ≠ I. Let BδðvÞ intersect each eĴ at the point
ṽĴ and eI at the point vI . Join vI to each ṽĴ by the straight
line lIĴ.
Each lIĴ is in the coordinate plane PIĴ spanned by the

tangent vectors ⃗êIðvÞ; ⃗êĴðvÞ at v (these vectors are in the
direction of the straight line edges eĴ and eI). Since v is
GR, these N-1 planes (one for each Ĵ) only intersect along
the straight line along eI . Consider any such plane PIĴ and

the rotation vector field ξ⃗IĴ about the axis passing through
vI normal to this plane. Consider BϵðvIÞ, ϵ < δ so that
BϵðvIÞ ⊂ B2δðvÞ. Let f be a semianalytic function of
compact support which is unity in Bϵ

2
ðvIÞ and vanishes

outside BϵðvIÞ. Let ϕðfξIĴ; tÞ be the one parameter family

of diffeomorphisms generated by fξ⃗IĴ. For an appropriate
value of t ¼ tðθ; ĴÞ apply this diffeomorphism only to the
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line lIĴ so as to rotate it rigidly within Bϵ
2
ðvIÞ to the required

cone angle θ while retaining its semianalytic character.
Performing this “rotation” for each line lIĴ yields a down-
ward cone structure in the vicinity of vI. With a slight abuse
of notation we shall continue to refer to flIĴg so deformed
by the same symbol. The above structure defines a
deformation of c wherein fṽĴg are the C0 kinks, vI is
the displaced vertex and the edges feĴg have been
“abruptly dragged” at the C0 kinks so as to form the
curves lĴ;I which are straight lines in the vicinity of vI and
point along the downward cone there with cone angle θ.
Further, due to the use of semianalytic diffeomorphisms the
graph so obtained remains semianalytic and, due to the
details of the procedure no unwanted intersections have
been created.
Our considerations hereon are restricted to Bϵ

2
ðvIÞ. Recall

that the edges at vI in Bϵ
2
ðvIÞ ⊂ BϵðvÞ are all straight lines.

Since in this section we have occasion to refer to both the
undeformed edges of c as well as their deformed counter-
parts in c̄, we denote these deformed counterparts through
“bars.” Accordingly, using the same numbering for the
deformed edges at vI in the deformed charge net as for their
undeformed counterparts at v in c, we denote the deformed
counterpart of eJ at vI in c̄ by ēJ. Using the hatted index
notation, the edges fēĴg are nonconducting at vI and the
conducting edge is ēI.
Consider the projections of each of the nonconducting

edges transverse to the conducting edge at vI in c̄. These
projections take the form of radially directed rays in a two-
dimensional disk D⊥ emanating outward from its center.
As shown in P1, the angular order of these projections
around this center is a coordinate invariant property. We
shall now further deform the structure around vI so that
these transverse projections are at equal angles ϕ ¼ 2π

N−1
with respect to each other while maintaining the downward
cone angle θ of their unprojected nonconducting edge
correspondents. For this purpose it is useful to change our
notation slightly and denote the nonconducting edges by
ē0; ē1; ::ēN−2 where we have numbered the edges in the
angular order of the transverse projections of their tangents
at vI with respect to ēI and we have arbitrarily picked ē0 to
be some particular nonconducting edge. Let the edges
ē1; ::ēN−2 be such that their transverse projections onto D⊥
make angles ϕ1; ::;ϕN−2 with respect to ē0. Starting at ē0
and moving anticlockwise around the cone axis in order of
increasing ϕ, let ēi be the first edge encountered such that

ϕ ≥ i
2π

N − 1
; ϕj < j

2π

N − 1
∀ j < i: ðB1Þ

Assume i > 1. Let ξ⃗ϕ be the rotational vector field about
the axis ēI . Consider a semianalytic function of compact
support fi−1 such that fi−1 ¼ 1 on Bϵ

4
ðvIÞ and fi ¼ 0

outside Bϵ
2
ðvIÞ with fi decreasing from 1 to 0 in the region

between the boundaries of these 2 spheres. LetΦðfi−1ξϕ; tÞ
be the one parameter family of semianalytic diffeomor-
phisms generated by fi−1ξ⃗ϕ. Then for an appropriate value
of t ¼ ti−1 apply the diffeomorphism Φðfiξϕ; ti−1Þ only to
ēi−1 so that its transverse angle with respect to the ē0 in the
vicinity of vI is increased to ði − 1Þ 2π

N−1.
52 It can be checked

that this deformation does not create any additional
intersections between any edges. Next repeat this procedure
for the edge ēi−2 replacing fi−1 by fi−2 which is unity in
Bϵ

8
ðvIÞ, vanishes outside Bϵ

4
ðvIÞ and is between 1 and 0 in

the region between the boundaries of these 2 spheres. This
brings ēi−2 “forward” to its desired angular position.
Repeat this procedure for all the i − 1 edges between ēi
and ē0. This leads to a situation in which we have straight
line edges in B ϵ

2i
ðvIÞ and we proceed to the next step.53

The next step is to check if ēi is already at its correct
position. If so we skip this paragraph and move on to the
step outlined in the next paragraph. If ēi is not at its correct
position, we apply a similar procedure to ēi with fi unity in
B ϵ

2iþ1
ðvIÞ and vanishing outside B ϵ

2i
ðvIÞ so as to rotate ēi

clockwise about ēI in the vicinity of vI to its desired
position. At the end of all this, we have created no
additional intersections, and we have edges ē0; ē1; ::; ēi
at their desired positions with these edges being straight
lines in B ϵ

2iþ1
ðvIÞ.

Next, if i < N − 1, repeat the considerations above for
the edges ēj; j > i by replacing the role of ē0 in the above
procedure by ēi. Clearly the procedure terminates in a finite
number of steps at the end of which the deformed graph
remains semianalytic without any additional intersections
between its edges, and, the vertex structure in a small
neighborhood of vI is exactly of the “regular conical” type
required.
Let us now revert to our old notation which numbered the

deformed and undeformed edge counterparts identically.
It is important to note that the following property holds for
the graph deformation we have just defined. Consider the
projections of the edge tangents for Ĵ ≠ I transverse to the
Ith edge tangent at the vertex v of the undeformed charge
net c. Call this set of projections as f ⃗êĴ;⊥g. The elements of
this set can be ordered in order of increasing transverse
angle ϕ. Let this ordering be ð ⃗êĴ1;⊥; ⃗êĴ2;⊥; ::; ⃗êĴN−1;⊥Þ. Recall
again that each undeformed edge eĴ has a unique deformed

52If ēi−1 is already at its desired position set ti−1 ¼ 0.
53In the case that i ¼ 1 satisfies (B1), there are no “in between”

edges and we can directly proceed to the next step. Also note that
if there is no edge i which satisfies (B1), then all edges are either
at their correct positions or need to be rotated anticlockwise to
their positions. In such a case we start our procedure as above by
setting i − 1 ¼ N − 2 so as to first bring the N − 2th edge to its
correct position, then N − 3th edge all the way up to the second
edge (the second edge is e1 since our numbering starts from 0) so
that all edges are now at their correct positions.
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nonconducting counterpart ēĴ which departs from the
undeformed edge eĴ at the C0 kink ṽĴ and terminates at
vI . Call the set of projections of these nonconducting
edge tangents transverse to the conducting edge tangent at

the vertex vI as f ⃗ˆ̄eĴ;⊥g. These also may be ordered in a
similar manner. Then the property which holds for the
deformation is that these two orderings are identical i.e. the

collection ð ⃗ˆ̄eĴ1;⊥; ⃗êĴ2;⊥; ::; ⃗ˆ̄eĴN−1;⊥Þ is also ordered in order
of increasing ϕ.

