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Smolin’s generally covariant Geyion — O limit of 4d Euclidean gravity is a useful toy model for the study
of the constraint algebra in loop quantum gravity (LQG). In particular, the commutator between its
Hamiltonian constraints has a metric dependent structure function. While a prior LQG-like construction of
nontrivial anomaly free constraint commutators for the model exists, that work suffers from two defects. First,
Smolin’s remarks on the inability of the quantum dynamics to generate propagation effects apply. Second, the
construction only yields the action of a single Hamiltonian constraint together with the action of its
commutator through a continuum limit of corresponding discrete approximants; the continuum limit of a
product of two or more constraints does not exist. Here, we incorporate changes in the quantum dynamics
through structural modifications in the choice of discrete approximants to the quantum Hamiltonian
constraint. The new structure is motivated by that responsible for propagation in an LQG-like quantization of
paramatrized field theory and significantly alters the space of physical states. We study the off shell constraint
algebra of the model in the context of these structural changes and show that the continuum limit action of
multiple products of Hamiltonian constraints is (a) supported on an appropriate domain of states, (b) yields
anomaly free commutators between pairs of Hamiltonian constraints, and (c) is diffeomorphism covariant.

Many of our considerations seem robust enough to be applied to the setting of 4d Euclidean gravity.

DOI: 10.1103/PhysRevD.97.106007

I. INTRODUCTION

The construction of a physically viable quantum dynam-
ics for loop quantum gavity (LQG) (see for e.g. [1-5] and
the references therein) constitutes a key open problem. Two
desirable features of such a dynamics are its compatibility
with general covariance and its ability to propagate
perturbations [6]. Here, we focus on the issue of general
covariance in the context of Smolin’s novel weak coupling
limit of Euclidean gravity [7]. General covariance is
expected to be encoded in a representation of the algebra
of Hamiltonian and spatial diffeomorphism constraints [8].
Accordingly, we construct a domain of quantum states for
the model together with the action of constraint operator
products thereon in such a way that the resulting algebra of
constraints exhibits anomaly free constraint commutators.
The model shares several structural aspects with canonical
general relativity and we expect our considerations here to
serve as essential inputs in the construction of a generally
covariant dynamics for LQG.

On the other hand, propagation properties of quantum
dynamics in LQG-like quantizations seem to be related to
certain structural properties of the Hamiltonian constraint
[9]. While we defer an analysis of propagation properties of
the dynamics of this model to future work [10], we note that
the general structural properties believed to be connected
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with propagation effects in our study of parametrized field
theory [9] play a key role in our demonstration of an
anomaly free constraint algebra here.

We initiated our study of the quantum constraint algebra
of the model in [11,12]. The phase space of the system
consists of a triplet of Abelian connections and conjugate
electric fields, its dynamics is driven by Hamiltonian and
diffeomorphism constraints with a Poisson Bracket algebra
isomorphic to that of (Euclidean) gravity, and the LQG-like
quantum theory supports a representation of operators
consisting of holonomies of connections around spatial
loops and electric fluxes through spatial surfaces. While the
quantum theory supports a unitary representation of spatial
diffeomorphisms, the action of the Hamiltonian constraint
operator is defined in an indirect manner via a continuum
limit of appropriate discrete approximants. The reason, as
in LQG, is as follows. The classical constraint depends on
the curvature of the connection. While the classical
curvature can be defined via a “shrinking loop” limit of
an approximant constructed out of classical holonomies,
the corresponding quantum holonomy operator limit does
not exist because the background independent quantum
theory cannot distinguish between a bigger loop and its
smaller shrinking versions. However, following [13], it is
nevertheless possible to construct a classical approximant
to the Hamiltonian constraint through a suitable conglom-
eration of such discrete approximants in such a way that the
limit of the action of the corresponding conglomeration of
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operators can be defined despite individual operator limits
being ill defined. Since the limit involves shrinking of
“discrete regulating labels” such as loops and graphs, it is
referred to as a “continuum limit” and the approximants are
referred to as discrete approximants.

The work in Ref. [11] constructs the continuum limit of
the action of a single Hamiltonian constraint and an
anomaly free continuum limit action of the commutator
between two Hamiltonian constraints from suitably defined
discrete approximants. The work in Ref. [12] improves
upon the single Hamiltonian constraint action so as to
render it spatially covariant thus ensuring an anomaly free
commutator of the single Hamiltonian constraint action
with the spatial diffeomorphism constraint. This is achieved
while maintaining the anomaly free nature of the commu-
tator between a pair of Hamiltonian constraints. It is
important to note that the work in [11,12] constructs the
continuum limit of a discrete approximant to the commu-
tator between a pair of Hamiltonian constraints rather
than the commutator between continuum limit products.
More in detail, the product of the action of 2 discrete
approximant single Hamiltonian constraints is constructed,

We show that each of the commutators in this string is
anomaly free in the sense that each can be replaced by the
operator correspondent of the corresponding classical
Poisson bracket (this operator correspondent, as in general
relativity, is itself not a Hamiltonian constraint smeared by
a c-number lapse because of the occurrence of structure
functions in the Poisson bracket algebra). We are also able
to show that the continuum limit action of multiple
products of smeared Hamiltonian constraints is diffeo-
morphism covariant and that the group of finite spatial
diffeomorphisms is implemented in an anomaly free
manner. This is almost but not quite the same as what is
conventionally referred to as the implementation of the
constraint algebra without anomalies in that we do not
concern ourselves with higher order commutators of the
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type [....[[C(Ny). C(N2)], C(N3], ..., C(N;)]. We shall re-
turn to this point in the concluding section of this work. Till
then we shall refer to our results as an anomaly free single
commutator implementation of the constraint algebra.

'Specifically, we are able to define the action of up to k — 1
products of these constraints where we use the C* semianalytic
category and k can be chosen to be arbitrarily large. Note this is
similar to the fact that for C* vector fields one can only define up
to k nested commutators and this is the analog of the Lie algebra
for the group of C*! diffeomorphsims.

the commutator of this product is evaluated first and then
the continuum limit is taken. Instead, a better implementa-
tion of the commutator between the quantum constraints
would be to first take the continuum limit of the product of
a pair of discrete single Hamiltonian constraint actions and
then take the commutator of this product. However it turns
out that with the choice of discrete approximants used in
[11,12], while the continuum limit of the discrete commu-
tator action is well defined, the limit of the discrete product
action is not. This is because certain terms with divergent
continuum limits in the discrete product action drop out
when commutation is performed before continuum limit.
Here we significantly improve upon the analysis of
[11,12] as follows. We construct the continuum limit action
of multiple products of Hamiltonian constraints, each such
constraint smeared by a “c-number” lapse i.e. we are able to
compute the action of a string of Hamiltonian constraint
operators C(N;)..C(N,,).! From this action we can com-
pute the action of the operator obtained by replacing, in this
operator string, any number of pairs of successive smeared
Hamiltonian constraint operators by their commutators, i.e.
we can compute actions of operator products of the type

(1.1)

While our basic strategy is the same as in Refs. [11,12]
(referred to here on as P1, P2 respectively), its implemen-
tation here is more complex than in those works. A brief
summary of the strategy, as implemented here, follows. As
in P1, P2 we deal with the Hamiltonian constraint of
density 4/3 smeared with a density weight —1/3 lapse as
this seems essential for nontrivial anomaly free commu-
tators (see, for e.g. Sec. IX in [14] and Chap. 2 of [5]). For
reasons explained above, we first define the action of
suitable discrete approximants to this constraint and then
take the continuum limit. As for LQG [13,15], the action of
these discrete approximants on a charge network state?
receives contributions only from vertices of the charge
net. As in P1, P2, we confine our attention to the case of
charge nets with a single contributing vertex. Since the
lapse function has a nontrivial density weight the action of a
discrete approximant to the constraint (henceforth referred
to as the discrete action of the constraint) can only be
computed with the aid of a coordinate patch around the
contributing vertex. This action on such a charge net state
generates deformations of the state and the “size” of these

2Charge network states are the Abelian analog of the spin
network basis states of LQG [16] each such state being labeled
by a spatial graph whose edges are labeled by integer valued
“charges.”
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deformations is measured, in a precise sense, by the
coordinate patch associated with the charge net being
acted upon. The continuum limit action then involves
shrinking the size of these deformations away. Thus, the
constraint action depends on a choice of “regulating’
coordinate patches, one for (the contributing vertex of) each
charge net.

While the discrete action is defined on any charge
network state, the continuum limit of this discrete action
can only be defined on distributional states which are non-
normalizable infinite sums over charge network states and
which lie in the algebraic dual to the finite span of charge
networks states.’ In this work, as in P1, P2 we restrict our
attention to the case where the coefficents in these sums are
nonvanishing only for “single vertex” charge nets of the
type described above. The coefficients in this sum are
determined through the specification of a density weighted
function and a Riemmanian metric on the 3d Cauchy slice.
This is in contrast to the specification of the scalar “vertex
smooth” function [17] of P1, P2. Due to the density weight
of the function and the tensorial nature of the metric, the
evaluation of these coefficients also requires a choice of
coordinate patches at vertices of the charge network states
they multiply. We choose these coordinate patches used to
evaluate these coefficients to be the same as the regulating
coordinate patches chosen above to define the discrete
action of the Hamiltonian constraint. This choice of
coordinate patches then allows the coefficients to be
evaluated and, consequently, the distributional states which
support the continuum limit constraint action to be speci-
fied. It is on this set of distributional states that anomaly
freedom is verified. Each such state will be called an
“anomaly free state” and the set of states will be referred to
as the “anomaly free domain.”

The requirement of anomaly free single commutators is
phrased in terms of an identity (2.11) discovered in P1
which expresses the Poisson bracket between a pair of
classical Hamiltonian constraints in terms of Poisson
brackets between certain phase space functions known
as electric diffeomorphism constraints (this name derives
from their construction as smearings of the diffeomorphism
constraint with electric field dependent vector fields).
Anomaly freedom is the requirement that this identity holds
between the commutator between a pair of Hamiltonian
constraints and the (continuum limit of the) corresponding
electric diffeomorphism commutators. Since the electric
fields in quantum theory are not smooth, the deformations
corresponding to electric diffeomorphisms are “singular”
versions of smooth diffeomorphisms, and, hence, distinct
from the latter. This enables us to focus first on the

The algebraic dual comprises of linear mappings from this
finite span to the complex numbers; its elements may be thought
of as (in geneneral non-normalizable) sums of charge network
bras.

construction of an anomaly free single commutator imple-
mentation of the algebra of Hamiltonian constraints and
analyze spatial diffeomorphism covariance of our con-
structions in a second step as follows.

Classical diffeomorphism covariance is encoded in the
Poisson brackets between the diffeomorphism constraint
and the Hamiltonian constraint and between the diffeo-
morphism constraints themselves. The diffeomorphism
constraint generates the action of infinitesimal diffeomor-
phisms on the connection and electric fields. In contrast, in
LQG-like representations the natural operators are those
which implement finite diffeomorphisms. It is possible to
encode the content of the Poisson brackets involving the
diffeomorphism constraint in terms of the action of finite
diffeomorphisms. The Poisson bracket between the diffeo-
morphism constraints is encoded in the requirement that the
group of finite diffeomorphisms connected to identity is
represented faithfully. The Poisson brackets between the
diffeomorphism constraint and the Hamiltonian constraint
are encoded in the requirement that the action of the
Hamiltonian constraint be appropriately diffeomorphism
covariant [see Eq. (12.4)]. Since LQG-like representations
provide a unitary representation of the group of finite
diffeomorphisms, we need to concentrate only on the
diffeomorphism covariance of the Hamiltonian constraint
action on states in the anomaly free domain. It is here that
the metric dependence of states in the anomaly free domain
allows, relative to P2, a qualitatively new mechanism for
the implementation of diffeomorphism covariance of the
continuum limit action of the Hamiltonian constraint.

Recall that this continuum limit action arises as the limit
of the action of discrete approximants to the constraint.
Also recall that this discrete action underlying the con-
tinuum limit action requires, for its definition, the choice of
a regulating coordinate patch around the contributing
vertex of the charge net being acted upon. Hitherto (see
P2), these coordinate patches (and hence the corresponding
discrete deformations generated by the discrete approxim-
ant to the constraint) were chosen once and for all
independent of the choice of the anomaly free state. The
new ingredient in this work is to tie the choice of these
structures to the metric label of the state as follows. Smooth
diffeomorphisms are represented unitarily on the space of
charge network states. Hence they have a well-defined dual
action on any anomaly free state. Consider one such state
with metric label /,;,. Then it turns out that the dual action
of a finite diffeomorphism ¢ on this state maps the state to a
new anomaly free state with metric label ¢*h,;, which is the
push forward of h,, by ¢. Let the choice of coordinate
patch around the contributing vertex v of the charge net
state ¢ when the anomaly free state has metric label 4, be
{x}. Similar to the case of LQG spin nets, the unitary action
of the diffeomorphism ¢ on c yields the charge net ¢, with
contributing vertex ¢(v). Then the idea is to choose the
coordinate patch around the contributing vertex of the
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charge net state ¢, when the anomaly free state has metric
label ¢*hy,, to be ¢*{x}.

As we shall see in the main body of the paper, tying the
choice of regulating coordinate patches to the metric label
of the state in this “diffeomorphism covariant” manner
results in an elegant and immediate implementation of
diffeomorphism covariance of the continuum limit action of
the Hamiltonian constraint. To summarize, we have a tight
formalism wherein the label of the anomaly free distribu-
tional state dictates the choice of discrete approximant to
the Hamiltonian constraint which in turn defines a discrete
action whose continuum limit is diffeomorphism covariant.
This implementation of diffeomorphism covariance seems
to us to be a robust and beautiful phenomenon with possible
applicability to full blown LQG. This concludes our
summary of the strategy employed in this paper.

Our considerations in the main body of the paper are
based on the contents of P1 and P2. While we shall aim at a
self-contained presentation, the reader interested in a
complete understanding is urged to establish some famili-
arity with P1, P2 especially Secs. 2, 4, 5 and Appendix C4
of P1 and Secs. 3.2 and 3.3 and 5.5 of P2. The reader
interested in only a bird’s eye view of our results may
peruse Secs. II, III, XII and XIII.. Before we proceed to a
description of the layout of the paper, we note that this
model was first studied in an LQG representation in [18]
wherein the authors focussed on the case of 3 dimensions.
The model was studied in 4d in [11,12]. An attempt was
made to apply the lessons learned from these studies,
together with a remarkable identity discovered by Ashtekar
[19] (see also [20] where this identity is reproduced) and
earlier pioneering work by Bruegman [21], to 4d Euclidean
gravity in [20].

The layout of the paper is as follows. In Sec. II we briefly
review the model and the derivation of the discrete
approximants used in P2. In Sec. IIl we briefly review
the structural lessons learned from the study of propagation
in parametrized field theory [9] and show how to incor-
porate these lessons into a modified choice of discrete
approximants for the action of the Hamiltonian and the
electric diffeomorphism constraint on a certain restricted
class of states. The modifications, though seemingly minor,
are responsible for an anomaly free single commutator
implementation of the constraint algebra. Due to the nature
of the modifications it turns out that the set of restricted
states considered in Sec. III are not large enough for our
purposes because the action of the constraints maps these
states out of this set. Hence it is necessary to define the
discrete constraint action on a slightly larger set. We
develop this for a restricted class of elements of this larger
set in Sec. IV and lift this restriction in Sec. V, wherein we
display our detailed choice for the action on elements of
this larger set (called the ket set in Sec. VI).

In Sec. VI we construct the discrete action of products of
constraint operators. This action derives from multiple

applications of actions each of the type specified in
Sec. V. The specification in Sec. V on elements of the
ket set is not complete in that the coordinate patches
underlying the constraint action remain unspecified. In
Sec. VI we remedy this and provide a complete construc-
tion of the action corresponding to discrete approximants to
products of constraints on elements of the ket set. Finally,
we also indicate as to how the constraints act on states
outside this larger set. It turns out that for our purposes, this
action on the complement of this set does not need to be
specified in great detail; any action which maps the
complement to itself suffices.

In Sec. VII we construct the anomaly free domain of
quantum states. As mentioned earlier the quantum states in
the anomaly free domain are obtained as non-normalizable
sums over kinematic states with certain coefficients. Since
it is mathematically more precise to think of these states as
residing in a dual space, the sum is over “bras” rather than
kets. The set of bras being summed over is referred to as the
bra set. As in P1, P2, for simplicity, we restrict attention to a
bra set in which each bra has a single nontrivial vertex at
which the constraints act. These bras are “bra” correspond-
ents of states of the type encountered in Sec. V. Every state
in the anomaly free domain is labeled by a density weighted
function and a Riemmanian metric on the Cauchy slice.
The coefficient which multiplies a bra in the bra set is
evaluated from the structure of the graph underlying the bra
together with the density weighted function and metric
associated with the anomaly free state. As mentioned
earlier, the continuum limit action of discrete approximant
is defined through the contraction of the discrete deforma-
tions generated by the approximant. The dual action of the
discrete approximant on an anomaly free state transfers this
contraction behavior to the contraction behavior of coef-
ficients which characterize the anomaly free state. We
analyze this behavior in Sec. VIII and Appendixes F, G.2
as a necessary prerequisite to the computation of the
continuum limit action. In Sec. IX we evaluate the
continuum limit action of a product of two Hamiltonian
constraints on an anomaly free state. This defines the action
of its commutator. Next, we compute the continuum limit
action of the appropriate commutator between two electric
diffeomorphism constraints and demonstrate equality with
the Hamiltonian constraint commutator, thus showing that
the action of a product of two Hamiltonian constraints is
well defined and anomaly free. In Sec. X we extend this
result to the action of higher order products of constraints
so as to show that the commutators in (1.1) are anomaly
free. In Sec. XI we show that the action of the constraint
products of Sec. X is also diffeomorphism covariant. We
briefly summarize and display our results in Sec. XIIL.
Section XIII is devoted to discussion.

Notation and conventions.— We set the speed light to be
unity but retain factors of 7. The analog of spin net states in
LQG are called charge network states here. We refer to a

106007-4



CONSTRAINT ALGEBRA IN SMOLINS” G = 0 ...

PHYS. REV. D 97, 106007 (2018)

charge network state as ¢ or |c) depending on our
convenience, even changing from one to the other in the
course of a single calculation. The symbol c is used for the
charge network label (see Sec. II) underlying a charge net
state. We work with the C* semianalytic category [3,22].
Due to the finite number of English alphabets, the letter k
may occasionally refer to objects other than the differ-
entiability degree; however, the context should make the
usage clear. The Cauchy slice ¥ is semianalytic, oriented,
connected and compact without boundary. All semianalytic
charts used are right handed. The pushforward action of a
Ck semianalytic diffeomorphism ¢ is denoted by ¢* and its
pullback action by ¢, so that ¢*¢, = 1.

II. REVIEW OF ESSENTIAL BACKGROUND
FROM P1, P2

Almost all the material below is contained in P1. The
only part of P2 we allude to is in the choice of conical
deformations at the end of Sec. II. C below. The only new
material not from P1, P2 is in the last two paragraphs of
Sec. II. B wherein we describe our choice of the inverse
metric determinant operator.

A. Classical description of the model

The phase space variables (AL, E¢,i=1,2,3) are a
triplet of U(1) connections and conjugate density weight
one electric fields on the Cauchy slice Z so that the phase
space is that of a U(1)* gauge theory. We define the density
weight 2 contravariant metric g¢** = Y ,EYE?, q being the
determinant of the corresponding covariant metric ¢,;,. The
phase space functions,

G[A] = / d3xA0,E, (2.1)

D[N] = / BxNY(EVFL, — ALDLED),  (22)
1 N

H[N] =3 / d*xNg~ 3R ECEDFY, (2.3)

are the Gauss law, diffeomorphism, and Hamiltonian
constraints of the theory, and where F', := 9,AL — 0,AL.
The Poisson brackets between the constraints are

{GIAL GINT} = {GIAL H[N]} =0, (2.4)
{DIN]. G[A]} = GlggA], (2.5)
{DIN], D[M]} = Dl£z M), (2.6)
{DIN, H[N]} = H[t5N], (27)

{HIN], H[M]} = D[w] + G[A - @],

o = g PESEY(MO,N — NO,M).  (2.8)

The last Poisson bracket (between the Hamiltonian con-
straints) exhibits structure functions just as in gravity.
It is useful to define the electric shifts N{ by

N¢ = NE¢q™'/3 (2.9)

and the electric diffeomorphism constraints D(IV ;) by

D[N, = / PANELF,. (2.10)

Assuming the Gauss law constraint is satisfied, a key
identity derived in P1 is

3

{HIN], H[M]} = (=3) Z{D[K’J,DWQ]}-

(2.11)

B. Quantum kinematics

The basic functions of interest are U(1)* holonomies
associated with oriented closed graphs colored by repre-
sentations of U(1)* and electric fluxes through surfaces.
Colored graphs are labeled by charge network labels. A
charge network label ¢ is the collection (y,¢;, I =1,,N)
where y is an oriented graph with N edges, the Ith edge ¢,
colored with a triplet of U(1) charges (q},q7,q3) = §;-
The holonomy associated with c is A,

N ) )
ikyg) [ Aldxe
h, = Hequ’ffl adx®

I=1

(2.12)

Here « is a fixed constant with dimensions ML~! and y is a
dimensionless Immirzi parameter. In what follows we shall
choose units such that ky = 1.

h. is U(1)? gauge invariant if the total U(1)* charge
flowing into every vertex is the same as that flowing out
of the vertex, where “into” and “out of” corresponds to
whether the edge in question is incoming or outgoing at the
vertex. In the rest of this paper we restrict our attention
exclusively to gauge invariant charge net labels. The gauge
invariant electric flux through a surface S is E;(S),

E®=Amﬂ- (2.13)

where 7., 1s the coordinate 3-form. The holonomy flux
Poisson bracket algebra is closed and represented on the
space of charge network states. Each charge network state
|c) is labeled by a charge network label ¢. Holonomies act
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by multiplication and electric flux operators count the
discrete electric flux corresponding to the weighted sum of
the charge carried by edges of ¢ which intersect S; with the
weights being +1,0 depending on the orientation and
placement of the intersecting edges relative to the (oriented)
surface S.
Next consider the electric shift operator
N¢ = NE¢g~'/3 (2.14)
corresponding to the classical expression (2.9). It turns out
that this operator only has a nontrivial action at vertices of
charge net states and to compute its explicit action we need
a regulating coordinate patch at the vertex in question (see
P1). The final expression for the operator action at a vertex
v of the charge net |c) is

R (0)le) =

3
47

= ZN?JM
1,

Ni ;=N g 2. (2.15)
Here I, refers to the /,th edge at v, and &7 to the unit /,th
edge tangent vector, unit with respect to the coordinates
{x} at v and N(x(v)) denotes the evaluation of the density
weighted lapse N at v in this coordinate system. v, 523
proportional to the eigenvalue of the §~'/3 operator in
equation (2.14). Specifically, a regulated version of this
operator acting at the vertex v of the charge net state |¢) can
be defined. It has the eigenvalue v=*3¢> where € is the
coordinate size of a small regulating region around v so that
4713 (v)|c) = (1,°*€)|c). In P1 this regulated version of
§~'/3 is defined through a Thiemann trick [3,13].

In this work we use a slightly different definition of §=!/3
as follows. From P1, we have that the regulated metric
determinant operator ¢ acts at v as §(v) = € °g,o.(v)|c)
where, again, €3 is the coordinate size of a small regulating
region around v and where the operator §,,.(v) is defined

through
1
—h3
48 (

where each of the three sums (over I, J, K) extends over the
valence of v, with 1, J, K labeling (outgoing) edges e;, e,
ex emanating from v. €’ =0,+1,—1 depending on
whether the tangents of ¢;, ¢;, ex are linearly dependent,
define a right-handed frame (with respect to the orientation
of the underlying manifold), or define a left-handed frame,
respectively. We define §~'/3(v) by spectral decomposition
of g(v) on states with nonzero eigenvalues for §;..(v) so

Eiloc(v)| >

IJK i Jk
E € €k qd 1959k
1JK

)=

(2.16)

that on such states 1/;2/ ¥ is given by the —2/3rd power of v,

in (2.16). The vertex v for such states will be referred to as a
nondegenerate vertex.* On the zero eigenvalue subspace
we define it through the Thiemann trick employed in P1.
The result pertinent to the rest of this work is that for the
type of zero eigenvalue states of g, encountered in this
work; the Thiemann trick returns a vanishing eigenvalue for
g~'/3(v). This is similar to the definitions of inverse metric
operators employed in the loop quantum cosmology con-
text of Ref. [23].

C. Discrete Hamiltonian constraint from P1

The action of the discrete approximant to the
Hamiltonian constraint operator of P1 is motivated through
the following heuristics. Given a charge net label, define the
charge net coordinate ¢ (x):

c(x) = c”(x:{es}. {ar})
—ZICII/dlﬂS (es(tr), x)ef (1)

The associated holonomy /4. can then be written as
h. =exp ([ d3xc?Al). A charge net state can be thought
of heuristically as a wave function of the connection
¢(A) = h.(A). Holonomy operators then act by multipli-
cation and the electric field operator by functional differ-
entiation so that £¢(x) = —ih -2~ 5 ( 5

The Hamiltonian constraint in terms of the electric shift is

(2.17)

1 ’ 1
H[N] =3 L dPxe*N¢FY, E? + 5 / dBxNIF L E?

1 y .
=5 L d3x<—e’f"(£ﬁjA’l§)E§’+ E (£ﬁiA;,)Ef?>.
(2.18)

Here the second term on the right-hand side of the first line
vanishes classically and the second line is obtained using the
identity N{Fy, = £5 A — 0,(N{AL).

The quantum analog of (2.18) acts on a charge net wave
function. For simplicity, we restrict our attention to charge
nets with a single nondegenerate vertex. The electric shift is
then replaced by its operator analog (2.14) which is, in turn,
replaced by its eigenvalue N¢(v) (2.15) to yield

A /) S
C[N]c(A) = —ZC(A> /): d3xA’a(e’Jk£K,ch +£5 cf).

(2.19)

*It turns out that this notion of nondegeneracy is appropriate
for the Grot-Rovelli (GR) vertices of P1, P2 and Sec. III. We shall
encounter a different type of vertex in Sec. IV of this work called a
“CGR” vertex and will discuss the notion of nondegeneracy for
such a vertex in Sec. IV. A
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We refer to N¢(v) as the quantum shift. While N¢(v) is nonzero only at the point v on the Cauchy slice X, we shall think
of some regulated version thereof which is of small compact support As(v) of coordinate size 5> about » (in
the coordinates we used to define the quantum shift). Expanding the quantum shift into its edge components (2.15) yields

~ h o
CINJe(A) =) == c(A) /A deA;(el-fk;eN;ﬁ cf + Egrcf). (2.20)
(v

Next, we approximate the Lie derivative by the difference of a small diffeomorphism and the identity as follows:

9(2,.8) Ak — ciAk
5

3 _2 ’; .
EN(X( v))v / CI1

(Ech)AL = +0(5), (2.21)

where we imagine extending the edge tangents : 1 to As(v) in some smooth compactly supported way and define (p(g 1,0) to
be the finite diffeomorphism corresponding to translation by an affine amount 6 along this edge tangent vector field. Using
the replacement (2.21) and using the compact support property of the edge tangent vector field to replace the integration

domain As(v) by X yields

. 1n 3
CIN =

A)=—-—c(A o ! 2.22
INJe(A) = <2 c(4) - N Zq,/ +0(0). (222)
[ 15" = [(pe$)AS = csA%] + [(929)A = 24AZ) + [(wef) AL = cfA])
IL,Z a P ~da a
[+ 15" = [(pc§)Aq — SAL] + [(pe )A3 = ¢{A3] + [(c) A7 — c3A7]
1,3 a a b
[ 15 = [(gc))AZ — c{AZ] + [(989)As — T5A4] + [(9c§)AZ — c5A7]. (2.23)
where we have written ¢{ = —c{ and where we have suppressed the edge label 7, and set ¢c§ = go(glp, 5)*(:;?.

The integral in (2.22) is of order 6 and we approximate by its exponential minus the identity to get our final expression:

']101

) Ry 2/3 . ~1
CNle(A) = 5 c(A) 4 )y Z Z 1 0(5). (2.24)
|
For each fixed (I,, ) the exponential term is a product of (gl = §ligl — Z eiikgk. (2.25)

edge holonomies corresponding to the charge net labels
specified through (2.23). This product may be written as

;(?ﬂ') where c¢(;fips, 5 1s the deformation of
i.flip

C(iqip) DY 40(51, 8) and c; g;, has the same graph as ¢ but
“flipped” charges. To see what these charges are, fix
i = 1 and some edge I, corresponding to the first line of
(2.23). In c( giip), the connection A} corresponding to the
third copy of U(1) is multiplied by the charge net c§
corresponding to the second copy of U(1). This implies
that in the holonomy A, the charge label in the third
copy of U(1) for any edge is exactly the charge label in
the second copy of U(1)? of the same edge in c i.e. in
obvious notation ¢’|, = ¢’|. where we have sup-

C(iflip.ly 5)

pressed the edge label. A similar analysis for all the
remaining terms in (2.23) indicates that charges
(lg/,j=1, 2, 3 on any edge of C(ifp) are given by
the following “i flipping” of the charges on the same
edge of c,

The exact nature of the deformed charge net c(;fip s, 5)
depends on the definition of the deformation. Since the
deformation is of compact support around v, the combi-
nation h ﬂlp)hc(i.ﬂip.l,;.o'> is just identity except for a small
region around v. From (2.24), this term multiplies c(A).
We call the resulting charge net c(;; 5. Our final
expression as derived in P1 for the discrete approximant
to the Hamiltonian constraint then reads

) ;2/322 Cit,8) — €

ElN]e(4) = 2N

(2.26)

An identical analysis for the action of the -electric
diffeomorphism constraint yields the result

n3
idr

A

Do )e =" NS, S (eum—<) (227
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where ¢(; 5 is obtained from c¢ only by deformation
without any charge flipping so that
(cu.0)i(x) = 9(Z . 8)'ci(x).  (228)
It remains to specify the deformation (p(é),ﬁ, ). From the
discussion above this deformation must distort the graph
underling ¢ in the vicinity of its vertex » in such a way that
its vertex is displaced by a coordinate distance & along the
I,th edge direction to leading order in 6. Due to the
vanishing of the quantum shift except at v, this regulated
deformation is visualized to abruptly pull the vertex
structure at » in the direction of the I, the edge. In P1
this was achieved by moving the vertex almost along the
edge by an amount § but not exactly along it so that the
displaced vertex lay in a 09, g > 1 vicinity of the edge.
The edges connected to the original vertex v were then
pulled along the direction of the displaced vertex. Due to
the “abrupt” pulling, the original edges developed certain
kinks signaling the point from which they were suddenly
pulled. The reader is urged to consult the figures in P1
detailing this. The final picture of the distortion is one in
which the off-edge displaced vertex is connected to a kink
on the /,th edge by an edge which almost coincides with
the original 7,th, and is connected to the kinks on the
remaining edges by edges which point almost exactly
opposite to the /,th one, the structure in the vicinity of
the displaced vertex resembling (and in P2 being exactly
that of) the latter set of edges lying along a “downward”
cone with the former edge being upward along the cone
axis. This completes our summary of discrete constraint
action as developed in P1, P2.

III. MODIFIED DISCRETE CONSTRAINT ACTION

In Sec. I1I. A we recall some of the structures responsible
for propagation in parametrized field theory [9], discuss
their analogs in the context of the U(1)* model studied here
and argue that constraint actions in P1, P2 do not display
these structural analogs.

In Sec. III. B we indicate how these structural features
can be incorporated into a modified constraint action which
we display in Egs. (3.10) and (3.11). We shall focus on the
case in which the charge net being acted upon has a single
GR vertex where (as in P1, P2) a GR vertex is defined as
one which has valence greater than 3 and at which no triple
of edge tangents is linearly dependent. In addition we shall
restrict our attention to linear GR vertices; a vertex will
be said to be linear iff there exists a neighborhood of the
vertex equipped with a coordinate patch such that the entire
set of edges at this vertex in this neighborhood are straight
lines in this coordinate patch.5 The constraints generate

SA further technicality which may be ignored for now is that
we also restrict the charge nets here to be “primordial” in the
language of Sec. VI. B.

displacements and deformations of the vertex structure
around the linear GR vertex. The deformed vertex structure
takes the form of a cone, this conical structure being
defined in terms of the coordinates associated with the
linear structure of the GR vertex. For pedagogical reasons
we shall focus on “downward” conical deformations in this
section. It turns out that it is also necessary to consider
“upward” conical deformations and that the choice of
upward or downward conicality is linked to the positivity
properties of the edge charge labels at the GR vertex.
A complete treatment will be presented in Sec. V.

In Sec. IIIl. C we show the existence of an alternate
choice of charge flips to that defined by Eq. (2.25); as we
shall see later both choices of flips are needed to obtain the
crucial minus sign on the right-hand side of (2.11). In
Sec. III. D we summarize our results. We remind the reader
that as mentioned in Sec. II, all charge nets encountered in
the remainder of the paper are U(1)® gauge invariant.

A. Structures responsible for propagation

Our comments in this section will be very brief as our
main focus in this work is the construction of an anomaly
free constraint algebra rather than an analysis of propaga-
tion. We intend to analyze the issue of propagation in this
model in future work [10].

Smolin [6] argued that LQG methods necessarily yield
discrete constraint actions whose repeated application on
spin network states create nested structures around the
original vertices of the spin net. These nested deformations
are created independently for each different vertex. As a
result, a deformation near one vertex cannot have any
bearing on that near another vertex and in this sense no
information can propagate from the vicinity of one of the
original vertices of the spin net to another. In Ref. [9], we
showed that while Smolin’s observations are indeed valid,
propagation should be viewed as a property of physical
states lying in the kernel of the constraints rather than as a
property of repeated actions of the discrete approximants to
the constraint on kinematical states. Propagation can be
viewed in terms of the structure of a given physical state as
follows. A physical state is a (in general, kinematically non-
normalizable) sum of kinematic states. We may then view
the physical state as one which encodes propagation effects
if kinematic states in this sum are related by propagation
[9]. Since physical states are solutions of the quantum
constraints, their structure depends on that of the con-
straints which in turn derives from the structure of the
chosen discrete approximants. It was argued in Ref. [9] that

; ; 0-1
one of the features responsible for propagation was the ==

of these discrete approximants, where O is some kinematic
operator which has a finite well-defined action on any spin
net state. Roughly speaking, this structure together with
requirement that a continuum limit exists, ensures that the
sum over kinematic states which represents any physical
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state must have a structure such that if the “offspring” state
O|s) is in this sum then the “parent” state |s) must also be in
the sum. While at first sight, Egs. (2.26) and (2.27) seem to
have this structure, a more careful perusal of these
equations shows that due to gauge invariance ) 11,‘1;1, =0
so that the —1 term is absent.

Secondly, in the simple context of [9] the analog of spin
network states live on one-dimensional graphs so that any
two successive vertices are connected by an edge. It is this
connection which provides a path for putative propagation
effects i.e. a deformation from one vertex can putatively
propagate to another along this “conducting” edge. In
contrast (2.26) and (2.27) generate deformations which
move off the edges of the graph (see the material at the end
of the Sec. II. C) and this feature is preserved by repeated
actions of the type (2.26) and (2.27).

In view of these remarks we shall modify the discrete
action (2.26) and (2.27) so that (i) there is a nontrivial —1
term in the expression for the discrete constraint action, and

(ii) the displaced vertex (p(g 1,-6) - v is along the I,th edge
of the graph rather than off it.

B. Modified action for linear GR vertices

We implement (i) in Sec. III. B. 1 and (ii) in Sec. III. B. 2.
As mentioned above we shall restrict our considerations to
the context of linear GR vertices. Recall that a linear vertex
is one equipped with a coordinate patch in its neighborhood
with respect to which the edges at the vertex in this
neighborhood appear as straight lines. The vertex will be
said to be linear with respect to such a coordinate patch. In
what follows the coordinate patch used to specify the
deformations generated by constraints is assumed to be one
with respect to which the vertex is linear. The detailed
choice of these coordinates will be discussed in Sec. VI.