2. Step 2: Introducing a C2 or C1 kink
on the conducting line

The step above leaves us with a regular cone in some
small η ≪ δ sized neighborhood BηðvIÞ of vI in the
deformed charge net c̄. Recall that c̄ is the deformed
charge net obtained in Sec. B. 1 above and, for a
Hamiltonian constraint deformation is based on the graph
depicted in Fig. 1(c) and for an electric diffeomorphism
deformation on Fig. 1(b). We now show how to place a C2

kink on the upper conducting edge of c̄.
Since the deformation of c is along its Ith edge, the upper

conducting edge in c̄ is a subset of eI and we confine our
considerations to this subset below. Let τ ≪ η and let vη

2
;I ,

vηþτ
2
;I be at distances

η
2
, ηþτ

2
from vI on eI so that the outward

pointing upper conducting edge runs from vI on to vη
2
;I and

then to vηþτ
2
;I . We seek to deform this edge so that vη

2
;I

becomes a C2 kink. We require that in doing this (a) the
segment of the edge between vI and vη

2
;I remains unde-

formed (and hence a straight line), and (b) the deformation
be confined to within a distance τ ≪ η

2
of vη

2
;I in a small

enough cylindrical (with axis along eI) neighborhood Ucyl

of the edge eI that no intersections of the deformed edge
with any other edge of the graph underlying c̄ ensue.
Clearly the desired deformation can be generated

through the action of a small loop holonomy hlτ with
charge qilτ where the loop consists of two semianalytic
segments l1τ; l2τ where (i) l1τ runs from vη

2
I along eI for a

distance τ
2
to the point vηþτ

2
;I on eI, (ii) l2τ runs from vηþτ

2
;I to

vη
2
I within a small enough cylindrical neighborhood Ucyl

of eI such that it does not intersect the deformed graph of
Step 1 except at the two points vη

2
I, vηþτ

2
;I and such that it

joins vη
2
I at a C2 kink but leaves vτ;I as a semianalytic Ck

extension, and (iii) qilτ is chosen to be the negative of the
charge which colors the (outgoing) upper conducting edge
at vI in c̄ (recall that the part of eI between vη

2
I and vηþτ

2
;I is a

subset of this upper conducting edge).
Recall that the deformed charge net obtained at the

end of Step 1 in the case of Hamiltonian constraint type
deformation can be thought of as being generated by the
product of appropriately defined holonomies [see, for
example, the line preceding Eq. (3.2) and the discussion

in Sec. II after Eq. (2.24)]. This deformation is further
modified through multiplication by the holonomy hlτ. By
choosing Ucyl and τ small enough, the area of the loop can
be made as small as desired so that the corresponding
classical holonomy is unity to OðηmÞ for any desired m.
This implies that the above C2 kink modification of the
discrete approximant constraint action still yields an
acceptable approximant to the constraint action. In a
similar fashion multiplication by this holonomy of the
electric diffeomorphism constraint approximant which
generates the deformation of Step 1 also yields an accept-
able approximant which generates the C2 kink modified
deformation.
To summarize: The end result of our constructions is

that in a small enough neighborhood of the deformed
vertex vI the nonconducting edges are straight lines which
form a regular downward pointing cone around an axis in
the direction of the conducting edge which is also a
straight line in this neighborhood. The nonconducting
edges emanating from vI meet their undeformed counter-
parts in C0 kinks whereas the conducting edge emanating
from vI is distinguished by its having a C2 kink. The area
of the C2 kink (i.e. the area of a holonomy which can
create this kink) can be made as small as desired. In
particular, given some α0 ≪ δ0 the departure of the edge
from linearity can be confined to a small sphere of radius
2α0 around the kink.
It is straightforward to see that similar constructions

enable the placement of C2 or C1 kinks at desired locations
on the conducting line of the deformed charge nets
encountered in the main text.

APPENDIX C: COLORING OF MULTIPLY
DEFORMED STATES

The concept of net charge plays a key role in this
section. Equation (5.1) defines the net charge on a
conducting edge to be the sum of its outgoing upper
and lower conducting charges. Here we extend this
definition to the case that the edge is nonconducting;
in such a case we define the net charge qinetI on such an
edge to be its outgoing charge.
Next, let c be a state with a single nondegenerate GR or

CGR vertex v which is linear with respect to the coordinate
patch fxg. Let c be deformed as described in Sec. V by
the deformation ði; I; β; δÞ. The detailed locations of kinks
associated with this deformation are not important here.
We have the following cases:

Case 1: The parent vertex is GR and there is no
intervention. From Secs. III, IV and V it follows that
the displaced vertex in the child is either GR or CGR.
We have two subcases:

Case 1a: Parent vertex is GR, Child vertex is displaced
along the edge eI of the parent in the outgoing
direction ⃗êI: In this case, for any J ≠ I, the Jth edge
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at the displaced vertex of the child is colored with
ði; βÞ flipped images (i.e. unflipped charges if β ¼ 0
and β times the i flipped charges if β ¼ �1) of the
charges on its undeformed parental counterpart. By
gauge invariance the net charge on the Ith edge at the
displaced vertex in the child is the ði; βÞ flipped image
of the charge on the Ith edge of c.

Case 1b: Parent vertex is GR, child vertex is displaced
along the linear extension of the edge eI of the parent
in the incoming direction − ⃗êI opposite to the outgoing
direction: In this case there is no conducting line in
the child at the displaced vertex and, by construction,
all edges at the displaced vertex of the child have
ði; βÞ flipped charges of their undeformed parental
counterparts.

Case 2: Parent vertex is CGR: Let the conducting line
through the parent vertex v in c be the Kth one. Due to
the intervention by hl (see Secs. IV and V), the parent
vertex v in c becomes a GR vertex in cl. The edges at
v in cl are equipped with the net charges of their
counterparts at v in c. We have two subcases:

Case 2a: The child vertex is displaced along the edge eI
of cl in the outgoing direction ⃗êI. There are two further
subcases:

Case 2a.1: I ≠ K: The displaced vertex is not located on
the conducting line in c. Hence the inverse interven-
tion h−1l leaves this vertex untouched. From Case 1
above, the displaced vertex in the child clði;I;β;δÞ is
either CGR or GR. Since this vertex is untouched
by the inverse intervention, this vertex remains
CGR or GR in cði;I;β;δÞ. Note also from Case 1a that
the net charges at the displaced vertex in the deformed
child clði;I;β;δÞ are the ði; βÞ flipped images of the
corresponding net charges at v in cl. Since
the inverse intervention does not touch this vertex,
the net charges at the displaced vertex in cði;I;β;δÞ are
also the ði; βÞ flipped images of the charges on cl,
these charges on cl being the same as the net charges
at v in c.

Case 2a.2: I ¼ K: The displaced vertex is located on the
conducting line passing through v in c. From Case 1 it
follows that the displaced vertex is CGR or GR in
clði;K;β;δÞ. Since the displacement is along the Kth edge
in cl, in the case that the displaced vertex is CGR the
upper and lower conducting edges at this vertex in
clði;K;β;δÞ are also the Kth ones. Since the inverse
intervention can only affect the vertex structure at the
displaced vertex in clði;K;β;δÞ along this Kth conducting
line, it follows that the displaced vertex in cði;K;β;δÞ is
also either GR or CGR. Moreover the inverse inter-
vention cannot change the net charges at the displaced
vertex so that the net charges at the displaced vertex in
cði;K;β;δÞ are the same as those at this vertex in clði;K;β;δÞ.
The latter, from Case 1a, are the ði; βÞ flipped images

of their counterparts at v in cl, these charges in cl
being the same as the net charges at v in c.

Case 2b: The child vertex is displaced along the linear
extension of the edge eI of the cl in the incoming
direction− ⃗êI opposite to the outgoing direction. There
are two subcases:

Case 2b.1: I ≠ K: The displaced vertex is not located on
the conducting line in c so that the inverse intervention
h−1l leaves this vertex untouched. From Case 1b above
it follows that (i) the displaced vertex in clði;I;β;δÞ, and
hence in cði;I;β;δÞ, is GR (ii) the net charges at the
displaced vertex in clði;I;β;δÞ, and hence in cði;I;β;δÞ, are
the ði; βÞ flipped images of the charges on cl. The
charges at v in cl are the same as the net charges at c
because the inverse intervention cannot change net
charges.