1. Addressing the —1 issue
We refer the reader to Eq. (2.21). Let us scale the
(regulated, compact supported in Ay,)) vector field ¢ 1, by
its charge label ¢; and define go(qu 1,-6) to be the small
diffeomorphism g]énerated by the resulting vector field
q}g 1, If we use this diffeomorphism to approximate the Lie

derivative on the left-hand side of (2.21), we obtain the
equation

¢ 3 -2/3 (/’(‘Jivgh 8)*cYAy = c4Ay
(Eqicd)AL = —EN@C(U))UU ‘

+ 0(5). (3.1)

Using Eq. (3.1) as our starting point instead of Eq. (2.21)
and repeating the subsequent argumentation and steps of
Sec. I1. C, we see that the g} factor in (2.24) now disappears

by virtue of the replacement of (p(§1, 8) by (p(q}gl, 5). Asa

result, the holonomy hc( ) is replaced by hc(

i flip.1,.6 i-flp.q] 1,6
v

where ¢(; nip¢; 1,.5) 1S the image of ¢(; nip) by »(q; 21, 6)":

(C(i,ﬂip,qu ,11,,5)7<x) = ¢(le@1, 5)*(C(i.ﬂip))7(x)‘ (3-2)
Consequently, the deformed charge net ¢(; ;, 5 in (2.26) is
replaced by the charge net ¢(; 4 1,5) which is obtained by

1

.. . onc. This
Lﬂip) (iﬂip,q’[v‘lp.é

the action of the holonomy h;(

leads us to the constraint action

(3.3)

An identical analysis for the action of the electric
diffeomorphism constraint yields the result

Ao n3 _ 1
DsINJe = =Ny " ~(cg 15— ¢).  (34)
14r T 1) I

where ¢, ; 5 is obtained from ¢ only by the action of

go(q}g 1,6) without any charge flipping so that

(ctg 1.0))200) = 0ld 81, 0)"ctx). (3.5)

Clearly this addresses issue (i) of Sec. IIL. A.

2. Addressing the conducting edge issue
Instead of the off edge placement of the displaced vertex

by (p(glp, 5) as in P1, we place the vertex on the edge ¢; . In
view of the considerations of Sec. III. B. 1, the action of
q)(qu glp, §) is defined to displace the vertex » by a
coordinate distance g} along the I,th edge. Denote the
displaced vertex by v q{_ 1,0~ The remaining edges e, .; are

dragged along in the direction of the /,th edge so as to
form a downward pointing cone in the vicinity of the cone

vertex at v, ; 5 Where “upward” refers to the direction of
v B

the edge e; and where, as in, P1, P2, all edges at Vyi 1,681
taken to point outwards from v, ; 5. These remaining
]1/’ v

edges develop kinks at the points ?,; at which the edge
tangents are discontinuous. As in P1, P2 we refer to these
kinks as C° kinks (for a formal definition see Appendix A.

An explicit construction of the relevant deformation is
provided in Appendix B where the linear GR condition is
used.® The deformations based on the construction of

*More precisely, as we shall see in Sec. VII, the deformation
constructed in Appendix B is diffeomorphic to that discussed
here. Hence all diffeomormphism invariant properties of the latter
are identical to that of the former.
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1
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i}J 'DJ v
J
() (®) (©)
FIG. 1. (a) Undeformed GR vertex v of a charge net ¢ with its

Ith and Jth edges as labeled. The vertex is deformed along its /th
edge in (b) wherein the displaced vertex v; and the C° kink, %, on
the Jth edge are labeled. (c) Result of a Hamiltonian type
deformation obtained by multiplying the charge net holonomies
obtained by coloring the edges of (b) by flipped images of
charges on their counterparts in ¢, (a) by negative of these flipped
charges and (a) by the charges on c. If the edges of (b) are colored
by the charges on their counterparts in ¢ then one obtains an
electric diffemorphism deformation.

Appendix B are displayed in Fig. 1. We shall summarize
the content of this figure in Sec. III. D.

The downward conical deformations of Appendix B
displace the vertex v upward along the /,th edge. This is
clearly appropriate only if ¢; is posirive. If ¢} is negative it
is necessary to consider deformations which displace v in
the opposite direction. This, in turn, requires the further
construction of an extension of the edge I, together with an
upward conical deformation of the vertex structure around
v. We shall defer a discussion of such upward conical
deformations and graph extensions to Sec. V in the interests
of pedagogy. Hence the deformations described above are
only valid for deformations along edges for which the
charges labels are positive.

In view of the discussion in Sec. III. A, we refer to the
edge along which the vertex is displaced in the deformed
charge net as the conducting edge in the deformed charge net.
The remaining edges at the displaced vertex in the deformed
charge net which connect the displaced vertex with C° kinks
will be called nonconducting edges. In the case of
Hamiltonian constraint type deformations, the conducting
edge at the displaced vertex of the deformed charge net
Clig] 1,0) splits into 2 parts, a lower conducting edge which

connects the displaced vertex with the vertex v (i.e. with the
vertex of ¢) and an upper part beyond the displaced vertex.

C. Charge flips

Note that in Sec. II. C we could equally have started with
a minus sign in front of the second term in (2.18) since that
term is nonvanishing. Let us do this. This leads to the
replacement of equation (2.19) by

N h . L
EVe(4) = 2 c(a) /Z ExAl(~eitey ¢ + €5 ). (3.6)

Repeating the subsequent argumentation, we are lead to
define the charge net c(—i, flip) instead of ¢(i, flip), with
—i flipped charges (~7)¢/ instead of the i flipped charges of
Eq. (2.25), with these —i flipped charges defined as

(=gl = &gl + Z ellkgk. (3.7)
k

The exponential term in Eq. (2.24) is then replaced, in

obvious notation, by h ! o )hc( P and we are lead to,
ip —iflip.Iy,

instead of Eq. (2.26), the expression

REDDMESS

(3.8)

where ¢(_; ;, 5) 1s exactly the same as ¢(; 7 5) of (2.26) except
that the i flipped charges of equation (2.25) are replaced by
their —i flipped version in Eq. (3.7). Repeating the consid-
erations of Sec. III. B. 1 we are lead to the final equation:

CIN ) = =g N S 3

(3.9)

where, once again in obvious notation, ¢(_; 4 ;) is exactly
the same as ¢(; ;i ; 5 except that the role of i flipping is
replaced by that of —i flipping.

To summarize, we are able to generate an overall minus
sign in the expression (3.9) relative to (3.3) by changing the
charge flip from an i flip to a —i flip. Putting everything
together (and using the notation Clrigl 1,.8) = Cli, 1,.8) WE
are lead to two possible discrete actions of the Hamiltonian
constraint:

A h 3 C(+ig) 1,.5)
_,h3 -2/3 ql
C[N]sc(A) = i2i4ﬂ.’N (x(v))v E E

(3.10)
As no charge flipping is involved, the expression for the
electric diffeomorphism constraint remains the same:

a o n3 _ 1
Ds[N]c = (x(v))l/vz/gzg(C(qgt,l,,,ﬁ) —c). (3.11)
1,

idr

In view of the considerations of Sec. III. B. 2 the deforma-
tions in Egs. (3.10) and (3.11) are of the on edge, conical
type. We shghtly abuse notation and continue to use the

notation ¢(g'e Ie 1,6) of Sec. I1. B. 1 for the deformation map
corresponding to the modified deformations of Sec. III. B. 2.
In Sec. VII we shall find it necessary to use both the versions
of discrete Hamiltonian action described in (3.10).

Finally, as emphasized in Sec. IIl. B, the deformations
along the /,th edge constructed therein are valid only if
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q; > 0. For ¢; <0, we shall define the deformed states
Clzigi 1,.6) C(q) 1,.6) in Egs. (3.10) and (3.11), in Sec. V.

D. Summary

For the case that qﬁ(’_ > (0, we display the deformed
charge net c(; ;i 1, 5) 0f (3.10) in Fig. 1(c). This charge net

can be visualized as the product of following three
holonomies:

(1) a holonomy labeled by the deformed charge net
colored with flipped charges, ., shown in
Fig. 1(a);

(i1) a holonomy labeled by an undeformed charge net
based on the same graph [see Fig. 1(a)] as ¢ and
colored with the negative of the flipped charges
h;(l_i )’ the negative sign coming from the inverse;

—iflip.ly 8)?

(iii) the original charge net holonomy based on the graph
shown in Fig. 1(a).

As a result, the charge carried by the undeformed counter-

parts of the nonconducting edges at v in Cltig] 1,.5)

(namely the edges which connect v to the C° kinks) have
vanishing ith component. By gauge invariance the charge
along the (lower) conducting edge passing through » in
Cltig), 1,9) also has vanishing ith component. It is then

straightforward to see that, similar to P1, P2, the vertex v is
degenerate in c(y; 4 1,.5)" Also note that each nonconduct-

ing edge in (i) carries flipped versions of the charges carried
by its undeformed counterpart in c¢. Hence, using gauge
invariance at the displaced vertex in ¢y; ;i ; 5, We have

the following remark:

Remark 0.—The difference between the outgoing and
incoming charges along the conducting edge at the
deformed vertex in C (i), 1,.0) is the +i flipped version

of the charge along the /,th edge in c.Finally, recall that
vertex structure in a sufficiently small vicinity of the
displaced vertex when viewed in terms of the coordinates
associated with the linear vertex v in ¢ takes the following
form. All edges are straight lines. The conducting edge in
C(tig), 1,.9) is split into two parts by the displaced vertex.

The remaining (nonconducting) edges at the displaced
vertex form a downward cone. With respect to the down-
ward direction of the cone, the conducting edge splits into
an upper conducting edge and a lower conducting edge.
The deformed charge net C(q), 1,:3) of (3.11) is based on

the same deformed graph as that in (i) above; the only
difference is that the charge labels are unflipped i.e. each
deformed edge in c(, ; 5 has the same charge as its

undeformed counterpart in c.

IV. MODIFIED ACTION: LINEAR CGR VERTICES

In the last section we restricted our attention to linear GR
vertices. The action of the Hamiltonian constraint (3.10)

displaces such a vertex along a conducting edge so that
the conducting edge splits into an incoming and outgoing
part at the displaced vertex and the incoming and
outgoing conducting edge tangents comprise a linearly
dependent pair at the displaced vertex [see Fig. 1(c)].
Hence any triple of edge tangents which contains the
incoming and outgoing conducting edge tangents is no
longer linearly independent and the displaced vertex is
not strictly GR. Due to the role played by the conducting
edge in altering the (linear) GR structure of such a vertex,
we shall call it a (linear) conducting edge-altered GR
vertex or a CGR vertex.’

In Sec. IV. A we isolate the structure in the vicinity of
such a vertex, discuss it in detail and define modified
discrete constraint actions for states with such a vertex.
As in the previous section the coordinates with respect
to which the deformations generated by these con-
straints actions are defined will be assumed to be ones
with respect to which the vertex is linear. The detailed
choice of these coordinates will be discussed in
Sec. VL. In Sec. IV.D we define a single notation
which succinctly describes the deformed states pro-
duced by the modified constraint actions both for the
GR and the CGR cases.

A. Linear CGR vertices: Definition and
constraint action

From Sec. III. D, we define a (linear) CGR vertex as
follows. A vertex v of a charge net ¢ will be said to be linear
CGR if

(i) there exists a coordinate patch around » such that all
edges at v are straight lines;

(i1) the union of two of the edges at v form a single
straight line so that v splits this straight line into
two parts;

(iii) the set of remaining edges together with any one of
the two edges in (i) constitute a GR vertex in the
following sense. Consider, at v, the set of outgoing
edge tangents to each of the remaining edges
together with the outgoing edge tangent to one of
the two edges in (i). Then any triple of elements of
this set is linearly dependent.

We shall call the edges other than those in (ii) as
nonconducting in ¢ and the two edges in (ii) as upper

"Note that the transition from a GR vertex to a CGR vertex by
the Hamiltonian constraint actign is not generated by the action
of the deformation map ¢(g; ¢,.9). Indeed, the graph under-
lying the deformed charge net created by the action of the
deformation map on ¢ displays a single GR vertex as shown in
Fig. 1(b). Rather, the CGR property stems from the fact that
C (ki 1,.0) is constructed not only from the deformed charge net

of Fig. 1(b) but also the undeformed ones based on the graph
shown in Fig. 1(a). Indeed, the electric diffeomorphism constraint
action (3.11) retains the GR nature of the vertex acted upon as
displayed in Fig. 1(b).
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and lower conducting edges in ¢ and refer to the union of
the conducting edges as the conducting line in ¢.8 Let the
upper conducting edge and the nonconducting edges be
assigned an outward pointing orientation from » in ¢ and
let the lower conducting edge be assigned an incoming
orientation at v in ¢ so that the conducting line acquires a
natural well-defined orientation induced from the con-
ducting edges. Let the number of nonconducting edges
be N —1. Hence there are N 4+ 1 edges at v but these
edges define only N distinct oriented straight lines
passing through v in ¢, one of them being the conducting
line and the remaining N — 1 being the nonconducting
edges. Let J, = 1,.., N be an index which numbers these
straight lines. Let the conducting line be the K, th one. It
follows that the nonconducting edges are assigned indices
{J,.J, # K,}. Denote such a nonconducting edge by e,
for some J, # K, and its outgoing charge by q’J Denote
the upper conducting edge with outward orientation by
ek, ou» the lower conducting edge with incoming ori-
entation by ek ;, and their respective outgoing and
incoming charges by gk o, and g ;.

We turn now to a derivation of modified constraint
actions on a state ¢ with a linear CGR vertex using the
notation discussed above. We shall convert the situation
into one in which the lower conducting edge is absent at
v and the upper conducting edge acquires a charge
%, ou — 4k, in- The vertex v then becomes GR and we
may then wuse the deformations described in
Appendix B.1. In this section we shall restrict our
attention to the case where the net conducting charge
qk, ou = 4k, in 1S positive. This restriction is for peda-
gogical reasons which are identical to those which
underlie the applicability of the downward conical
deformations of Sec. III. B to the case of q} > 0 (see
the discussion at the end of Sec. III. B). The general
case involving charges with no positivity restrictions
together with the consideration of upward conical
deformations will be discussed in Sec. V.

We are interested in the discrete action of the
constraints at small enough discretization parameter &
where 6 is measured by the coordinate system in (i).
Consider a loop / made up of two edges [/, [, so that
[=1l0l,. Let [; be a segment of the conducting line
running between two of its points p; and p, equidistant
from v, where p; is below v and p, is above v. Let p;
and p, be chosen such that the coordinate length of /; is
Co,C > 16qmax9 where

®Here we assume that we are given a specification of which of
the two edges is upper and which is lower; how this specification
arises will be discussed in Sec. V.

See (a)—(c), Sec. V. A.2 for the reason for this choice of C.

— qé( ,out
K K
P2 b2 _
q}(,net

v

e /

D1 /01
-/
q}(,in

FIG. 2. Left: vertex structure at the CGR vertex v. The
conducting edges are the Kth ones. Right: effect of multiplication
by the intervening holonomy #; on this vertex structure. The
lower conducting edge at » is removed and the upper conducting
edge is charged with the net conducting charge.

max

4.1
(i=123).(I,=1...N (1)

9max —

q |.
)I i

Further, let /; be oriented so as to run from p; to p,.
Let /, be a semicircular arc connecting p, with p; such
that its diameter is Co. Let [ lie in a coordinate plane P,
such that no nonconducting edge lies in P;. Define the
holonomy £, to run along ! with charge equal to —gg i,
i.e. h; is charged with the negative of the incoming
charge at » carried by the incoming lower conducting

edge. Note that for any smooth connection A},
3 . .

hy = expi(— Zq;(min / Aédx") ~ 14 0(8%). (4.2)
=

Since the classical holonomy A; is unity to order &7,
multiplication of an approximant to a constraint by #;
continues to yield an acceptable approximant. Accordingly,
we first multiply ¢ by h;. Clearly, this yields the charge net
¢, in which, as mentioned above, the lower conducting
edge of ¢ is absent from p; to v, the upper conducting
edge acquires a charge g ., — gk ;, between v and p,
and the nonconducting edges are untouched. As shown in
Fig. 2, the vertex v in ¢; then becomes GR and we may
then act on the result by the discrete approximant to the
constraint of interest as in Sec. III, the vertex structure
deformations of c¢; being constructed along the lines
described in Appendix B. I.

We act on the result by fz,‘l. Since the deformation of
Appendix B. 1 is confined to within a ball of radius 2¢,,,,6
about v [see (4.1) for the definition of g,,,], the semi-
circular arc [, does not touch the deformed structures, and
due to its placement does not touch the undeformed
structure (for small enough &) except at p;, p,. Hence
the action of 27! simply removes the extra segment I, from
the charge nets generated hitherto and restores the missing
part of the conducting line, so that we have
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C[Nse(A) =

R 3
Zthl Z—N(X 7])

/%ZZ izq’l 1,.6) €

_2/3<Z Z ilql ,.0)

I#K, i

(4.3)

¢ (il’qll(l ,oul_q;(,,uin’K” ’5)
+) 5 :
i

In the second and third lines we have used v, to denote the
volume eigenvalue of ¢; at its GR vertex v. Note that this is
not the same as the volume eigenvalue for ¢.'® The fact that
a nontrivial constraint action is only possible if v is
nondegenerate in c¢; (rather than in ¢) suggests that we
define our notion of nondegeneracy for a CGR vertex
to be tied to that of the corresponding GR vertex obtained
by modifying the CGR one through the intervention of
the holonomy #;, We shall formalize this definition in
Secs. IV.B and V.

The deformed charge net C (i, 1,.0) for I, # K, and for

the case qﬁp > 0"is shown in Fig. 3(c).

It may be viewed as the product of three holonomies: one
of which is deformed and has flipped charges as shown in
Fig. 3(b), a second which is based on the undeformed graph
of Fig. 3(a) with negative of the flipped charges and the last
which is just the holonomy corresponding to c. Due to the
deformations of the GR vertex structure of ¢;, each of the
edges of Cl(ig, 1,.6) & its nondegenerate vertex other than

the I,th one meet their undeformed counterparts in C°
kinks. Since there is no lower conducting edge at the vertex

v of Cllig) 1,5) the subsequent multiplication by #;!
results in a restoration of this “missing” part of eg i,

without any further kink. Thus the deformed graph struc-
ture underlying ¢y, ;1 s obtained by first intervening

with izl then deforming the resulting GR structure and

finally intervening with fz,‘l is to (besides generating the
displaced vertex and its attendant vertex structure) deform
the graph underlying ¢ so as to generate a C° kink on each
nonconducting edge of ¢ other than the /,th one and to
generate a single C° kink on the conducting line of c, this

From (2.16), it follows that the volume eigenvalue is
sensitive only to the structure of ¢ in a small vicinity of v. If
we replace this structure by one which has identical colored
nonconducting edges, no lower conducting edge and an upper
conducting edge which has charge q%] out T q%ﬁ_in, the volume
eigenvalue for this structure is the same as that for c. This differs
from that for ¢; because the vertex structure there has the upper
conductmg edge charge as q Koout ~ 9K, jin-

""We will tackle the g7, <0 case in Sec. V. Hence the
deformed charge nets ¢;(; 4 gi, 1,.9) for ¢; < 0 will be constructed

in detail only in that section.

kink lying on the upper conducting edge of ¢ with the lower
conducting edge having no kink.

Note that the lower conducting edge of ¢ between p; and
v does not intersect the deformed edges of Cl(ingi, 1,.6)" To

see this proceed as follows. Note that the deformation in
Appendix B is constructed first out of straight lines and
then the straight lines at the displaced vertex are “conically”
deformed in a sufficiently small neighborhood of the
displaced vertex. Clearly this neighborhood can always
be chosen to be small enough that the lower conducting
edge is in its complement. Hence if we show that if this
edge does not intersect the initial construction of the
deformation in terms of exclusively straight lines, it does
not intersect their conical deformation. For the initial part of
the construction in Appendix B. 1 (a)—(c) below hold:
(a) Consider the deformation of the upper conducting
edge in ¢ which connects a kink vertex on the upper

K]
in ﬂK
v (O v .
vy v vy \UJ\
J
I \

(a) (b) (©

FIG. 3. (a) Undeformed CGR vertex v of a charge net ¢ with its
Kth conducting edge and /th and Jth nonconducting edges as
labeled. (b) Vertex structure of (a) is deformed along its /th edge
and the displaced vertex »; and the C” kinks #,, 75 on the Jth,
Kth edges are as labeled. (c) Result of a Hamiltonian type
deformation. To obtain this result (i) in (b) color the edge from v,
to ¥g with the flipped image of the net conducting charge in c,
that from v to ¥x with the flipped image of the lower conducting
charge at ¢ and the remaining edges with the flipped images of the
charges on their undeformed counterparts in c; (ii) color the edges
of (a) by the negative of the flipped charges on c; (iii) color the
edges of (a) by the charges on c; (iv) multiply the holonomies
corresponding to (i), (ii), (iii). In (b), if the edge from v; to ¥y is
colored with the netr conducting charge in ¢, that from v to ¥ by
the lower conducting charge in ¢ and the remaining edges by the
charges on their counterparts in ¢ one obtains the result of an
electric diffemorphism deformation.
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(a) (b) (©

FIG. 4. (b) Vertex structure of (a) is deformed along its Kth
edge and the displaced vertex vy and the C° kink %, on the Jth
edge are as labeled. (c) Result of a Hamiltonian type deformation
obtained by multiplying the three charge net holonomies obtained
by coloring the edges of (b) by the flipped images of the charges
on their counterparts in c, the edges of (a) by the negative of these
flipped charges and the edges of (a) by the charges on c. If the
edges of (b) are colored by the charges on their counterparts in ¢
then one obtains an electric diffemorphism deformation.

conducting edge in ¢ to the displaced vertex in
Ci(+igq; 1,5 Which lies along the I,th edge of c at a

position distinct from ». This deformed edge cannot
intersect the lower conducting edge because two
distinct straight lines can intersect at most at a single
point.

(b) Clearly the lower conducting edge of ¢ does not
intersect the /,th (upper conducting and lower con-
ducting) edge in Cl(tigi 1,.5) €XCept at v, once again

because two distinct straight lines can intersect at most
at a single point.

(c) Consider the J,th nonconducting edge in ¢ with
J, #1,. Its deformation connects a kink vertex on
the J,th edge to the displaced vertex. From
Appendix B.1 this deformed edge lies in a plane
containing the /,th and the J,th edges. The lower
conducting edge can only intersect this plane at v by
virtue of the fact that » is CGR in c.

From (a)—(c) it follows as claimed that the lower con-

ducting edge between p; and v does not intersect the

deformed edges of Cl(tig) 1,.8)" It then follows that the

multiplication by fl," in Eq. (4.3) simply restores this part
of the lower conducting edge without creating any more
intersections.

For the case that [, = K,, the deformed charge net
Cltigly, pumdl, nKod) is displayed in Fig. 4(c). This charge
net can be thought of as the product of three holonomies
[see Figs. 4(a) and 4(b)]. Once again it is easy to see
that the deformed edges of Clltigl, K,.5) do not intersect

the lower conducting edge in ¢ from the fact that two
distinct lines can intersect at most at a point. Hence once
again the multiplication by A simply restores this part of
the lower conducting edge without creating any more
intersections.

Similarly, we have

N o o n3 _23
DlFde=hug, xSt .00
1

h3 -2/3 1
=T NG (D (e 1.5 =)

I, #K,

1
56Uty =) ) (44)
The charge net which is obtained through a deformation of
¢ along an edge which is nonconducting in ¢ looks identical
to that in Fig. 3(b) except that the charge labels are identical
to their counterparts in c.? Similarly, the charge net which
is obtained through a deformation of ¢ along an edge which
is conducting in ¢ looks identical to that in Fig. 4(b) except
that the charge labels are identical to their counterparts in c.

B. The net conducting charge: Remarks

We define the difference between the outgoing upper and
incoming lower conducting charges at a CGR vertex to be
the net conducting charge at that vertex. The following
remarks highlight the significance of this difference of
conducting charges.

In the case of the action of the Hamiltonian constraint
(4.3) we have that:

Remark I.—The deformed K, th edge in C(tig), 1,.0)

carries the difference between the flipped charges of the

outgoing upper and incoming lower conducting edges in c.
Remark 2.—The displaced vertex in the deformed

charge net ¢4y _gi g, 4 is displaced by an amount
’qK,,-yu! ql\’,jn' v

|qlK,,,0ut - qlK,,,inla from v.

Remark 3.—The difference between the charges on the
outgoing upper and incoming lower conducting edges at
the nondegenerate vertex of C il o=t i Kod) is the £i

flipped image of the difference between the charges on the
outgoing upper and incoming lower conducting edges at
the nondegenerate vertex of c.

In the case of the electric diffeomorphism constraint
action (4.4), we have that:

Remark 4.—The deformed K,th edge in C (g}, 1, #K, )
carries the difference between the charges of the upper and
lower conducting edges in c.

Remark 5.—The displaced vertex in the deformed
charge net ¢, K, 18 displaced by an amount

. . Ky .oul_q;(v,in ’
(qlK,,.out - qlK,/.,in)5 from v.
Remark 6.—The difference between the charges on the

outgoing upper and incoming lower conducting edges at

"Here and below, similar to footnote 11, our comments only
apply to those deformed charge nets C(q), 1,.) for which ¢! 1, >0.
The deformed charge nets in (4.4) for which this condition does
not apply will be defined in Sec. V.
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the nondegenerate vertex of ¢ K,.5) s equal to the

qlK,,,out_q‘K(,..in
difference between the charges on the outgoing upper and
incoming lower conducting edges at the nondegenerate
vertex of c.

Remark 7.—Were it not for the intervention by the
holonomy around the small loop [, this difference in
Remarks (2) and (5) would be replaced by the sum because
the heuristics of Secs. II and III. B indicate a displacement

of the vertex by (¢ ouéx,ou + qk ek, in) With the
outgoing upper conducting edge tangent ¢ K,.out DEINg equal

to the ingoing lower conducting edge tangent ] K,.in- As will
be apparent in Secs. X and XI this “difference of charges
associated with the conducting edge” plays a key role in
anomaly freedom.

As we have noted in Sec. IV. A, we may obtain this
intervention for the Hamiltonian constraint by starting from
(2.18) and putting in factors of the holonomy around / and
its inverse and then proceeding along the lines of the
subsequent heuristics of Sec. II. C. Since classically, the
holonomy and its inverse cancel (and since, furthermore,
the classical holonomy is unity to higher order terms in &
than the leading order required by the putative approx-
imant), the intervention leads to an equally acceptable
discrete action. Similar heuristics hold for the electric
diffeomorphism constraint.

C. Nondegeneracy of CGR vertices

From Figs. 3 and 4, and our discussion above it follows
that the displaced vertices in the deformed charge nets
generated by (4.3) and (4.4) are CGR or GR." While the
notion of nondegeneracy of a GR vertex is just the
nonvanishing of the volume eigenvalue at the vertex, in
the case of a CGR vertex, the action of the constraints (4.3)
and (4.4) is sensitive to the nondegeneracy of the (GR)
vertex in ¢; rather than the (CGR) vertex in c¢. Accordingly,
we define the notion of nondegeneracy of a CGR vertex as
follows:

Definition 1: Nondegeneracy of a CGR vertex—A CGR
vertex of a charge net ¢ will be said to be nondegenerate
iff the corresponding GR vertex in the charge net ¢; is
nondegenerate. If the vertex in c; is degenerate we shall say
that the CGR vertex in c is degenerate.14

With the definition of nondegeneracy above, the original
parent CGR vertex v is degenerate in the deformed charge

PNote that in Fig. 4(c), the displaced vertex is generically
CGR; however, it is possible for the charge values to conspire so
that the charge at the lower conducting edge at the displaced
vertex vanishes in which case the displaced vertex would be GR.

"“This notion of (non)degeneracy requires the intervention
by h;, which in turn is fixed by the specification of which part of
the conducting edge is upper and which is lower. A unique
specification will be given in Sec. V. Such a specification then
makes the notion of (non)degeneracy of a CGR vertex a well-
defined one.

nets generated by (4.3). To see this, recall that the deformed

charge nets Cltig), 1, #K,6) C(gl, =0, neKed) T that equa-

. . . -1 )
tion are obtained from the action of 4;" on Ci(+ig) 1,#K,.8)

The latter are obtained by the

U, ou—i, Ko 0)"
Hamiltonian constraint action on ¢; at its GR vertex and
hence, as noted in Sec. III. D, the charges on the edges at
the vertex v in these deformed and i flipped charge nets
have vanishing ith component. In particular the edges in

: . . ; 0
Cllting), 1,#K,.6) Ul o=, Ko ) which connect v to the C

kinks have charges with vanishing ith component. Since
the action of A;! does not affect the charges on the edges at
v which connect » to the C? kinks, this is also true for these
edges in the charge nets Cltig), 1,#K,6) C( K,.)-
Gauge invariance implies that the net conducting charge
at v in these charge nets also has vanishing ith com-
ponent. Now, independent of which part of the conducting
edge at v we assign as upper/lower, it is straightforward to
check that the appropriate intervention on Cltig), 1, #K,6)

i i
qklv out qKT ,in”

€l i, nKo®) yields charge nets each of which has the

leftover upper conducting edge at the (now GR) vertex v
colored with the net conducting charge at v. The other
edges at v retain their charges so that all the edge charges at
v now have vanishing ith componet which implies that the
volume eigenvalue after the intervention vanishes. Hence
using the definition of nondegeneracy above, we see that

the CGR vertex v in Clig) 1,#K, ) and in Clql, o=t Ko D)

is degenerate.
In the case of deformations generated by (4.4), the vertex
v is bivalent in the deformed charge nets Clgi 1,#K,.5)

Clqle, o, Ko ) and hence degenerate.

D. Convenient notation

Given a charge net ¢ with a single nondegenerate linear
GR or CGR vertex v, its deformations by the discrete action
of the Hamiltonian constraint in Egs. (3.10) and (4.3)
can be specified through the following'’:

(a) the edge e; along which the deformation occurs and
its associated charge label. If » is GR this is just q}l
and the specification is denoted by (/,, qﬁp). If vis
CGR and the deformation is along the conducting
line in ¢ the appropriate conducting line index K,
must be specified together with the difference
between the upper and lower conducting edge charges
%, ou = 9k, in- If v is CGR but the deformation is
along an edge ¢, , I, # K,, the specification is, as for
the GR case, (1,,¢; ).

SWhile we have only explicitly defined deformed charge nets
for deformations along edges of ¢ which have positive charges, it
turns out that the specifications below also extend to the general
case tackled in Sec. V.
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(b) the charge flip involved which is specified by a sign 4
and a U(1)? index i [which is the same as that of the
charge labels in (a)].

(c) the coordinate patch around v and the nature of the
deformation it specifies including the size of the
deformation parameter § measured by it.

In Sec. VIII we will see that the coordinate patch is
uniquely specified for every c as is the nature of the
deformation given the value of the deformation parameter &
and the information in (a), (b). The information in (a), (b) is
known given the charge net label ¢ (which includes all its
edges and charges), the deformation edge/line index /,, the
U(1)? index i and a parameter  which takes values +1 or
—1 corresponding to a +i or —i charge flip. Hence,
suppressing the (unique) specification of the coordinate
patch associated with ¢, we denote the deformed charge
Nets C(xigi 1,.6) in (3.10) and (4.3) and Cligly =t oK)
in (4.3) by the symbol c(;; 4 5) where we have suppressed
the v subscript as we shall need this notation only for states
with a single nondegenerate (linear GR or CGR) vertex.

Similarly we denote the charge nets Clgi 1,) in (3.11)
and (4.4) and c( :

c(ir0.5 Where O signifies that the deformation is of the
electric deformation type. By allowing f to range over O in
addition to +1, we refer to the deformed charge nets in
(3.10), (4.3), (3.11), and (4.4) by the single symbol c(; ;5.5
and say that c(; ; 4 5) is the (i, 1, §, 5) deformed child of the
parent c. In terms of this notation, Egs. (3.10) and (4.3) take
the form

¢ n3 B . _
C[N]sc(A) = ﬂ__N(x(U»VvZ/B»ZZW’

K,.5) in (4.4) by the symbol

i i
qK,'Aoul qK7, .in

2idrn
(4.5)

with f = +1 or f = —1, and Egs. (3.11) and (4.4) take the
form

A

- 3
Ds[Nile = ~—

1
~2/3
T4”N(x(v))l/u Zg(c(i,l,ﬁ:o,a)—c)- (4.6)

V. LINEAR GR AND CGR VERTICES:
THE GENERAL CASE

In Secs. III and IV the explicit downward conical
deformations considered were applicable only for those
outgoing edges at the vertex of interest which had charges
with certain positivity properties. The positivity property
for GR vertices was that the outgoing charge had to be
positive and for CGR vertices that the outgoing charge for a
nonconducting edge had to be positive and that the out-
going net conducting charge had to be positive. The
associated downward conicality of the deformation was
defined with respect to an assignation of upward direction,

this direction coinciding with the outgoing edge direction
for GR vertices'® and being arbitrarily prescribed for the
CGR case. Here we shall lift the positivity restrictions on
charges and also remove the arbitrariness in the definition
of upward and downward directions in the CGR case. In
what follows we shall, as in Secs. III and IV, appeal to the
constructions of Appendix B. 1. However, in addition, we
shall also find it necessary to embellish these constructions
with an appropriate placement of kinks through the con-
structions of Appendix B. 2.

We proceed as follows. First in Sec. V. A we formalize
the definitions of upward and downward conical deforma-
tions for GR and CGR vertices. As we shall see, these
deformations will be defined to be downward or upward
conical with respect to an edge orientation determined by
the kink structure in the vicinity of the vertex rather than
with respect to the outward pointing edge tangent. Next, in
Secs. V.B and V.C we tie the choice of downward or
upward conical deformation for GR and CGR vertices to
the sign of the charge labels on the edges at the vertex, with
the definition of upward and downward fixed by the kink
structure in the vicinity of the vertex as in Sec. V. A. The
intricacy of these choices plays a key role in the emergence
of anomaly free commutators in the continuum limit. Had
we not been guided by the anomaly free requirement, it
would have been difficult to home in on these choices. In
Secs. V. B and V. C we also show how each of these choices
is implemented through a corresponding choice of discrete
approximants to the action of the Hamiltonian and electric
diffeomorphism constraints. We summarize our results in
Sec. V.E. In what follows we use the notion of a C" kink
m =0, 1, 2 as defined in Appendix A.

A. Upward and downward conically deformed states

1. Linear GR vertex

Let v be a linear GR vertex of the charge net c. Let the
coordinates around v with respect to which v is linear be
{x}. In this section we shall construct upward and down-
ward conically deformed states obtained by subjecting the
graph underlying ¢ to upward and downward conical
deformations. These deformed states are the analogs of
the deformed charge nets depicted in Fig. 1.

A conical deformation of ¢ along the edge e; at the
vertex v of ¢ is one in which the deformed state ¢; has a
vertex v; displaced with respect to v along the straight line
determined by e;, deformations of the edges e;., which
connect the edges e; in ¢ to v;, these deformations being
straight lines in the vicinity of v; which form a regular cone

"®This choice of upward direction made in Sec. III, even with
the positivity restrictions therein, coincides with the choice
outlined in this section only for special cases of GR vertices,
an example being those which are “primordial” in the language
of Sec. VI. We had pointed out this further restriction of the
considerations of Sec. III to such vertices in footnote 5.
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around the line joing v to v;. To characterize the conical
deformation as downward or upward it is necessary to
specify which direction is up. Accordingly, let ‘7, be a
tangent vector at » which points either parallel to the
outward pointing edge tangent to the edge ¢; or antiparallel
to the outward pointing edge tangent to the edge ¢;. Given a
choice of \7,, the direction along ‘7, is defined to be upward

and the direction opposite to that of V; is defined to be
downward. A conical deformation of ¢ at » will be called

downward with respect to \7, if:

(a) the deformed edges (other than the /th one) form a
downward cone around the upward direction defined
by \71 so that the angle between this upward axis and
any such edge as measured by {x} is greater than
%, and

(b) there is a specific kink structure in the vicinity of the
displaced vertex in the deformed state which is
consistent with the choice of V; in a sense which
we shall describe as we go along.