Case 2b.2: I ¼ K: The displaced vertex is located on the
conducting line in c. From Case 1b, it follows that
the displaced vertex is GR in clði;K;β;δÞ. The inverse
intervention can only affect the vertex structure at the
displaced vertex in clði;K;β;δÞ along the Kth edge of
clði;K;β;δÞ at this vertex. It follows that the displaced
vertex in cði;K;β;δÞ can only be GR or CGR. Moreover
the inverse intervention cannot change the net charges
at the displaced vertex so that the net charges at the
displaced vertex in cði;K;β;δÞ are the same as those in
clði;K;β;δÞ. The latter, from Case 1b, are the ði; βÞ flipped
images of their counterparts at v in cl and the charges at
v in cl are the same as the net charges at v in c.

Case 3: Parent vertex is GR but an intervention is
required: This case is that of (2), Sec. V. B. 1. It is easy
to check that this is identical to the case of a CGR
vertex with vanishing upper conducting charge and no
new structures beyond those already encountered
ensue. Since our arguments for the CGR case did
not depend on the specific values of the edge charges,
we still have that Conclusion 1 below holds.

Thus we have Conclusion 1: The displaced vertex in the
child is either GR or CGR. The net charges on the edges of
the child at its displaced vertex are the ði; βÞ flipped images
of the net charges on their counterparts in the parent.
Also note the following:
(1a) In Case 1a above the undeformed parts of the edges
eJ≠I emanating from v in cði;I;β;δÞ have vanishing ith
charge when β ≠ 0. By gauge invariance, the Ith edge
at v in cði;I;β;δÞ also has vanishing ith charge so that v
is degenerate in cði;I;β;δÞ. Note that v remains GR in
cði;I;β;δÞ. If β ¼ 0 (i.e. for electric diffeomorphism type
deformations), v is absent in cði;I;β;δÞ.

(1b) In Case 1b above, similar to (1a) the undeformed
parts of the edges eJ≠I emanating from v in cði;I;β;δÞ
have vanishing ith charge when β ≠ 0. By gauge
invariance, net charge along the Ith edge at v in
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cði;I;β;δÞ has vanishing ith component so that v is
degenerate in cði;I;β;δÞ. Note, however, that because of
the necessity of a graph extension, the vertex v in
cði;I;β;δÞ can be either CGR or GR. If β ¼ 0, then
because of the graph extension v is present (and
bivalent) in cði;I;β;δÞ.

(2) The deformed charge nets clði;I;β;δÞ are obtained by
actions of the type in Cases 1a, 1b at the GR vertex v of
cl. Accordingly we have that (2a) The transition from cl
to clði;I;β;δÞ is of type Case 1a: For β ≠ 0, (1a) implies
that the edges at the vertex v in clði;I;β;δÞ each have net
charge with vanishing ith component. The action of the
inverse intervention does not change these net charges
so that the net charges at v in cði;I;β;δÞ also have
vanishing ith component. If v in cði;I;β;δÞ remains
CGR, it is then easy to see that independent of which
edge at v in cði;I;β;δÞ we assign as upper, due to the fact
that the corresponding intervention which removes the
lower conducting edge at v does not change the net
charge, we have that v is unambiguously degenerate in
cði;I;β;δÞ (see Definition 3, Sec. V. E).
If β ¼ 0 then from (1a) v is absent in clði;I;β;δÞ so that

it is bivalent in cði;I;β;δ.
(2b) The transition from cl to clði;I;β;δÞ is of type Case 1b.
Here it is important to delineate the two subcases,
(2b.1) with I ≠ K and (2b.2) with I ¼ K:

(2b.1) From (1b), if β ≠ 0, the edges at the vertex v in
clði;I;β;δÞ each have net charge with vanishing ith
component. Note however that from (1b) the vertex
v in clði;I;β;δÞ can be GR or CGR. If it is CGR, the
conducting line at v in clði;I;β;δÞ is along the Ith edge of
c and its extension. Since the inverse intervention only
affects the vertex structure at v along the Kth edge in
clði;I;β;δÞ, this Ith conducting line is also present at v in
cði;I;β;δÞ. In addition the inverse intervention restores
the lower part of the Kth conducting edge so that there
are now two conducting lines through v in cði;I;β;δÞ.
Note however that the inverse intervention cannot
change net charges so that the net charges on these
lines still have vanishing ith component. Definition 5,
Sec. V then implies that this “doubly CGR” vertex is
degenerate.
If β ¼ 0, then from (1b) v is bivalent in clði;I;β;δÞ and

the inverse intervention renders this vertex 4 valent but
with only two linearly independent edge tangents.
Hence the vertex is planar (and hence neither GR nor
CGR) and hence, degnerate, in cði;I;β;δÞ.

(2b.2) From (1b), if β ≠ 0, the edges at the vertex v in
clði;K;β;δÞ each have net charge with vanishing ith
component. If the vertex v is CGR in clði;K;β;δÞ as a
result of the graph extension, then the conducting line
through v is along the Kth edge in cl and its extension.
Since the inverse intervention is also along the Kth

edge at v in c, the vertex v in cði;K;β;δÞ is either GR or
CGR but not doubly CGR. Since the inverse inter-
vention cannot change net charges, the net charges at v
in cði;K;β;δÞ have vanishing ith component so that v is
unambiguously degenerate in cði;K;β;δÞ. If β ¼ 0, only
the Kth line passes through v in clði;K;β;δÞ so that v is
bivalent in clði;K;β;δÞ. The inverse intervention near v is
also along this line and the vertex v remains bivalent
(and hence degenerate) in cði;K;β;δÞ.

(3) As mentioned in Case 3 above, this is identical to the
case of a CGR vertex with vanishing upper conducting
charge and no new structures beyond those already
encountered ensue. Since our arguments for the CGR
case did not depend on the specific values of the edge
charges, we still have that Conclusion 2 below holds.

It is straightforward to check that in all cases, leaving
aside the vertex v and its displaced image in the child,
the only other vertices created by the deformation are of
valence at most 3 and hence degenerate. Hence the only
possibly nondegenerate vertices of cði;I;β;δÞ are v (which we
have shown is degenerate) and its displaced image.
Thus we have Conclusion 2: The vertex v (if present) in

cði;I;β;δÞ is degenerate.
It then follows, if (as is assumed in the main text) the

displaced vertex is nondegenerate, then the deformed child
of a parent with a single linear, nondegenerate GR or CGR
vertex also has a single GR or CGR vertex with net charges
which are ði; βÞ flipped images of their parental corre-
spondents. Applying this to any c in the ket set, it follows,
by virtue of the fact that any such Ket arises as a multiple
deformation of some primordial ket, that (a) any c ∈ SKet
has a single nondegenerate vertex and (b) the net charges
at the nondegenerate vertex of c ∈ SKet are identical to, or
the flipped images of, the charges on such a primordial
ancestor.