In particular, if \71 is specified as being parallel to the

outward pointing edge tangent ¢; at v in c then the
deformations described in Sec. Il are downward pointing
because the cone is downward pointing. In addition we use
the construction of Appendix B. 2 to place kinks around the
displaced vertex v; as follows. Using the terminology of
Sec. IV. A, the displaced vertex v; lies on the conducting
line passing through v. We place a C? kink at a point v; 5 on
this conducting line “beyond” v; so that the part of the
conducting line from v; to v;, is oriented parallel to \7,.
We also place a C' kink at a point v;; on the part of the

conducting line between » and v; so that the part of the
conducting line from v; to vy is oriented antiparallel to

17,. It follows that the upward direction \71 can be inferred
from the position of these kinks from the orientation of the
straight lines (with respect to {x}) from the displaced
vertex v; to these kinks. This is what we mean by the
consistency of the kink placement with the specification of
the choice of ‘71 in (b).

Similarly an upward conical deformation of ¢ at v with
respect to \71 is a conical deformation in which the
deformed edges (other than the /th one) point upwards
so that the angle between any such edge and \71 is acute and
such that there is an appropriately defined kink structure
which is consistent with the choice of ‘71. As an example of
an upward conical deformation, consider the case where,
once again, \7, is specified as being parallel to the outgoing
edge tangent 5, at v in c. We define the upward conical
deformation of ¢ along e; at v as follows. First we describe
the deformation of the graph underlying ¢ so as to obtain
the analog of Fig, 1(b). Recall that v is linear with respect to
{x}. Extend the (straight line) edge e; linearly past v in the

ingoing direction opposite to \71. Let the extension, ™ be

of coordinate length 7z with 7 small enough that e{™ does
not intersect any part of ¢ other than v."” Let us consider the
altered vertex structure at » when we include this extension
as an edge at v. Clearly, the addition of this edge to the
existing set of edges at v converts v into a linear CGR
vertex. The deformation of this CGR vertex structure is

similar to that for CGR vertices in section IV with !~
playing the role of the upper conducting edge, and is as

follows. We (a) displace the vertex » by an amount € = %

2
along ¢\™ to the point v;, (b) connect v; to the edges e,

at the C° kinks %, by straight lines as described in
Appendix B. 1 and Sec. IV. A, and (c) deform the resulting
vertex structure in a small enough vicinity of v; along the
lines of Appendix B. 1 so as to obtain a regular conical
structure in this vicinity. The deformed graph is then
obtained by removing the parts of the edges of the original
graph between v and the C” kinks {#,} as well as the part

of the extension ¢! beyond v; so that v; is now a GR
vertex. We emphasize here that the deformation detailed
through (a) to (c) does not require any holonomy inter-
vention of the sort provided by 4; and its inverse in Sec. I'V.
That (a)—(c) can be implemented without the creation of
any further unwanted intersections follows from an argu-
mentation similar to that in Sec. IV. A using the properties
of straight lines and the small compactly supported nature
of the transformations of the type detailed in Appendix B. 1
which render the conical structure regular.

Next, if the deformation is of the “Hamiltonian con-
straint” type, the deformed graph is colored with appro-
priate (S, i) flipped charges and the displacement € of the
displaced vertex v; is chosen to be |gi|6 where & is the
discretization parameter associated with the Hamiltonian
constraint action and ¢! is the charge of the outgoing
edge e; in ¢ at v. The holonomy corresponding to this
deformed charge net is multiplied by the inverse charge net
holonomy with (3, i) flipped charges on the graph under-
lying ¢ together with the holonomy corresponding to c.
The product of these three yield a deformed charge net
generated by the Hamiltonian constraint. We show this
in Fig. 5.

If the deformed charge net is generated by the electric
diffeomorphism constraint at discretization parameter value
0, its edges bear the same charges as their counterparts in ¢
and we have, once again, that € = |g}|5. The graph under-
lying the deformed charge net is the one shown in Fig. 5(b).

Finally, we apply a construction of the type detailed in
Appendix B. 2 s0 as to introduce a C? kink at a point v,

between v; and v on the remaining part of \™"). From the
arguments of Sec. IV. A and Appendix B, it follows that the

"That such a small enough extension exists follows from the
linear GR nature of the vertex; the linear GR property implies that
the edges e, of c in the vicinity of their vertex v are straight
lines, none of which are parallel to e;.

106007-17



MADHAVAN VARADARAJAN

PHYS. REV. D 97, 106007 (2018)

I

() (®) (©

FIG. 5. (a) Undefromed GR vertex v of a charge net ¢ with its
Ith and Jth edges as labeled. The /th edge is extended beyond v
and the vertex is displaced along this extended edge in (b) wherein
the displaced vertex v; and the C° kink, ¥, on the Jth edge are
labeled. (c) Result of a Hamiltonian type deformation (i, 1, 3, §)
obtained by multiplying the charge net holonomies obtained by
coloring the edges of (b) by (f, i) flipped images of charges on
their counterparts in ¢, (a) by negative of these (f,i) flipped
charges and (a) by the charges on c. If the edges of (b) are colored
by the charges on their counterparts in ¢ then one obtains an
electric diffemorphism deformation.

deformed structure does not intersect ¢ except at the points
{v, v;,J # I} and that the deformed edges form an upward

cone with respect to the specified upward direction 171.
Further, the kink structure in the vicinity of v; is, once
again, such that the oriented line from v; to the C? kink v 12
is in the direction of \7, Note that in this case there is no
lower conducting edge beyond v; and hence no C' kink
placement.

Next consider the case where ‘7, is antiparallel to the

outgoing edge tangent 5, at v in ¢. The downward conical
deformation of ¢ along e; at v with respect to this choice of

X7, is exactly the same as the upward conical deformation

with the opposite choice of direction of \71 which we
sketched immediately above, except that the C? kink is
replaced by a C' kink so that, once again, this placement is

consistent with \7, in the sense that the oriented line from v,
to the C! kink v 1.1 1s in the direction opposite to that of ‘7,.

Finally consider the case where ‘7, is antiparallel to the
outgoing edge tangent ¢ ; at v in ¢ and conical deformation
is upward of ¢ along e; at v with respect to this choice of
171. This is exactly the same as the downward conical
deformation with the opposite choice of direction of \71
which we discussed as our first example (and which we
have encountered in Sec. III), except for the placement of
the kinks. In this case, relative to our first example, the
location of the C2, C! kinks are interchanged so that once
again, this placement is consistent with ‘71. Thus the
oriented line from v; to the C? kink v, is in the direction

of V, where as that from v; to the C' kink v, ; is in the

direction opposite to \7, and v, is placed between v and v,
whereas v, is placed on the other side of v; on e;.

2. Linear CGR vertex

We extend the considerations of Sec. V. A. 1 to the case
where v is a linear CGR vertex of ¢ with linear coordinate
patch {x} and conducting line eg. Let the prescribed
upward direction for the deformation along any noncon-
ducting edge e; be \7', and let the prescribed upward
direction for the deformation along the conducting line
be ‘7[(.

Recall from Sec. IV that the deformations of the CGR
vertex constructed there involved the conversion of this
vertex to a GR one through the intervention of the
holonomy #;. The loop [ has a part which runs along the
conducting line at » in the direction of its upper conducting
edge. Here we use exactly the same intervention with this
straight line part of / oriented along the direction Viie we
use ‘71( to identify the upper and lower conducting edges.

Accordingly, let the net conducting charge at v (namely
the sum of the outgoing charges along the two edges at v
which comprise the conducting line through v) be qﬂ(‘nel:

qlK,net = qlK,l + qlK,Z (51)
where both eg |, ek, are taken to be outward pointing at v
in ¢ so that gk .qk, are the outward edge charges."
Without loss of generality, let us designate the outward

pointing edge eg , to be parallel to ‘7,(. Let the intervening
holonomy #; run around the loop [ with [ constructed as in
Sec. I'V. Let the orientation of / be such that the straight line

part of [ runs upward (i.e. in the direction parallel to 171().
Let [ with this orientation be charged with g .
Multiplication by h; converts the CGR vertex into a GR
vertex and the resulting charge net is called, as in Sec. IV,
c;. Note that the Kth edge of ¢, has charge qf,(,net.lg
Since the nonconducting edges are unaffected by this
intervention, we assign the /th edge of ¢; (I # K) the same

upward direction ‘7, as for the same edge in c. Similarly for
the K'th edge of ¢; we assign the same upward direction X_}K

as for the Kth (i.e. conducting) line of ¢ so that \7K is
parallel to the outgoing Kth edge of ¢; at »v. Thus the

assignments {‘7,} for the edges at v in ¢, induce (the same)
assignments for the corresponding edges in ¢;. The upward
and downward conical deformations of this GR vertex

along the Ith edge of ¢; with respect to \7, are then
constructed as in Sec. V. A. 1 except for the placement of
the kinks. Note that the deformations are small enough that
they are restricted to a coordinate ball whose diameter is
smaller than the length of the straight line part of / and is

"Note that this is exactly the same as the difference between
the outgoing and incoming charges which we used in Sec. IV.

'As in Definition 1, Sec. IV. C, the notion of degeneracy of the
CGR vertex in ¢ relevant to the action of the constraints is that of
the corresponding GR vertex in c;.
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also small enough that the ball does not intersect the curved

part of [. To see this recall that:

(a) for downward deformations, replacing 6 in Appen-
dix B. 1 by |g}|6 for I # K and by |gk |6 for I = K,
the deformation is confined to within ball of size 2|¢}|6
around v for / # K and within a ball of size 2|g} . |6
for I = K.

(b) for upward deformations also (a) is true; this follows
from the construction of such deformations as detailed
in Sec. V. A. 1. Further the length of the extension ¢, *
of the graph underlying the single GR vertex state c;
(see Sec. V. A. 1) is chosen to be twice that of the
displacement of the vertex v to its displaced position
so that 7 = 2|q}|6,1 # K and 2|qf |6 for I = K.

(c) the length |/;] is chosen to be larger than 16¢,,,, [see
(4.1)] so that |/;| > 7.

In the case of Hamiltonian deformations, the colorings of
the deformed graph and its multiplication by the two graph
holonomies based on the undeformed graph underlying c;
are as in Sec. V. A. 1. For the electric diffeomorphism case
as well we follow Sec. V. A. 1 applied to ¢; instead of c.

Subsequent to this, as in Sec. IV we multiply the result
by the inverse holonomy hl‘1 which removes the curved
part of / from the deformed charge nets ¢;(; ; 4 5)- Finally we
use constructions similar to that in Step 2 of Appendix B to
place a C! kink and C? kink around the displaced vertex so

that this placement is consistent with \71 in the sense
described in Sec. V. A. 1. Thus the straight line from the

displaced vertex v; to the C2 kink is parallel to V; and that
from v; to the C! kink is opposite to V.

This completes our discussion of the linear CGR
vertex case.

B. Choices of deformation: Linear GR vertex

1. Choice of conical deformation type

Let v be a nondegenerate linear GR vertex of c. We are
interested in making a choice of upward or downward
deformation at v when the deformation is specified as
(i,1,p,5) where similar to Sec. IV.D, f # 0 specifies a
deformation with (f, i) flipped charges along the edge e¢;
with parameter 6 and where f = 0 specifies a deformation
with unflipped charges along e; with parameter 6.

Let the outgoing tangent at v along e; be ¢ ;- We define
the nearest vertex on e; to be the first C°, C! or C? vertex
which is encountered on e; as e; is traversed in the
outward direction from v in c¢. From our considerations
in Secs. ITII, IV and V. A, in the C', C? cases the vertex is
bivalent and in the C” case the vertex can be bi- or trivalent.

In all cases of interest, if the outgoing charge ¢} > 0 the
deformation is chosen to downward conical and if ¢} < 0
the deformation is chosen to be upward conical. In both
cases the displaced vertex is at a distance |g}|§ from v. It

turns out that for future purposes, only the following cases
are of interest: R
(1) The nearest vertex is C°: Then V, is chosen parallel
to e 1 N
(2) The nearest vertex is C': V; is chosen antiparallel
to e I . N
(3) The nearest vertex is C>: V, is chosen parallel to e;.
(4) There is no nearest vertex: V; is chosen parallel

to é].

2. Choice of discrete approximant to constraint

In this section we describe the choice of discrete
approximants to the constraints for which the ensuing
discrete action implements (1)—(4) of Sec. V. B. 1.

In cases (1), (3), (4) of Sec. V.B. 1 the heuristics of
Secs. II and III can be repeated to conclude that these
deformations are generated by the diffeomorphsim

(p(q}?,”,é) of Sec. IIL. B. 1 because V/, is in the direction

of & ;7 and, from the initial part of Sec. V. B. 1, the positive or
negative character of ¢} then dictates whether the displaced

vertex is displaced in the direction of ¢ ; or opposite to it. If

the displacement is in the direction of P ; then the defor-
mation corresponding to Eq. (3.5) is downward conical and

if the displacement is in the direction opposite to 5, the
deformation is defined to be upward conical.

In all these three cases, in accordance with the heuristics
of Secs. II and 111, if the deformation is generated by the
Hamiltonian constraint, the deformed graph is colored with
appropriate (f,)- flipped charges and the displacement e
of the displaced vertex v; in Sec. V. A. 1 is chosen to be
|g}|8, where & is the discretization parameter associated
with the Hamiltonian constraint action. The holonomy
corresponding to this deformed charge net is multiplied,
as in Figs. 1(c) and 5(c) by the inverse charge net holonomy
with (f,i) flipped charges on the graph underlying ¢
together with the holonomy corresponding to ¢. The product
of these three yield a deformed charge net generated by the
Hamiltonian constraint. Any deformed charge net generated
by the electric diffeomorphism constraint at discretization
parameter value 0 bears the same charges on each of its
edges as on the counterpart of this edge in ¢ [see Figs. 1(b)
and 5(b)] and we have that € = |g}|5. Finally, using the
constructions of Appendix B. 2, C! or C? kinks are placed at
appropriate positions around the displaced vertex »; in a
manner consistent with the specification of ‘7, at v in the
sense described in Sec. V.A.1. We use the notation of
Sec. IV. D to denote the deformed charge nets generated in
this way by c(; ;4.5 and c(;rp—0.5)-

In case (2) of Sec. V.B.1, the vertex displacement
corresponds to that generated by (p(—qulb, ) due to the

fact that \71 is opposite to F ;- In order to remove this conflict
with the considerations of Sec. III. B. 1 [see Eq. (3.5)], it is
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necessary to introduce an intervention of the type used in
Sec. IV. Accordingly, we first multiply the state ¢ by a
holonomy h; around a loop / made up of two edges [}, [, so
that I = I, o l,. Let [, run from p, to p,. Here p,, p, are
equidistant from v, with p; on the linear extension of e;
past v and p, on e¢;. Let p; and p, be chosen such that the
coordinate length of [, is C8,C = 8¢ Let I, be a
semicircular arc connecting p, with p; such that its
diameter is C3. Let [ lie in a coordinate plane P; such
that no nonconducting edge lies in P;. Define the holonomy
hy to run along [ with charge equal to —g}. Multiplication of
¢ by this holonomy yields the state c; with a GR vertex. The
Ith outgoing edge of ¢; has outgoing charge ¢ and the

outgoing tangent to this edge is parallel to \71. We now act
with an approximant of the type underlying the action of
Sec. III. B. 1 on ¢;. As discussed in the first paragraph of
this section, the deformation generated by this approximant
is upward (or downward) with respect to \71 if ¢} is negative
(or positive). At this stage we refrain from placing any C!
or C? kinks. Next, we multiply the result by the inverse
holonomy 43 12 Finally we place a C' or a C? kink
between the displaced vertex and » in a manner consistent
with V;, this placement being achieved through multipli-
cation by a holonomy which is classically close to identity
similar to that employed in Step 2 of Appendix B. Clearly
the end result is equivalent to deforming ¢ as indicated in
Sec. V.B. 1. It turns out that for future purposes the
situation of interest in this case [i.e. Case (2)], is one in
which the other edges at ¢ conform to Case (1). Hence in
this situation, the action of the constraints needs no further
intervention beyond that of 4; and its inverse.

C. Choices of deformation: Linear CGR vertex

1. Choice of conical deformation type

Let v be a linear GR vertex of c. Let the deformation of
interest be (i,1,/,9).

Let the conducting edge in ¢ be e so that v seperates ey
into two parts ek ; and e ,. Let us first consider the case
where / = K so that the deformation is along the con-

ducting edge. We first need to determine the vector \7K. It
turns out that the cases of interest are such that ey | has a
nearest kink which is C! and e , has a nearest kink which
is C? or vice versa. In each case we apply the appropriate
criteria [i.e. one of (2),(3) of Sec. V. B. 1 to either the edge
ek 1 oriented in the outgoing direction from v or to the edge
ek, also oriented in the outgoing direction from v] to

“'Note that we have chosen the size of the loop [ slightly
smaller than that of / in Sec. IV. Nevertheless, [ is still large
enough that an argumentation similar to (a)-(c) of Sec. V. A.2
shows that no unwanted intersections ensue due to this inter-
vention.

obtain ‘7K. It is easy to check that irrespective of whether
the criteria are applied to ex | or to eg ,, the same choice of

17,( ensues. Next, we base our choice of upward or
downward deformation with respect to ‘71( on the sign
of the net conducting charge gx . [see (5.D]. If g o > 0
we choose the deformation (i,/ =K,f,5) of ¢ to be
downward with respect to X7K and if q;_net < 0 we choose

this deformation of ¢ to be upward with respect to ‘71(-
The deformations corresponding to these choices are
constructed as in Sec. V. A. 2.

Next consider the case where I # K. It turns out that the
case of interest is then such that ¢; has a nearest kink which
is C°. In this case we apply criterion (1) of Sec. V. B. 1 i.e.

we choose ‘71 to be along the outgoing edge direction. We
then choose the deformation to be upward with respect to

V if the outgoing charge ¢} > 0 and downward if g} < 0.
The deformation is then implemented as in Sec. V. A. 2.

2. Choice of discrete approximant to constraint

The choice of discrete approximants which implement
the choices described in Sec. V.C. 1 is then as follows.
First, as in Sec. V. A. 2, we apply the intervention /; with [
chosen in accord with V x as described in that section. For /
of small enough area the classical holonomy #; is a good
approximant to identity and for small enough 0, the straight
line part of / does not overlap with any nearest kinks on eg.
The intervention yields the state ¢; with a GR vertex at .

We then use the appropriate choice of approximant
detailed in Sec. V.B.2 to generate the chosen (upward
or downward) deformation of ¢; (according to the assign-
ment {V,} induced from ¢ to ¢, as explained in
Sec. V.A.2)" except that we refrain from placing the
desired C?, C! kinks i.e. we do not implement the analog of
Step 2, Appendix B. Since this placement is implemented
via multiplication by a holonomy whose classical corre-
spondent is a good approximant to the identity, the post-
ponement of this implementation does not affect the
viability of the approximant used. We then multiply the
resulting deformed charge net by the inverse holonomy #; .

Finally we use the analog of Step 2, Appendix B to place
kinks consistent with the choice of {V,}. Accordingly,
when I = K, the conducting line of the deformed charge
net is also labeled by K and we place C?, C' kinks
consistent with the specification of ‘71( for ¢. When
I # K, the conducting line in the deformed charge net is
along the /th nonconducting edge (or its extension) of the
undeformed charge net ¢ and we place C?, C! kinks around

*'Note that no edge of ¢, satisfies criterion (2). The only
possibility is an edge along the conducting line in c¢; however
only the upper conducting edge is retained in ¢;, its outward
orientation coinciding with the upward direction.
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FIG. 6. (a) Undeformed CGR vertex v of a charge net ¢ with its

Kth conducting edge and /th and Jth nonconducting edges as
labeled. (b) Vertex structure of (a) is deformed along an extension
of Ith edge past v and the displaced vertex v; and the C° kinks 7,
Dk on the Jth, Kth edges are as labeled. With charge colorings
similar to those described in Fig. 3, (c) shows the result of a
Hamiltonian type deformation (i, K, 3, §) and (b) the result of an
electric diffeomorphism deformation. The parental vertex v is
doubly CGR in (c) and is 4 valent and planar in (b).

the displaced vertex in a manner consistent with the
specification of V; at v in c.

D. (Non)degeneracy of vertex types

Given a GR vertex, constraint operators act nontrivially
at this vertex only if it is nondegenerate, its nondegeneracy
being defined as the nonvanishing of its volume eigenvalue
v (2.16). At a CGR vertex, the action of a constraint is
sensitive to the (non)degeneracy of the same (but now GR)
vertex in its image by intervention described in Sec. V. A. 2.
It is useful to formalize this notion of degeneracy as a
definition identical to Definition 1, Sec. IV. C. Before doing
so it is useful to catalog the kinds of vertices which are
generated by the deformations of GR and CGR vertices
described in Secs. V. A—V. C with a view to analyzing their
possible nondegeneracy. Since the C!, C? vertices are
always bivalent and hence degenerate, and since their
placement does not affect the vertex structures at other
vertices, we need only analyze the vertex types generated
prior to their placement.

An exhaustive analysis of such vertex structures is
provided in Appendix C, the catalog of vertex types being
those encountered in Cases 1a, 1b, 2a.1, 2a.2, 2b.1, 2b.2, 3
therein. Figures pertinent to Cases la and 1b are Figs. 1 and
5 and to Cases 2a.1 and 2a.2 are Figs. 3, 4. Figures 6 and 7,
pertinent to Cases 2b.1 and 2b.2 are displayed below.”
From the discussion in Appendix C, the figures for Case 3
may be obtained by setting the upper conducting charge
equal to zero in Figs. 4 and 7.

As discussed in Appendix C, and as seen in the relevant
figures, Cases la, 1b, 2a.1, 2a.2 and 2b.2 do not present any

“These figures are schematic and show the edge intersection
structure at vertices of interest. They do not faithfully reproduce
the deformations of Sec. B. 2 which result in regular conicality of
the deformed vertex, nor do they show the C!, C? kinks.
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FIG.7. (a) Undeformed CGR vertex v of a charge net ¢ with its
Kth conducting edge and Jth nonconducting edge as labeled.
(b) Vertex structure of (a) is deformed along an extension of Kth
edge past v and the displaced vertex vg and the C° kink #; on
the Jth edge are as labeled. With charge colorings similar to
those described in Fig. 4, (c) shows the result of a Hamiltonian
type deformation (i, K,f,5) and (b) the result of an electric
diffeomorphism deformation. These deformations are isomorphic
to those in Fig. 4 as can be ascertained by viewing them
upsidedown.

new potentially nondegenerate vertices of types other than
GR and CGR. However, as seen in Fig. 6 and discussed in
Appendix C, Case 2b.1 presents two new vertex types, both
associated with parental vertices in deformed children.
These are the four valent vertex of Fig. 6(b) and the N + 2
valent vertex of Fig. 6(c). The former is a planar vertex and
hence degenerate. The latter is a linear doubly CGR vertex
where we define such a vertex as follows.

Definition 3: Linear doubly CGR vertex—An N + 2
valent vertex v of a charge net ¢ will be said to be linear
doubly CGR if:

(1) There exists a coordinate patch around » such that in

a small enough neighborhood of v all edges at v are
straight lines.

(ii) There are two sets of two edges such that the union
of the two edges in each set forms a straight line so
that v splits this line into two parts and such that
the two straight lines corresponding to each of these
two sets have a single isolated intersection at wv.
Each of these lines will be called conducting lines,
each conducting line consisting of a pair of con-
ducting edges.

(iii) The set of the remaining N — 2 edges (called non-
conducting edges) together with any one of the two
edges in each pair of (ii) constitute a GR vertex in the
following sense. Consider, at v, the set of out going
edge tangents to each of the remaining edges
together with each of the outgoing edge tangents
to one of the two edges in each pair in (ii). Then any
triple of elements of this set is linearly dependent.

We now formalize the definition of (non)degeneracy of
CGR and doubly CGR vertices.

Definition 4: Nondegeneracy of a CGR vertex—A CGR
vertex of a charge net ¢ will be said to be nondegenerate
iff the corresponding GR vertex in the charge net ¢; is
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nondegenerate. If the vertex in ¢; is degenerate we shall say
that the CGR vertex in c is degenerate.

This definition provides a unique definition of (non)
degeneracy for the kind of CGR vertices we encounter.
These vertices correspond to the following two cases. In the
first case the CGR vertex in the state c is generated through
a conical deformation of a parent state ¢, as specified in
Secs. V. A-V.C. In this case, the choice of upward and
downward directions at its displaced vertex and hence the
choice of any intervention if required, is uniquely defined
and Definition 3 may be applied unambiguously to this
vertex. The second case corresponds to a conical deforma-
tion of the parent state ¢, at its vertex v, such that this
vertex is CGR in ¢ and c; here we are interested in the
application of Definition 3 to this vertex in c. In this case
we interpret Definition 3 applied to the vertex v, in ¢ to
mean that the degeneracy of this vertex is well defined iff it
is independent of which part of the edge passing through v,
in ¢ is chosen to be upper and lower. Since in our
considerations, such a state ¢ is obtained through a
Hamiltonian constraint type S, i flipped deformation of
c,, it follows from Appendix C that the net charges at v, in
¢ have vanishing ith component so that v, is degenerate
independent of this choice and hence independent of the
corresponding choice of intervention.

Next, note that a doubly CGR vertex can be rendered GR
through two holonomy interventions h;i,i = 1, 2 with [
chosen to be “semicircular” with the straight line parts of
being along the ith conducting line defined by the ith set of
edges in (ii), Definition 4. These interventions leave the
N — 2 edges in (iii), Definition 4, unaffected and remove
one of the conducting edges from each conducting line in
(i1). The remaining conducting edge in each line is colored
with the net conducting charge corresponding to that
conducting line. For our purposes the following definition
suffices:

Definition 5: Degeneracy of a doubly CGR vertex.—A
doubly CGR vertex will be said to be degenerate if the
GR vertex obtained by any choice of interventions is
degenerate.

Since the edges in the parental vertex of the deformed
charge net discussed above and in (2b.1), Appendix C are
such that the nonconducting charges and the net conducting
charges all have vanishing ith component, this doubly CGR
vertex is degenerate.

E. Summary and discussion

From our discussion in Sec. V. D and Conclusions 1 and 2,
Appendix C, it follows that the only possibly nondegenerate
vertices which are generated by the action of the constraints
on a nondegnerate linear GR or CGR vertex are also GR or
CGR. Sections V. A-V. C specify the deformation of charge
nets with such vertices provided the vertex structures are
characterized by the kink structures discussed in Secs. V. B. 1

and V.C. 1. As we shall see in Sec. VI, the charge nets
of interest will have a single nondegenerate linear GR or
CGR vertex with a kink structure of the type discussed.
Denoting such a charge net of interest with such a
vertex v by ¢ and its deformed child by the deformation
(i,1,p.6) by c(i1ps where the deformed charge nets
¢(i.1p5) for all choices of 7, i, f and sufficiently small &
have been constructed in Secs. V. A-V. C, the action of
discrete approximants to the Hamiltonian and electric
diffeomorphism constraints is expressed in Eqgs. (4.5)
and (4.6). We shall continue to refer to these two
equations with the understanding that they implement
the detailed choices discussed in Secs. V. A-V.C.

The reason we use criteria (1)—(4) rather than simply

choose V, to be in the direction of the outgoing tangent

vector & ; is that the former choice yields anomaly free
continuum limit commutators whereas the latter does not.
To see this requires a detailed study of double deformations
of a charge net by two constraint actions which will be done
in Secs. VI-X. Nevertheless we attempt to provide a brief

explanation here for the choice of X7, as opposed to g,. The
reader is urged to peruse this explanation once again after
reading the entire paper as it may, at this stage, be quite
opaque. Each double deformation generated by two dis-
crete constraint actions on a charge net is composed of a
pair of single conical deformations. Each such single
deformation is along some edge of a parent state and
yields deformed offspring which are conically deformed
along a cone whose axis is determined by the direction of
the parental edge. The continuum limit involves shrinking
two of these single deformations away from “grandchild”
to “immediate parent” to “grandparent.” It turns out that for
certain delicate recombinations of terms to occur as a result
of this process so as to generate an anomaly free result, the
edge directions of the parent and the grandparent must be
correlated (and, as will be seen, in a precise sense,
identical). To ensure that this happens we must ensure a
consistent choice of edge tangent directions in the child-
parent-grandparent genealogy. This choice, it turns out, is

exactly that of V; (which clearly depends on the genetic
trace provided by the C!, C? kink placement), as opposed to

the choice of outgoing edge tangent P ; (which would be a
purely local choice independent of lineage). Finally, note
that the use of (1)—(4) is tantamount to the replacement of

q}z, by ¢} Vs [with g}, being the net outgoing charge
along the edge I, see Eq. (5.1) above] in the heuristically
motivated Eq. (3.5). Thus there is a tension; we require the
choice of V; with the net outgoing charge for anomaly free
commutators but the argumentation of Secs. II and III
imply that we must use the outgoing tangent vectors with
the outgoing charges. In order to remove this tension it is
necessary to use the intervention 4; of Sec. V. B. 2 50 as to
ensure that criteria (1)—(4) are implemented through the use
of valid approximants to the constraints.
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VI. DISCRETE ACTION OF CONSTRAINT
OPERATOR PRODUCTS

In the last two sections we did not specify the choice of
coordinates with respect to which the deformations gen-
erated by the discrete action of the constraints were defined.
In this section we specify these coordinates as well as the
action of constraint operator products of interest along the
lines sketched in Sec. . It turns out that in view of the single
vertex anomaly free states studied in this paper, the detailed
specification of this action only needs to be made for a
certain set of kets, which we shall refer to as the ket set.
This set corresponds to all the kets which are obtained by
multiple actions of the type (4.5) and (4.6) on certain
primordial kets which themselves are not generated by any
such action on any other state. In Sec. VI. A we generalize
the notation of Sec. IV. D to describe the multiply deformed
kets which are generated by such multiple actions. In
Sec. VI. B we define the ket set. In Sec. VI. C we choose a
reference ket in each diffeomorphism class of kets in the
ket set and a set of reference diffeomorphisms such that
each distinct ket in the diffeomorphism class of a reference
ket is the image of the reference ket by a unique reference
diffeomorphism. We also define certain key structures
known as contraction diffeomorphisms which play a crucial
role in defining the continuum limit by “contracting” the
deformations away.

In Sec. VI. D we define the discrete action of products of
contraint operators on any ket in the ket set through
multiple applications of Egs. (4.5) and (4.6). These multiple
actions generate multiply deformed kets as discussed in
Sec. VI.A. It remains to specify the coordinates with
respect to which these deformations are defined. We do so
through slightly involved manipulations of the structures
developed in Secs. VI. A, VI. B and VI. C. The end result of
these manipulations is a specification of the coordinates
with respect to which the deformations are defined together
with a definition of the discrete action of products of
constraint operators on any ket in the ket set for arbitrarily
small values of the discretization parameters. The corre-
sponding dual action can then be defined on states in the
algebraic dual space. The continuum limit of this action on
anomaly free states (which reside in the algebraic dual
space to the space of finite linear combinations of charge
nets) will be evaluated in Secs. X and XI.

A. Notation for multiply deformed states

Let ¢ be a state with a single nondegenerate vertex v, this
vertex being either a linear GR or linear CGR vertex with
respect to some choice of coordinates around 0.5

B addition, as shall become clear in Secs. VI. B=VI. D, the
kink structure of the state ¢ under consideration as well as of the
states generated from ¢ via multiple applications of (4.5) and
(4.6) conforms to those alluded to in Sec. V.

The action of a single discrete constraint operator at
discretization parameter 6 on ¢ is given by (4.5) and (4.6).
From Conclusion 2 of Appendix C it follows that the
deformed states c(; 5 5) have at most a single nondegenerate
GR or CGR vertex and that this corresponds to the displaced
vertex in each of these states. We shall assume that ¢ is such
that the displaced vertex in each of the deformed states
C(i.1,p.5) 1s nondegenerate and that our choice of coordinates
around each displaced vertex is such that the vertex is linear
with respect to this choice. Hence these “singly” deformed
states c(; 1 5,5) are all single nondegenerate linear GR or CGR
vertex states. The action (4.5) and (4.6) on ¢ yields these
singly deformed states as well as c itself.

The action (4.5) and (4.6) on each of these states (namely
C(i1p.)> €) 18 then well defined because each of these states
is a single linear GR or CGR state. Since the actions (4.5)
and (4.6) correspond to the discrete action of a single
constraint, it follows that an action of one of (4.5) or (4.6)
followed by a second action of either (4.5) or (4.6) on ¢
corresponds to that of a discrete approximant to the product
of two constraints and creates “doubly deformed” states,
singly deformed states and the undeformed state. From
Sec. V it follows that each of the doubly deformed states
has a (doubly displaced) vertex which is once again, either
GR or CGR. We shall assume that this vertex is non-
degenerate and that the associated coordinate system is
such that this vertex is linear; from Conclusion 2, the
doubly deformed states are then again single, nondegen-
erate, linear GR or CGR vertex states. As a result the action
(4.5) and (4.6) is well defined on these states as well. In this
manner any combination of three actions of the type (4.5)
or (4.6) yields triply deformed states, doubly deformed,
singly deformed states and the undeformed state.

Continuing on and making an appropriate nondegeneracy
and linearity assumption atevery stage we find that the action
of a product of n constraint operators can be approximated as
n applications of the type (4.5) or (4.6) and that this results in
states which are m deformed, m = 0,1,..,n with m =0
corresponding to the undeformed state ¢. The continuum
limit involves contracting these deformations away; it turns
out that mth deformation is contracted away first, then the
m — 1th one and so on all the way to the first deformation.
Hence we shall be interested in multiple deformations such
that the parameter associated with the size of each successive
deformation is smaller than its predecessors.

We now develop appropriate notation and genealogical
language related to multiply deformed states. We shall
refer to ¢ as a parent state. As noted in Sec. IV.D any
deformation of ¢ can be specified through the information
(i,1,p,6) where, as in that section, for the reasons
explained there, we have suppressed information about
the coordinate patch used to define the deformation. In the
language of Sec. IV.D, this deformation yields the
(i,1,p,6) deformed child c(;; 4. Generalizing this nota-
tion, we can specify a sequence of m deformations by
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[(im—l ’ Im—luﬂmv €m)7 (im—27 Im—27ﬂm—1 ’ €m—1)’ tee

and denote the resulting “mth generation” child of the parent ¢ by

C[(iln—] Jm—l ’ﬁm ’€1r1)~(im—2v]m—2 !/jm—] €m—1 )""“'(i']’/jl €1 )] .

This signifies that the child is obtained from the parent ¢ through the sequence

i1.py.€ indy.pre2

¢ Cilpe Clliy Iy.pr2).(i1 By .ey)]

Im—1 ’Im—l 7/7’m €m
R

Above, we have assumed that the displaced vertex in each
ith generation child with 1 < i < m is nondegenerate and
that the specification of the coordinate system around this
vertex is such that the edges there appear as straight lines,
so that the vertex is linear as well. Further, we have chosen
to enumerate the edges of each charge net in this sequence
in such a way that the enumeration of edges in a child and
in its immediate parent are related as follows. Consider the
charge net ¢(; 4, .,) obtained by deforming its immediate
parent c. Each nonconducting edge emanating from the
nondegenerate vertex in c(; 7 3, ¢,) is obtained by deforming,
a corresponding edge in ¢ which emanates from the
nondegenerate vertex of c, the two edges meeting at a
C" kink. We assign these corresponding edges the same
number i.e. if €;, € ¢(;1p, ¢,) 1s the deformation of the edge
e; in ¢ then we have I; = I. Since there are N — 1 such
pairs of edges, one in the parent and one in the child, the
remaining edge in the parent and in the child also bear the
same number. Clearly, we can extend this enumeration
scheme so that the numbering of edges of any child and
immediate parent in (6.3) are so related. This immediately
implies that given the sequence (6.3), the enumeration
scheme of any charge net in the seiluence is uniquely fixed
by the enumeration scheme in ¢

Finally, where it creates no confusion, we will find it
convenient to use the notation

[i,[,ﬂv G]m = [(im, L, P em)’ (im—lvlm—l’/}m—l’ €’”_1)’
..... NOWIN R (6.4)

so that the state in (6.2) can be written as ¢ ;4.

m

B. Primordial states and the ket set

We think of primordial states as being states which
cannot be obtained by a Hamiltonian or -electric

*In the case of CGR vertices we use this numbering for
nonconducting edges and the conducting line; as seen in (3.10)
and (3.11), we do not need to count the upper and lower
conducting edges separately so that this correspondence contin-
ues to hold and the indices /,, for all m as well as the index 1, all
run from 1,..,N.

vy (il,ll,ﬁz,é'z), <i717ﬂ1’€1>]€i < €j < fori > j (61)
(6.2)
Cllipar Tyret Bonr€m)s(imez Tz Brset s€met )oeeeen (L B1 1] (6~3)

|

diffeomorphism type deformation of any state. Rather than
provide a precise definition, we shall work with concrete
examples and leave a more precise and complete definition
of primordiality to future work. Consider any state with a
single nondegenerate GR N valent vertex. Let all other
vertices of the (coarsest) graph underlying the state be
degenerate and let no such vertex have valence 2,3,4,
N,N +1 or N 4 2. Let there exist some coordinate patch
around the nondegenerate vertex with respect to which the
edges at this vertex are straight lines in a small neighbor-
hood of the vertex i.e. let the vertex be linear with respect to
some choice of coordinates. Such a state cannot be created
by the discrete action of a constraint because, notwith-
standing that we have defined this action in detail only on a
restricted class of states, we visualize the action of the
deformation maps (see Sec. II of this paper as well as P1,
P2) to only create vertices of valence 2,3,4,N,N + 1,
N +2. We shall call such a state as primordial state
provided it is subject to four additional restrictions
described below.

First, we restrict our attention to the case where the
nondegenerate vertex is N valent for some fixed even
integer N. This is for certain technical reasons. Note that
GR and nondgeneracy restrictions imply that N > 4. We
shall return to this point in our final section. In order to
articulate our second (mild) restriction, consider the U(1)?
charge obtained by the action of a (8 = f,,i = i) flip of
the U(1)? edge charge label g, := (q}, q7, ¢3) in c. We may
subject the flipped charge set to yet another flip (f,, i, ). Let
us denote the charge obtained by m such flips [(£,,, i),
Bin-tsim=1)s - (Broi1)] as Gy, with g€ {=1,1}.
Using this notation we require that the charges on each
edge of c satisfy

3 3
dodb#0. D dlyy  #0 VB, YI=1,.N
=1 =1 "
(6.5)
so that the sum of the 3 U(1) charges on each edge as well

as the sum of any multiply flipped image of these charges is
nonvanishing. We also require that
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gk #0, a1 #0 Y[Bil,. YI=1..N,

Vk=1,2,3 (6.6)
It is convenient to extend the notation for (f, i) flips to the
case that # = 0. Consistent with the fact that no flipping is
associated with an electric diffeorphism type transforma-
tion, we define a (f3, i) flip to be the identity operation when
£ = 0. In this case the index i is redundant but we retain it
for convenience in articulating the following definitions
which will be useful for future purposes:

= 6.7
Goin =, M (6.7)
= 6.8
Qmm,l Lipdl, n‘vl’lm LKA, |Q[/j i],ns [| ( )
and
prlmordlal
Gmax ma. X |QI| (6.9)

(i=1.2.3),(I=

Since there are only a finite number of flipped images of the
charges on each edge, Egs. (6.5) and (6.6) are well defined
and imply that g, Gmin; > 0. Note also that since the
charges are integers we have that g,;,, ¢nin1 = 1. Finally,
note that while (6.9) seems identical to (4.1), these two
definitions are in general distinct in that the charges on the
right-hand side of (6.9) are the edge charges on the
primordial charge net at its nondegenerate vertex whereas
those in the right-hand side of (4.1) are the edge charges for
the edges of the (not necessarily primordial) charge net
under consideration in Secs. IV and V.

Third, we restrict our attention to states which exhibit
linearity with respect to a particular choice of coordinate
patches as follows. Fix a point p, on the Cauchy slice and a
chart {x, } in some neighborhood of p,. We require that any
state under consideration be such that it is diffeomorphic to
some state which has a nondegenerate vertex at p, and
which is linear with respect to {x, }.>> The coordinates {x,}
will be referred to as primary coordinates.

Fourth, we restrict our attention to states which satisfy
the following requirement of eternal nondegeneracy: From
Sec. VI. A, any multiple deformation of state yields a state
with a multiply displaced vertex. We require that any
primordial state be such that any multiple deformation of
the primordial state yields a state whose multiply displaced
vertex is nondegenerate. This “eternal nondegeneracy” is a

21t seems plausible to us that any state with a single non-
degenerate vertex which is linear with respect to some choice of
coordinate patch must be diffeomorphic to one which is linear
with respect to any prescribed patch. If this is indeed true, this
third restriction does not actually constitute a genuine restriction.
We leave an investigation of this issue to future work.

strong and nontrivial restriction. The implementation of
anomaly freedom in this paper does not go through if this
condition is not satisfied. The classical analog of this
condition is the requirement that the determinant of the
3 metric stay nonzero throughout its evolution. Clearly, if
this condition is violated at any instant (i.e. anywhere on a
Cauchy slice), we cannot compute the classical constraint
algebra. In the Appendix D we show that the simplest GR
vertex, namely one with four edges in conical configura-
tion, provides an example of a state which satisfies these
restrictions.

Consider the entire set of states subject to the above
restrictions. We shall call these states as primordial states.
Clearly, the set Syimoraiar Of these primordial states is closed
under diffeomorphisms. Next, within each diffeomorphism
class of these primordial states, fix a “reference” primordial
state ¢py which has a nondegenerate vertex at p, and which
is linear with respect to the primary coordinates {xg}.
Consider all multiple deformations of each of these
reference primordial states, these multiple deformations
being a sequence of single deformations of the type
discussed in Sec. VI. A. More in detail, consider first some
primordial reference state ¢ pg, a neighborhood of its vertex
at po being covered by {x,}. Any single deformation of ¢ p
for sufficiently small deformation parameter is chosen to be
upward or downward conical according to the criteria of
Sec. V. B [in this case we use (4) of Sec. V. B. 1 together
with the sign of the edge charge labels as discussed in that
section to deform upward or downward]. Using the detailed
constructions of Appendix B, and of Secs. III. A, IV. A and
V. A, these deformations are defined for all sufficiently
small values of deformation parameter such that the
deformation is confined to the interior of a coordinate
sphere B, (po) of some size A, with B, (pg) in the
domain of {xq}. It follows that the resulting deformed
children have displaced vertices which are in the domain of
the chart {x, }. These vertices (as mentioned earlier) are GR
or CGR and (by assumption) nondegenerate. They are also
linear with respect to {x,} because of the straight line edge
structure of the cones in the vicinity of these vertices (see
Appendix B for downward conical deformations; that a
similar linearity holds for upward deformations is clear
from their detailed construction in Sec. V. A. 1).

It is easy to check that the criteria of Secs. V. B and V. C
can be applied to these children and that their (appropri-
ately chosen) upward or downward conical deformations
can again be defined for small enough values of deforma-
tion parameter such that the deformation is confined to the
interior of By, (pg), and that each of their children have
a single nondgenerate GR or CGR vertex. The detailed
construction of the deformation for small enough values of
deformation parameter implies that the primary coordinate
system {x(} covers a small enough neighborhood of each
of these vertices in which the edges at each such vertex are
straight lines so that the vertex is linear with respect to the
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primary coordinates. Continuing in this way one can define
multiply deformed states for all sufficiently small defor-
mation parameter sets associated with the multiple defor-
mation such that the multiple deformation lies in the
interior of B, (pg). The set of all these deformed children
of c¢py together with cpy will be said to form a primary
family and each element of such a family will be called a
primary.

By letting cpy vary over the set of all distinct reference
primordials we obtain the set of all primaries, Spimary, With
the multiple deformation which generates any primary from
a reference primordial being confined to the interior of
By,(po). Finally consider the set of all diffeomorphic
images of all primaries. This set is the ket set Sk.

To summarize, we let ¢ range over all reference pri-
mordial states in equation (6.3). In that equation we let m
range from 1...00 and let the deformation sequence range
over all possible choices of deformation specifications for
all possible small enough deformation parameter sets such
that the deformations can be defined through Appendix B
and Sec. V with respect to {xy,} and such that the
nondegenerate vertex of every deformed ket in the
sequence is covered by {x,}. Our definition of primordial-
ity ensures that the resulting set of m-deformed children is
such that each child in this set has a a single nondegenerate
vertex. The set of all these multiply deformed children
together with their primordial reference ancestors comprise
the set of primaries. The ket set Sk, comprises of the set of
all diffeomorphic images of all primaries.

Note that since each element of the ket set is a
diffeomorphic image of some primary, its nondegenerate
vertex is linear with respect to the corresponding diffeo-
morphic image of {x,}. We note again that from the
considerations of Sec. V it follows that this vertex is a
(linear) nondegenerate GR or CGR vertex and that from
Conclusion 2 of Appendix C this is the only nondegenerate
vertex of that element. Finally, it is straightforward to
check, using the deformations detailed in Sec. V that each
element is such that the criteria of Sec. V.B.1 and V.C. 1
can be applied so that any further deformation of this
element with respect to an appropriately specified coor-
dinate patch is well defined. We develop the specification
of this coordinate patch for any given element of the ket set
in Secs. VI. B-VL. D.

C. Reference states, reference diffeormorphisms
and contraction diffeomorphisms

Within each diffeomorphism class of elements of Sk
choose one state as a reference state subject to the
restriction that the state must be a primary i.e. the reference
state must lie in S,y - A charge net label with subscript 0
indicates a reference charge net. For the case of the
diffeomorphism class of primordial states we choose the
reference state to be as in Sec. VI. B. Next for each distinct
element ¢ of each diffeomorphism class [c,] of a reference

charge net ¢, choose a reference diffeomorphism a such
that @ maps ¢ to c¢ i.e. in “ket” notation we have

U(a)leo) = Ic) (6.10)
where U(a) is the unitary operator representing the action
of a.

Next we define contraction diffeomorphisms. To do so,
consider a ket ¢ in the ket set with some linear coordinate
system {y} at its nondegenerate vertex v. Let us deform it
by the deformation (i, I, 3, §,) where the detailed nature of
the deformation is as in Appendix B and Sec. V. In
particular, the coordinate patch used to specify the defor-
mation (and the deformation parameter &) is {y} (i.e. we
set {x} ={y} in Appendix B and in Sec. V) and the
displaced vertex and the C° kink vertices created by the
deformation are each at a coordinate distance |g, ,.,|5y from
the parent vertex [here g}, is the net charge as defined in
(5.1) and Appendix C]. We would like to “contract” the
deformation away so that the displaced vertex and these
kinks approach the parent vertex v in a prescribed manner.
Further, we would like the cone angle for the deformation at
the displaced vertex to become narrower in line with our
visualization of the deformation being that of a singular
pulling of these edges along the Ith edge (see Sec. II).

This contraction is achieved through the action of the

; ; ; 0.0.L.M.py.py,p3
contraction diffeomorphism @’ OHidps,) defined for

small enough &, for which the following properties hold:

(i) The contraction diffeomorphism is a semianalytic
diffeomorphism connected to identity.

(i) It moves the displaced vertex v; ; 5, along the straight
line (in the coordinates {y}) between v; ;5 and v to
the point v;;5 located at a coordinate distance
|} net8 < |} 1|60 from the parent vertex .

(i) (a) The C', C* kinks in c(;; 5.5, have an area of <
8% (see Appendix B.2). The contraction diffeomor-
phism shrinks the area of these kinks to a < &.

(iii) (b) It moves the C° kink ¥, , L # I along the edge e;
of ¢ to a distance 67! from the parent vertex v. It
moves the C° kink #,,,M # I,M # L along the
edge ey, of ¢ to a distance Q6”2 from v (for some
QO > 0 which we specify later). It moves each of the
remaining (N-3) kinks along its nonconducting edge
to a distance 673 from v.

(iv) In a small vicinity of the (new position of) the
displaced vertex it narrows the cone angle between
the edges at that vertex by a linear deformation
generated by the diffeomorphism G defined below.

(v) It maps c to itself and maps the straight line from v
to v;;4, (in the coordinates {y}) to itself.

(vi) It is identity outside a sphere of size 2|¢! .5
around v. '

The construction of the contraction diffeomorphism is
along the lines sketched in P1, P2. We proceed as follows.
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For convenience let us rotate the coordinate system {y} so
that y* runs (and increases) along the line from the parent
vertex v to the displaced vertex v; ; 5 . Let the segment of this
line between v; ; 5, and v; ; 5 be [5 5. Let [, be a straight line
which contains /5 ;; and whose end points a,, b, lie at a
distance € from v; ; 5 , v; ; 5 rEspectively, € < &y, 6. Consider
a small cylinder C,; with axis /, and radius 7, 7 < 8, d;.
Consider two such cylinders with parameters €, €, and 7,
7, with €; > €,,7; > 7, and with €, 7; small enough that
C, r, does not intersect any edge emanating from v apart
from the Ith one between v and v;; 5 . Consider the vector
field & = (0%3)“ Let f be a function compactly supported in
Ce, r, such that it is unity in C,, ,,. Let ¢(f&, 1) be the 1
parameter set of diffeomorphisms generated by the vector
field f&“. Clearly, for an appropriate value of ¢ = 7, the
diffeomorphism ¢(f¢, 1) = ®i 155, translates v; ;5 10 v; ;5
so that property (ii) is achieved. This diffeomorphism also
respects properties (v), (vi).

Next, note that within C,, ., this is a rigid translation so
that the translated edges at v; ; 5 are straight lines in a small
neighborhood of wv;;s. Hence within a small enough
neighborhood of v;; s we can now apply the “scrunching”
diffeomorphism G of Eq. C. 8, Appendix C4, P1. From that
work we have that within a small neighborhood of Vs
of v;;45, G acts as

(6.11)

Here ¢ > 1, p is a point in V4, y'(p) refers to the ith
coordinate value at p, G(p) is the image of p by G and as
mentioned above we have rotated our coordinates so that y3
runs along the line joining v to v;; 5. Thus property (iv) is
achieved. In addition, from P1, G is identity outside a small
neighborhood of v, ; 5, and in particular is identity at all the
edges of ¢ other than the /th one at v, maps the /th one at v
to itself (if » is CGR in ¢ and if the J # I edges are non-
conducting in ¢, then it maps the upper and lower /th con-
ducting edges to themselves) and is identity in a neighbor-
hood of ». In addition, from 5., Appendix C, P1 the vector
field generating G (a) is supported only in an small
neighborhood of v; ; s and (b) when restricted to the straight
line from v to v; ; 5, always points along this line wherever
it is nonvanishing. Hence G respects properties (v), (vi).
Property (iii) (b) can be achieved in a similar way as
(i1) by considering &; to be along the appropriate edge e,
J #1 of ¢, constructing suitable neighborhoods of seg-
ments of this edge, smearing £; with suitable functions of
compact support and using the finite diffeomorphisms ¢;
generated by the resulting vector field to achieve the
required result. Clearly these diffeomorphisms also respect
properties (v), (vi). Property (iii) (a) can be achieved

through the action of a diffeomorphism ¢, which we
shall construct at the end of this section. The product of
all the semianalytic diffeomorphisms ([ ;.;¢,)G®; 1 55,%a
yields the required semianalytic diffeomorphism satisfying
(1)—(v). so that we have

AT P <H¢’> Cusader (012
J#I
r 6,.0.L.M.p.py.p3
[cpa) = D@5 " ewpay)- (6:13)

Before we construct ¢,, it is useful for future purposes to
derive Eq. (6.15) below. First note that from Appendix B
and Sec. V, the displaced vertex is in a region covered by
the coordinates {y}. Next, consider the coordinate system
{y®} obtained by the pushforward of the coordinates {y}
by the contraction diffeomorphism:

{y(é)} — ((1)5»Q,L,M~PI»P2-P3)*{y}‘

ey} i1B.6y) (6.14)

From (6.13) it follows that {y(®} provides a coordinate
patch around the displaced vertex of ¢(; ; 4 5. From the fact
that ¢, is the identity in a neighborhood of the vertex v; ; 5,
(see the end of this section) together with the fact that the
displaced vertex v; ; s and its immediate vicinity is obtained
by a rigid translation followed by the linear transformation
(6.11), we have that the Jacobian between the {y(®} and
{y} coordinates at the displaced vertex is

= 5’;5_(‘1_1) = 1’ 2

=& u=3. (6.15)

Recall that the {y} coordinates at v are such that the /th
edge at v in ¢ runs along the third coordinate direction.
To free us from this assumption let the coordinates at
v be {x} with {x} related to {y} by a rotation R, which
points y* along the Ith edge. Then it is straightforward to

see that the Jacobian between the coordinates {x(‘s)} =

((Df’%f{%’yﬁ‘(;ﬁ”@*{x} and the coordinates {x} is

Ox (O
xbi(”) = (R.GR:")¥, (6.16)
Ox (p) P=Yi1s
where
Gt, =85~ =12
=& u=3. (6.17)

Note that from property (v) and from the fact that the y?
coordinate direction coincides with the straight line joining
v to ;5 (in the {y} coordinates), it follows that when
restricted to this straight line, the third coordinate of the
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coordinate system {y(®)} also points along this line [indeed
for the subset of this line lying within V; ; s, this fact can be
explicitly verified from (6.11).)].

Finally, we construct ¢,. Let a C' or C? kink nearest to
Vi1, 10 C(i1 4., belocated at some . Consider two small
spheres of radii 3a,2a, around this kink and a semi-
analytic function which vanishes outside the larger sphere
and is unity inside the smaller sphere. Smear the dilatation
vector field Y7, (v — yi(ﬁ))(aiyi)“ with this function and
exponentiate the action of this vector field to obtain a 1
parameter family of semianalytic diffeomorphisms. Clearly
for an appropriate parameter value the size of the kink can
be shrunk as required in (iii) (a) to @. Similarly shrink the
second C! or C? kink if present. Let the diffeomorphism
which shrinks these kinks be y,,. It is straightforward to see
that the application of this diffeomorphism confines the
departure from linearity, of the edge carrying the kink, to a
sphere of radius 2« around the kink. We shall choose a as
required below.

Next, we need to ensure that the action of ¢; ; 5 5, (Which
acts immediately after ¢, in the contraction process)
preserves the size of these kinks. Clearly we need only
focus on any such kink if it is present at some » between
v; 15, and .7 I such a kink is present we use a construction
similar to that for ¢, s, to move the kink to a distance
6 < €, from v; 15, through a rigid translation along the
straight line joining v to v;; 5,, Where €, has been defined
above in the construction of ¢; ;ss,-

More in detail, let 7, be on the straight line segment from
v to 7 at a distance 3a from 7 with a < 5.% Let v; be ata
distance 6 — 3a from V(i1s,) ON the straight line segment
from v to v; ;5 . Let the straight line segment from 2, to v,
be ;. Let /,; be a straight line which contains /; and whose
end points @, b; lie at a distance & from 7, v, respectively.
Consider a small cylinder Cz; with axis /;; and radius 7.
Consider two such cylinders with parameters €,,€, and
71,7, with € > &,,7; > 7,. We shall further restrict
€] < a XK 1, X 1y. Choose €, 7; to be small enough that
Ce 7 does not intersect the graph underlying c(; ;.5
except along its edge from v to v(;45,. Consider the
vector field &% = (%)“. Let f be a function compactly
supported in C;, 7, such that it is unity in Cz, ;,. Let ¢(f€. 1)
be the 1 parameter set of diffeomorphisms generated by the
vector field f&¢. Clearly, for an appropriate value of ¢ = 1,
the diffeomorphism ¢(f&, #,) = ¢ translates the kink to its

desired position. We set ¢, := ¢ oy,.

*Here we assume that we have chosen €, a small enough that
any nearest C> or C' kink beyond v; 15, does not intersect the
cylinder C,, ; which is used to define ¢;; s,

*"We choose & to be much smaller than the distance between
the kink 7 and v; ;5.

D. Discrete action of product of operators

1. Action on elements of the ket set

Consider the operator product [[I, O;(N;) where
O'(N;) is either a Hamiltonian constraint operator or
electric diffeomorphism constraint operator smeared with
Lagrange multiplier N;, with operators ordered such that
O'(N,) is to the left of O'(N;) if i <j in the string of
operators corresponding to the product. We are interested in
the action of a discrete approximant to this operator product
on a state ¢ in the ket set. The discrete approximant we use
is T[, Oi’gi (N;) where the discretization parameters &
are such that 6; < §; for i < j and the action of Oi,& (N;) is
given by (4.5) or (4.6) depending on whether O;(N;) is a
Hamiltonian or electric diffeomorphism constraint. Recall
that we did not adequately specify the coordinates with
respect to which these individual discrete actions were
defined. Here we shall do so indirectly through a number of
steps. At the end of this multistep procedure we shall have a
complete definition of

(Q Oi.@(M)) |c)

including a specification of the coordinates used.

(6.18)

Step 1: (6.18) as a weighted sum of deformed states.—We
define each discrete operator action in the product through
(4.5) or (4.6) keeping the choice of coordinates as yet
unspecified. Clearly the result is a weighted sum of
deformed kets. Our task in this step is to find these weights.
We shall use the notation for deformed kets developed in
Sec. VI. A. Any deformed ket takes the form of an mth
generation child of ¢, 1 < m < n. The deformation oper-
ation which produces this child from c is specified by the
deformation sequence:

[(im—lﬁlm—lsﬁjm, 5jm)(im_2, Im_z’ﬂjm—l’éjm—l)’ ey
(i1, 11, By, 6,) (i, 1. By, . 6,)]
i<y iff k>0 je{l,..n}
where if m = 1 we only have the deformation (i, I, §;, ., 6;, ).
The kth deformation in this sequence is (iy_;, I_;. f; . 5 )-

It corresponds to the deformation generated by the operator

Ojkﬁjk (N;,) on the k — Ith generation child:

(6.19)

Cllircadima By, By )oeroren (L1 By, 53] (6'20)
where if this operator is a Hamiltonian constraint we have
chosen the flip f§; to define its action. As is implicit in the
discussion of Sec. VI. A, given the deformation sequence
(6.19), the edges and internal charge indices at the non-
degenerate vertex of the kth generation children are denoted
with a subscript k and the edges and internal charge indices
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of the parent vertex in ¢ by i, I. The numbering scheme
used is also that discussed in Sec. VI.A so that the
enumeration of edges of any child is related to that for c.

As emphasized before we have not yet made explicit our
choices of coordinates with respect to which the deformations
are defined. Let us see in more detail as to exactly where we
need these choices to be made so as to provide a complete
specification of the deformed child (6.20). Consider the
deformation sequence (6.19). The sequence starts with the
right most deformation (i, 7, §; , 6; ) acting on the parent c.
The singly deformed child it generates acts as the parent state
for the next deformation (i, I, Bi,. i, ). In this way proceed-
ing from right to left, each successive deformation acts on the
deformed state generated by the sequence to its right and
produces a parent state for the deformation to its left.
Therefore, in order to specify each of these deformations
we need to specify the coordinate patch for the nondegenerate
vertex of the state produced by the deformation sequence to its
right. Hence in order to specify the deformed child (6.20) we
need to specify coordinate patches for each of the deformed
states in the “lineage” connecting (6.20) to c.

The deformed states produced in (6.18) consist of states
of the form (6.2) for all choices of index sets {i;, 15, .., 1y }
such that the inequalities in the second line of (6.2) hold,
and for all m € {I,..,n}. From our discussion in the
previous paragraph, it follows that for a complete speci-
fication of all the deformed states in this set, we need a
specification of a coordinate patch around each nondegen-
erate vertex for each mth generation child with m ranging
from 1,..,n—1. In addition we must also, of course,
specify the coordinate patch around the nondegenerate
vertex of ¢. We shall see that in the final step of our
procedure (see Sec. VL.D.1.c below), we will have a
specification of all these coordinate patches.

The notation (6.19) is a cumbersome one. Hence, similar
to (6.4), if there is no confusion in doing so, we will often
find it convenient to abbreviate the deformation sequence
in (6.2) through

[i, I,ﬂ, 5]m = [(im—lv Im—lvﬁjm’ 6jm)’ ey (l, I’ﬂjl R 6]] )]
(6.21)
Thus the deformed states produced in (6.18) consist of the
states c[;; 4,5 for all choices of [, 1, §, ],, and m such that

1 <m < n. Clearly, (6.18) can be expanded out as a sum
over all these states so that we have

(H 0,5M) )
(1) %

], m=1,...n

Ciirpal, |ciirps,) + Colc).

(6.22)

Here the coefficients C|;; 55 can be computed using (4.5)
and (4.6) in (6.18). We do not need the explicit form of
these coefficients here so we refrain from displaying them.
Instead we restrict ourselves to a few remarks regarding
their structure. Each coefficient is constructed out of the
various factors which appear in each application of (4.5)
or (4.6) in (6.18). In particular each coefficient has in it a
product over all the n lapse functions in (6.18). Each lapse
is evaluated at a vertex of one of the states in the lineage
defined by the sequence using the coordinate patch
specified at that vertex. Note that this is the only coordinate
choice dependent feature of the coefficients. The remaining
contributions come from various sign factors and overall 7
dependent numerical factors in (4.5) and (4.6). The sign
factors arise from the f factors in (4.5) and from the fact
that some of the actions of the constraints come from the —1
term (see Sec. III. B. 1) in (4.5) and (4.6).

To summarize, the discrete action of the operator product
of interest on any ket in the ket set can be written as a
weighted sum over all its deformed children. The weights
(i.e. the coefficients C; 45 ,Cp) in this sum can be
explicitly computed but we do not need an explicit
computation in all generality for our purposes here. A
complete evaluation of the coefficients and a complete
specification of the deformed children requires a choice of
coordinate patch around each nondegenerate vertex of
each child cjj;434 . VY [i,1,5,6],,m =1,.n as well as
around the vertex of c. The coordinate choice dependence
of each coefficient derives solely from its dependence on
the density weighted lapse functions.

In the next step we shall define each of the deformed
children of ¢ as the image of a corresponding deformation
of the reference state ¢y by the reference diffeomorphism
which maps ¢, to c. Since we are interested in the
continuum limit, it will suffice to define these deformations
for small enough {e;,i = 1,..,n} where ¢; < §;,i = 1, ..n

and ¢; <¢; for i <j from which we define

n -1
= ( 61) Z Clirpd,|lirpd,) + Colc).
i=l1 [i,1,p.€],,,m=1,..n

(6.23)

Step 2: Contraction of deformed reference states.—Each of
the deformed states appearing on the right-hand side of
(6.22) is labeled by some deformation sequence [i, I, 3, 8] ,,-

Replace each such deformation sequence [i,1, 3, 6],

[i.1,5.6], = [(im-r: L1 B, 6i,,) s --or (1. 1. B3, 6]
(6.24)
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by the corresponding sequence:

[i, ],ﬁ, 60]m = [(im—h Im_l,ﬂjm, 60jm)7 ey (l, I’ﬁjl s 50]'] )],
(6.25)

where we have chosen the partameters {;,j = 1,..,m} to
be sufficiently small in a sense to be described below. Next,
let ¢, be the reference state for c¢. and consider the set
Sts,).c, Of all descendants of ¢, obtained by deforming ¢
by all such correspondent sequences:

v [i,1,p,8),,,m=0,1,.,n}
(6.26)

S{ﬁoi}qco = {Co[i,lﬁﬁo]m

Here the parameters {&y,j = 1,..,m} have been chosen
sufficiently small that every element of S5} ., is @ primary.
Now, each element of the above set (apart from c) is some
mth generation child of ¢;. We define the coordinates
with respect to which the multiple deformation sequence
[i,1,B,8],, is constructed to be {xq}. As discussed in the
construction of primaries in Sec. VI. B, for sufficiently
small deformation parameters &y,1 = 1,..n, these defor-
mations are well defined and the coordinate patch {x,} can
be used as a linear coordinate patch for every nondegen-
erate vertex of every element of S5 -

Next consider a set of deformation parameters {¢;} such
that each ¢; < y; and €; < ¢; for i < j. Let us fix some
particular deformation sequence

[i’ ]’ﬂ’ 60]m = [(im—hlm—l’ﬂjm’ 6ij)’ teey (l’ I?ﬁjl’ 50_]])]
(6.27)

and the corresponding sequence

LBl = (et Dot By ). (L )] (6.28)
We now construct a contraction diffeomorphism which
maps Co[iz5.5,, O Cofirpe,- This difftomorphism will be
constructed as a product of contraction diffeomorphisms
of the type defined in Sec. IV. C. We shall use the index
notation as explained in Step 1 so that the subscript k
attached to the edge index signifies that the edge in question
is one which is obtained as a result of k successive
deformations; similary this subscript attached to the inter-
nal index of a U(1)* charge signifies that the charge in
question labels such a generation k edge. Additionally we
shall refer to the part of the deformation sequence from the
Ist deformation to the kth one within the specific defor-
mation sequence (6.27) as [i, I, 8, 5] so that

i, 1, 8,80k, = [(iker s Lamr s By 803, ) -0 (i1 By L 863,
(6.29)

with the kth generation child produced in this sequence
from the ancestor c, denoted as

Colil 30k, = COl(igor Lyor Sy B0y ) oo (055, 805, )] (6.30)

The states Coli.1 B30k k=1,..,m will be said to form the
lineage for the sequence (6.27). The states cop; ;45,1
Coli1p,), Will be called “successive” with ¢q; ; 4 5,i-1 being
the immediate parent of c; ; 55, - We shall use a similar
notation and language in relation to the deformation
sequence (6.28).

Finally we introduce a hatted index notation as follows.
Consider the kth transition (iy_y,l;_y.f;,.8;) which
produces the child ¢g; ;55 from the parent cq ;3561
The edge indices at the nondegenerate vertex of the child
are distinguished by the subscript k and at that of the parent
by k— 1. The parental edge along which the transition
occurs is the /;_;th one. Consider the edges e, in the child
with J, # I;_; (recall that the numbering of the edges of the
child is correlated with that of the parent as described in
Sec. VI. A). We shall denote such indices with a hat so
that J, signifies Ji # I,_, in the above transition. Clearly,
hatted indices index those edges which are nonconducting
in ¢q(; 1 .6, and any such edge connects the nondegenerate
vertex of the child with a C° kink.

Next, fix some p > 1, recall that ¢ > 1 is defined in
equation (6.11), and proceed iteratively as follows:

(i) First consider the contraction diffeomorphism

5,0.L.M.p1,p2,ps
oYL B0 and perform the replacements

5—>€j1,

{y}—){XO} L,M-’jl,kl,

¢ — ¢y,

2 . 2 .
p1— g(q— Djp. P2 g(q— Dj(p+1),

pa=2(g=Di(p+1)+3 (g~ it (631)

We shall specify the factor Q as we go along. Q will
depend on

(a) the operator sequence Sjlz{OI(Nl),..,@j](le}
starting from the first leftmost operator in the operator
product (6.18) and terminating at the j;th one,

(b) the charges of the child ¢;, 15,6, = Coli1pel, At its
nondegenerate vertex.

(c) the charges of the parent ¢, at its nondegenerate
vertex.

Denoting ¢y by c|;;40 We denote this dependence
through

0= Q(Co[i,l,/}.e]ﬂf;' 2 S, ). (6.32)
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Accordingly, we replace the label Q by the label S and
rewrite the contraction diffeomorphism as

{Xo}jl f<1

Colip.el0, 0 ,(i.1.5,60).5; (633)

The notation indicates that (a) the parent ¢o = cqjj 4.0 18
deformed through (i, 1, 5, §,) and the deformation param-
eter d, of the resulting child is contracted to the value
€;,, both parameters being measured by the parental
coordinates system {x, }, (b) the Q factor is that determined
by the charges of this child, its parent and the operator
sequence S;, (c) the kinks at J1, K, are placed in accordance
with the values of p{, p, in (6.31). Here to avoid notational
clutter we have suppressed the labels p;, p,, ps.

Note that the parental coordinate system {x,} covers a
neighborhood of the displaced vertex of the uncontracted
child cqj ;45,1 - The diffeomorphism (6.33) maps this
displaced vertex to its counterpart in the contracted child
Colizpe),- Hence the push forward of the parental coor-
dinate system {x,} yields a coordinate system around
the displaced vertex in the child Citp,e) = Clidpell
Suppressing various dependences to avoid notational clut-
ter and keeping in mind that we are discussing the
contraction of the specific deformation sequence (6.27)
to that in (6.28) we denote this coordinate system

by {xo'}

€ €, Axo}J1.K,
{xol}:( :[,,1,/;.0]0 (L1560)S ) {x0}- (6.34)

We shall use this coordinate system associated with this
first generation child to define the next transition in which
this child acts as the parent for a second generation child in
(ii) below.

(ii) In the contraction diffeomorphism ®°%:LM-p1-p2-ps

e {y}(i1..60)
replace

0 =€, €= Coirpe,

{y}_){'x(e)“} L’M_)jZ’k%

2(g-Dir(p + 1),

2 .
1= 5 (g —=1)jp, 3

3 P2 —

(4= Dinlp + 1) +5 (4= D (639)

2

p3 = 3
Similar to (i) Q depends on the operator sequence S;, =
{O1(N)), ... 0;,(N;,} starting from the first leftmost oper-
ator in the operator product (6.18) and terminating at the
Jjoth one, as well on the charges of the [i,],$, €% and
[i,1,, €|l children of ¢ at their nondegenerate vertices so

that Q = Q(Co[i Lpe S;,) and we rewrite the contraction
diffeomorphism as

€ ~ S
€i, ~{ng] }.J2.Ko
Cofit pell, 001y oy ) Sy

(6.36)

From the substitution {y} — {x } in (6.35) above, it
follows that the coordinate system with respect
to which the discretization parameters dy;,, €;, are measured
in the transition from the parent CO[z,I.ﬂ,e]m to the child

Cofi.1p2 is the parental coordinate system {x"} defined
in (6.34).

More in detail, consider the uncontracted images of this
parent and child; these are the states cq; ; 35,11 » Cofit p.6,12 OF
Eq. (6.30). Consider the image of both of these states by the
contraction diffeomorphism Eq. (6.33). The image of the
parent simply yields the parent cj; ;41 at parameter €; as
described in (i). Clearly, by virtue of the properties of
diffeomorphic images, the image of the child cj; ;45,2 by
this diffeomorphism defines a state which bears the same
relation to its parent ¢q(; ; .1 a8 Co[; 1 p.5,2, Dears to its parent
Coli.1 p.s,), - It follows that the image of ¢q(; 7 5.5,12 by (6.33)1sa
child at parameter 6, of cq(; ; 3 Where the parameter 6, i

now measured by the pushforward coordinate system {xo' }
of (6.34). It follows that this child is obtained through the
deformation (i, I1,f;,,dgj,) of its parent cqp ;4,1 With
respect to the coordinates {xo‘} The contraction diffeo-
morphism (6.36) acts on this child, contracts the parameter
value y;, and produces the child cq; ; 42 at parameter value
e;, with &y, €;, measured by the parental coordinates {x(g)j‘ }
associated with the parent cq; ;5.1 -

Clearly one can now define a coordinate around the
nondegenerate vertex of ¢q(; ;5 2 as the pushforward of this

coordinate patch {x;" } by the contraction diffeomorphism
of (6.36) i.e. we define

€i1 €ip
{xo' =}
._ (¢€j2’{x0 1.Jh.K, ) {x }
Cofirpal, i 01y 0iy)5Siy ) o

B €y {x }Jsz {xo}jl K,
Cofia pell,” (in11Byy B0, ) S, Cojitpue] (’ 1.5.5).8

) {xo}.
(6.37)

This coordinate patch in turn is used to define the next
transition in the sequence. We can then iterate this
procedure. The structure obtained at the kth step is
described in (iii).