APPENDIX D: EXAMPLES OF P
RIMORDIAL STATES

Consider a 4 valent gauge invariant linear vertex which is
linear with respect to some chart fx; y; zg. Let its outward
pointing edges be in either upward or downward conical
conformation with respect to fx; y; zg (by which we mean
that one edge points along the cone axis and the remaining
three are arranged in a regular upward or downward
configuration about this axis). We assume without loss
of generality that the 4th edge e4 points along the z (or −z)
axis and that the remaining three edges e1, e2, e3 point
along a cone with angle 0 < θ < π about the −z axis. Let
the projections of the outgoing tangents to e1, e2, e3 be
e⃗1⊥; e⃗2⊥; e⃗3⊥. Let the edges be placed such that these
projections are ordered anticlockwise about the z axis as
fe⃗1⊥; e⃗2⊥; e⃗3⊥g and let the angle between successive
projections be 2π

3
so that the configuration is regular conical.
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Let the triplet of Uð1Þ charges on the Ith edge be
q⃗I ¼ ðq1I ; q2I ; q3I Þ. Choose q⃗I; I ¼ 1, 2, 3 to be linearly
independent vectors and set q⃗4 ¼ −ðP3

I¼1 q⃗IÞ so that the
vertex is gauge invariant. It is straightforward to verify that
if the cone is in downward conformation (so that e4 points
along the þz axis), the volume eigenvalue ν (see (2.16)) is

ν ¼ 4jqj; q ≔
1

48
ϵijkqi1q

j
2q

k
3 ðD1Þ

and if the cone is in upward conformation (so that e4 points
along the −z axis) then the volume eigenvalue is

ν ¼ 2jqj: ðD2Þ

Let us denote a primordial charge net with a single 4
valent vertex of the type which results in (D1) by cD and
that with a single 4 valent vertex of the type which results
in (D2) by cU. We note the following:
(1) For both these choices of primordials, the linear

dependence of 3 of the 4 charge triplets together with
gauge invariance implies that these four charge
triplets define a GR set of charge vectors i.e. any
three of these vectors are linearly independent. Since
we have only used linear independence of three
charge vectors, gauge invariance and the conical
conformation of the edge tangents, it follows that we
could have chosen any of the four edges to be along
the cone axis and still obtained nondegeneracy.

(2) Let us subject the charges q⃗I; I ¼ 1, 2, 3, 4 to a ðβ; iÞ
flip. It is easy to see that flipped charges also form a
gauge invariant set and that the volume eigenvalue is
invariant under the replacement of the charges
q⃗I; I ¼ 1, 2, 3, 4 by their flipped images.

(3) From Appendix C it follows that the net charges
which color the edges at the vertex of any charge net
obtained through multiple deformations of a pri-
mordial charge net are just multiply flipped images
of the charges on the primordial.

From (1)–(3) above in conjunction with Conclusion 2
of Appendix D, the deformations constructed in Sec. V. A–
V. C and Definition 3 of the nondegeneracy of CGR
vertices in Sec. V. E, it follows that any multiple deforma-
tion of either cD or cU results in a deformed charge net
which has a single nondegenerate GR or CGR vertex.
Finally, it is straightforward to see that we can easily

arrange for conditions (6.5), (6.6) to be satisfied, for example
by setting the charges on cD, CU to be qiI ¼ MδiI þ 1;
I ¼ 1, 2, 3, M ≫ 1.

APPENDIX E: JACOBIAN BETWEEN
REFERENCE AND CONTRACTION

COORDINATES

To avoid notational clutter we adopt the following
change in notation in this section relative to Step 1,

Sec. VIII. C. We set c½i;I;Ĵ;K̂;β;ϵ�m ¼ s, ðc½i;I;Ĵ;K̂;β;ϵ�mÞ0 ¼ sref ;
α½i;I;Ĵ;K̂;β;ϵ�m ¼ ϕref ; c0½i;I;β;δ0�m ¼ scon, and denote the diffeo-
morphism which maps scon to s by ϕcon [here the action of
ϕcon is obtained by the action of an appropriate (composite)
contraction diffeomorphism followed by the diffeomor-
phism α of Step 1, Sec. VIII. C]. The reference coordinates
for s are ϕ�

reffx0g where ϕ�
ref is the pushforward action of

ϕref and the contraction coordinates for s are ϕ�
confx0g. We

are interested in evaluating the Jacobian between these two
coordinate systems at the nondegenerate vertex v of s.
First note the following. The states scon and sref are

diffeomorphic to s and hence to each other. Hence there
exists a diffeomorphism ϕ which maps sref to scon. This
diffeomorphism must map the nondegenerate vertex vref0 of
sref to the nondegenerate vertex vcon0 of scon and also map
the set of nearest kinks at these vertices to each other. In
particular the nearest C1 kink if present in sref must be also
be present in scon and be mapped to it and similarly for a
nearest C2 kink if present. Since at least one of these kinks
must be present and since the upward direction inferred
from the location of either or both of these kinks, if present,
is uniquely defined (see Sec. V. B), the upward direction V⃗
at vref is mapped to that at vcon. Since both sref and scon are
primaries, the vertex structure in a small vicinity of their
vertices must be either upward or downward conical. Note
however that if the structure is upward conical in sref at vref

then it must be upward conical in scon at vcon, and similarly
for downward conical structures. This follows from the fact
that no diffeomorphism connected to identity can map an
upward conical structure to a downward one.
To prove this, proceed as follows. Consider an upward or

downward cone with respect to V⃗:
(i) (i) From P2, it follows that the anticlockwise order-

ing of the projections, transverse to V⃗ in the
coordinates fx0g, of the outward pointing edge
tangents which do not point along V⃗ is invariant
under orientation preserving changes of coordinates.
A quick way to see this is as follows. Clearly, the
two-dimensional vector space of these transverse
projections is isomorphic to the vector space of
equivalence classes of vectors where two vectors are
defined to be equivalent if they differ by a vector
proportional to V⃗. Let us denote the transverse
projection of an edge tangent v⃗ (or equivalently
its equivalence class as defined in the previous
sentence) by v⃗⊥. Since in the regular conical con-
formation with respect to fx0g, the angle between
two successive projections in this anticlockwise
ordering is less that π, the condition that two
projections v⃗1⊥; v⃗2⊥, with v⃗2⊥ occurring immedi-
ately after v⃗1⊥ in this ordering are successive is
equivalent to the conditions that (a) no other
edge tangent projection can be written as a linear
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combination of v⃗1⊥; v⃗2⊥ with positive coefficients
i.e. there exist no α; β > 0 for which there exists an
edge tangent v⃗3 such that αv⃗1⊥ þ βv⃗2⊥ ¼ v⃗3⊥, and
(b) the vectors v⃗1; v⃗2; V⃗ form a right-handed triple
i.e. with respect to the alternating Levi-Civita tensor
ηabc we have that ηabcva1v

b
2V

c > 0 (this condition
encodes the fact that v⃗2⊥ is encountered after v⃗1⊥
in the anticlockwise ordering; we have implicitly
assumed that fx0g is right handed). The conditions
(a) and (b) are invariant under positive rescalings of
v⃗1; v⃗2; V⃗. Clearly, any coordinate transformation can
only rescale these vectors with positive rescalings
since they refer to coordinate invariant directions
at the tangent space of the vertex in question. This
proves that the ordering of these projections is
defined in a coordinate invariant way.

(ii) The N − 1 edges not pointing along V⃗ are arranged
in a regular cone of angle θ with respect to V⃗ when

viewed in the fx0g coordinates. Let ˆV⃗ be the unit
vector along V⃗ unit with respect to the fx0g
coordinate norm and consider three successive units
(with respect to fx0g) outward pointing edge tan-
gents ˆv⃗i; i ¼ 1, 2, 3 arranged in anticlockwise order
as discussed in (a) so that the angle between two
successive pairs in these coordinates is ϕ ¼ 2π

N−1. It is
straightforward to show that

ˆv⃗1 þ ˆv⃗3 − 4 cos θsin2
ϕ

2

ˆV⃗ ¼ 2 cosϕ ˆv⃗2: ðE1Þ

This implies the relation

av⃗1 þ bv⃗3 − c cos θV⃗ ¼ d cosϕv⃗2;

for some a; b; c; d > 0: ðE2Þ

This implies that if N ¼ 4, for some α; β; γ > 0,
we have that

−ðαv⃗1þβv⃗3−γV⃗Þ¼ v⃗2; for a upward cone ðE3Þ

−ðαv⃗1 þ βv⃗3 þ γV⃗Þ ¼ v⃗2; for an downward cone;

ðE4Þ

and that if N > 4, for some α; β; γ > 0, we have that

αv⃗1þβv⃗3−γV⃗¼ v⃗2; for an upward cone; ðE5Þ

αv⃗1þβv⃗3þγV⃗¼ v⃗2; for a downward cone: ðE6Þ

The above equations retain their form (as well as the
positivity properties of α, β, γ) irrespective of the

choice of coordinates because a change of coordi-
nates only provides a positive rescaling to the
vectors in these equations.