(iii) At the kth step the arguments of @
replaced as

0,0,L,M,py.pa.p3

e il psy) A€
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o — €, » C = Colifpeits

2 .
P = g(‘] - Djxp.

2 )
D2 = 5(61 - Dix(p+ 1),

{0} = {7} LM = TRy,

ps=3a=Dilp+ ) +3@-Di  (639)

with Q depending on the operator sequence S;, = {0,(N)), .., Ojk (N;,)} and on the charges of cqj; ; .t » Cofj 1 p.eji-t at their
nondegenerate vertices so that Q = Q(Co[i. 1p.eli1 s S; ) and we rewrite the contraction diffeomorphism as

m

k-1 7 f
ejk,{xo hWe K

with the coordinate patch around the nondegenerate vertex of cqj; ;5c defined to be

- o
e, A% T LIk

€jy €y * iy -Cix_y
X = (I) . X,
{ 0 } ( Co.[i.l./i.s]’;j‘ (k1T ’/}jk '50jk)'Sjk ) { 0 }

€ .6 ~ A
( q)ejk,{xo“ W1y 3k

Cofiapekl (ke Tt By G5 )-S5 7

(iv) Finally after the mth step we define the desired composite contraction diffeomorphism:

i "ejm’(j]’i(l)’us(jnni(m)

Cogiapait ik Tt By D) Siy (6.39)
€ s{xo}sjl-kl *

Cjo[u./},c]o J(i0.5.60).55, ) {XO}' (640)

(6.41)

€olit fisohm +Siy k=2

where the product is ordered from right to left in
increasing k and where have labeled the left-hand side
by the sequence §; because the sequence §; contains all
Sjk, k > 1 so that the label Sj1 subsumes the set of labels
{S,.k > 1}. This composite contraction diffeomorphism
contracts the §, parameters to their corresponding e
values so that we have

N 2 ejl~€jm~(-71~i(l)""(]mskm)
|C0[l‘»1»ﬁf€]m> - U<q)c()[i.l,/iﬁo] Sj

m "1

) |Co[i,1,ﬁ,50]m>
(6.42)

where U(®) refers to the unitary implementation of
the diffeomorphism ®. The superscripts ¢;,..¢; ~indicate
that the deformations have been contracted down from

in the deformation sequence (6.27) to
€j,, --» €, 1n the deformation sequence (6.28). The action
of the deformation sequence (6.28) on ¢ creates a series

of C? kinks in Coli1p.e,» one set of (N —1) kinks for

60_]] PIEEYY 50_]m

each deformation. The superscript (J,K), ... (7. K,,)
in (6.42) refers to the two preferred C° kinks created by
each such deformation. The preferred kinks (%; , g )
created by the kth deformation are brought to the
specific coordinate distances specified by (iii) above

H’” STy g R < s
— q)ejk.,{xo } kol q)‘jl’{x“}' 1,5
Cofidpelk=t (k-1 L1 By 05 )S; Cofiap.dl, (i.1,5.80).5;,

[see also (iii) of Sec. VL C].28 These coordinate dis-

tances are measured by the coordinate system {xg“"ej“*‘}
associated with the nondegenerate vertex of the
deformed state obtained by the action of the deforma-
tion [i, 1,3, €]’ on ¢y, this vertex serving as the parent
vertex for the next deformation (iy, Iy, ﬁjk,ejk) in the
sequence [i, 1, 3, ¢],,. We shall see in Sec. X and XI that
the placement of these kinks plays a key role in
obtaining an anomaly free algebra.

Step 3: Deformed states as images of contracted reference
states.—The reference state ¢ of Step 2 above is related to
the state ¢ by the action of some reference diffeomorphism
a via the Eq. (6.10). We define

|C[i,1.ﬁ,e]m> =U (a)|C0[i.,1,/ie],,,>' (6.43)
This provides a definition of all the charge nets on the right-
hand side of Eq. (6.23). Here the coordinate patch around
the nondegenerate vertex of the state c|; ;g obtained
through the action of the deformation sequence [i, I, §, €],
on c¢ is defined to be the image of the coordinate patch

BThe choice of these preferred kinks is made, at the moment,
arbitrarily; in Sec. VIII we shall sum over these choices.
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around the nondegenerate vertex of cqj; s, [obtained by
setting k = m in (6.40)] by the diffeomorphism a.

Recall that the coefficient C; ;4 in (6.23) acquires a
coordinate dependence solely from the dependence of this
coefficient on the lapse functions. Each lapse function
is evaluated at some nondegenerate vertex of one of the
states which define the lineage of c[;; 4, - Since we have
provided a unique choice of coordinate patches for every
such vertex, every coefficient on the right-hand side of
(6.23) can be evaluated.

Having provided a unique and well-defined evaluation of
every coefficient in (6.23), we have a complete specifica-
tion of the action of the operator product [ [/, Oi,ei (N;) for

sufficiently small discretization parameters {¢;,i=1,..,n}.

2. Summary

In order to define the discrete action of multiple con-
straint operators of a state ¢ in the ket set of Sec. VI. B, it is
necessary to define multiple deformations of c¢. This is done
in three stages. In the first stage, multiple deformations of
the reference state ¢, are defined with respect to the
reference coordinate system {x,} at small enough param-
eter values as measured by {x,}. These deformations are
built out of a sequence of single deformations each
constructed in detail along the lines of Appendix B and
Sec. V. A. In the second stage, these parameters and the
associated deformations are contracted through the action
of contraction diffeomorphisms. This process involves the
iterated action of individual contraction diffeomorphisms.
The deformation which yields each contracted child in a
deformation sequence is then a deformation which is
defined with respect to the coordinates associated with
the contracted parent. In the third stage, all the contracted
children, now obtained at any small enough set of param-
eter values, are imaged by the reference diffeomorphism
connecting ¢, to ¢ and these images define the desired
multiple deformations of c.

In the second stage described in Sec. VL. D. 1, the
deformation of the parental state c¢g(;; 54«1 in a deforma-
tion sequence [i,/,f, €], of (6.28) by the deformation
(ik=1, 151, By, €;,) yields the child cqp; s 4 ¢ - The deforma-
tion is defined with respect to the coordinate system
{xg"" 1} associated with the parental state. In this
manner the deformation which yields any child cq(; 7.,
through the specific deformation sequence [i,I,p, €],
applied to ¢ is uniquely and completely well defined in
terms of the sequence of coordinate systems {xgj‘""ejk},
k=1,2,..m — 1, together with {x,}. Further, the contrac-
tion procedure also results in the nondegenerate vertex of
the child cq; 74, being equipped with the coordinates

{xg"""™}. As is easy to check, the procedure used in the
second stage to construct these coordinate patches for
any deformation of ¢, only depends on the deformation

sequence which defines the deformation. Thus given ¢, and
any deformation sequence, the deformed state comes
equipped with a coordinate patch which is a pushforward
of the reference coordinate patch {x,} associated with ¢
by an appropriately constructed composite contraction
diffeomorphism, this diffeomorphism being uniquely fixed
by the specification of the deformation sequence (including
the specification of the preferred set of C° kinks, see
footnote 28).

In the third stage the images of each of these coordinate
systems by the reference diffeomorphism which maps ¢,
to ¢ yield coordinate systems which provide a clear
coordinate interpretation for the deformations generated
by the discrete action of the operator product
I, Oi’ei (N;). In particular this procedure yields a unique
coordinate patch associated with the nondegenerate vertex
of each state in the expansion (6.23). It is useful to give
these coordinate patches a name to distinguish them from
other coordinate patches we shall encounter. We shall
refer to the coordinate patches associated with the non-
degenerate vertex of each of the deformed states which
occur on the right-hand side of (6.23) as contraction
coordinates because of the role of contraction diffeo-
morphisms in their definition. In Sec. VIII we shall
encounter a different set of coordinates which we shall
call reference coordinates.

Recall that the only coordinate dependence of the coef-
ficients in the expansion (6.23) arises from the evaluation of
lapse functions. The occurrence of these lapse functions
traces back to the dependence of the quantum shift on the
lapse, this lapse being evaluated with respect to the coor-
dinates associated with the vertex of the state on which the
quantum shift operator acts. Indeed, it is these coordinates in
terms of which the deformations generated by the quantum
shift are defined. From this it is straightforward to see that the
evaluation of such a lapse function must be done in terms of
the contraction coordinates associated with its argument.

Next, let us discuss how the mapping, via contraction
diffeomorphisms in Sec. VI.D. 1. a and reference diffeo-
morphisms in Sec. VI.D.1l.c, of deformed reference
states can be interpreted as the discrete action of con-
straints. First consider the discrete action of the constraint
product of interest on a state ¢ = ¢, which is itself a
reference state so that « = 1. Focus on some contracted
child-parent pair Cofi1p.5m" and the corresponding
“primary” child-parent pair Coli.1,p.55]1 Recall from
Secs. VL.D.1 and VL.D.1.b that cqj;psm-1.Cojirps)
. by appropriate
composite contraction diffeomorphisms of the form (6.41).
We refer to these diffeomorphisms here, respectively, as
Gu—1,®,,. Also recall that the actions of ¢,,,¢p,,_, are
related by that of a single contraction diffeomorphism
constructed in Sec. VI. C, which we denote by ¢, so that
Gm = ¢1¢m-1- We now show that the child ¢g(; ; 5 5n-1 can

m

are the images of ¢z .5,m1s Cofirp.5)
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be viewed as being generated by the discrete action of a
constraint on the parent cg; ; 45, - In our arguments below

we shall initially refrain from creating and placing any C',
C? kinks around the vertex of the child. We shall also set
¢, = 1 in the definition of the contraction diffeomorphism
[see (6.12)] which we have denoted here by ¢;. We shall
return to a discussion of the placement of these kinks and
justify this initial “switching off” of ¢, after we complete
our argumentation below.

First, let the parental (nondegenerate) vertex be GR
without any need for an intervention. That the contracted
child is created by the discrete action of a constraint
on its parent in this case, follows immediately from
Secs. VI.D.1l.a and VL.D.1.b and our discussion of
contraction coordinates above. To see this we note the
following using obvious notation:

(@) copirpsmt = $m-1(Cojisps,m) is the parent of in-

terest.

(i) ¢—1(cojirps,), ) is the deformed child generated by
the discrete action of the appropriate constraint
(Hamiltonian, if f; # 0 and electric diffeomor-
phism if g; = 0) at parameter &y; with this param-
eter measured by the contraction coordinates the
parent in (i).

(i) Copirp.a), =Pm(Copispsy,) =P (Pn-1(Cojirps),)) is
the contracted child obtained by contracting the
child in (ii) from parameter value 6y down to &;
where these parameters are measured by the con-
traction coordinates of the parent in (i).

It is important to note, from the construction of the
contraction diffeomorphism in Sec. VI. C that ¢; preserves
the parent in (i) so that the process in (iii) can be viewed
as a contraction of the child while preserving the identity of
the parent.

Next consider the case where an intervention is required
so that the parental vertex is either CGR or GR of the type
conforming to Case 2 in Sec. V.B. 1. As seen in Sec. V,
the transition from primary parent to primary child now
requires an intervention. Let the intervention holonomy £,
be based on the loop [;. Then this transition unfolds
through the following steps:

(a) holonomy intervention by /; on the primary parent

(l)

011 p.do]" with

m

Coji1 ps,)n- Yielding the parental state ¢

a GR vertex,

(b) generation of the child c([ >, Bl

(c) multiplication by h‘0

Recall that we want to show that the parent cq; ; 4 5 and
child ¢ 144, are related through the discrete action of a
constraint. Such an action requires a holonomy interven-
tion. Since the parent is the image of the primary parent by
¢,u—1, it follows that the loop / labeling such an intervention
must be the image of /; by the same diffeomorphism so that
l:=¢,_1(lp). We may then view the child co;p4 —as

being generated from its parents through the following
steps, analogous to (a)—(c) above:

(a’) A holonomy intervention by /; on the contracted
parent Cofi1ps)mt = ¢m—1(co[i.l.ﬁ.5om-') with
l=¢,_1(ly). This intervention yields the state
P_i(c z>1/35 - ;) with a GR vertex.

(b’1) Generation of the &, child ¢,,_ (¢ l>1 Bl
parent ¢,,_; (¢ (()l[i)l 5 50],,,,1) where & is measured by the

) from its

contraction coordinates ¢, _,{xo} associated with the
contracted parent cq; ;g sn-1-

(b’2) Contraction of this J, child by the action of ¢,
resulting in the § child (bm(co[l 1550, ).

(¢’) multiplication by the inverse holonomy h;!.
Clearly, the steps (a’)—(c’) above can be viewed as
corresponding to the discrete action of a constraint pro-

vided the contraction diffeomorphism ¢; preserves the

(lo)
Coli.1 p.50)!

If this is so and if ¢b; preserves [, it is easy to check that the
steps (a’)—(c’) yield the child co[,-,,ﬁ’(;]m.zg Both of these
are ensured if we choose the “cylinder” supports of the
various diffeomorphisms constructed in Sec. VI. C, whose
product (6.12) yields the single contraction diffeomorphism
denoted here by ¢, to be small enough that ¢, preserves
the graph underlying c; ; 5 52-1 as well as the intervention
loop I. It is straightforward to check that these supports can
be so chosen and we so choose them.

It only remains to discuss the placement of C!, C? kinks.
Any such kink, if present in the child, is either on an edge
between the parental and displaced vertex or “beyond” the
displaced vertex. If there is a segment beyond the displaced
vertex this segment must belong to the parental graph, and
if an intervention is required, also belong to the straight line
part of the intervention loop. The contraction diffeomor-
phism (specifically the diffeomorphism y, of Sec. VL. C)
preserves this part of the parental edge and the intervention
loop. The straight line joining the parental vertex to the
displaced vertex must either be present or absent in its
entirety in each of the following elements: the parental
graph, the straight line part of the intervening loop, the
deformed graph prior to the kink placement. In each
case the contraction diffeomorphism (specifically ¢, of
Sec. VI. C) preserves this straight line. Hence we may, as
above, first consider the deformations without kink place-
ments (in which case ¢, behaves as if it were the identity)
and then at the end place these kinks so as to mimic the
result of imaging the primary child by ¢,,. Since ¢; also
contracts the kink sizes, these kinks can be thought of as

parental state ¢,,_; (c ) while contracting its child.

®To see this note that  cojizpe, = Pm(Cofirps) )
) _m
¢'” (hlo [(l) 1.6.80),, ) ¢|¢m 1(lo) (¢1¢m l(co [i.1..60) )) h i (

(¢1¢m 1( 0[,)1[;50] ))
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being placed by an appropriate holonomy which is an
adequate approximant to identity to leading order in the
contracted parameter value as measured by the parental
contraction coordinates. This is why we had to demand and
implement property (iii)(a) of the contraction diffeomor-
phism in Sec. VI.C. In this manner, the procedure of
constructing a contracted child from its parent can be
thought of as being implemented by a discrete constraint
action. Finally, in the case that o # 1 it is easy to see, by
taking the @ image of the contracted child-parent pair, that
the child can be thought of being generated by the action of
a discrete constraint action on the parent where the parental
coordinates are the a image of the contracted parent as in
Sec. V.D. 1. a.

Note—We have slightly abused our notation for multi-
ple deformations. The notation was set up so that each
individual deformation was defined as in Appendix B and
Sec. V. A. These individual deformations do place the
displaced vertex at the correct location. However the C°
kinks are positioned differently [they lie at distances of
order of the deformation paramter § rather than at the
positions detailed in (iii), Sec. VI. C]. In this section (i.e.
Sec. VI) the contraction diffeomorphisms have been used
not only to contract the displaced vertex to its desired
poistion but to also place the kinks at their desired positions
[see (iii) of Sec. VI.C] as well as to “stiffen” the cone
angle [see (6.17)]. Indeed such positioning and stiffening
is more in line with the picture developed in P1, P2 of

the deformation map (p(q§§,,5) [see (3.5)] as a singular
diffeomorphism which pulls the edges along the /th one. In
Sec. VIII we shall augment the notation used in this section
so as to include the specification of the preferred kink
locations; the stiffening will be implicitly assumed without
recourse to explicit notation.

E. Action of constraint operators on state
not in the ket set

Since the ket set is closed under diffeomorphisms, any
ket not in this set must have some diffeomorphism invariant
characteristic which distinguishes it from elements of the
ket set. We would like to define the action of constraint
operators on such a ket so that this diffeomorphism
invariant characteristic is preserved. However, since we
do not explicitly know what this characteristic is given
such a ket, we use a blunt and inelegant definition of the
deformations generated by the constraints on such a ket.
This definition deforms kets in such a way that the
deformed offspring kets are in the complement of the
ket set if the parent kets being deformed are also in
the complement. This can be done, for example, by
defining the deformation map (see last line of Sec. VI.C
for a definition of the deformation map) to nontrivially
knot one (or more) of the deformed edges at the offspring
vertex. Another possibility would be to define the defor-
mations to be “off edge” as in P1, P2.

In the remainder of the paper we assume that some such
definition has been employed so as to ensure that the
discrete action of constraint operators preserves the com-
plement of the ket set.

VII. THE ANOMALY FREE DOMAIN OF STATES

A state in the anomaly free domain resides in the
algebraic dual space to the space of finite linear combina-
tions of charge nets. Such a state can be represented as a
kinematically non-normalizable sum over charge net
bras. The anomaly free domain will be constructed as
the linear span of basis states. To each basis state we
associate a set of bras such that the basis state is a sum over
bras in this associated “bra set.”” The set of kets corre-
sponding to this bra set is a subset of the ket set we
constructed in Sec. VI. B. We discuss our choice of bra set
in Sec. VII. A and we construct basis states in Sec. VIIL. B.
In what follows we often denote the bra {(c| by ¢ to avoid
notational clutter.

A. Bra set

Let cpy be the bra correspondent of some primordial
reference ket in the ket set of Sec. VI. B. Consider the set of
N edges at the nondegenerate vertex p, of cpy and the
(unordered) set of N U(1)? charge labels, one for each of
these edges. Next consider the set Spimomiapo Of all
primordial reference states each of whose elements satisfy
either of the restrictions below on their edge charge sets
at Po-:

(i) the unordered set of edge charge labels at the vertex
po of each such state is identical to the correspond-
ing set for cpy.

(i) there exists some flip [i,/],, such that the set of
(unordered) edge charge labels at the vertex p, of
each such state is the flipped image of the corre-
sponding set for cpgy by this flip [here we have used
the notation of (6.5) for charge flips].

Recall that any primordial is subject to the restrictions
detailed in Sec. VI. B. Hence only those states which have
the prescribed unordered edge charge sets of type (i) or
(i) and satisfy these restrictions are elements of
Sprimordial,p0- NeXt, fix an element cpy Of Spimordiar,po and
consider the set Sy, po Of all its primaries (i.e. all its
children and itself) together with all their diffeomorphic
images. Consider the set Bp, of all elements of S, pg as
We Vvary Cpy OVer Spimordia,po- LNIS set constitutes our
bra set.

The set has the following property. Let ¢ € Bpy and let
¢ be its reference state (we use the bra correspondents of
the reference kets of Sec. VI. B to define reference bras).
Let cpg be a primordial reference state such that ¢, is a
multiple deformation of cpyq. Then the property of Bp,
alluded to is that Cpp € Sprimordial,PO'
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To see this, note the following. Since ¢ is diffeomorph-
ically related to ¢, we have that ¢ is also in Bpj. Recall
from Sec. VI. B that ¢, must be a primary because it is a
reference state. Hence it must be obtained as some multiple
deformation of some reference primordial in the ket set.
From Appendix C, the unordered net edge charge set at the
nondegenerate vertex of ¢ is the same as some multiply
flipped image of the unordered edge charge set of any
reference primordial ancestor whose multiple deformations
give rise to ¢y. By construction [see (i) and (ii) above], any
such ancestor is in Bpy.

To appreciate the kind of situations covered by the proof
let us suppose that we drop (i) and (ii) and choose the bra
set to be composed of all diffeomorphic images of the
primary family (including cpy) emanating from cpy. As
before the reference state ¢, for any element ¢ of this bra set
must be a primary and hence obtained by some multiple
deformation of some reference primordial in the ket set. Let
this primordial be cpy. Consider the case where ¢, is
obtained as a single electric diffeomorphism type defor-
mation of c¢py. Next note that by construction it must be the
case that ¢, is diffeomorphic to a primary ¢y, emanating
from cpy. Note also that from the kink structure of cpyp, it
must be the case that ¢y, is also a single electric diffeo-
morphism deformation of CP0.30 If we could use this fact
that ¢, is diffeomorphic to ¢y, to conclude that cpy is
diffeomorphic to cp, then, from the definition of (primor-
dial) reference states, we could conclude that ¢pry and cp
are identical. Note however that because the deformation is
of an electric diffeomorphism type, the nondegenerate
vertex of cpy as well as the vertex structure in a small
vicinity of this vertex is absent from the graph underlying
Cprim and, similarly, the nondegenerate vertex of cpry as well
as the vertex structure in a small vicinity of this vertex is
absent from the graph underlying c,. Hence we cannot
directly conclude that the diffeomorphism which maps ¢
t0 Cprim necessarily maps cpr to Cp0.31

In the context above, the property ¢pg € Sprimordial,Po 1S
crucial for the well defined-ness of the dual action of an
electric diffeomorphism operator on anomaly free states
associated with Bpy. As shall be apparent in Secs. X and
X1, for this action to be well defined, it must be the case that
the discrete action of this operator on any charge net c is
such that either the (bra correspondents of) ¢ and all its
single electric diffeomorphism deformations are absent in
Bpq or ¢ and all its deformations are all present in Bpg. If in

¢ rim must have N — 1 C° kinks; any state with m(N — 1)
such kinks is an m deformation of a primordial. Since ¢y has
only a single vertex of valence N and none of valence N + 1, this
deformation is of electric diffeomorphism type.

'We do not rule out that it may be possible to do so using a
more involved argument; since we have not constructed any such
argument, we prefer to cover the adverse consequences, sketched
below, of the possible absence of such an argument through our
construction of Bp in the first paragraph.

the above example involving an electric diffeomorphism,
we had that cpy above was not in Bp, the fact that its first
electric diffeomorphism deformation was in Bp, would
then lead to an ill-defined-ness of the dual action of an
electric diffeomorphism operator on a typical anomaly free
state associated with Bpy.

More in general the restrictions (i), (ii) of the edge charge
set of the primordials in Bpy can be used to conclude that all
possible ancestors of any ¢ € Bp (by a possible ancestor
we mean state on which multiple constraint actions lead to
the creation of ¢) and all possible children of ¢ (by which
we mean all multiple deformations of ¢ generated by
multiple constraint actions) are in Bp, (here we freely
switch between ket and bra correspondents of the state c).
To see this, note that by construction (see Sec. VI) all
possible ancestors and offspring of ¢ are in the ket set.
Recall again that all reference states must be primaries and
consider for ¢ € Bpg any ancestor ¢, of ¢ and its reference
state c,o. By definition of ancestry it must be true that
deformations of this ancestor reference state (with respect
to {xo}) yield a state diffeomorphic to the reference state,
cp, for c. It follows from Appendix C that any reference
primordial for the reference state c,q of the ancestor must
have an edge charge set related to that of any reference
primordial ancestor of ¢ by (i) or (ii). Since any reference
primordial for ¢ is in B pg so must any reference primordial
state for the ancestor reference state c . It follows from the
construction of Bpg that the ancestor reference state and,
hence the ancestor, must also be in Bp,. Finally, note that
by construction, if ¢ is in Bpg then all its offspring are also
in Bpg. This follows directly from the fact that by definition
any such offspring is diffeomorphic to a primary which
emanates from the same primordial reference state as one
which yields the reference state ¢, for c¢. The fact that all
possible ancestors and offspring of any element of ¢ are
necessarily in Bp, ensures the well defined-ness of the dual
actions, on anomaly free states associated with Bpg, of
those constraints which are necessary for a demonstration
of anomaly free commutators.*>

B. Basis states

Let f be a density weight — 1 semianalytic function on
the Cauchy slice £ and let h,, be a semianalytic
Riemannian metric such that %,, has no conformal sym-
metries. Let g be a function on (V=1 of the type specified
in Appendix G. As detailed in Appendix G. 1, this function
is determined by the network of geodesic distances, as
defined by h,;,, between every pair of its arguments. Thus g
is determined once 4, is specified.

320f course we could have chosen the (bra correspondent) of
the entire ket set as our bra set as it would obviously satisfy the
required property. However this would unnecessarily cut down on
the size of the space of anomaly free states.
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A basis state Wy, p, associated with the bra set Bpy is
constructed as a sum over all the elements of Bp, where
the coefficient of each such element ¢ in this sum is
determined by f, h,, as follows. Let the reference state for
¢ be ¢, and let the reference diffeomorphism which maps ¢
to ¢ be a so that

>

c) = U(a)|co)-
Since the coordinate patch {x,} is associated with the
nondegenerate vertex of ¢,, we define the coordinate patch
associated with the nondegenerate vertex of ¢ to be

{xa} = a"{xo}.

We shall refer to this coordinate patch as a reference
coordinate patch to distinguish it from the contraction
coordinate patches defined at the end of Sec. VL. D. 2.

Next, note that ¢, is a primary and hence is either
identical to, or obtained by, some multiple deformation of
some reference primordial in Bpy. While it is possible, in
principle, that this reference primordial is not unique,33 the
number m of deformations of any primordial ancestor
which yields ¢ is unique. To see this, note that from the
nature of the deformations detailed in Secs. III, IV and V,
each single deformation generates a set of N — 1 C? kinks.
Hence the number of C° kinks in &;, and hence ¢, must be
m(N — 1) for some whole number m which corresponds to
the number of deformations of an appropriate reference
primordial which yields ¢, (if m = 0, ¢ is primordial).

Next, with respect to the reference coordinates (7.2) let
us denote the (outward) unit edge tangents at the non-
degenerate vertex v,, of ¢ by {&f ,I1,, =1,..,N} where
“unit” is with respect to the (reference) coordinate norm.
As discussed earlier if v, is CGR we shall count the upper
and lower conducting edges as a single edge, where the
notion of upper and lower is fixed from the kink structure in
the vicinity of v, as outlined in Sec. V. For the conducting
edge we may choose the (outward pointing) upper con-
ducting edge tangent.34 Define

(7.1)

(7.2)

.
Hlm = Helm | = hab(vm)e?me?m’ (7'3)
12,

L, = = (7.4)
JKn#L, 16K,

and let f(v,,) be the evaluation of the density weighted
function f at the vertex v,, in the reference coordinates (i.e.

PWhile it may indeed be unique, we have not investigated the
magter and hence must allow for this possibility.

“"Since (7.3) depends on the edge tangent norm, the choice of
these orientations does not matter; we provide the above choices
for concreteness.

in the coordinate system {x;}). Next, consider the
m(N —1)C° kinks on ¢. We evaluate g; on the arguments
corresponding to these kinks where we have defined ¢; in
Appendix G. Then the coefficient multiplying ¢ in the sum
over state representation of Wy = p s

S (Zhn,ﬁlm)f(vm) 75)

m

where for any element of the algebraic dual ¥, we write its
action on a charge net state |b) as (¥|b).*” The formal sum
over states representation of the state (¥,  p, | is

par = 3 (o (Izh,,,,H,m)fwm)) (@

<E“€BP0 m

. (7.6)

where we have implicitly used Eqgs. (7.1) and (7.2) to
evaluate the quantities gz, h; ,H,; ,f(v,) on the right-
hand side.

Finally we note the following key property of the right-
hand side of (7.5):

Invariance property—1Let the coordinates appropriate to
the evaluation of the right-hand side of (7.5) be defined
through (7.2) i.e. let the right-hand side of (7.5) be
evaluated with respect to the reference coordinates for c.
Consider a second coordinate system {y} around the
nondegenerate vertex v,, of ¢ such that the Jacobian matrix

J({xz}, {y})i = gfl be such that its evaluation at v,, is a
constant times a rotation i.e.

J({xa}- Ay}, = CRY (7.7)
for some C >0 and some SO(3) matrix R. Then the
evaluation of the right-hand side is the same whether the
coordinates used are {x;} or {y}.

This is easily verified by inspection. It is straightforward
to check that, in obvious notation,

Fomloy = 0nllgxy. Hi,lpyy =CH,

(- (7.8)
The first equality follows from the density —1/3 nature of f
and the second from the fact the coordinate vector lengths
are invariant under rotations of the coordinates and scale
inversely with scaling of the coordinates. Further since h;
involves ratios of norms of coordinate tangents, it is
invariant under such a transformation. Finally, from its
definition in Appendix G, g; is coordinate independent.

PRecall an element of the algebraic dual is a linear map from
the finite span of charge net states to the complex numbers. We
shall use the notation ¥ or (‘| for such elements depending on
our convenience.
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VIII. CONTINUUM LIMIT: FINAL FORM AND
CONTRACTION BEHAVIOR ON ANOMALY
FREE DOMAIN

In Sec. VI we defined the contraction of deformations of
states from larger discretization parameter to smaller ones
using contraction diffeomorphisms. The contraction moves
the nondegenerate vertex from a larger coordinate distance
from its immediate parent vertex (in appropriate coordi-
nates as explained in Sec. VI.D.2) to a smaller one.
However the contraction also has a “fine structure” involv-
ing the positioning of the C° kinks generated by the
transformation which produces the state in question from
its parent. Each choice of this fine structure yields an
acceptable discrete approximant for the constraint action. In
Sec. VIII. A we democratically sum over these fine struc-
tures and display our final choice of discrete approximant
for the action of a single constraint in Egs. (8.5) and (8.6)
which replace Eqgs. (4.5) and (4.6). Constraint product
actions can then easily be defined based on the machinery
developed in Sec. VI. In Sec. VIII. B we display the dual
action of the constraint product on basis states in the
anomaly free domain and define its continuum limit. The
contraction of deformations of kets is then transferred to
that of the bras in the bra set of Sec. VII. A and thence to the
coefficients which multiply these bras (see Sec. VII. B).
The evaluation of the continuum limit then depends on the
contraction behavior of these coefficients. We detail this
behaviour in Sec. VIII. C. A complete specification of the
contraction behaviour requires a specification of the Q
factors in the definition of the contraction diffeomorphism
of Sec. VI. C. We discuss this in Sec. VIII. D. With this, we
are ready to compute the continuum limit action of
constraint products in Secs. IX and X.

A. Final form of discrete constraint action

The discrete action of the constraint product (6.23) is
based on the single constraint actions (4.5) and (4.6) at
sufficiently small parameter value e so that the single
constraint actions are

- nh 3 —2/3 Clidpe)—C

P55 v —_—, .1
CINLe =P N3 3= (8.1)
" - n3 _
DS[NI]C:TEN 2/32 tl[f 0,¢) _C) (82)

The deformed kets in (6.23) arise as a result of repeated
applications of (8.1) and (8.2). These kets are defined
through the contraction of their images at larger discretiza-
tion parameter values as explained in Sec. VI. The con-
traction procedure involves a contraction of kink vertices to
precisely defined locations. These locations are specified
by a choice of two edges in the child, ¢(; ; 4., each of which

is distinct from the edge along which the child vertex is

displaced [this is reflected in the dependence of the
contraction diffeomorphism on the ‘hatted’ indices in,
for example, Eq. (6.42)]. As a result, a deformed ket
C(i1p¢) is characterized not only by the labels (i, 7,8, ¢)
which describe the main features of the deformation such as
the location of the displaced vertex but also the labels
J1. K, which describe the fine structure of the location of
the kinks.*® Hence a more complete notation replaces the
label set (i,1,p,¢) by (i,1, jl,f(l,ﬂ, €). Of course a
complete set of labels pertinent to multiply deformed kets
is, for example, that in Eq. (6.42). However, to display the
single constraint actions in a more complete way than in
(8.1) and (8.2) it suffices to use the abbreviated set of
symbols (i,1,J;,K,,p.€) so that Eqs. (8.1) and (8.2) take
the form

C

- Clid K pe) ~
[ ] ¢ —ﬂzé‘-_ (U))Uyz/SZZ%’
(8.3)

with f=+1 or f = —1, and

n3 ) 1
i4rx M)y /SZE(

D.N]c = CliLd, Ry p=0.) = €)-

(8.4)

Since each choice of hatted indices provides an acceptable
discrete action which is derivable from the heuristics of
Sec. II, summing over these choices also yields an
acceptable discrete action. Accordingly we may repeat
the considerations of Sec. VI based on the following form
of single constraint actions:

[]c—ﬂ——N(x V) 2/322 SN D)

(i1J,.K, pe) — €
S — 8.5
T 3)
with = +1 or f = —1, and
A h 3 _2/3
D[N, v
e[ t]C : 477: Z}Zk N 2)
1
X —(€(i10,.ky p-0.) = ©)- (8.6)

The N(N — 1) factors stem from the choice of 2 of the
N —1 edges which bear the C° kinks created in the

The subscript 1 refers to the fact that the hatted indices
number nonconducting edges of the child c(; ; s—¢ ) Which, here,
is obtained by a single deformation its parent c; see the discussion
after Eq. (6.27) for the definition of hatted indices.
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deformation of the parent. Equations (8.5) and (8.6) are the
final form of the single constraint actions which we shall
use. Once again, similar to Sec. VI. D we can expand the
action of the constraint operator product [[ ]2, O; . (N;)] on

|
(H 0,0M))

where we have abbreviated

[ 1.0, K. Boely = (i1 Lot By T K)o

Each c;; ;& g, 18 defined exactly as in Sec. VI. C. Thus,
each ¢, j i s 18 the a image (where as before a maps the
reference ket ¢y to ¢) of the state cq; ;544 and each
Coli1.J.k p.e, 15 Obtained as the image of the state coj; s 4,
through Eq. (6.42), the state cq[;;45,, being defined by
repeated conical deformations with respect to the coordi-
nate system {x }, each of the type described in Appendix B
and Sec. V. Note that the deformations of Appendix B
and Sec. V do not have a further fine structure labeled by
hatted indices so that cj;; 45, 18 defined as the result of
the deformation [i, 1, 3, 8],, of Eq. (6.25) applied to the
reference state c.

The discussion of the coordinates underlying the
deformed  states cj; 54, IS exactly that of

Secs. VL. D. 1.a and VL. D. 2. The coefficient Cj; ; ; ¢ 5

Clm

in (8.7) acquires a coordinate dependence solely from
the dependence of this coefficient on the lapse functions.
Each lapse function is evaluated at some nondegenerate
vertex of one of the states which define the lineage of
Clirdkpe,- Since the considerations of Sec. VI.D (see
especially Secs. VL. D. I.c and VI. D. 2) have provided a
unique choice of coordinate patches for every such vertex,
every coefficient on the right-hand side of (8.7) can be
evaluated.

11m

e—>0

(lm (] | &) E
€]—>0 .
[i,1.J K Bel,m=1,.n

¥t Py H

= lim( lim ..
6,,—>() €,-1—0

Clearly, in order to compute this limit we need to know the
hmltmg behavior of the coefficients C; ; ; x4 and of the

“amplitudes” (¥y,, p,|c(i 17k s, )- The limiting behavior
of the coefficients stems from the dependence of the
coefficients on the coordinate dependent lapse function

n -1
o-(I«)" >
i=1 [i.1.].K f.e]

(J}E})(Tﬁhuh,P“ | (H Oi,ei (
i=1

the state ¢ through repeated applications of (8.5) and (8.6)
to obtain an expression of the form (6.23) except that the
label set must now, in obvious notation, be embellished by
the specification of the hatted indices so that we have

. ]m> + C0|C> (87)

Ciipike,

mom=1,..n

(i.1.71. K. ;- ;)]

B. Dual action on anomaly free domain

The dual action of ([[,; 0; (N
W h,,.p, 18 defined as

(le’hab!PO‘ (H Oi,ﬁ (Nl)> c)
i=1

The action of the operator product ([T, O;(N;)) is then
defined by the continuum limit:

(3}% <enhf30' y (elll_%(lpf,hnb,Po| (]} Oig, (M)) IC>> ) ) -

(8.10)
The continuum limit action exists if Eq. (8.10) holds for all
charge net states |c). From Sec. VI.E, this limit vanishes
for all ¢ which are not in the ket set. Indeed, it follows from
the discussion in Sec. VII. A that this limit also vanishes if
(the bra correspondent of) ¢ is not in the bra set Bp,
associated with the anomaly free state Wy, , p,. Hence we
need only analyse the continuum limit for states ¢ (whose
bra correspondents) are in the bra set Bp . For such states
we expand out the discrete operator product action as in
(8.7), so that we have

;)) on a basis state

(8.9)

Ni)le))-)

Ciirikpd, (Yrnwproliriipe, ) + Co(¥rn,.plc >))> (8.11)

evaluations, these coordinates being dependent on the €
parameters. The limiting behavior of the amplitudes can
be computed from that of the expression (7.5) and the
limiting behavior of the functions f, g and the (reference)
coordinate dependent unit edge tangents. In the next
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section we compute this limiting “contraction” behavior of
the amplitudes.

C. Contraction behavior of amplitudes

In this section we are interested in the behavior of

(le,hab,PU|C[i,lj.i<.ﬁ,e]m> (8.12)

for small ¢; . We shall restrict attention to the particular
deformation sequence i, /, J.K, S, €], in this section. As in
Secs. VI, VIIL. A the deformed state c|;; 5z 5 Will be
assumed to have been generated by the discrete action of
the operator product ([[, Oi.ei (N;)) on the state ¢ [see
(8.7)]. Hence the sizes of the contraction parameters are
defined with respect to the contraction coordinates of
Sec. VI (see the end of Sec. VI. D. 2). More in detail, the
contraction coordinates which specify the magnitude of ¢;
are those associated with the immediate parent ¢j; ; 5 5 gjn-1
of the state c|;;j z s - On the other hand, the amplitude

m

(8.12) is evaluated using the reference coordinates asso-
ciated with ¢ = ¢|; ;5 ¢ 5 0 (7.5).

Therefore we proceed as follows. First we transit from
the reference coordinates associated with ¢, ; j ¢ 5 to the
contraction coordinates associated with this state. It turns
out that the evaluation (7.5) is the same irrespective of
which one of these coordinate systems we use. This is a key
result and can be traced back to the definition of deforma-
tions developed in Sec. VI. Next, using the fact (6.40)
that contraction coordinates for a deformed state and its
immediate parent are related by a contraction diffeomor-
phism, we are able to compute the amplitude (8.12) in
terms of the contraction coordinates of the immediate
parent. Since the size of the parameter ¢; is measured
by these coordinates, we are able to evaluate the small €,
behavior of this amplitude.

As noted in Sec. VIIL B, if ¢ € Bp, then all amplitudes
on the right-hand side of (8.11) vanish. Hence hereon
we focus on the nontrivial case ¢ € Bp, so that

Clirikpel, € Bry

1. Step 1: Transition from reference to contraction

coordinates of ¢y j g g
Let the reference ket for the state ¢, 5z, be

(clirgkpe, Jo- Let the reference diffeomorphism be
A1k pe, SO that similar to (6.10) we have

|C[i.1,j,k,ﬁ.e]m> = U(a[i,l,i,f(,ﬁ,g]m) (C[i,l,]f(,ﬂ.e]m)()>’ (8.13)
so that the associated reference coordinate system around
the nondegenerate vertex v,, of ¢j; ;5 5. 18

(a[i,l,],f(.ﬂ,e]m)*{XO}' (8.14)

We now turn to the contraction coordinates for
Clird.kpe,- Let the reference ket for ¢ be ¢y and let the

reference diffeomorphism which maps ¢, to ¢ be a so that
(6.10) holds. Note that we have not restricted ¢, to be a
primordial. The state ¢, j ¢ 4 is obtained as the image of

the state c¢g; ;5 ke DY @ Recall that co;;555q 18

obtained through the action of a composite contraction
diffeomorphism on the state cg|;;45,, as in Eq. (6.42).
The state cqjisp,, 18 @ primary which is obtained by
deforming the reference state c, m times, each these
deformations being defined with respect to the reference
coordinates {x,} and each of these deformations being of
the type detailed in Appendix B and Sec. V.** It follows
from (iv), Sec. VL. D. 1. b that the contraction coordinates
around the nondegenerate vertex of cy;; 5440 —are

m

obtained as the image of the primary coordinates {xq}
around the nondegenerate vertex of cqjsps,, by the
composite contraction diffeomorphism of (6.42) defined
by (6.41). We denote the contraction coordinates for

Gjl.

Colitg R pel, DY {x, “im }.39 We then have that

€jy i (T1 K ) oes (T Ko)

Gj "€jm -
{xgmy = ((Dc[ijﬁﬁo],,fsjl (8.15)

) {0}

and that the contraction coordinates for c|;;j x 5 ~are

{x(ejl ..Sjm} = g {x(e)-il "ejm}

=a* (q)ijl”ejm'( sKl)’-'a(‘/nlaKm)>*{xO}' (816)

[i.18:801m i1

Our task is to compute the Jacobian between the
reference coordinates (8.14) and the contraction coordi-
nates (8.16). This is computed in the Appendix E wherein it
is shown that the Jacobian between the two coordinate
systems takes the form of a constant times a rotation matrix.
From the invariance property of Sec. VIL B it then follows
that we can as well evaluate (8.12) using the contraction
coordinates (8.16).

"In the more complete notation introduced in Sec. VIII. A the
left-hand side states in these equations would also have a hatted
indice specification.

*¥These deformations do not have the additional specification
of hatted indices because the placement of the associated C°
kinks in Appendix B and Sec. V does not require this additional
specification.

This is similar to the notation used in (6.40). Recall that
(6.40) was defined for k < m. Extending the notation in (6.40) for
k = m, it can be easily checked that (6.41) together with (6.40)
for k = m — 1 imply Eq. (6.40) for k = m.
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2. Step 2: Transition to contraction coordinates
of immediate parent

The immediate parent of ¢j; ; 5 & 5 15 €[; 1507 g1~ The
contraction coordinates for this immediate parent are the o
image of those for the state ¢qj; ;5. ; gn-1. Accordingly,

taking the @ image of (6.40)) with k = m — 1, we have that
these contraction coordinates are

{xgl “Cim_1 } =at {xgjl “Cim_1 }

The relationship between the contraction coordinates of the
child-parent pair ¢g(; ;5 & ge) > Cojirpel k-t can be readily
inferred from Eqgs. (6.40) (with k = m — 1), (8.15), (6.41),
(8.16) and (8.17), so that we have that

[} = @ o (8.17)

CIEG. ~ A
— a* q)ejm’{xol m-t }"/anm *{xejl“ejm—] }
Cofit pem=1 (it L1 Py B0jy ) Sy 0 ’

(8.18)

The above equation simply expresses the (@ image of
the) fact that the contraction coordinates of any deformed
state and its immediate parent are related by the action
of a contraction diffeomorphism defined in Sec. VI.C.
Indeed the iterative procedure used in Sec. VI.D.1.b
implements this very fact. Next, from the fact that for
any diffeomorphism y and any coordinate systems {x}, {y}
we have that

. ox*
= By

(8.19)

r(p) (p)
it follows that the Jacobian between the contraction
coordinates of offspring and immediate parent is given
exactly by that of Eq. (6.16) with the identifications

€i1 +Cim_1

o — Sjl +€im — ]
X = Xa )

X0 = xg R d=c¢

i (8.20)
Recall from the discussion at the beginning of this sub-
section as well as from Sec. VI. D.2 that the contraction
parameter ¢; is measured with respect to the parental

contraction coordinates xZ”"ejm“. Hence the contraction
behavior of the amplitude can be inferred from the behavior
of the quantities h,i ,H,j fs 913k pa (see Sec. VI) in

these parental contraction coordinates. This a straightfor-
ward though lengthy exercise and we relegate it to the
appendixes. Specifically, we compute the contraction
behavior of the first three quantities in Appendix F using
the Jacobian in Eq. (6.16) and that of the last quantity in
Appendix G. 2.

D. Specification of Q factors

Recall that Q is one of the parameters specifying
a contraction diffeomorphism [see (iii), Sec. VI.C].
We had briefly discussed its specification in Step 2 of
Sec. VI. D. 1. b. Here we summarize its dependences [see
(6.32)] in a bit more detail. Our explicit choices for Q will
be displayed in Secs. IX and X wherein the rationale for
these choices will be self-evident.

Recall that we are interested in a state which is produced
by the action of some specific product of Hamiltonian and
electric diffeomorphism constraint operators (6.18) on a
state c¢. This state is produced through some deformation
sequence applied to its ancestor c. We are interested in the
contraction of this state to its immediate parent in this
deformation sequence. Using the notation of Sec. VI. C, let
the state be an mth generation offspring c|;; j ¢ 55 Where
we have used the augmented notation with the hatted
indices as explained in (8.8), and let its parent be
Clirg .k pen- and let the parameter being contracted away
be 6; . Then Q depends on the net edge charges of the child
and the parent at their nondegenerate vertices as well as the
sequence of operators starting from the first operator to the
jmth one i.e. on the sequence

Oim
Sjm - H Oi,5i (N,) (821)
i=1

Since the charges at the vertices of c¢j;j %44 >
Clirg.k pop-t are the same as the charges on their (diffeo-
morphically related) &, counterparts, we express the
dependence Q for this contraction in the following equiv-

alent notations:

Q(C[i,l,/},é]jﬁ’l""’ Si,) = Q(Co[i,l,/fﬁo];’r‘-m’ Si)
= Q(Coi1.p.50),,0 COli1 502" > Sim)-
(8.22)

The individual constraint operators in the above sequence
can be of two types, namely a Hamiltonian constraint or an
electric diffeomorphism constraint in the kth U(1)? direction
with k£ =1, 2, 3. Let us denote these constraint types as &
and d;, k = 1, 2, 3 respectively so that the constraint type of
an operator C(N) is & and that of D(N}) is d,. We shall say
that the constraint type ; of the operator O;(N;) [or of its
discrete approximant Oi,éi (N;)]is either & or d. It then turns
out that the information in §; relevant for the specification
of Q is the sequence of constraint types (ty, ...t; ). We shall
redesignate the symbol S; to denote the ordered set of
constraint types (f;,...t; ):

Si

Henceforth we shall interpret S; in (8.22) through (8.23).

C=(t, ). (8.23)
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Q also depends on the cone angle 6 which characterizes
the conical deformations of reference states, these defor-
mations being constructed using the primary coordinates
{xo}. This cone angle is fixed for all deformations of
reference states in the bra set which labels an anomaly free
state. To avoid notational clutter we will suppress explicit
notational reference to the dependence of Q on 6.

IX. ANOMALY FREE PRODUCT OF TWO
HAMILTONIAN CONSTRAINTS

In Sec. IX. A we compute the continuum limit action of a
product of two Hamiltonian constraints. In Sec. IX. B we
compute the commutator between two electric diffeomor-
phism constraints and thereby demonstrate the anomaly
free nature of the commutator between the pair of
Hamiltonian constraints whose product is computed in
Sec. IX. A. The computations are long but straightforward.
We shall only highlight the main steps.

Note.—In the remainder of the main body of the paper,
unless mentioned otherwise, all the edge charges consid-
ered will be net charges where, as in Appendix C we define
the net charge as follows:

Definition: Net edge charge—The net charge g’ ; on a
conducting edge e; at the nondegenerate vertex of a charge
net is the sum of the outgoing upper and lower conducting
charges; if the edge ¢; is nonconducting we shall define its
lower conducting charge to be zero so that the net charge
gl on such an edge is just its outgoing charge g'.

In what follows we shall drop the net subscript; all
charges henceforth, unless mentioned otherwise, will be
net charges and the net charge associated with an /th edge
will be denoted simply by ¢'.

A. Product of two Hamiltonian constraints

1. Notation

We compute the continuum limit (8.10) when n = 2 and
O;(Nj;),i =1, 2 are Hamiltonian constraint operators. We
restrict our attention to the case that ¢ in (8.10) is in the bra
set because, as mentioned in Sec. VIII. A, for ¢ not in the
bra set, the dual action vanishes. In Eq. (8.10), we set

Nl M? ﬁlEﬂM’ NZEN7
€ =90, € =0.

P> = P
9.1)

As we shall see, the discrete action of this Hamiltonian
constraint operator product generates the doubly deformed
states ¢|; ; 5 & p.5),» the singly deformed states ¢ ; ; x4 5 and

CT RSy Pord) and c. Here we have defined the transitions:

[i’l’jvk’ﬂ’éb = [(il’llij’kbﬁM’S)?(i’I’jlvklvﬂN’é)]’

(9.2)

[i,1,J.K,B.6], = (i,1,J,, Ky, By.0). (9.3)
The singly deformed state Cid RSy fund) is distinct from
the singly deformed state (9.3) and is obtained through the
deformation (j,J ,fil,gl, Pu.0) of c. In particular, the
parameter for this transformation is 6 whereas that for
(9.3)is 6

The above transitions are exactly those described in
Secs. VI. D augmented with the hatted indices of (8.8). To
see this, use (9.1). It is then straightforward to see that by
setting, in (8.8),

m=2, j,=1, j =2, weobtain [i,I,J,K,p, 6,

(9.4)

m=1, j =2, weobtain [i,I,J,K.5.6],, (9.5)
m=1, j =1, i=j, I=J, J =Ry,

[A(l = Sl? we obtain (j,J,R],Sl,ﬁM,(_S). (96)

The contraction coordinates associated with the states
obtained by applying the deformations (9.4)—(9.6) are,
denoted respectively (in abbreviated notation) in Sec. VI. C
and in Step 2 of Sec. VIIL. C by {x&“' }, {x¢' }, {x&’ } and the
coordinates for ¢ by {x,}. Here we set

(=1, {2} ={¥},

(@ ={) L@ ={) (9.7)
The notation we use for the nondegenerate vertex of
C S U CGuRSipd) 1S VIS
Clirikps), IS Virs,  Curikps, 1S UVirps,- (98)

Wherever required explicitly, we denote the density weighted
object B evaluated at point p in the coordinate system {y}

by B(p, {»}).

2. Calculation

From (8.5) we have

ClNle = g V(o ™ Y I 0
i1.J..K,
(9.9)
é[M]Eé[N]ac—ﬂzvg N(v, {x})v»
x ClMse 2.8 — C[M];c
EN< (N=1)(N=2)
(9.10)
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Using (8.5) again,

M(v V0i.15),» {xé})’/v[,zl/ﬁa]

Clin).kps), ~ CliLl.kpo),
N-D(N-2)5

C[M]éc[tlll(ﬂé ﬂM

. Z

irdy.Jr. K,

(9.11)

:>(TfhabP0|C[ 16Ci17.kp.3,)
3n
=Bug Mg, 4D,
% Z TfhabPu|C:IJkﬁ5]> (lehabPo|c[i.[..7,i(,ﬁ,§]]>‘

(N-1)(N=2)o

irdyJy K,
(9.12)
Using (7.5),

e ClilJR p.6) f( [l[ﬁ5]2 {x })
X (ZhLZHL2>
L,

where we have used Steps 1 and 2, Sec. VIIL. C to evaluate
the amplitude with respect to the contraction coordinates at
v(i1p.6),- Next, we evaluate its contraction behavior.

From Appendix G.2, and using ¢ < 1, we have, as
6 — 0,

2\ 2
Z‘g(’[llll(/ib] _g(’llll(/ié (5)3(

Jv Kz

(Yt hoolClin 7.k p.5,) =

(9.13)

Vo(c [i.B.602" S1)

x h; (14 0(8%) (9.14)

where we have used (9.1) and (9.4) to set j=1
in Eq. (G12).
From Appendix F, a straightforward computation yields

ZhLzHLz =[(N
L,

7 (0)a,(6)b =
5\ s (03155, VPV 4 0(8) (9.15)
where, as in Appendix F, f/ﬁ‘f)“ is the constant extension in

the chart {x°} of the unit upward direction for the /,th edge
|

—1)(N =2)(2+cos*0 + (N —3)|cosb|)]

of the immediate parent c(;; j ¢ 5., - Here ¢(;;j k 5.4, 15 the
immediate parent of ¢|; ; j ¢ 4 5, - This immediate parent has
contraction coordinates {x°} from (9.7) and unit upward
direction for its /th edge \75(?)“
an open neighborhood of the parental vertex vj;;5 by

. This vector is extended in

defining its components in the chart {x°} at any point p in
this neighborhood to be the same as its components at
the parental vertex, this neighborhood being large enough
to contain the child vertex vj;; 45, Finally we have, from
(F15) that

F(iirpa, {xé’s}) = (8)_%(q_l)f(v[i,l.ﬂ.6]z’ {x°}). (9.16)
We choose the Q factor above to be
Q(Co[i,1,ﬁ,5o]§~‘ .S1)
_ N(N-1)(N-=2)
" (N=1)(N=2)(2 +cos?0 + (N — 3)| cos 4|)]
(9.17)

Clearly, Q > 0 as required. From (9.13), (9.14)—(9.17), and
setting

S (6)a
Vhaowispa )PPV = [0, 9.08)
we have
Z (\wahab,Po|C[i,1,j,i<.ﬂ‘5]2>
i1y Jy.K,
= (3)
- N(N - 1)(N - z)gc[i.l],k./}.é]l Zhll ”V11 Hﬂ[i.l./x.&]z
ir0y
X f(vi1p4, 15° 1)+ 0(8%). (9.19)

From (7.5), the second amplitude in (9.12) is

(‘Pf’hub*PO |c[i,l.j,k,ﬁ,5]l >
<ZhL1HL1> (9.20)

From (9.19) and (9.20) and the fact that v;;45), is

:gc[h,_y'k.,,.éh ( V0i.1,5.6),

displaced by an amount q, 6 in the direction Vg) from

Vjirs),» We have that

Y Fraplcinikpe,) =3NIN = DN =2)(¥rn, plcirikp5,) FINN - D(N=2)g,

irdy.Jy.Ky

X Zhl qlll VI

i

8 HVll ||pf(p {x5}))|p jig),

+0(3) (9.21)
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where similar to Appendix F, we have set

= () ~(8)a ~(8)b
1971, = v ha ()P (0) 47 () (9.22)

with \A/f)a( p) being the constant extension of \A/f)‘Z at vj; 1 ),- The partial derivative J, can be taken with respect to any

coordinates as its tangent space index a is contracted with that of \A/Y?)“. If we take it to be the coordinate derivative with

respect to {x°} then it passes through Vﬁ?)a( p) and only acts on hgy,, f. Using (9.21) in (9.12) and taking the limit § — 0,
we have that

. A 3hN 273
%Té(wf,hnbfo|C[M}$C[i,1,j,i<,/3.5]l> ﬁM M(v [iJ.élw{xé})’“"[f.{ﬁh
Chatd s, th ar Vi, (O ||V1] pf (P AN =y, (9.23)

i
Using the notation of Appendix F, we may write this concisely as
. N 3AN -2/3
%lrré(vahab.PJC[ ]5C[z 1.J.K B.8), > ﬁM i 1[”/5]lgc[tl11(/ir5] Zhl qll <H}|( - U[”»‘S]l))’ (9'24)
- i1,

Next consider the term C[M];c in (9.10). We have, using (8.5),

- 3n CHIRSpuS) ~ €
C[M](Sc_ﬂM_M( (P W (9.25)
jJ RS,
A similar analysis yields
. R 3aAN _
lim (.1, CMl5c) = B M0, )i a3 Hhud} 750 AT, 7 (P A e (9.26)

which can be written in the notation of Appendix F as

. A 3AN _ i
U (%1, CIMi) = B g v 03 o (Y (p = 0). (9:27)
—> J,J

In the above calculation the Q factor is the same as that in (9.17):

N(N - 1)(N =2)
N = 1)(N =2)(2 + cos0 + (N = 3)| cos 4])]

Q(Co(jvjvﬂMﬁo)’c’Sl) = [( (928)

and we have used Eq. (G12) in conjunction with Egs. (9.1) and (9.6). Note that the Q factor in (9.28) and the Q factor
in (9.17) are labeled by the same sequence label S; = & (see Sec. VIII. D for a discussion of this labeling). It follows from
this fact, together with the charge independence of the Q factor in (9.28) and the discussion in Sec. VIII. D, that the Q
factors in (9.28) and (9.17) must necessarily be identical.

Finally, we need to the compute the contraction limit § — 0 of (9.24). From Appendix G. 2, and using ¢ < 1, we have,
as 6 - 0,

ch[u.my.a]l =Y (5>%(q_1)Q(Co[u,p’,(so]?'l . $2)hy(1+0(8%)) (9.29)

Tk

where we have used (9.1) and (9.5) to set j = 2 in Eq. (G12). Using Eqs. (F14) and (F27) from Appendix F, as well as (F16),
we have that as 6 — 0,
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Z}H q (HII = U[i,1,§]1)>

= 6 {(M (v} 14, {x})V1O ((U[i.l.(s]l’{x})\/hab(v[i.l.a]l)wv?)

X [(N = 1)(N =2)q},_; + (Zq ) (1 +cosO(1 + cos’d + (N —3)[cos0])]) + O(5°)}
Li#1

= 5_%(‘]_1){<M(7J[i,1,5]l ) {x})q;zzlv?aa (f(v[i,l,é]l ’ {X})\/hab(v[uﬁ]] >V? ‘A/?)
X [((N = 1)(N =2) — (N =2)(cos 0)(1 + cos® + (N — 3)| cos 0])]) + O(6%)} (9.30)

where we have used gauge invariance applied to the net charges to go from the first equality to the second.
Next, we choose the Q factor in (9.29) to be

: v, 3N(N - 1)(N -2)
Q(Co[i”’ﬂ'ao]?’l’ 2) = 3 [(N=1)(N=2) = (N =2)(cos0)(1 + cos’d + (N = 3)| cos |)]

Vsl

(9.31)

), as required, this Q factor is positive. Note that for Q
to be well defined, we need the nondegenaracy COIldlthIl 2 # 0 (see the relevant discussion in the beginning of

Sec. VI. B).
Next, using (9.29)—(9.31) in (9.24) yields

Z limj_ (le,ha,,.Po \C[M J5¢ [i.1.J.K.8.5), )
Ji.K,

=3(N)(N=1)(N =2)Byu %—NV_Z/BgchIZq ( V01,8, {x})vl ((U[i,l,(s]l,{x})\/huh(v[i,l,s]l)‘77‘7l;))

+0(8). (9.32)

In the above equation note that q}‘l —; refers to the charge on the /; = Ith edge of ¢; ; j ¢ 5 5, - This charge is related to the
charge on the /th edge of ¢ by an (i, §,,) flip. Hence, depending on whether ,;, = 1 we have from (2.25) and (3.7) that

ar— =g} =6"q) F ) _ehqj. (9.33)
k

Two identities, key to the anomaly free result, follow from the above equation:

S di = di (934)

id

and

th 9= Z ‘11) . (9.35)

i,iy

Using (9.33) in (9.32) we have

Z hm (¥f.1,,.p,|CIM I5¢i.3.k88),)
Ji.k

= 3NN = DN =2 S 57 0.y Ot (Mo, D50 (£ 015, (D (0100, 9595 ) ) + 05,

(9.36)

Next, we expand the second line of (9.36) in a Taylor approximation and sum over i, / to obtain
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ZMZZ“M?( Vi1, {x})Vl ( ( Vi8], Ax}) a( V16, )WW))
1 i
= S 2045 (w0 L 930, (10 e (07577))

i

#35 ai¥hon (o) (770 (10 ey rap)¥i9) ) )| |+ 0@
—Zh,{zq,( 0. 1) V0, (f (0 D) s (1) 75 7%))
% (V50 (M(p.Ax)) (V50 (£ 16Dy () V377 ) ) ]} +0(8). (9.37)

Here we have used the identities (9.34) and (9.35) to obtain the second equality from the first.
Next, consider the dual action of (9.10) on the anomaly free state in the limit & — O:

1 . a
m( Z %E%(Tf.hab,Po|C[M]Sc[i,1,j,i(.ﬂ.5]l>>

i1.J;.K,

1 (¥, 5, 1 CIMCIN] ) = By o N0, {3

> (¥rn,p,|CIMI5c)). (9.38)

il.J,.K,

The second line of (9.38) can be evaluated using (9.37). The zeroth order term in § in this expansion is precisely
3(N)(N — 1)(N —2) times the right-hand side of (9.26). In the term on the third line of (9.38), the amplitude is exactly that
of (9.26) and the indices i, J;, K are dummy indices for this amplitude so that the amplitude is simply multiplied by a factor
of N (coming from the sum over I), (N — 1)(N — 2) (from the sum over the hatted indices) and 3 (from the sum over i).
Hence the zeroth order term of the second line cancels the contribution from the third line and this is what allows the 6 — 0
limit of the left-hand side in the first line to exist.

Note.—This cancellation is precisely due to the —1 structure introduced in Sec. IlI, this structure being motivated by
considerations of “propagation.”

Finally taking the 6 — O limit of (9.38), we obtain

(i CIMICVIG) = 3 (G ) N L1

{27500 (4 ()0, (110 (1 map)P599))) |} 939

Next, as in Appendix F. 3, it is convenient to define the quantity H’Lm (N{,N,, .., N3; p) associated with Eq. (8.9) as
follows. Let ¢ in (8.9) be in the bra set (as in this section). Let the contraction coordinate associated with the nondegenerate
vertex of its mth generation descendant, cj;;j ¢ 5. » be denoted by {z} so that {z} := {x% % }. Then we define

1
HY (Ny...Nip) = [ Nicioi (p Az VI (P) 0, (f(p, {Z})\/hah(p)Vim (p)V2, (p)) (9.40)
i=1

where the product is ordered from left to right in order of increasing i and the point p is in a small enough neighborhood of

the nondegenerate vertex of ¢;; ;5 ¢ 51 Wwherein the unit (with respect to {z}) upward direction XA/Lm associated with the

L,,th edge at this vertex admits the constant extension \A/Lm (p) as discussed in Appendix F. 340

Ot is straightforward to check that if we express Eq. (9.40) in terms of the notation and the right to left ordering convention for ||
used in Appendix F. 3 that (9.40) takes the form of (F18).

106007-46



CONSTRAINT ALGEBRA IN SMOLINS” G = 0 ...

PHYS. REV. D 97, 106007 (2018)

Making contact through (9.1) with (9.40), Eq. (9.39) can
be written succinctly as
3AN ) 2 43

(lpf,hab,Po |C[M]C[N]C> =3pnPu (g v Ye

<32 Dl hH M N:p =)

(9.41)
from which the commutator can be written as
(% 7.1,,.2,|[C[M], CINle) = 3fnp @77) i,
<D Z@;)%,(H%(M,N;
p=v)—H}(N,M;p =v)).
(9.42)

B. Electric diffeomorphism commutator

1. Notation

We compute the continuum limit of the electric diffeo-
morphism commutator. Accordingly we consider the action
of (8.9) on a state ¢ when n = 2 and Oi(Ni),i =1, 2 are
electric diffeomorphism constraint operators. We compute
the commutator from the ensuing product of discrete
approximants and then take the continuum limit. Similar
to Sec. IX. A. 1, and for the reason articulated there we
restrict attention to the case that c is in the bra set. For this
section we use notation similar to that in Sec. IX. A. 1.
However, the notation denotes transitions and their asso-
ciated structures which are appropriate to the action of
the electric diffeomorphism constraints and hence are
often distinct from those appropriate to the Hamiltonian
constraint in Sec. IX. A. 1.

We use the notation (9.1) in (8.9) so that once again we
have

NIEM’ ﬂlEﬂM’ NZEN’ ﬁ2EﬂN’
€ =6, € = 6. (9.43)
|
Ao h3 ~2/3
Ds[NJe = == N(x(0)i*> >
14r T
so that
A_ — A = o h 3 _2/3
D5[M;|D;[Ni|c = TEN(X(U))W Z Z

I ]k,

Using (8.6) again,

The discrete action of the electric diffeomorphism con-
straint operator product generates the doubly deformed
states ¢[; ;5  g],» the singly deformed states ¢|; ; ; ¢ 5 and
C(iy.k, 5,5 and c. Here we have defined the transitions:

A

[i,1,J,K,68], = [(iy.1,, 5. K>, p = 0,),

(i,1,J,, K\, p=0,6)], (9.44)
i,1,J.K, 8], = (i.1,],.K,,p=0,6), (9.45)
(i,J.R,.8,.8) = (i.J.R,.5,.p =0.5). (9.46)
We set in (8.8)

m=2, j,=1, j, =2, toobtain [i,I,j,k, 1,
(9.47)
m=1,  j =2, toobtain [i,[,],K,d];, (9.48)

m=1, j, =1, I=J, J,=R,, K, =8,

toobtain (i, J, R, S,.5). (9.49)

The contraction coordinates associated with the states
obtained by applying the deformations (9.47)—(9.49) are,
denoted respectively (in abbreviated notation) in Sec. VI. C
and in Step 2 of Sec. VIIL C by {xz*', }, {x*}, {xa' } and
the coordinates for ¢ by {x,}. Similar to (9.7), we set

{rd=1{x},  L@y={"} (@) ={)
{x2} = {x%9}. (9.50)

The notation we use for the nondegenerate vertex of

c 1s v, Clia Ry 5,.5) is V(17 5)
c[i,I,j,i(,(‘)']] is U[i,l,&]lv C[iv1=j~k~5]2 1S U[i,l.ﬁ]z' (951)

2. Calculation

Applying (8.6) to ¢ we obtain
1 1 ,
mg(c[i,z,xm] —c) (9.52)
1 1 . .- .

(N-1D)(N-2)6 (D5M]cji 15 k5, — D5[Mi]c). (9.53)
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A o 3h 2/3 i1.J.K.5), 1J.K.5),
DilWJe1.55, = g M(vias, PN, S T I b, (9.54)
1,,J,.K,

3h ( 5 {x5})y 2/3 Z ('Pf,ha,,.Po|C[i,1j.i<,5]2>—(‘Pf,h,,,,,Po|C[i.1,},f<,5]l>
i.1,6] v .

N i1.3] _ 9\ S
4xi 5 (N=1)(N-2)

= (Yrn,.p |D[Mi}2$c[i,1j,k,5]l> = (9.55)

Using (7.5),

(‘Pf.hab,Po|C[i.1,),i(,5]2> ,,,Ka]z flv V0i1,6], {x } <ZhL2HL2) (9.56)

where we have used Steps 1 and 2, Sec. VIIIL C to evaluate the amplitude with respect to the contraction coordinates at
virg,- Next, we evaluate its contraction behavior.

From Appendix G.2, and using ¢ > 1, we have, as 6 — 0

Z‘gc[u J.K.8) gc[;,/,f/.Ko] (3)%( >Q(c0[i,l,§0]§" ’ Sl )hll (1 + 0(52)) (957)
K,

where we have used (9.43) and (9.47) to set j = 1 in Eq. (G12).
From Appendix F, a straightforward computation identical to that used in deriving (9.15) yields

Zh,zHLz [(N = 1)(N = 2)(2 + cos?0 + (N — 3)| cos 0])] \/ha,, (025,) VIV 4 0(3) (9.58)

where, as in Appendix F, \71(,5)“ is the constant extension in the chart {x°} of the unit upward direction for the 1, th edge of the

immediate parent c|; ; j ¢ 5 - Similar to (9.16), from (F15), we have that

F@iirg, {x2%) = (3) 79D f (014, {x°}). (9.59)
We choose the Q factor for this electric diffeomorphsim type transition to be identical to that of (9.17) so that

N(N = 1)(N =2)
[(N=1)(N =2)(2 + cos?0 + (N — 3)| cos ])]

Q(Co[i,l,ao]g-‘ 8y) = (9.60)

where Colit 5ol2" denote the &, images [see (6.25) and (6.26) and Sec. VIIIL. D] of the electric diffeomorphism children

Clird R Note that in principle the Q factors in (9.60) and (9.17) could be chosen to be distinct from each other because in

the former case the sequence label S| corresponds to d; whereas in the latter case S| = h.
From (9.56), (9.57)—(9.60), and setting, similar to Sec. IX. A. 2,

o~ (8)a ¢,(8)b = (3)
Vhawirs ) VOV = 1971, (9.61)

we have

2(5)
S W mlensnin) = NV - DN =20 ST e ). 06)
I

115K,
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From (7.5), the second amplitude in (9.55) is
(le,hab,Po|C[i.1.},k,§]]> = gc[,-v,jv,ﬁ(_éhf(”[i,].,ss]I , {xé}) (ZhLIHL1> . (9.63)
L,

Similar to the derivation of (9.21), from (9.62) and (9.63), we have that

Z (‘Pf,h,,,,.Po|C[i.1,],f<,5]2> =N(N-1)N - 2)(‘Pf,hah.P0‘C[i,l,],i{ﬁ],>
117‘72fk2

+ON(N = 1)(N =2)gc,,. . th O 7% 1pf (PAX )| pmr s, + O(5%)
(9.64)

where

=(6) ~ (8)a ~ (8)b
V1, =\ ha () V0 () 7" () (9.65)

with \75‘?)“( p) being the constant extension of ‘75‘15)“ at vj; 1 5),- As in Sec. IX. A. 2, the partial derivative 0, can be taken with

respect to any coordinates as its tangent space index a is contracted with that of V;‘?)a; if we take it to be the coordinate

derivative with respect to {x°} then it passes through V;‘?) “(p) and only acts on h,, f. Using (9.64) in (9.55) and taking the
limit 5 — 0, we have that

3aAN

. - -2/3 =iy
(1, DU T3cle13 k5,0 = o MO0, AN 00, D1V @ll V) 1 (P A D)
— 7
(9.66)
In the notation of Appendix F, we may write this as
. AT 3aAN -2/3 i=i
}_;I%(‘Pf,huh,Po|D[Mi]sc[i,1,},f(,5]l> = Tmyv[i_{ahgc[,,,“ﬁh Zhl qr, (H}] (p= U[i,].ﬁ]l))' (9.67)
— Iz
Next consider the term ﬁ[ﬂi]gc in (9.53). From (8.6),
Xty -2/3 CiJkS85) — €
D[M]sc = —M( Axpws Z m (9.68)
J.R, .8,

As can be seen from (9.53) and (9.68), the term D[ :]s¢ does not contribute to the commutator because it is multiplied by a
product of lapse functions evaluated at the same point v. Nevertheless it is instructive to evaluate it for reasons which will
become clear towards the end of this section. A similar analysis to that involved in obtaining (9.67) yields

(¥, DI 5€) = L2 M0 ()™ 0 g O T () (9.69)

which can be written in the notation of Appendix F as
. P 3hN L2
%E?)(T,f.ha,,,PJD[Mi]S c)=—— / gLZthJ (Hj(p = v)). (9.70)

In the above calculation the Q factor is the same as that in (9.60):
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N(N - 1)(N -2)

Q(co(isa0): €0:S1) = [(N=1)(N =2)(2 + cos?0 + (N — 3)| cos 0])]’

(9.71)

and we have used (9.43) and (9.49) to set j = 1 in Eq. (G12). Note that the sequence label §; is identical for (9.60) and
(9.71). The charge independence of the Q factor (9.60) together with the discussion in Sec. VIII. D implies that the Q factor
for (9.71) must necessarily be the same as that for (9.60).