(iii) Clearly, any diffeomorphism ϕ connected to identity
which maps sref to scon is such that (a) it maps
outward pointing edge tangents at vref in sref to
outward pointing edge tangents at vcon in scon; (b) it
maps, as noted in the second paragraph of this
section, the upward direction at vref to that at vcon;
(c) it retains the anticlockwise ordering of the
(N − 1) edge tangents (which are not along the cone
axis) around the upward direction; this immediately
follows from the fact that ϕ (which is orientation
preserving by virtue of its being connected to
identity) preserves conditions (i) (a),(b); and (d)
from (a)–(c), it follows that ϕ preserves conditions
(E3)–(E6) so that if any one of these conditions hold
at vref in sref , the same condition holds at vcon in scon.

The statement (d) implies that an upward conical
deformation cannot be mapped into a downward conical
deformation (and vice versa) by ϕ. Next, recall that the
multiple deformation which generates any primary from
any reference primordial is confined to a coordinate ball
BΔ0

ðp0Þ with respect to the Primary Coordinates fx0g. We
show the following Lemma.
Lemma L1: Let the vertex structures in a small vicinity

of the nondegenerate vertices of sref ; scon be downward
conical. Denote the coordinate ball of size η (in fx0g
coordinates) around a point p by BηðpÞ. Then there exist
small enough open balls Bτðvref0 Þ; Bτðvcon0 Þ, together with a
rigid rotation R and a rigid translation T (with R, T defined
with respect to the fx0g chart) such that Bτðvcon0 Þ ¼
RTBτðvref0 Þ and such that RTðsref jBτðvref0

ÞÞ ¼ sconjBτðvcon0
Þ

where cjU refers to the restriction of the colored graph
defining the charge net c to the set U.
Proof.—Clearly, there exists small enough τ such that

Bτðvref0 Þ; Bτðvcon0 Þ intersect sref ; scon only in their conical
vertex structures. Thus sref jBτðvref0

Þ; sconjBτðvcon0
Þ both com-

prise of regular conical structures with respect to fx0g i.e.
each of these restrictions comprise of a cone vertex with
downward pointing nonconducting edges around the
upward pointing cone axis. Further both cones have the
same angle θ. Since sref ; scon are diffeomorphic (to s and
hence) to each other, there exists a diffeomorphism ϕwhich
maps the preferred upward pointing axes to each other and
the set of downward pointing conical edges to each other.
Such a diffeomorphism induces a map between the sets of
downward pointing unit edge tangents so that

fϕ�ð ⃗̂eĴÞ; Ĵ ¼ 1; ::;N − 1g ¼ fβÎ ⃗̂eÎ;βÎ > 0; Î ¼ 1; ::;N − 1g
ðE7Þ

where the edge tangents ⃗êĴ; ⃗êÎ on the left- and right-hand
sides are unit with respect to the coordinates fx0g at
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vref0 ; vcon0 respectively. From (iii)(c) above it follows that the
sets of projections of these edge tangents transverse to the
cone axis have the same ordering. Thus we may use ϕ to
identify each downward pointing edge of the cone in sref

with a downward pointing edge in scon.
Let T be the rigid translation which maps vref0 to vcon0 .

Clearly TðBτðvref0 ÞÞ ¼ Bτðvcon0 Þ. Next, rotate ðTsrefÞjBτðvcon0
Þ

by R1 so that its distinguished “up” direction V⃗ aligns with
that of sconjUcon . Next, rotate around this preferred direction
by R2 so that one of the downward pointing edges of
ðR1TsrefÞjBτðvcon0

Þ aligns with its counterpart in sconjUcon as
identified by ϕ. Since the transverse ordering is preserved,
this automatically aligns all the remaing downward point-
ing edges of ðR1TsrefÞjBτðvcon0

with their counterparts in
sconjUcon . Since R1, R2 preserve (the coordinate ball)
Bτðvcon0 Þ we set R ¼ R2R1 to obtain the desired trans-
formation RT.
Next note that there exists a small enough neighborhood

V of the nondegenerate vertex v of s such that V is covered
by the reference as well as the contraction coordinates so
that ðϕrefÞ−1V; ðϕconÞ−1V are in the domain of the coor-
dinate patch fx0g, and such that sjV only contains the
nondegenerate vertex v and segments of the edges emanat-
ing therefrom. Also note that there exists small enough τ
such that the open balls of the Lemma above are such
that Bτðvcon0 Þ ⊂ ðϕconÞ−1V, Bτðvref0 Þ ⊂ ðϕrefÞ−1V. It follows
from the Lemma above that ϕconRTBτðvref0 Þ ⊂ V and
that this set is an open neighborhood of v. Hence
ðϕrefÞ−1ϕconRTBτðvref0 Þ is covered by fx0g and is an open
neighborhood of vref0 . Setting ðϕrefÞ−1ϕconRT ≡ ψ , and
ψBτðvref0 Þ ¼ Bψ

τ ðvref0 Þ, we have that both Bτðvref0 Þ and
Bψ
τ ðvref0 Þ are open neighborhoods of vref0 and we can

compute the Jacobian

Jμν ¼ ∂ðψ�x0Þμ
∂xν0

����
vref
0

: ðE8Þ

From the proof of the Lemma in P2 and the discussion
above it follows that (a) ψ maps the set of edge tangents at
sref at its vertex vref0 to itself modulo overall scaling (b) the
upward direction is mapped to itself and the anticlockwise
arrangement of the transverse projections of the downward
pointing edge directions are mapped to themselves. From
the fact that the reference deformations of Appendix B are
regular conical, the results of (a) and (b) can be imple-
mented through the action of linear transformation on the
tangent space at vref0 which takes the form of a constant
times an SOð3Þ matrix in the fx0g coordinates. Then it
follows from the last part of the proof of the Lemma in P2
that the action of ψ on the tangent space as expressed
through the Jacobian in the above equation must be that of
constant times as rotation i.e. we have that

Jμν ¼ CR̄μ
ν ðE9Þ

for some C > 0 and some SOð3Þ matrix R̄.
Next note that with p ∈ ϕconRTBτðvref0 Þ and p̄ ≔

ðRTÞ−1ðϕconÞ−1p ∈ Bτðvref0 Þ we have that

∂ðϕ�
refx0ÞμðpÞ

∂ððϕconÞ�RT�x0ÞνðpÞ
¼ ∂xμ0ððϕrefÞ−1pÞ

∂xν0ððRTÞ−1ðϕconÞ−1pÞ

¼ ∂ðψ�x0Þμðp̄Þ
∂xν0ðp̄Þ : ðE10Þ

Setting p ¼ v we have from (E8) and (E9) that

∂ððϕrefÞ�x0ÞμðpÞ
∂ððϕconÞ�ðRTÞ�x0ÞνðpÞ

����
p¼v

¼ CR̄μ
ν: ðE11Þ

Next note that with p ∈ ϕconRTBτðvref0 Þ,

∂ððϕrefÞ�x0ÞμðpÞ
∂ððϕconÞ�x0ÞαðpÞ

¼ ∂ððϕrefÞ�x0ÞμðpÞ
∂ððϕconÞ�ðRTÞ�x0ÞαðpÞ

×
∂ððϕconÞ�ðRTÞ�x0ÞαðpÞ

∂ððϕconÞ�x0ÞνðpÞ
; ðE12Þ

so that it remains to evaluate the second Jacobian in this
equation. Setting p̄ ¼ ðϕconÞ−1p ∈ Bτðvcon0 Þ we have that

∂ððϕconÞ�ðRTÞ�x0ÞμðpÞ
∂ððϕconÞ�x0ÞνðpÞ

¼ ∂xμ0ððRTÞ−1p̄Þ
∂xν0ðp̄Þ : ðE13Þ

Since R, T are rigid rotations and translations in fx0g, we
have that xμ0ððRTÞ−1p̄Þ¼xμ0ðT−1R−1p̄Þ¼ðR−1Þμνxν0ðp̄Þ− tμ

where tμ is a constant vector corresponding to the trans-
lation T from which it follows that the Jacobian in the
above equation is the ðR−1Þμν . Together with (E11) and
(E12), this implies that the Jacobian between the reference
and the contraction coordinates is a constant times a
rotation.
It is straightforward to check that an appropriate version

of Lemma 1 and the following argumentation leads to the
same conclusion for the upward conical case.

APPENDIX F: CONTRACTION BEHAVIOR
OF VARIOUS QUANTITIES OF INTEREST

1. Notation

To avoid notational clutter we adopt the following
change in notation in this section relative to Step 2,
Sec. VIII. C. We set, similar to Eq. (8.20),

x
ϵj1 ::ϵjm
α ≡ xðδÞ x

ϵj1 ::ϵjm−1
α ≡ x ϵjm ≡ δ

c½i;I;Ĵ;K̂;β;ϵ�m ≡ sδ c½i;I;β;ϵ;Ĵ;K̂�m−1
m

≡ s βm ≡ β: ðF1Þ

MADHAVAN VARADARAJAN PHYS. REV. D 97, 106007 (2018)

106007-84



We are interested in the transition from the immediate
parent s≡ c½i;I;β;ϵ;Ĵ;K̂�m−1

m
to its child sδ ≡ c½i;I;Ĵ;K̂;β;ϵ�m . In this

transition the parent s is deformed conically along (or
opposite to) its Im−1th edge at its nondegenerate vertex v so
as to displace this vertex to the point vδ which is the
nondegenerate vertex of the child sδ. In our notation (F1),
this transition is ðim−1; Im−1; βm; ϵjmÞ≡ ðim−1; Im−1; β; δÞ.
We denote the upward direction at v in s by V⃗Im−1

so that

V⃗Im−1
is parallel or antiparallel to the edge tangent ⃗êIm−1

at v
(see Sec. V. B).
Finally, all the edge charges referred to below will be net

charges (see the first paragraph of Appendix C for the
definition of net charge).

2. Contraction coordinates and choices
of upward direction

From (F1), the child sδ of its immediate parent s has
contraction coordinates fxðδÞg. Step 1 of Sec. VIII. C
allows the evaluation of the coefficients which multiply
the bra correspondent of sδ in these contraction coordinates.
To extract their contraction behavior we need to transit to
the parental coordinates fxg in terms of which (see
Sec. VI. D. 2) δ is measured. Following Eqs. (6.15) and
(6.16), it is useful to rotate the fxg; fxðδÞg coordinates by
R−1
s so as to obtain fyg; fyðδÞg coordinates with y3 pointing

along the straight line passing through v and vδ. From the
last remark of Sec. VI. C it follows that yðδÞ3 also points
along this direction. Note that this direction is parallel
(antiparallel) to V⃗Im−1

if the deformation is downward

(upward). Note also that V⃗Im−1
is defined, strictly speaking,

only at v in s. However due to the fact that v in s is linear
with respect to fxg (and, hence, fyg) we can naturally
define V⃗Im−1

at every point in the domain of these
coordinates. It is in this sense that we refer to the direction
defined by V⃗Im−1

in this section. Note that the direction so
defined is consistent with C2, C1 kink placements gen-
erated by the transformation ðim−1; Im−1; β; δÞ.
More in detail, any edge that emanates from vδ in cδ

which bears such a (C1 or C2) kink is, in the vicinity of vδ, a
straight line pointing along the Im−1th edge emanating from
v in c (or along the linear extension (with respect to fyg)
of this edge. Hence its outward pointing edge tangent is
along or opposite to V⃗Im−1

. The placement of its nearest
kink (see Secs. V. B and V. C) then defines the upward

direction V⃗ðδÞ
Im

for such an edge to be equal to V⃗Im−1
.

3. Contraction behavior of HLm
;hLm

; f

Note that the structure in the immediate vicinity of the
nondegenerate vertex of sδ is regular conical in terms of
fxðδÞg (or fyðδÞg) because this structure and this coordinate
system are images by the same diffeomorphism (see

Sec. VI, especially Sec. VI. D. 2) of reference deformations
and reference coordinates in which the reference deforma-
tions are regular conical. Recall, from Sec. F. 2 above, that
the upward direction at vδ in cδ is V⃗Im−1

. Let the cone angle
as measured by the fyðδÞg coordinates, with respect to this
upward direction be θ so that θ < π

2
defines an upward

conical deformation and θ > π
2
defines a downward conical

deformation. Consider any Jmth edge of sδ with Jm ≠ Im−1
in the immediate vicinity of vδ.

54 Such an edge points along
the cone. Let its azimuthal angle in the fyðδÞg coordinates
be ϕJm . Thus we have that the unit (with respect to the

fyðδÞg coordinates) outward pointing edge tangent ⃗êðδÞJm

along this edge has coordinates (in the fyðδÞg chart)55

êðδÞμ̄Jm
¼ ðsin θ cosϕ; sin θ sinϕ;� cos θÞ ðF2Þ

where the þ sign in front of cos θ corresponds to
downward deformations (for which yðδÞ3; y3 run upward)
and the − sign to upward deformations (for which yðδÞ3; y3

run downward). Using Eq. (6.15), the components of ⃗êðδÞJm
in

the fyg coordinates are

êðδÞμJm
¼ ðδq−1 sin θ cosϕ; δq−1 sin θ sinϕ;� cos θÞ: ðF3Þ

Since the y3 direction is along V⃗Im−1
for downward

deformations and opposite to V⃗Im−1
for upward deforma-

tions, the above equation takes the form

êðδÞaJm
¼ cos θV̂a

Im−1
þ δq−1wa

Jm
ðF4Þ

where wa
Jm

is a δ independent vector in the fyg (and hence

in the fxg) coordinates and V̂a
Im−1

is the normalized (in the
fxg or, equivalently, fyg coordinates) vector parallel to
Va
Im−1

. Note that these edges are such that the nearest kink is

a C0 kink so that the upward direction VðδÞa
Jm

is along the
outward pointing Jmth edge tangent (see Sec. V). Denoting
its normalized (with respect to the fyδg coordinates

associated with vδ) by V̂ðδÞa
Jm

, we may write (F4) as

V̂ðδÞa
Jm

¼ êðδÞaJm
¼ cos θV̂a

Im−1
þ δq−1wa

Jm
: ðF5Þ

Next consider the upper conducting edge eIm¼Im−1;u (if
present) at vδ in sδ. A similar analysis shows that the unit
(with respect to fxδg) edge tangent along this edge is also
unit with respect to the fxg coordinates so that we have

54Recall that we use the edge enumeration convention de-
scribed in Sec. VI. A

55Since fyðδÞg and fxðδÞg are related by the rotation Rs,
normalization in both these systems is identical.
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êðδÞaIm¼Im−1;u
¼ V̂a

Im−1
: ðF6Þ

Similarly the lower conducting edge (if present56) at vδ in sδ
has unit (with respect to fxδg) tangent

êðδÞaIm¼Im−1;d
¼ −V̂a

Im−1
: ðF7Þ

Note that by definition the outward upper conducting edge

tangent is along the upward direction VðδÞa
Jm

at vδ, and the
lower one opposite to it so that we may write (F6) and (F7)
as the single equation57

êðδÞaIm¼Im−1;u
¼ V̂a

Im−1
¼ −êðδÞaIm¼Im−1;d

¼ V̂ðδÞa
Im¼Im−1

: ðF8Þ

It is then straightforward to obtain the following esti-
mates for the metric norms of the unit (with respect to
fxðδÞg) edge tangent vectors at vδ in sδ:

���êðδÞaJm≠Im−1

���
vδ
¼ j cos θj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðvδÞV̂a

Im−1
V̂b
Im−1

q
× ð1þ C1;JmðvδÞδq−1 þ C2;JmðvδÞðδq−1Þ2Þ

1
2

ðF9Þ

C1;JmðvδÞ ≔ 2
habðvδÞwa

Jm
V̂b
Im−1

cos θhabðvδÞV̂a
Im−1

V̂b
Im−1

ðF10Þ

C2;JmðvδÞ ≔
habðvδÞwa

Jm
wb
Jm

cos2 θhabðvδÞV̂a
Im−1

V̂b
Im−1

ðF11Þ

���êðδÞaIm¼Im−1;u

���
vδ
¼
���êðδÞaIm¼Im−1;d

���
vδ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðvδÞV̂a

Im−1
V̂b
Im−1

q
:

ðF12Þ

From (F6)–(F12), we obtain the following behavior for
the quantities in (7.3) and (7.4):

HIm¼Im−1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðvδÞV̂a

Im−1
V̂b
Im−1

q
;

HJm≠Im−1
¼ j cos θjHIm¼Im−1

þOðδq−1Þ; ðF13Þ

hIm¼Im−1
¼ ðN − 1ÞðN − 2Þ þOðδq−1Þ;

hJm≠Im−1
¼ N − 2

j cosθj ð1þ cos2 θþ ðN − 3ÞjcosθjÞ þOðδq−1Þ:

ðF14Þ
Next, consider any density weight − 1

3
scalar density S

evaluated at vδ. From (6.16) it follows that

Sðvδ; fxδgÞ ¼ δ−
2
3
ðq−1ÞSðvδ; fxgÞ ðF15Þ

where we have used the notation Sðp; fzgÞ to signify the
evaluation of S at the point p in the coordinate system fzg.
Setting S≕ f, Eq. (F15) yields the contraction behavior
of f. Note also that if fyg is related to fxg by a rotation
[say, as in Eqs. (6.15) and (6.16)] we have by virtue of the
fact that the determinant of a rotation matrix is unity, that

fðp; fxgÞ ¼ fðp; fygÞ: ðF16Þ

Next consider the quantity Hl
Lm

defined by

Hl
Lm

≔
Yl
i¼1

Niðvδ; fyðδÞgÞV̂ðδÞai
Lm

∂aiðfðvδ; fyðδÞgÞk ⃗êðδÞLm
kÞ:

ðF17Þ

Here Ni, f are density weight −1=3 scalars. The unit (with
respect to the fyðδÞg coordinates) upward direction the Lmth

edge (or line) at vδ is denoted by V̂ðδÞai
Lm

, where the upward

direction VðδÞai
Lm

is chosen in accord with the criteria of
Sec. V. The product in (F17) is ordered from left to right in

decreasing value of i so that the factor ðN1V̂
ðδÞa1
Lm

∂a1Þ is

rightmost. The vector ⃗V̂
ðδÞ
Lm

and its norm with respect to the
metric hab are defined only at the vertex vδ of cδ. In order to
render (F17) well defined, we extend the domain of

definition of ⃗V̂
ðδÞ
Lm

from vδ to a small neighborhood
UðvδÞ thereof so that the vector field on this extended
domain is constant in the fyðδÞg chart. This neighborhood is
small enough that Eqs. (6.11) hold so that the vector field is
also constant in the fyg coordinates. Thus, for any point p
in this neighborhood, we define this “constant extension”

V̂ðδÞai
Lm

from which we define

Hl
Lm
ðN1; N2; ::Nl;pÞ

≔
Yl
i¼1

Niðp; fyðδÞgÞV̂ðδÞai
Lm

ðpÞ∂aiðfðp; fyðδÞgÞ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðpÞV̂ðδÞa

Lm
ðpÞV̂ðδÞb

Lm
ðpÞ

q
Þ: ðF18Þ

Then we render (F17) well defined by setting

56Recall (see for example footnote 13) that while the upper or
lower conducting edge may be absent in sδ because the upper or
lower conducting charge happens to vanish, from Appendix C it
must be the case that at least one of these edges is present in the
child due to the relation of the net conducting charge with the
primordial charge.

57Note that (F8) is consistent with last part of the discussion in
Sec. F. 1.
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Hl
Lm

≔ Hl
Lm
ðN1; N2; ::Nl;p ¼ vδÞ: ðF19Þ

We are interested in the contraction behavior of Hl
Lm

as
defined above. Note that since the transformation between
fyg and fyðδÞg is linear in the domain of interest, constant
vector fields in one system are also constant in the other.
It then immediately follows that with such extensions of

vectors êðδÞaiLm
V̂ðδÞai
Lm

; ⃗V̂Im−1
; w⃗Jm in Eqs. (F4)–(F8), these

equations continue to hold in UðvδÞ. It then follows that
replacing these vectors by their constant extensions in (F9)
and (F12) and replacing habðvδÞ by habðpÞ in these
equations, we obtain equations which hold in UðvδÞ.
These equations can then be used to write (F18) in terms
of quantities natural to the fyg coordinates. Evaluating this
form of the equations at vδ then allows us to derive the
contraction behavior of Hl

Lm
as defined by (F19).

Accordingly (F9) and (F12) are extended to UðvδÞ as
���êðδÞaJm≠Im−1

���
p
¼ j cos θj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðpÞV̂a

Im−1
ðpÞV̂b

Im−1
ðpÞ

q

× ð1þ C1;JmðpÞδq−1 þ C2;JmðpÞðδq−1Þ2Þ
1
2

ðF20Þ

C1;JmðpÞ ≔ 2
habðpÞwa

Jm
ðpÞV̂b

Im−1
ðpÞ

cos θhabðpÞV̂a
Im−1

ðpÞV̂b
Im−1

ðpÞ ðF21Þ

C2;JmðpÞ ≔
habðpÞwa

Jm
ðpÞwb

Jm
ðpÞ

cos2θhabðpÞV̂a
Im−1

ðpÞV̂b
Im−1

ðpÞ ðF22Þ

���êðδÞaIm¼Im−1;u

���
p
¼
���êðδÞaIm¼Im−1;d

���
p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðpÞV̂a

Im−1
ðpÞV̂b

Im−1
ðpÞ

q
:

ðF23Þ

Using (F20)–(F23), (F15), (F5), (F8) in Eq. (F18), and
noting that the only objects in these equations with a
nontrivial p dependence are hab; Ni; f the other quantities
being constant in fyg coordinates, it is straightforward to
obtain

Hl
Lm¼Im−1

ðN1; N2; ::Nl;pÞ ¼ δ−ðlþ1Þ2
3
ðq−1Þ

�Yl
i¼1

Niðp; fygÞV̂ai
Im−1

ðpÞ∂aiÞ
�
fðp; fygÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðpÞV̂a

Im−1
ðpÞV̂b

Im−1

q
ðpÞ

�	
; ðF24Þ

Hl
Lm≠Im−1

ðN1; N2; ::Nl;pÞ

¼ δ−ðlþ1Þ2
3
ðq−1Þ

�
j cos θjðcoslθÞ

Yl
i¼1

Niðp; fygÞV̂ai
Im−1

ðpÞ∂ai

�
fðp; fygÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðpÞV̂a

Im−1
ðpÞV̂b

Im−1
ðpÞ

q �
þOðδq−1Þ

	
: ðF25Þ

As emphasized above, the derivatives in (F24) and (F25) are along constant coordinate directions in the fyg coordinates.
The only objects with nontrivial p dependence are habðpÞ; Ni; f and so the above expressions only involve coordinate
derivatives of components of the metric and of the evaluations of Ni, f in the fyg coordinates. Setting p ¼ vδ after
evaluating these derivatives, we write the contraction behavior of Hl

Lm
in a notation similar to that used in (F17) as

Hl
Lm¼Im−1

≔ Hl
Lm
ðN1; N2; ::Nl;p ¼ vδÞ

¼ δ−ðlþ1Þ2
3
ðq−1Þ

�Yl
i¼1

Niðvδ; fygÞV̂ai
Im−1

∂ai

�
fðvδ; fygÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðvδÞV̂a

Im−1
V̂b
Im−1

q �	
; ðF26Þ

Hl
Lm≠Im−1

≔ Hl
Lm
ðN1; N2; ::Nl;p ¼ vδÞ

¼ δ−ðlþ1Þ2
3
ðq−1Þ

�
j cos θjðcoslθÞ

Yl
i¼1

Niðvδ; fygÞV̂ai
Im−1

∂ai

�
fðvδ; fygÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðvδÞV̂a

Im−1
V̂b
Im−1

q �
þOðδq−1Þ

	
: ðF27Þ
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APPENDIX G: THE FUNCTION gc