Next we compute the contraction limit 6 — 0 of (9.67). From Appendix G.2, and using g > 1, we have, as 6 — 0,

ch[i,l,],i(.&]] = gC )% Q(CO[U&OO] S2)hl(1 + 0<62)) (972)
Ji.K,

where we have used (9.43) and (9.48) to set j = 2 in Eq. (G12). From Eqgs. (F14), (F27) and (F16), as § — 0 we have

Zhl 61 H}l = Vi1.8), ))

= gy { (M (0315, 4D V504 (£ (0105, {6]) mbwm] Vi)

x [(N = 1)(N q}‘ -+ (Zq" ’> 1+ cos (1 + cos?0 + (N — 3)| cos 0])]) + 0(52)}
11#1
= 5_%(q_1){(M(7f[i,1,5]1, {x})%‘li’szﬁ’a ( (7}[115 {xH/ has (v 115]1)‘/1 VI)
X [(N=1)(N=2) = (N =2)(cos 0)(1 + cos*d + (N — 3)| cos 0])]) + O(*)} (9.73)

where we have used gauge invariance to go from the first equality to the second.
Next, we choose the Q factor in (9.72) to be

v AN(N = 1)(N =2)

Ocinaft+$2) = S [N 1) (N =2) = (N = 2)(c0s0)(1 7 o8 = (N = 3)]cos 0]

Vi)

(9.74)

Note that in (9.74), we have S, = (d;, d;) whereas in (9.31), S, = (h, h) so that the Q factors for these two equations can be
(and are) chosen to be distinct from each other.
Using (9.72)—(9.74) in (9.67) yields

UL

jz:}slinq’fh“”m [M]ﬁc[zIJK5]1> AN)(N=1)(N=2)—— dri
1

X gehidi) = (M (01, D V500 (£ (000, 0D an (01319, V575 ) ) + O(&2).
(9.75)

In the above equation note that q?‘l _, refers to the charge on the (7, = I)th edge of Cli1.0.k.8),- Since the transition involved is

of electric diffeomorphism type, there is no charge flipping so that this charge is equal to the charge on the /th edge of ¢ so
that we have

92 = 4i- (9.76)
Using (9.76) in (9.75) we have
3AN _
Z hm lI'fh PolD[ ]5C[i,1,],k,5],> AN)(N=1)(N=2)—— 4 2/39c

i Kl

X gy (M1, D) V504 (£ (20, 0D R (0131, V5V ) ) +0(8). (9.77)
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Expanding the second line of (9.77) in a Taylor approximation and summing over /, we obtain

Zhlfﬁ( Vli.1.8), {x})va ((U[i,l,é]p{x})\/hab(v[i,l,é]l)‘77‘7?>>
= 2onu{ (MG )P0 (0 (e (0¥ 7))
+8(gp V10, (M(p. (1) (V10, (£ (51 () V597) ) )|} o+ 082 (978)

Next, consider the dual action of (9.53) on the anomaly free state in the limit & — O:

. Ao Ao 3 _ 1
%E%(‘ij,hn,,fo|D[Mi]3D[NiLSC> N(v,{x})vy 2/3 —(N DN ( Z hm(qu h ;,P0| (M ]5C[i.1.],k,5]1>>
1k
- Z (‘Pf,hab,Pom[Mi]SC))- (9.79)
1.J,.K,

The second line of (9.79) can be evaluated using (9.78). The zeroth order term in & in this expansion is A(N)(N — 1)(N — 2)
times the right-hand side of (9.69). In the term on the third line of (9.79), the amplitude is exactly that of (9.69) and the
indices 1, J,, K, are dummy indices for this amplitude so that the amplitude is simply multiplied by a factor of N (coming
from the sum over /) and (N — 1)(N — 2) (from the sum over the hatted indices). Hence the zeroth order term of the second
line cancels the contribution from the third line only if we set A = 1.

On the other hand, as mentioned above the term on the third line of (9.79) does not contribute to the commutator. Hence
we are not restricted to the choice A = 1 if we are only interested in the commutator. This commutator is

N - 3n 3.
lim (2 s, (DM ;D[N ]s — N <> M)le) = Favi N —T(N=2%
{(Z (¥, N {x})bwi]sc[,-n.k,ﬂl>)
I] K

<Z hm (¥fn.po M (0, {x})D [ ]501111(5] >)} (9.80)

1.7,k

Using (9.78) in (9.80), taking the 6 — 0 limit and leaving A undetermined (and in particular, not necessarily equal to
unity), we obtain V¢

fha,,PO|ZD DI = (G ) {th 4V ING, ) V20,M(p, {x})

= M (v {x})V](@N(p.{x}))][V] a(f(p’{x})\/hab(p)‘,\/lll‘,\/?)”pv}' (9.81)

Making contact through (9.43) with (9.40) this can be written succinctly as

S .o 3AN () 5
(¥l DU DIV = A(G) (700,30 S (a3 M. Nsp = 0) = BN M p = ). (982)

Comparing this with (9.42), we obtain

T A 4A
(¥t nppol p_IPIM], DN Je) =

1DV, _m(lpfm,,,o\[é[M],C[N]c>. (9.83)
i=1

Comparing this with (2.11), we obtain an anomaly free commutator if:
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(a) we choose successive actions of the Hamiltonian
constraint to have opposite flips so that fy; = —fy
so that Sy fy = —1;

(b) we choose A = 3.

Making these choices we obtain the desired anomaly
free result. Note that because we have been obliged to
choose A # 1, the continuum limit product of two electric
diffeomorphism constraints is not defined; only their
commutator is well defined. However, the electric diffeo-
morphism constraint operator is not one of the constraint
operators used to generate the constraint algebra; its role is
restricted to the demonstration of an anomaly free com-
mutator between a pair of Hamiltonian constraints in
accord with (2.11). Hence the ill defined-ness of the
product of two electric diffeomorphism constraint operators
is not an obstruction to our treatment of the constraint
algebra.

X. MULTIPLE PRODUCTS OF HAMILTONIAN
CONSTRAINTS

In Sec. X. A we derive, through an inductive proof,
the expression for the action of multiple products of
Hamiltonian constraint operators on an anomaly free state.
In Sec. X. B we show that the action derived in X. A yields
anomaly free single commutators (see Sec. I for our usage
of the term “anomaly free single commutator”). Since the
detailed calculations below are similar to those of Sec. IX,
we shall only highlight the main steps of these calculations
in our exposition.

A. Multiple products of Hamiltonian
constraints: Derivation

1. Introductory remarks

We note the following:

(1) The discrete action of a product of n Hamiltonian
constraints in (8.9) requires a choice of # (which
characterizes the charge flips) for each constraint
action. In the rest of this work, we choose 8 = f; for
the ith Hamiltonian constraint in (8.9) to be +1 if i is
odd and —1 if i is even. This is consistent with the
choice made in Sec. IX. A for the case of n = 2.

(2) Note that Eq. (8.9) is evaluated through the two steps
outlined in Sec. VIII. C so that the coordinate patch
with respect to which the amplitude of a deformed
child generated by the operator product is evaluated
is the appropriate contraction coordinate patch.
Only for the undeformed state c, the amplitude is
evaluated with respect to the reference coordinates
associated with c.

(3) Recall that the cone angle is acute or obtuse depend-
ing on whether the deformations are upward or
downward. Hereon we will tailor our choice of
cone angle to the choice of bra set so that |cos 6|
is fixed and the same for all deformations of ket

correspondents of members of the bra set and is
chosen such that

| cos O] BN gy < 1 (10.1)

primordial

with @max defined as in (6.9), where the set
of edge charges in that equation can be taken to
be those of any primordial charge net in the bra
set.*' Note that this condition is equivalent to the

condition
|cos O|(3NgRS,) < 1 (10.2)
where
et — i 103
G =, max l’mN)l‘II' (10.3)

where the charges ¢! are the net edge charges* at the
nondegenerate vertex of any element of the bra set.
It is easy to check that this equivalence follows
immediately from Appendix C together with the
definition of the bra set in Sec. VIL A.

(4) Equations (6.7) and (6.8)are defined as conditions
on primordial charges. Appendix C shows that the
net charges and primordial charges on correspond-
ing edges are identical or flipped images of each
other. Hence the Eqgs. (6.7) and (6.8)) also hold for
net charges on multiply deformed children of pri-
mordial charge nets and we shall so interpret them
when we refer to them hereon.

2. Summary of choices

It is useful to note that from Secs. VI.B, VI.C, VI.E
and (3) of Sec. X. A. 1, that the action (8.9) is fixed once the
following choices have been made:

(a) The set of primordial states Spmordial-

(b) A primary coordinate patch {x,} around a point p.

(c) A set of primordial reference states, one for each
diffeomorphism class of states in Spmorgial, the non-
degenerate vertex of each such reference state being
located at p, and linear with respect to {x,}. These
primordial reference states are divided into exhaustive
and mutually exclusive classes, each class defining a
bra set so that members of each class have the same set
of unordered edge charges. For each class we choose a
cone angle @ which satisfies (10.1).

“The value of ghim®®® is independent of the choice of

primordial charge net in the bra set since any such primordial
has the same set of unordered edge charges (see Sec. VIIL. A).

This notation is consistent with the Note at the beginning of
Sec. IX; note that this equation is in general distinct from (4.1)
because the charges on the right-hand side of that equation refer
to the actual edge charges not the net edge charges.
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(d) A reference state for each distinct diffeomorphism
class of elements of Symary» €ach such reference state
itself being an element of Sprimary.43

(e) A choice of reference diffeomorphism, one for each
element ¢ of the ket set, which maps the reference state
¢ for this element ¢, to c.

(f) A choice of deformation such that any (single or
multiple) deformation of any element of the comple-
ment of the ket set is also in this complement.

Once the choices (a)—(f) are made, the formalism is rigid
in that the choice of upward/downward conical deforma-
tions is fixed as in Sec. V, the contraction procedure is fixed
as in Sec. VL. C, the discrete action of operator products is
fixed as in Sec. VI. D with the sign flips chosen in accord
with (1) above, the anomaly free basis states are chosen as
in Sec. VII and the continuum limit is defined as
in Eq. (8.10).

3. Notation

Recall that the Cauchy manifold is a C*-semianalytic
manifold for some k > 1. We compute the continuum limit
(8.10) for arbitrary n < k with Oi(Ni),i =1,..,n being
Hamiltonian constraint operators. We restrict our attention
to the case that ¢ in (8.10) is in the bra set because, as
mentioned in Sec. VIII. A, for ¢ not in the bra set, the dual
action vanishes.

We denote the nondegenerate vertex of ¢ by » and its
associated reference coordinate patch by {x}. We shall be
interested in a proof by mathematical induction. In the
course of that proof, it will suffice to develop notation only
for singly deformed states. The single deformations of
interest will be denoted as

i,1,J.K,.6), = (i,1,J,,K,.5.6). (10.4)

The vertex of the singly deformed state cj;;j ¢ 44, 18

denoted by vy; s 5, and its associated contraction coordinate

patch by {x}. In the induction proof it will turn out that the
single deformation of (10.4) will play the role of the first of
m + 1 deformations applied to c¢. Accordingly, in relation
to the notation of Sec. VI. C, in this section we have set

{xd'} = {+°}.
(10.5)

{xa}E{x}’ Ji=m+1, ¢ =6,

I

“Recall that Sprimary 18 the set of primaries generated from
reference primordials through repeated conical deformations of
the type constructed in Appendix B and Sec. V with respect to
{x0} s0 that Sy, is determined once (a)—(b) above are fixed. In
particular the cone angles characterizing the conical deformations
are fixed by (b). Recall also that the ket set Sy, comprises of all
diffeomorphic images of elements in Sy, and hence is also
determined once (a)—(b) are fixed.

As usual, wherever required explicitly, we denote the
density weighted object B evaluated at point p in the
coordinate system {y} by B(p,{y}). We shall also make
extensive use of the notation developed in Appendix F.

4. Proof by induction

Let n be a positive integer with n < k — 1 where k is the
differentiability class of the semianalytic Cauchy slice.
Define k,, as

if nisodd,

if niseven.

(10.6)

Let ¢ be in the bra set and let the ith net charge at the /th
edge at its nondegenerate vertex v be g}. Define

(10.7)

Claim.—The continuum limit of the dual action of a
product of n Hamiltonian constraints when n is even is

(¥ (H e e

3AN\" R
= (_3)k” (—> (U_%)ngcz|q1|nh1H7(Nl, aey N}’l’ U),

8ri 7

(10.8)

and the continuum limit of the dual action of a product of n
Hamiltonian constraints when 7 is odd is

(.| (ﬁ C(Ni)> c)
- o () wra i (L)

i=1

x hiH?(Ny,..,N,;v), (10.9)

and where we have used Eq. (9.40) to define

H}(Ny,..,N,;p) so that

YN, N, 0) = (szn_imp,{x})w"m <p>aan_w)
i=1

< (APl (P VH )V P))|

(10.10)

and the product is ordered from left to right in increasing i.

106007-53



MADHAVAN VARADARAJAN

PHYS. REV. D 97, 106007 (2018)

Proof by induction.—Step I: In Sec. IX. A we have shown that (10.9) holds for n = 1 [see (9.27)] and that (10.8) holds
for n = 2 [see (9.41)]. More in detail, clearly, we have shown (10.9) holds for n = 1 and that (10.8) holds for n = 2 for any
choice of (a)—(f), Sec. X. A.2 with ¢ being in a bra set resulting from these choices.

Step 2: Assume that (10.8) holds for n = m, m even, for any choice of (a)—(f), Sec. X. A.2. Then we show below that
(10.9) holds for n = m + 1 for any choice of (a)—(f), Sec. X. A.2. We have that

m—+1
fhub Py <H C

Using (8.5) we obtain

(¥t (ﬁ @<Ni>)@a<Nm+1>|c> (it

: 8ri
i=1

(HC >|C111K/55]

Here the (—1)™ factor is unity for m even in accord with (1),
Sec. X.A.1.* The second amplitude in the last line of
(10.12) is given by (10.8) with n = m. The first amplitude
(within the summation symbol) looks as if it could be
evaluated through a direct application of (10.8). However
from (2), Sec. X.A. 1, the coordinates associated with
Cli.1.d.k p.e), are the contraction coordinates whereas (10.8) is
applicable only if these coordinates were reference coor-
dinates. Recall however that we have assumed (10.12) for
any choice of (a)—(f). Our strategy is then to make choices
for (a)—(f) such that (10.8) is directly applicable to the first
term in the context of such choices.

We proceed as follows. Consider some fixed choice of
(a)—(f) in Sec. X. A. 2, for which (10.8) is used to evaluate
the second term in the last line of (10.12). In this fixed
choice, as in Sec. VI, let ¢, be the reference state for c, let
the reference diffeomorphism which maps ¢ to ¢ be a, let
the deformation of ¢, with respect to the primary coor-
dinates {xo} at parameter & be cy 45, and let the
contraction image of c((; s 5.5, by the appropriate contrac-
tion diffeomorphism be c; ;5 & 55, 80 that ¢ 5z 55 18
the image by a of ¢, ; j & 4.5, - Using (10.5) this contraction
diffeomorphism from (6.33) is

€j=m1=0.{x0} JiK,

o-(i.1.,8.80).Sj, =m 11 =9 (1013)

where for notational simplicity in this step (i.e. Step 2),
we have denoted the contraction diffeomorphism on the
left-hand side of (10.13) by ¢. Now consider the choices
(a’)—(c’) below which are images of the fixed choice made
above by the diffeomorphism ¢. These ¢ choices are then
as follows:

*The equation as it is written would also be valid for m odd
where from (1), Sec. X. A. 1 we require an overall —1 = (—1)"
factor coming from our choice of the m + 1th § flip when m is
odd.

) ) =Lim(¥p, p, (Hc >C‘5(Nm+1)|c>. (10.11)
_ 1
(x(v)) L2/3miﬁzk (¥ .,
¥ P <U ) (10.12)

(a’) The set of primordials Sy, yrimorgiar 1S chosen to be the
image of the set Spimoraiar Of primordials chosen in
accordance with choice (a); since Syimoraial 18 closed
under diffeomorphisms we have that Sy ;imordiar 18
equal to Sprimordial-

(b’) The primary coordinate patch is ¢*{x,} around the
point (o).

(c’) The set of primordial reference states is just the set
of images by ¢ of the fixed choice (c) of reference primo-
rdials. The cone angles, as measured by the primary
coordinates in (b’), for deformations of primordial
reference states are chosen to be identical to the choices
in (c) for their diffeomorphically related counterparts.

Next, note that the set of primaries, Sy primary, are now

generated from the reference primordials of (c’) through
conical deformations with respect to ¢*{x,}; it follows that
S primary consists of the images of the elements of Spimary
by ¢. The ket set generated from Sy yimary 1 then identical
to the ket set Sk, generated from Spyimary because the ket set
is closed under the action of diffeomorphisms. Next, con-
sider the diffeomorphism class [c(; ;7 z 55,1 Of €i 17k 5.5,
Clearly we have that [c;;5z44,] =
since  Co(j 1p.6,) € Sprimary> Eq- (10.13) and (¢’) above
imply that ¢ ;5 k44, € Spprimary- Hence may choose

[oi1ps,))- Further,

Cofir.J.kps), 10 be a reference state for c;; ;& 45 - Recall

that ¢, 5 k4, i the image by a of co;;jkp0,
Accordingly we choose (d’) and (e’) as follows:
(d’) We choose the reference state for [c; ;5 & 55, to be

Coli )R p.8), and choose reference states for other diffeo-
morphism classes of elements of the ket set arbitrarily.
(e’) We choose the reference diffeomorphism for
Clirdkpa), 0 be a and choose the remaining reference
diffeomorphisms arbitrarily.
Finally, since the ket set is unaltered we retain the choice of
(f) i.e. we set (f’) to be the same as the fixed choice (f)
above. It is then easy to see that the bra set Bp, chosen with
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respect to (a)—(f) is also a valid bra set with respect to
(@")-(t").

Accordingly we consider the same bra set Bp, as before
and choose 4, f also as before and obtain a state ‘I"}/Z_ h.P,

based on its amplitude evaluations in the context of the
choices (a’)—(f’) above. Our choices (a’)—(f") [especially
(d’), (e’)] ensure that the reference coordinates for
Clirdkps, I the context of these choices is the same
as the contraction coordinates for this state in the
context of the fixed choices for (a)—(f) above. It is then
straightforward to check that the contraction coordinates

|

for any deformed state generated by the action of
(IT, C.(Ny)) on Clirgkps), i the context of choices
(a”)—(f") coincides with the contraction coordinates for the
same deformed state when it is generated by the action of
(TT", C..(N))C5(Npmy 1) on c. Tt follows that the evaluation
of (10.8) in accordance with Sec. X. A. 2 in the context of the
choices (a’)—(f"), and, with ¢ replaced by ClirJ .k po), and
with W, , p, replaced by ‘I’;’f n.p,» coincides precisely with the

first term (within the summation symbol) in the last line of
Eq. (10.12). It then follows from (10.8) that

i 3AN
‘Pfh,,bpo <H >|Czljl(ﬁ6]> (—3)k”’<8m> (v U[?Ia )" gc,,“(w Z|qL1|mhL]HL (Ny,...N,; [115]) (10.14)

where, using the notation (10.5) and(9.40), the coordinate dependent parts of H}' (Ny,..,N,,; virs), are evaluated with
respect to the coordinates {x°} which serve both as the reference coordinates for the state Cli.1.0.k ps), 10 the choice scheme
(a’)—(f’) or as the contraction coordinates in the fixed choice scheme of (a)—(f) above. We now revert back to the latter

interpretation of these coordinates.

Using the contraction behavior of & , H 2"] s 9eu1ikpa, derived in Appendixes F, G. 2 together with (10.5), we obtain,
as 66— 0
D (¥ra,p, <H (N ')) i1k pa,)
J.K, =1
3AN
= (=3)" (87;1) (v, :m ) gcQ<C0[i.1.ﬂ,50]:‘°’Sm+1)hl
G2, "(N = 1)(N = 2) + cos” (Zmﬁm ) =2)(1 -+ co0-+ (v - 3)|cosol
Ly#1
(HNﬁr DT (P o DY s DIV P, ) + 08 (10.15)
We set
Q(Co[i,l,ﬂ,ao]:’oﬁ Smi1)
_2 = 1m
i ( (V)N = (N =2)1G| ). oo
(y” m {1Gr, " (N = 1)(N =2) + cos™(0)(>_ 1, 111G, 21]™) (N = 2)(1 4 cos*0 + (N — 3)| cos 6]}

Here g refers to the charge on the /th edge at v in ¢ and g, to the charge on the L th edge at vj;; 5, in Clir) .k pa), - Since m

is even, the Q factor above is manifestly positive as required. With this choice of Q we obtain

Z(Tfha»Po (HC >|CIIJK/)’5] )

Ji.K,

— (<3)fn (3hN) YN (N = 1)V = 2)h ||

8ri

xHNZ:’;rlp{xh Ve (9 (P N R (D) V)V E (D) s

+ 0(8%).

1

(10.17)
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As in our treatment of similar terms in Sec. IX, we expand the right-hand side of the above equation in a Taylor
approximation in powers of 58 1tis easy to see that the zeroth order contribution exactly cancels the contribution from the
second term in (10.12). The first order term provides the only contribution to (10.12) which survives in the § — 0 limit. It is
straightforward to check that taking this limit of (10.12), we obtain

¥, (ﬁ D) sl

3AN m+l 5 . '
— (-3 ( | ) <vv3>m+lgcz{ G N (. (6H ]
il

8ri

V9 (HN;m;;ll DV () (o ) s (P) P V(ﬁ)))pzv}- (10.18)

From (10.6) it follows that when m is even k,, = k.. Using the notation (9.40) together with this fact in (10.18) yields

mil o (3RN\mt! | | .
(‘Pf,h,,b,m|<| | C(Ni))|c> = (=3)%mn (—> (o ’”* e E {1d:" " qjh HY Ny ooy N3 ) (10.19)
i=1

8ri 7T

which is the desired result (10.9) with n = m + 1.

Since the fixed choice (a)—(f) underlying this derivation is arbitrary and since the assumed form for n = m holds for any
such choice, the result (10.19) also holds for any choice of (a)—(f).

Step 3: Assume that (10.9) holds for n = m, m odd, for any choice of (a)—(f). Then we show below that (10.8) holds for
n = m + 1 for any choice of (a)—(g). The first part of our analysis is identical to the first part of the analysis in Step 2. Note
that in Step 2, Egs. (10.11)—(10.13) hold regardless of whether m is odd or even [see footnote 44 with regard to the validity
of (10.11) when m is odd]. The second amplitude in the last line of (10.12) is now given by (10.9) with n = m. To apply
(10.9) to the first amplitude in the last line of (10.12) we repeat the analysis subsequent to (10.12) till (but not inclusive of)
(10.14). The choices (a’)—(f") allow us to apply (10.9) also to the first amplitude in the last line of (10.12). Accordingly, this
term evaluates to

m

3AN
lehabPO (H )'C[zleﬂ5]> (_3>k"’<8m) ( gc[,”K/,,) Z|CI "= 1(2@ )hLlHL (N1, 7Nm91)115])

(10.20)

where, similar to (10.14), using the notation (10.5) and (9.40), the coordinate dependent parts of H}' (Ny,..,N,;v [i.1.8], ) are

evaluated with respect to the coordinates {x°}. Once again, using the contraction behavior of i, , H L 9eisikps 5 derived in
Appendixes F, G.2 together with (10.5), we obtain, as 6 — 0

Z (Tf hap.Po (H C(N ) |C [i.1.7.K.5.3), )

iR i=1

3AN
= 3 (ap ) Wb s Sws ]l (St ) - D -2
+ cos™(0) (Z|Z]’L1#|m (Zq )) 2)(1 + cos*d + (N — 3)c059|}
Li#1

(HNﬁr BT ) (£ DY DIy, ) +0G) (1021

“This Taylor expansion is valid provided m + 1 < k — 1.
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We set

Q(Co[i,l,ﬂﬁo“'o’ Smi1)

2

_ (yTi)m
Vi, )"
5 3NN = DN =2)|g " (4,41~
(1G24 (4 =) (N = DN = 2)] + [c08" (S i, "™ (33,4, ))(N = 2)(1 + cos0 + (N = 3)] cos 6]
(10.22)

For 6 constrained by Eqs. (10.1) and (10.2), it is straightforward to check that the sign of the denominator is that of its first
term |G, /""" (32, 41, 1) (N = 1)(N = 2) which is then the same as the sign of the numerator so that Q is positive. Note
that Q in (10.22) is different from that in (10.16); this is not a problem because their associated constraint strings S,,, | are

different in that in one case m is even and in the other m is odd. Note that because the transition [, /, J.K, B,0], is a
Hamiltonian constraint generated one [with f = —1 in accord with (1), Sec. X. A. 1], we have that

s = Vel =00+ 3 1023

where the left-hand side refers to the /th edge charge in the child ¢|; ; 5 4 5, and the right-hand side to the /th edge charge in

the parent c¢. Using (10.22) and (10.23) in (10.21), together with the fact that the norm of the charge vector is flip
independent, we obtain

m

Z TfhabPo (H )'CtIJKﬂ5]>

Ji.K, i=1

— (<3) (3“.’ ) " g NN = (N ~2)

8ri

<hff (Y )HNE:“ P DV () (P2 DV RV HP) |+ OR)

(10.24)

Expanding in a Taylor approximation subject to footnote 45 we obtain

)2) ) DUAI| | (L) [EHEVOPE

i ]k,
= -3 () Ny = D =2l (3204
AT D 75 0 (0 L P PHP)

+ 34}V, (H N (o D P5 ! (0)a ., (£ Ay s (P) V()P (0) )|

i=1 p=v

} +0(8).  (10.25)

Using (9.34), it is straightforward to see that the contribution, to (10.12) [with m odd in (10.12)], of the zeroth order term in
6 1in (10.25) cancels with the contribution, to (10.12) of the second term in the last line of (10.12). Hence only the first order
term in 6 in (10.25) contributes to (10.12). Using (9.35) and (10.25) in (10.12) yields
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m
f hapsPo (H

)) sl e

3AN m+1 2
= (=3)kn (g) ()" QCZ{M "=

i/

XV“

where the overall (—3) factor comes from the 3 in the numerator of (10.22) and the (—1)"

m+1 (p’ {X})h[

A

<HN"mm;;ll p AV (p)0a, ( f(p.Ax) \/hah Wi )W’(;a)))pzv} (10.26)

= —1 factor in (10.12).

From (10.6) it follows that when m is odd k,,, | = k,, + 1. Using this fact together with the definition of the charge vector

norm (10.7) and the notation (9.40), in (10.26) yields

m+1
. AN "t
(¥fs,.p0] <H C(Ni)) lc) = (=3)knn ( — )
i=1

which is the desired result (10.8) with n = m + 1.

Once again, since the fixed choice (a)—(f) underlying this
derivation is arbitrary and since the assumed form for
n = m holds for any such choice, the result (10.27) also
holds for any choice of (a)—(f).

Steps 1, 2 and 3 above complete the proof of the Claim.
The caveat in footnote 45 restricts the validity of the proof
to the case that n < k — 1, consistent with the Claim.

B. Anomaly free single commutators

In Sec. X.B.1 we summarize our notation. In
Sec. X.B.2 we compute the action of a multiple product
of Hamiltonian constraints multiplied by a single electric
diffeomorphism constraint. We use this in Sec. X.B.3 to
compute the action of a multiple product of Hamiltonian
constraints multiplied by a single commutator between a pair
of electric diffeomorphism constraints. We show that the
result is the same as that of the action of this product of
Hamiltonian constraints multiplied by the appropriate com-
mutator between a pair of Hamiltonian constraints. Hence this
single commutator between a pair of Hamiltonian constraints
is anomaly free in the sense that it can be replaced, within the
particular string of operators under consideration, by the
commutator between a pair of electric diffeomorphism con-
straints in line with (2.11). In Sec. X. C we use this result to
show that each of the commutators in (1.1) is anomaly free in
the sense that each of them can be replaced by a corresponding
appropriate electric diffeomorphism commutator.

P o Py <HC ) (Ns1i)le ) = 1m(¥p ., p, <ﬁ >

Using (8.6) we obtain

o (H D) Dsile)
:j_ZN(x(v))u;mm Y ( oo (ﬁ

17,.K, i=1

! -4 e m
W)™ ey |G HP T (N Nz v) - (10.27)
i/

1. Notation

We denote the nondegenerate vertex of ¢ by v and its
associated reference coordinate patch by {x}. As in
Sec. X. A it will suffice to develop notation only for singly
deformed states. The single deformations of interest will be
denoted as

[i,1,J,K,p=0,8, = (i,1,],.K,.5). (10.28)

The vertex of the singly deformed state ¢j; ; ; ¢ 5 is denoted
by v[; 1), and its associated contraction coordinate patch
by {x°}. The single deformation of (10.28) will play the
role of the first of m + 1 deformations applied to ¢ in
Sec. X. B. 2 and the role of the first of m 4 2 deformations
in Sec. X. B. 3. Accordingly, in relation to the notation of
Sec. VI.C, in Sec. X.B.2 we set

{xp={x}, ji=m+1. =6 {x'}={x}
(10.29)

and in Sec. X.B. 3 we set

{xp={x}, ji=m+2. =6 {x'}={x}
(10.30)

2. Single electric diffeomorphism

In this Sec. we evaluate the action of (], C(N;)) x

A

D(ﬁm+1i). We have that

m+1i)|c>' (10.31)

>|6,m<5] ) > (10.32)

m
¥ he Py (H
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We use (10.8) and (10.9) to evaluate the amplitudes in the last line. The second amplitude admits a direct application of
these equations with some fixed choice for (a)—(f), Sec. X. A. 2. These equations are applied to the evaluation of the first
amplitude with the choices (a’)—(f") outlined in Step 2, Sec. X. A. 4 except that we set f = 0 there. The calculational details
differ slightly for m even and m odd.

Case A: m even.—Using the contraction behavior of various quantities in Appendixes F, G. 2 and the notation (10.29) and
(9.40), we obtain

Z (vahabvpol (H C(N1)> |C[i.1,],k,5],>
J1.k, i=1

3AN
— 3 () b 70 0(cug oS 1, 1N = 1N =2) o (DqL#A)

8ri

Li#1
x (N =2)(1+cos’0+ (N = 3)|cos b)) }Han‘" S ANV (p)0,, L, (F (P AXD) \/ har(P)VE(PYVI(P)) s,
+0(8%). (10.33)
We set
Q(Co[i,l,ﬁo]}‘o’ Smi1)

-2 i
(y;[' )y =" (N = DV = 2) + cos™ (0) (1, 11, 21™) (N = 2)(1 + cos® 6 + (N = 3)| cos 6])}
For m even, clearly Q is positive. 4
Expanding the contribution of (10.33) to (10.32) in a Taylor approximation in powers of o subject to footnote 45, the

zeroth order contribution cancels the contribution from the second term in the last line of (10.32). Only the first order
contribution remains in the 6§ — 0 limit in (10.32) and we obtain

(¥ pr (Hcm) Faileh =ty ) (T1E00) ) Dol el

i=1

3AN m+l 5 . ) "
= =32 (g ) " W S Ve Ni0) (1039
1

where we have used the notation (9.40) so that

l
H}n+1<N1’ "7Nm+1; /U) = HNI—H—I(p’ {x})vzly;i+]< ) ap 1+1 p {x} \/hab m p>VbLm (p)) : (1036)
i=1

p=v

The reader may skip to Sec. X. B. 3 wherein we continue on to the electric diffeomorphism commutator calculation for m
even in Sec. X.B. 3.

Case B: m odd.—Using Appendixes F, G. 2 and the notation (10.29) and (9.40), we obtain

Z <‘vahabvp()| <H é(Nl)) ‘C[i,l,?,f(,&]l>
i=1

Ji.K,

= =3 ()07 Qo Sme i i I(ZqL,,) HV-2)

8ri

+ cos™ <Z|qu|m1<Zq )) 2)(1 + cos2 + (N — 3)|cos€|)}

Ly#1

(HNfL‘“ G (e DV ()8, (F (s {x)) \/hab Vi ( (p))) +0(82). (10.37)
P=Yi1e)

**Note that the Q factors in (10.34) and (10.22) are identical functions of their associated child-parent charges. In principle they could have
been chosen to differ from each other because their sequence labels differ in that the m + 1th operator type is 4 for (10.22) and d; for (10.34).
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We set

Q(Co[i.l.éo]}‘o’Serl )

- =5 |m— j
_ W) (N)(N=1)(N=2)|g,|""(32;41))
(uié,&h Yyl G, =" (32 af,—r) (N =1)(N =2) +c0s™(0) (3o ldr, "~ (2,41, )) (N =2)(1 +cos*@+ (N = 3)|cosd))
(10.38)
Since the transition [i A J , K , 5]1 is an electric diffeomorphism type, we have that
qp,—1 = - (10.39)

Using this with (10.1) and (10.2) implies that Q > 0. Expanding the contribution of (10.37) to (10.32) in a Taylor
approximation in powers of § subject to footnote 45, the zeroth order contribution cancels the contribution from second term
in the last line of (10.32). Only the first order contribution remains in the 4 — 0 limit in (10.32) and we obtain

m

¥l (T ) DRk = i8] (] €0 ) sl

IAN\ M+l 2 o . ; .
= 32 ) " W S () et W)
1 J
(10.40)
where, as in (10.35), we have used the notation (9.40).
3. Electric diffeomorphism commutator
In this section we evaluate the action of ([T, C(N;))[D(Nys1;), D(Nyysi)]. We have that
() (TLEOD ) Do), DF )]
i=1
=ty ([T €O ) D). Do) = DT DT (1041)
=1
Using (8.6) we obtain
WP, (H ) m+11)D5(Nm+2i|C>
3n 1
=i N2 (v, {x})ve m
3 (Ol (TTE00 )Pt leprnin) = Frord (TTEO0 )DEidle)). (1042)
17,.K, =1 1

We may use (10.35) and (10.40) to evaluate the amplitudes in the last two lines. The second amplitude admits a direct
application of these equations with some fixed choice for (a)—(f), Sec. X. A.2. It is straightforward to check that the
application of (10.35) and (10.40) to the evaluation of the second amplitude results in an expression with an overall factor

N2 (v, {x})N, 1 (v, {x}). It then follows from (10.41) that this term does not contribute to the commutator and, hence,
we disregard it.

Equations (10.35) and (10.40) may be applied to the evaluation of the first amplitude with the choices (a’)—(f*) outlined in
Step 2, Sec. X. A. 4 except that, once again, we set = 0 there. The calculational details for this contribution differ slightly
for m even and m odd.
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Case A: m even.—Using (10.35) as indicated above to evaluate the first amplitude in the last line of (10.42), we obtain its
contraction limit using the Appendixes F, G. 2 together with (10.30) to be

> (P, <H C(M)) DNwiri)leyriks,)
i=1

7.k,
3AN\m+l 2 . )
= 323 ) O 00y S, (N = DN =2)
+ cos™ (6 <Z|qu|qu> 2)(1 + cos?0 + (N — 3)| cos 0])}

Ly#l

A

(ﬁ N (o D VE (9B, (0 () s (D) VS (D) V() >+0(52). (10.43)

P=Y}i14),

Note that the transition [, /, J.K, 8], is an electric diffeomorphism type deformation so that

Cli,:l = ‘1;- (10-44)
We set for some A > O:
Q(Co[i.m JLos Sm+2)

i AN = DN =2)[G,|"g}
et (a7 ah, N = DV =2) + c0" (0) (S, i, I"ak, )N = 2)(1 + cos’0 + (N = 3) cos 0]}

(10.45)

Equation (10.44) together with (10.1) and (10.2) once again implies that Q > 0. Next, we expand (10.43) in a Taylor
expansion in powers of 6. It is easy to check that the zeroth order term does not contribute to the commutator (10.42). Only
the first order term contributes. Using this first order term in (10.42) and taking the contraction limit, we obtain

-

(qu,ha,,.Po| <H C(Nl)> [D<Nm+1i)’ D(Nrn+2i>] |C>
i=1

JAN\ M2 2 . . .
— (<3)ad () <umm+zgc§:|q,|m<q;>2h,{Nmz(p, D)V (p)0,
I

8ri

A

(ﬁzvm L DV (P o LI B )T PIPHP)) =N () < V. ()}

(10.46)

p=v

Summing over i in (10.46) and using the notation (9.40) and the definition of the charge norm (10.7), we obtain

A (f[ é(zvi)) D@ 10): D s20)]le)

i=1
3AN

8mi

-3 = |m m m
:( )( 3)k ( ) ( 1;3)”’+2gCZ{|q1\ +2]’l1(HI+2(N1,..,Nm+1,Nm+2;U)—H1+1(N1,..,Nm+2,Nm+1;7}).
1
(10.47)

On the other hand, replacing the commutator S~,[D(N,y1;). D(N ;)] with [C(N,s 1), C(N,42)] and noting that m + 2 is
even, we obtain, from (10.8)
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W, (ﬁ D) [CUMBROARITS

k 3AN\™2 m+2 = \m+2 m-+2 m+1
:(—3) m+2 - (1/ %) ch |q,| h,(H, (Nl,..,NmH,Nerz;v)—H, (Nl,..,NmH,NmH;v)). (10.48)
i

From (10.6) we have that k,, ., = k,, + 1. It is then easy to see that an anomaly free commutator results if we choose
= 1/4 in (10.47).