1. Specification of the function gc

Recall that g∶ΣmðN−1Þ → R with no smoothness restric-
tions and that we are interested in the specification of g only
when none of its arguments are coincident.
First, define the function dða1; a2Þ between any two

distinct points a1, a2 ∈ Σ as follows: If there exists a unique
geodesic with length l; l < 1 which joins a1 to a2 then we
define d ¼ l else we set d ¼ 1. We shall refer to d as a
“distance” function.
Let Um be the set of mðN − 1Þ (noncoincident) points in

Σ which serve as arguments of g. Consider the case in
which the elements of S can be uniquely segregated into
m − kþ 2 sets of points Si, i ¼ k − 1; k;…; m − 1; m with
each Si, i ≥ k containing (N − 1) points as follows. Let Sm
be such that the distance between any two elements of Sm is
less than the distance between any element of Sm and any
element of Um not in Sm, as well as between any two
elements of Um not in Sm. This means that the ðN−1

2
Þ

distances between points in Sm are the shortest distances
among the ðmðN−1Þ

2
Þ distances between points in Um.

To define Sm−1 we remove the points belonging to Sm
from U. Call the resulting set of ðm − 1ÞðN − 1Þ points as
Um−1. Let Sm−1 be such that the distance between any two
elements of Sm−1 is less than the distance between any
element of Sm−1 and any element of Um−1 not in Sm−1, as
well as between any two elements of Um−1 not in Sm−1.
This means that the ðN−1

2
Þ distances between points in Sm−1

are the shortest distances among the ððm−1ÞðN−1Þ
2

Þ distances
between points in Um−1. We assume that the structure of
points inUm is such that this procedure can be iterated so as
to define Sm−2; Sm−3…; Sk and that the procedure cannot be
iterated beyond this so that the remaining ðk − 1ÞðN − 1Þ
points are contained in Sk−1, where if k ¼ 1, S0 is the
empty set.
Next, in each set Si, i > k − 1, consider the ðN−1

2
Þ

distances between pairs of points. Order these distances
in decreasing value and denote this ordered set by

ðdðiÞ1 ; dðiÞ2 ;…; dðiÞðN−1
2
ÞÞ, where dðiÞr ≤ dðiÞs iff r > s. Then we

define

g ≔
Ym
i¼k

dðiÞN−1

dðiÞ1
: ðG1Þ

If m > 1 and Um is such that there exists no k ≥ 1 for
which the above segregation exists, we set g ¼ 1. If m ¼ 1
then we define k ¼ 1 so that all the points are in the set S1
and interpret (G1) as

g ≔
dð1ÞN−1

dð1Þ1

: ðG2Þ

2. Contraction behavior of gc
Consider the set of C0 kinks of the child c½i;I;Ĵ;K̂;β;ϵ�m

which contract to the parent vertices v of the parent
c½i;I;β;ϵ;Ĵ;K̂�m−1

m
. For the purposes of this section, we denote

the contraction parameter ϵjm by ϵ, the child c½i;I;Ĵ;K̂;β;ϵ�m by
c and the parent c½i;I;β;ϵ;Ĵ;K̂�m−1

m
by cpar and the contraction

coordinates associated with vpar in cpar by fxg.
Then for small enough ϵ the function gc as defined in

Appendix G. 1 above separates as gc ¼ g1gcpar where g1 is a

function only of the N − 1 C0 kinks which contract to the
parent vertex with, from (G1),

g1 ¼
dN−1

d1
ðG3Þ

where the ðN−1
2
Þ distances between pairs of these C0 kinks

are ordered in decreasing value and denoted by
ðd1; d2;…; dðN−1

2
ÞÞ, where dr ≤ ds iff r > s.

For small enough ϵ these distances are the geodesic
distances between pairs of C0 kinks. Using the fact that
geodesic normal coordinates are (at least) C3 functions
(recall that Σ is a semianalytic manifold of differentiability
class much larger than unity) of coordinate charts on Σ,
it is straightforward to show that the geodesic distance d
between points separated by a coordinate distance δ is
estimated as

dða1; a2Þ ¼ δk ⃗êa1;a2k þOðδ2Þ ðG4Þ

where ⃗êa1;a2 is the unit (with respect to the coordinate norm)
coordinate vector along the coordinate straight line con-
necting a1 to a2 and k ⃗êa1;a2k is the metric norm (with
respect to hbc at either of the points a1 or a2):

k ⃗êa1;a2k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hbcðaÞêba1;a2 êca1;a2

q
; a ¼ a1 or a ¼ a2

ðG5Þ

where the choice of a ¼ a1 or a2 only affects the
expression (G4) at Oðδ2Þ. We may now use (G4) to
estimate the required geodesic distances between the
contracting C0 kinks.
We shall use the notation in (iii), (iv) Sec. VI. C. Note

that for the contraction of C0 kinks we have p1 < p2 < p3

[see (i)–(iii), Step 2, Sec. VI. D. 1. b]. The C0 kinks are
situated such that (a) one of them lies along the Ĵth edge at
the nondegenerate vertex vpar in cpar at a coordinate
distance ϵp1 from vpar, (b) a second lies along the K̂th
edge at the nondegenerate vertex vpar in cpar at a coordinate
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distance Qϵp2 from vpar, and (c) the remaining N − 3 kinks
vertices lie at coordinate distances of size ϵp3 from vpar.
Clearly the largest distances among the pairs of these

kinks will be those between the kink in (a) and the others.
There are N − 2 such distances. Clearly the N − 1th
distance in the prescribed decreasing order will be one
of the distances between the kink in (b) and those in (c).
These distances can be readily estimated using (G4) and
elementary plane geometry. We obtain

dN−1 ¼ Qϵp2k ⃗êK̂kð1þOðϵp2−p1ÞÞ;
d1 ¼ ϵp1k ⃗êĴkð1þOðϵp2−p1ÞÞ ðG6Þ

where k ⃗̂eL̂k denotes the metric norm of the unit coordinate

vector ⃗êL̂ at the point vpar in the coordinate system fxg
associated with vpar in cpar,

k ⃗̂eL̂k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habðvparÞêaL̂êbL̂

q
; ðG7Þ

and where we have used the following inequalities which
follow from (i)–(iii), Step 2, Sec. VI. D. 1. b [see (G11) and
(G12) below]:

p3>p2>p1; p3−p2>p2−p1; p1>p2−p1: ðG8Þ

From (G3) and (G6), we have that

g1 ¼ ϵp2−p1Q
k ⃗êK̂k
k ⃗êĴk

ð1þOðϵp2−p1ÞÞ: ðG9Þ

Note also that during the contraction o/f the N − 1 kinks
created in the transition from cpar to c, the position of any
preexisting kinks in cpar are left unchanged by virtue of (vi),
Step 2, Sec. VI. D. 1. b. Hence the contraction behavior
of gc is

gc ¼ ϵp2−p1Q
k ⃗êK̂k
k ⃗êĴk

ð1þOðϵp2−p1ÞÞgcpar : ðG10Þ

Note that from (i)–(iii), Step 2, Sec. VI. D. 1. b we have,
for some j ≥ 1; p; q ≫ 1 that

p1 ¼ jp
2

3
ðq − 1Þ; p2 ¼ jðpþ 1Þ 2

3
ðq − 1Þ;

p3 ¼ jðpþ 1Þ 2
3
ðq − 1Þ þ j

4

3
ðq − 1Þ ðG11Þ

so that

p2 − p1 ¼ j
2

3
ðq − 1Þ; p3 − p2 ¼ j

4

3
ðq − 1Þ: ðG12Þ
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