Case B: m odd.—Using (10.40) as indicated above to evaluate the first amplitude in the last line of (10.42), we obtain its

contraction limit using the Appendixes F, G.2 and Eq. (10.30) as

m

Z Fihap-Po <H )A rn+1l)|C11]K6]>

Ji.K, i=1

3AN\ M+ 2 i
=<—3>k»’2(—.) W " 10,010 Smmhl{ G (Zqu,)qgl, _ (v -2)

+ cos™ (0 <Z|q |m= 1(Zq )qu ) N—2)(1—I—cos29—|—(N—3)|cos9|)}

Ly#1

m—+1 -
< (TTv s 0 b05 01, 0 L ra P TEDTHD)) 0. (10.49)

’P:v[u,ﬁ]l
Note that the transition [, /, J.K, &), is an electric diffeomorphism type deformation so that

ai = dj- (10.50)

We set for some A > 0

Q(Co[,',I,(so]}DaSm—s-z)
(U;.%)mﬂ
=0
(U”[?Jﬁ]] )m+1
" AN)(N=1)(N=2)|g,|"" (32;97)4;
|G, =" (20,41, 1) 4, <1 (N = 1) (N =2) +cos™ 1 (0) (31, 1L, 1" (305,41, ) 41, ) (N =2) (1 +cos*0+ (N —3)|cos b))
(10.51)

Equation (10.50) together with (10.1) and (10.2) once again implies that Q > 0. Expanding (10.43) in a Taylor expansion in
powers of 4, it is easy to check that the zeroth order term does not contribute to the commutator (10.42). Only the first order
term contributes. Using this first order term in (10.42) and taking the contraction limit, we obtain

¥ (ﬂ S} (LR T2

= 3o () S () i Mol LD Vi1

A A

<’ﬁanmI1'1P{x})V7m”'( e I

(10.52)

p=v

Summing over i in (10.52) and using the notation (9.40) and the definition of the charge norm (10.7), we obtain
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g (L0 ) Do 1. D )]

3AN
8ri

—an)-3

LRI N > Imt1 j 2 1
) (I/,;3>'"+ g E {|q1|m+ < E cﬁ)fl,(H'In+ (N17"7Nm+1’Nm+2;U)_H;n+ (Nl,..,N,n+2,Nm+1;1)).
1 J

(10.53)

On the other hand, replacing the commutator Y_,[D(N 4 1;). D(N,,12;)] with [C(N,.1). C(N,,.5)] and noting that m + 2 is

odd, we obtain, from (10.9)

A (ﬁ é(No) W), EWmi2)le)
i=1

A m-+2
— (—3)km+2 (3 N) (y_g)m+zgc

8ri

X Z‘le|m+1 (Z%) hi(HP (N1 o Nyt N3 0) = HP P (N1 Ny, Ny ).
1 J

From (10.6) we have that k,,,, = k,, + 1. Itis then easy to
see that, once again, an anomaly free commutator results if
we choose A = 1/4 in (10.53).

C. Multiple single anomaly free commutators

Consider the action of the operator in Eq. (1.1) on
the anomaly free state W),  p . In this section we show
this action is invariant under the replacement of each
Hamiltonian constraint commutator in (1.1) by a corre-
sponding electric diffeomorphism commutator, this
replacement being a quantum implementation of the
anomaly free condition (2.11). We proceed as follows.

First we further develop the notation for operator
sequence labels of Q factors developed in Sec. VIIL. D
as follows. Consider the sequence

(hy . h oty by, hy o bty to, hy o bty ty o h) (10.55)
S — N — N — N —

g my my, Pn

where each t; is either / or dy, k € 1,2,3 and m;, p, are
whole numbers. The Q factors which we define below only
depend on whether or not a ¢; is Hamiltonian or electric
diffeomorphism; the particular component of the electric
diffeomorphism does not matter. Since the f factors for the
Hamiltonian constraint are such that 5> = 1 and since # = 0
for an electric diffeomorphism, we denote the essential part
of the sequence above through the symbol o, as follows:

ou(my,my, .. omy; B, .. Bay p). (10.56)

Thus, the specification of the arguments of ¢, allow us to
reconstruct the sequence (10.55) up to irrelevant (for the O

(10.54)

factors of interest) ambiguities regarding the specific com-
ponents of electric diffeomorphism operators in such a
sequence. Next, consider any operator product of the type
0, gy (My,..,M, ) corresponding to a discrete approxim-

ant for the operator product O (M, .., M 4,) Where each of the
operators in the operator product are either Hamiltonian or
electric diffeomporphism operators similar to the operator
product in (6.18). Let the sequence associated with this
operator productbe S, and any subsequence of this sequence
of operators from the first to the jith, j, < g, be ;.

Next consider a “big” operator product consisting of the
sequence of operators of type (10.56) followed by the
operator product Oel,__,eqn (My,...M, ) where the latter
occurs to the right of the former and so acts first on any
charge net c. We denote the operator sequence for such a
big product by

S(o(my,my, ..omy; B3, .. P pa). S,,)
=o(my, my,...my: 1. ... friPn): Sy - (10.57)
If, in this big operator product, we replace

Oelwgqn (My,...M, ) by an operator consisting of the
product of the first j, operators in O, ., (My,..M, ),

then we denote the sequence corresponding to the new big
operator product by

S(Jn(mh my, .., mn;ﬁ%’ ey %l;pl‘l)’sjk)

=o0,(my,my, ...m,; p1, ... B Pn) Sj, - (10.58)

We shall be interested in Q factors for child-parent
contractions ClirJ R pe where the child and parent states
1JK pelf
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are generated by the action of Oel...,eq,, (My,...M, ) on
some charge net ¢ and when the operator product sequence
label for Q is of the type (10.56) or (10.57). The Q factor
for such a situation in the case wherein all the operators in
(10.55) are Hamiltonian [so that all the ﬂ% are unity in
(10.56)] is, using the above notation in conjunction with

that of Sec. VIII. D, then

Q(co[i_l’/}_éo]:_l,k, S(o,(my,my,...,m,; 1,1, .1, p,). S;.))
= Q(Co[i_l,ﬁ,ao]’,j‘-";Gn(mlvm2v om0, ..l;pn),Sjk).

(10.59)

We define the Q factors labeled by the sequence (10.58) for
the transition ¢, ; ; )it 1O be such that these Q factors for

all choices of o,, in (10.58) are the same as that in (10.59):

O(Copi g poitts On My, Mo, o my; 1 PEpa).Sp)
[s ﬂ O]k
= Q(Co[i,l,/}ﬁo]:—l.k;O'n(ml, my,...my;1,1,.1;p,). S ).

Vic€{l,...q,}.9, > 0. V pFe{0,1},

Y p,.myi=1,.,n (10.60)
where p,, and m;, i = 1,..,n range over the set of whole
numbers.

It is straightforward to see that the kinds of operator
products implicated in a demonstration that operator strings
of the type (1.1) have anomaly free single commutators are
exactly those for which the sequence labels are of the type
(10.56). We now construct such a demonstration through an
inductive proof on the index n which occurs in (10.56).
Note that the index n corresponds to the number of single
commutators involved.

First consider the case n = 1. Let 061,_“6” (M, ..M, ),
r; > 0 be a product of r; Hamiltonian constraints. Then
using Sec. X. B together with Eq. (10.60) with g, := r; it

follows that for any r; > 0 we have that

1

A (H é(zvi)) EN 1) Ny 2) O
i=1

X [D(Nerli)’ D(Nm+2i)]061....er1 (Mlv () Mr1)|c>'
(10.61)

From Sec. X. B, the above equation also holds if we replace
Oel,__,erl (M,,...M, ) by the identity operator. Taking the
continuum limit of (10.61) we see that the result on
anomaly free single commutators holds for the case that

n=1 with p; =r; in (10.56). Similarly taking the
continuum limit of the equation obtained by replacing
Oelwgrl (M,,...M, ) by the identity operator in (10.61), this
result also holds for the case that » = 1 and p; = 0. Thus we
have established the desired result for the case that n = 1
which corresponds to the case of a single commutator.

Next let us assume that the anomaly free single com-
mutator property holds for all operator strings with
sequences (10.55) for some n = s. More in detail consider
an operator product consisting of m; Hamiltonian con-
straints and a Hamiltonian constraint commutator followed
by m, Hamiltonian constraints and a Hamiltonian con-
straint commutator, all the way up to m, Hamiltonian
constraints and the sth Hamiltonian constraint commutator,
followed by a product of p, Hamiltonian constraints. Then
the assumption is that in any such product any subset of
these Hamiltonian commutators can be replaced by sums
over electric diffeomorphism commutators in accordance
with (2.11). From this assumption we now show that the
same statement hold for n = s + 1.

First define

O(O’n(ml, my,..,my; 1, 1., l;pn))

- H((H C(Ni)> (A)). C(Bj)]) <ﬁ C(Fk))

k=1

where the sequence on the left-hand side has all its 7 as
unity. Next, define the operator

O(Gn(ml, my, .., My; %’ i) %npn))

(10.63)
as follows. For each i for which ﬂ? =0 in o,(m;, my, ..,
my; B3, .., B3 pn), teplace the ith Hamiltonian constraint
commutator in (10.62) by an appropriate sum over electric
diffeomorphism commutators consistent with (2.11). Note
that this O(c,) notation is consistent with (10.56) in that
each of the constraint operator products obtained by
expanding out the commutators in (10.63) correspond to
the (same) sequence o, (my, my, .., m,; 7, .., f2; p,)- In this
notation our assumption for n = s may be written as

(Wt 2y |O(05(my my, . om; 1,15 py))[c)
= (\Pf,hab,Po‘O(gs(mlvm% "7ms;ﬂ%a -~,ﬂ?§Ps))|C>

Vv {pmyi=1,.,s} and Vp,. (10.64)
Next let (A)él_gz(Gl,Gz) be the discrete approximant to
the Hamiltonian constraint commutator [C(G,),C(G,)]
and let OEI,EZ(GI,GQ be the discrete approximant to
the appropriate sum over electric diffeomorphism commu-
tators through (2.11). Since the action of these discrete
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approximants is a finite linear combination of charge nets
with Q factors as defined in (10.60), it follows for @ = 1, 2
that

(‘Pf,ha,,.Po|O(0x(mlv My, .., Mg; L., hps))ogl,ez (le G2)|C>
= (Tf,hab,Polé(o-s(mlva’ "7ms;ﬁ%v”’ ?’ps))

0% . (G1,Gy)|c) VY {pri=1,..s}. (10.65)

It is then straightforward to see that taking the continuum
limit of the left-hand and right-hand sides and applying the
anomaly free single commutator result of Sec. X. B yields
the result

(‘Pf’habxpo|0(63+l (ml, My, .., Mg 1, 1.., l;szr] = 0))|C>
= (\Pf,hah,Po|O(o-S+1 (m17 m2’ .oy mH»l;ﬁ%, "7ﬂ%+];

P =0)]e) V{Bi=1,s+1} (10.66)

where we have set p; := m, ;. Next consider the approx-
imant Oz = [/} C‘q (P,) to a product of p,.;#0
Hamiltonian constraint operators. Again using (10.60)
we may substitute |c¢) in (10.66) by the finite linear
combination of charge nets O¢|c). Taking the continuum
limits of the resulting equations, we obtain

(le,hab,Polo(Gs-&-l(mlamZv mgps L 1§Ps+1))|c>

= (le,h,,,,.Po|O(0s+1(mlvmz,--»m.y+1§ﬁ%,--» §+1;

per))le) VAP i=1..s+1}, (10.67)
which is the desired result for n = s + 1. This completes
our inductive proof of an anomaly free single commutator
implementation of the algebra of Hamiltonian constraints.
It only remains to show that this implementation is diffeo-
morphism covariant. We show this in the next section.

XI. DIFFEOMORPHISM COVARIANCE

We implement diffeomorphism covariance of the con-
tinuum limit action of products of constraint operators on
any anomaly free basis state by tailoring the underlying
discrete action to the metric label of the basis state being
acted upon. This idea, of tailoring the action of a discrete
approximant to an operator to the state it acts upon, is a
familiar one in the case that the states lie in the kinematic
Hilbert space of LQG (see for example [3,13,24], and also
Sec. II of this paper). Here we apply this idea to the space of
kinematically non-normalizable anomaly free states.

As a prelude to the detailed technical description in
Secs. XI. A and XI.B below, we now describe the broad
idea behind this implementation. Recall from Sec. VII. B
that an anomaly free basis state is labeled by a density —1/3
function f, a metric with no conformal symmetries #,;, and
a choice of bra set Bpj. Given this state ¥, p we can

construct all its amplitudes i.e. all the complex numbers
(¥f.4,,.p,lc) for any charge net c. It then turns out that we
can construct enough information about the metric %,
from these amplitudes so as to distinguish this metric from
any of its diffeomorphic images. If we restrict the space of
permissible metric labels for anomaly free basis states to be
the space of all diffeomorphic images of %, this means
that the metric label of any anomaly free basis state can be
uniquely identified from the state itself through its ampli-
tudes. In this sense the state “knows” about its metric label.
Hence it is meaningful to define the discrete action of
constraint operators on this state in such a way that this
discrete action depends on the metric label of the state.
It turns out that the dual action of the unitary operator
corresponding to a diffeomorphism ¢ maps a state with
metric label £, to one with metric label hZ’b, where h;/l’b is
the image of h,;, by ¢. The idea is then to use the metric

label h‘fb to identify the diffeomorphism ¢, since, due to the
lack of (conformal) isometries, any permissible metric label
is uniquely associated with the diffeomorphism which

maps h,, to this label. Then for this metric label hi’b we
choose the primary coordinates and reference diffeomor-
phisms to be appropriate images, by ¢ of the primary
coordinates and reference diffeomorphisms chosen for the
state labeled by ;. These “image” structures are then used
to regulate and define constraint operator products along
the lines of Sec. VI and V. It can then be shown that this
diffeomorphism covariant choice of regulating structures
leads to a diffeomorphism covariant continuum limit action
of products of constraints.

In Sec. XI. A we formulate and prove a precise statement
which shows that anomaly free basis states have the
requisite sensitivity to their metric labels. In Sec. XI. B
we use this sensitivity to define a covariant choice of
reference structures and express the action of finite diffeo-
morphisms on anomaly free states in the context of this
covariant choice. In Sec. XI. C we demonstrate that this
covariant choice results in an implementation of diffeo-
morphism covariance of the continuum limit action of
products of constraints. For the remainder of this section we
shall restrict attention to — % density scalars f which vanish
at most at a finite number of points in .Y

A. Metric label sensitivity of an anomaly free state

Let Ay, be a metric which has no conformal symmetries.
Let H,,, be the space of all diffeomorphic images of /¢, by
all C* semianalytic diffeomorphisms. Let /., 1y, be two
distinct elements of H,, . Note that the two metrics cannot
be conformally related everywhere because they are

“"This is for technical simplicity; it seems plausible to us that
our considerations can be generalized for the case where f is not
restricted in this manner. We leave such a generalization for future
work.
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distinct, diffeomorphic to each other and have no conformal
symmetries. Hence there exists a point a € Z, and, from the
fact that the metrics are C¥~!, a neighborhood U(a, ) of a
for some small enough 6 > 0 such that in a fixed coordinate
patch {y} in this neighborhood, we have that

‘ hiij  hoij

U2 (11.1)
mooh

The above inequality holds for every point in U(a, ¢), for at
least one fixed pair i, j € {1,2,3} and for some fixed
positive constant C. Here our notation is such that s;;
denotes the coordinate components of the metric s, in the
chart {y} and s denotes its determinant in this chart. Thus
Eq. (11.1) indicates that at least one component, in any
fixed semianalytic chart, of the (conformally invariant)
metric densities in this equation differ by some minimum
non zero amount in a small enough neighborhood of at least
one point of the Cauchy slice.”

Next, consider an anomaly free state which is labeled by
some element s,;, of H; . We now show that at any point
p € X this metric can be reconstructed, up to an overall
scaling at p, to arbitrary accuracy from the amplitudes of
the anomaly free state. Accordingly, fix a point p on the
Cauchy slice £ and consider some choice set (a)—(f) of
Sec. X. A. With this choice set consider a primordial state ¢
such that ¢ € Bpy and such that ¢ has its nondegenerate
vertex at p with reference coordinate patch {x}. The action
of a single electric diffeomorphism on ¢ generates the child,
€1 =C(1jkp0s Where & is measured by {x}. From
Sec. VII, the amplitude (¥, , p,|c;) of the anomaly free
state ¥, p, for the state ¢ is evaluated using {x, } where
{x1} denotes the reference coordinate patch for ¢; around
v1. In view of the fact that f vanishes only at a finite
number of points, it follows that we can choose 6 such that
f is nonvanishing at »; and we so choose 0.

Next, consider any diffeomorphism y which is identity in
some neighborhood of v; and consider the state ¢;, which
is the image of ¢ by y. Let the reference coordinate patch
for ¢, be denoted by {xy, }. It is straightforward to see that
the Lemma in P2 implies that we can use the coordinates
2*{x1} to evaluate the amplitude (¥, p,|c1,) instead
of the reference coordinates {x,}. Note however that
since y is identity in a vicinity of v, this is the same as
evaluating the amplitude with respect to {x;}. Since the
coordinate dependent part of the amplitude is > h;H;
(see Sec. VII. B) and since this part only depends on the
vertex structure of ¢y, at v; it follows that

(Pfs,p0lC15) = BYe,,. (11.2)

It is straightforward to see that transiting from one fixed
coordinate chart to another only affects the value of the constant
C and the choice of i, j in (11.1).

(‘Pf,sab,Po|cl> = Bgcl (113)
where B = f; h; H; and the coordinate dependent eva-
luation of the function f at v; and the coordinate dependent

normalization of the edge tangent vectors ¢ J, at vy are with
respect to {x; } as argued above, both for ¢, and for cy,.

Next, we construct diffeomorphisms which are identity
in a neighborhood of »; but which move the C kinks of ¢,
to certain desired positions. Since these diffeomorphisms
are of the type y above, the amplitudes for the diffeomor-
phic images of ¢ by these diffeomorphisms satisfy (11.3)
and, therefore, serve to evaluate the function g [see (G1),
Appendix G] when its arguments have been placed at these
desired positions. By placing these arguments at positions
close enough to p, we may use the contraction behavior of
g (see Appendix G. 2) to extract the information about the
metric label s, in the vicinity of the point p. Accordingly
we proceed as follows.

First, note that in the state ¢, the C° kink vy, lies at a

distance 6”1 from p along the Lth edge of ¢ with L = J,
the C° kink 7 &, lies at a distance Q6" from p along Mth

edge of ¢ with M = K. The values of p,, p; are given in
the Appendix G. 2. The exact specification and value of Q
is not needed here. The remaining C° kinks lie within a
distance 673 of p where p; > p, (see Appendix G. 2), all
these distances being measured by {x}. Next, consider
any € < o. Clearly we can apply diffeomorphisms of the
type constructed in (iii), Sec. VI.C to move kinks at
coordinate distances 67!, Q62,63 to coordinate distances
eP1, QeP?, eP3. Further, these diffeomorphisms can be con-
structed in such a way that they are identity in a neighbor-
hood of »;. Let us apply these diffeomorphisms to c;.
Next consider the region R, bounded by two spherical
shells of radius QeP? 4 7 around the vertex p of ¢, with

T <K ePs. Let Ee be any semianalytic vector field which is
tangent to the sphere of radius Qe”? around p and let F, , be
a semianalytic function which is 1 on this sphere and which
vanishes outside R,. By choosing &, appropriately we can
use an appropriate finite diffeomorphism generated by the
vector field F 6,,56 to move the point ¥z to any desired
location on the sphere of radius Qe”> while leaving the
positions of the remaining kinks unaltered. More in detail
by moving this kink by such a diffeomorphism ¢, . to a
position on this sphere such that the straight line from the
origin of the sphere at p to this position has unit tangent 5,
we obtain, from Appendix G. 2 that

0y =m0 WL (1 4 oermnyg,

& (11.4)
185,

where the metric norms are calculated at the point p.
Clearly ¢, . is of the type y in (11.3). It follows that as
¢ — 0, we have that
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(o nlery,) = Berrig 12 ”( L+ 0(er=r))g,

(11.5)

((‘Pf.sl,b,PO |C1¢“>)2
e2(p2=p1)

= By sa00b (1 + O(elP=r)) =

(11.6)

2 p2 . . .
where B, := % and g. = 1 because c is primordial and
ab 1%

has no C? kinks. Note that B, is independent of the position

ii. By varying the position i and by choosing € as small as
we wish, clearly we can reconstruct the metric at p up to an
overall factor to any desired accuracy. More in detail, let us
suppress the labels on the right-hand side of (11.6) which

do not vary with i, € and set

((le’Sab-P() | Cl¢u.€ > )2

S = Flie)

(11.7)

Clearly, from appropriate linear combinations of evalua-

tions of F for six appropriately chosen values ﬁa,a =
1, .., 6 we can reconstruct the six coordinate components of
the metric s,, upto an overall factor to any desired
accuracy:

B;s,, + O(e (11.8)

ua,e .

I’z I’l §
Since ua, Y

gra=1,..6,u,v=1, 2, 3 are fixed and
independent of €, we retain only the e dependence of
the right-hand side of the above equation and set

> A F (i €) =55, (11.9)
so that we have that
Bys,, + O(elPr)) = 56, (11.10)
= (B,)*s + O(elr2~P)) = ¢ (11.11)
= (B))'s75 + 0(elrr)) = (s)7 (11.12)

where we have used s, s¢ to denote the determinants of

Sus Sy Multiplying the left- and right-hand sides of

Egs. (11.12), (11.10) we get

Sle: Sul/l + O(elP=p), (11.13)
§3 (Se)§

Since {x} is an admissible semianalytic chart on X, we can
transit to any other fixed e independent semianalytic chart.

Since the Jacobian factors are independent of €, Eq. (11.13)
holds in any such chart in obvious notation. Next, taking
the limit as € — 0 of (11.13) and letting p vary over X, it

follows that the conformally invariant metric density % can
53

be reconstructed on all of X from the set of amplitudes
defined by any anomaly free state W, ; p with metric label
Sa- Note that this result is independent of the choice
scheme used to define Wy p (recall that a choice of
reference coordinates is needed to evaluate the amplitudes
which define ¥y, p ).

Next, we use the machinery developed above to prove
the following statement:

Statement.—Consider a choice scheme §; and anomaly
free basis state ¥y, ;, P! defined in this choice scheme for

the scalar density, metric and bra set labels f{, h,,, B P

where f; vanishes at most at a finite number of points,
hiqy € Hy, and B Pl is an admissible bra set in the scheme

S;. Likewise consider a second choice scheme S, and
anomaly free basis state ‘sz.hzﬂbyp(z) with f, vanishing at

most at a finite number of points, h,,, € H,, and Bp

admissible in S,. Let hy,, # hy,,. Then \Pf]’hlah,P(l) #*

¥, n,,,.p2 Where the inequality indicates that the two states
2:M2ab>1"

are distinct in the sense of distributions.

Proof.-—First suppose BPI # BPz Let ¢ be such that
cEB Pl C &B P2 Let f| # 0 at the nondegenerate vertex
of ¢ (1f it vanishes replace ¢ by some diffeomorphic image
of ¢ such that f; # 0 at the nondegenerate vertex of this
image and rename this state as c). Then (‘Pfl‘hlabqp(1)|c> #0

but (¥, ;,, p2lc) =0 so the 2 states are different.

Next consider the case Bpi = Bp: and denote Bp =

Bp: = Bp,. In what follows we shall frequently refer to the

argumentation (11.2)—(11.13) in the first part of this
section. Consider a primordial state ¢ in Bp , and the
electric diffeomorphism deformation of ¢ in scheme S;.
Call the deformed ket c;. Proceed as in the first part of this
section replacing f, s, by f1, I, SO as to obtain (11.13)
with s, replaced by &,

Next, consider the amplitude (¥, , . p,|c1) evaluated in
the scheme S, (we emphasize that ¢, is still the deformed
child produced in scheme §; from its parent c). Let the
reference coordinates for the evaluation be {x,}. Now if f,
vanishes at v; we have (¥, plc;) =0 whereas
(¥, h,plC1) #0 so that the two anomaly free states
are again distinct. Next, let f, # 0 at v;. Consider again the
action of a diffeomorphism y which is identity in the
vicinity of »; on ¢;. Once again the Lemma of P2 implies
that we may continue to use {x, } for amplitude evaluations
(‘sz.hz,l;,,Pé‘Clﬂ' It is easy to check that the subsequent
analysis also holds so that we have (11.2)—(11.13) with the
replacements f», h,,, for f, s, in those equations. Thus we
have derived the equations:
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h h§

M O(elP=r)y = L’“l, (11.14)
% ()
h hs

2 1 O(elPp)) = (11.15)

n (h5)s

l;w

) is exactly the same function of the amplitudes

he
where
(h

as hz—"”l is of the
(h3)3
(¥, 0. Pol €19, ) @ can be seen from (11.7).
Next, recall that the left-hand sides of (11.14) and
(11.15) are both evaluated at the vertex p of c¢. Choose
¢ to be such that its vertex p lies in U(a, §) so that (11.1)
holds at p. It directly follows that by choosing e small
enough in (11.14) and (11.15), the right-hand sides of these
equations differ. This implies that there must be at least
one value of a € {1,2,..,6} such that the amplitudes
(Tflshluhsp()|c1{.bu(,,p>’ (‘sz,,mh,PO|c1¢ua_t> of the two anomaly
differ. Hence the

two states are distinct and this concludes the proof.

The statement which we have proved above implies that
given two distinct metric labels A, hl,;, € H;,, we are
free to choose two different choice schemes, one for the
definition of anomaly free states with metric label 4, and
for the definition of the discrete action of constraints on
these states, and a second for anomaly free states with
metric label //, and for the definition of the discrete action
of constraints on these states. This freedom of choice leads
to no inconsistency because we are guaranteed that two
states with distinct metric labels are distinct. We shall use
this freedom in the next section.

(\Pfl Jiap.Po |Cl¢,,,€> amplitudes

free states on the same charge net ¢, .

B. Diffeomorphism covariant regulating choices

In what follows we refer to a particular implementation of
the choice scheme (a)—(f) summarized in (2), Sec. X. A. 1 by
the letter S or by addending suitable symbols/subscripts to S;
for example S; or § etc. In Sec. XI.B.1 we define a
covariant choice of such schemes by tying each such choice
scheme to the metric label of the anomaly free basis state
under consideration. In Sec. XI. B. 2 we derive the action of
a diffeomorphism on an anomaly free basis state.

1. Covariant choice schemes

Consider, as in Sec. XI. A the space H,, of metrics
diffeomorphic to hg,,. Let hy,, be associated with some
choice scheme S,. We shall use the notation of Secs. VI. B
and VI. C for the reference structures associated with this
choice. Accordingly, the metric and the associated primary
coordinate patch, the reference state for the diffeomorphism
class of states of c, the reference diffeomorphism mapping
this reference state to ¢ and the reference coordinate patch
for ¢ are

a{xo}.

Let h,, € Hy,. Since hy,, has no (conformal) symmetries
there exists a unique diffeomorphism ¢ such that
hap, = ¢*hoa,- We define the choice scheme S, associated
with this metric to be the images by ¢ of the choice scheme
So™ so that the metric, the associated primary coordinate
patch, the reference state for the diffeomorphism class of
states of cy, the reference diffeomorphism mapping this
reference state to ¢, and the reference coordinate patch for
Co are

hap = @ hoap, ¢*{x0},

hoap,  {xo}, o, @, (11.16)

¢OC0’ ¢an¢_19 ¢*6¥*{X0}

(11.17)

where we have denoted the image of ¢ by the diffeo-
morphism ¢ by c,=¢oc so that U(g)|c) =|c,) =
|¢p o c). Here, we have chosen the cone angle as measured
by {xo} for conical deformations cy; ; 45, of any ¢ in the
scheme S, to be the same as that measured by ¢*{x,}
for conical deformations ¢ocgisp5 ©Of ¢pocy in the
scheme S),.

Note that the choice schemes {S),, h,, € H,, } yield the
same set of primordials and the same ket set. Further if we
choose the bra set Bp in scheme S, then this same bra set is
admitted as a bra set in the choice scheme S, for
any hg,, € Hy,.

Accordingly consider the anomaly free state ¥y, 5, .
We shall adopt a covariant regulator scheme for the
definition of the constraint operator products of Secs. IX
and X by which we mean that the discrete action of any
such operator on ¥y By, is defined with respect to the

choice scheme S;. More in detail, let

o= (.0,

O({Ni, €i,i = 1, m})

€i<€j

iff i<j, (11.18)
where the product is ordered from left to right in increasing i
and each (’\)1.6i (N,) is chosen to be the discrete approximant to
a Hamiltonian or electric diffeomorphism constraint operator,
so that the resulting operator product O({Nj, ¢;}) is of the
type encountered in Secs. IX and X. Then the action of this
operator on any state Wy, By, with h,;, € Hy,, evaluated on

any charge net ¢ yields the amplitude:

(¥ 1,20 ONi € 1)c)

where this amplitude is evaluated as in Secs. IX and X
with respect to choice scheme S;,. Denoting the continuum
limit operator defined through the discrete approximant

(11.19)

*The choice (f) in Sec. X. A. 2 will be assumed to be the same
for ), and S,.
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O({N;,€&}) by O({N;}) we have that

(P, OUN} )

= (lim ( tim .(1m (¥, | OV &})le)  (11.20)

€,—0 €,_,—0
where the discrete action amplitude on the right-hand side is
defined with respect to the scheme ;.

It is straightforward to see that the following property
holds in this covariant regulator scheme. Consider the
metric label h,, € H,, and its image ¢h,;, by the diffeo-
morphism ¢. Given a state c, let its reference coordinates,
reference state and reference diffeomorphism mapping
this reference state to ¢ for the choice scheme associated
with h,;, be

{x}h, ch, al. (11.21)
Then the reference coordinates, reference state and refer-
ence diffeomorphism for the state ¢, for the choice scheme
associated with ¢*h,,, is

{8, = {x}l,

al,! = poalog™.

(11.22)

“h
(Cz 1)0 :45008’

2. Action of finite diffeomorphisms
on anomaly free states

Hereon, we need to keep track of metric labels and
associated reference structures. Accordingly, we use (11.21)
to rewrite (7.5) so that the evaluation of the amplitude
(¥f4,,.p,lc > in the choice scheme S, is

(1) = gelha (7)) (Zh,H,) o i (0, L)1),
(11.23)

Here I indexes the edges at the nondegenerate vertex v of c.
The notation g..(h,y,, {¥}) tells us the function g of Sec. G is
evaluated at the C° kinks of ¢ and the geodesic distances
between these kinks are determined by the metric 4. The
subscript 4,,, ¢ to the sum over / indicates that the edge
tangents which go into the definition of H;, h; are unit with
respect to the {x} coordinates and are evaluated at v with
respect to the metric A,

In this notation we have, once again in the S;, scheme that

(¥ ,,.2,| U (D))
= gc(/rl (hah’ {¢_1(6)})’

(S Yo, S97 00 Ak
(11.24)

Next, from (11.21) and (11.22), note that in the Cy
scheme the reference coordinates for ¢ = ¢ocy are
P {x}i?drl. This implies that

(P .y l€)
= gc(¢*hah’ {17})’

<Zh1HI> |¢*hab.1z.¢*{x}ﬁ471 f(ﬂ, ¢* {X il(/)_l )
7 p

Using the properties of pushforwards by diffeomorphisms
and that fact that ¢po cy-1 = ¢, we have that

(11.25)

gc(¢*hab’ {5}) = gc¢_| (hab’ {¢_1 (@)}), (1 126)

(" F)v. g {x}e ) = F@7 (v). {x}e ). (11.27)
It is also straightforward to see, from the properties of
pushforwards and the definition of h;, H;, that

(thfh)|¢*h(,b,u,¢*{x}£¢_l = (thHl)m,qs-‘(v),{x}ch '
=
(11.28)

From (11.26), (11.27) and (11.28) together with (11.24)
and (11.25), it follows that

(Tf,hab,P0|U+(¢)|c> = (Yg 1.4 hop. ol C)- (11.29)
This equality holds for every c in the bra set Bp,. Further
both sides vanish for any ¢ & Bp,. Hence we have the
following equality of anomaly free basis states:

U(@)Y fhypy = Vg 1.5 o (11.30)

C. Action of products of constraints and
finite diffeomorphisms

As explained in the Introduction, the Poisson bracket
relation (2.8) between a pair of Hamiltonian constraints is
replaced by (2.11) and this relation is implemented in
quantum theory in Secs. IX and X. Here we are interested in
the remaining Poisson bracket relations (2.6) and (2.7)
between the diffeomorphism constraints and between the
diffeomorphism and Hamiltonian constraints. In LQG
the primary operators related to diffeomorphisms are the
unitary operators which implement finite diffeomorphisms
generated by the diffeomorphism constraints rather than the
diffeomorphism constraints themselves. Hence in quantum
theory we replace (2.6) and (2.7) by the relations

0(451)0((152) = 0(¢1 O¢2),

A

U (¢)CINIU(¢) = Clgp.N).

(11.31)

(11.32)
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These relations are to be imposed on the algebra generated
by arbitrary products of finite diffeomorphism unitaries and
Hamiltonian constraint operators. Hence we are interested
in the imposition of these relations within operator products
of the form

<H U(wil)>0<l>< H U(wi2)>@<z>

i=1 ip=my+1

x ( [ 0w, ) (H Uy, ., )
i,=m,_1+1

where the y’s are semianalytic diffeomorphisms and the

O’s are products of Hamiltonian constraint operators.
Note also that we would like to show that the relation
(2.11) is also valid within each such product of Hamiltonian
constraint operators. More in detail, by considering appro-
priate linear combinations of products of the type (11.33),
we may define a product where, now, each O in (11.33)
contains products of single commutators between pairs of
Hamiltonian constraints i.e. we may consider multiple
products of single commutators of the type in (1.1) and
Sec. X.C. We may then obtain a new operator product
by replacing each of these commutators by appropriate
|

(11.33)

(OO ({Nll,

o (U(,)T O N, iy =muy +1,.om, 1) U(
“><{¢1* Ni iy =1,..,m})O?
(n ({¢n* in’in =m,_;+1,.,

Note that each O operator is the continuum limit of
some discrete approximant of the type (11.18), each
such product being defined in some choice scheme S'.
We show below that this choice scheme, and hence the
(continuum limit) action of the operator product (11.34) is
uniquely fixed from the following two inputs: Input (A):
Any such choice scheme S’ must be consistent with the
covariant choice scheme defined in Sec. XI. B. 1. By this
we mean that any amplitude (Tf.hab’p0|0({Ni, €})|c) with
O({N,,€}) defined as in (11.18) must be evaluated in the
choice scheme Sj, [see the discussion around (11.19)]. Input
(B): The discrete action of any such discrete approximant
of the type (11.18) in any choice scheme on a charge net ¢
yields a finite linear combination of charge nets [see (a)—(f)
of Sec. X. A.2].

Accordingly, in what follows we shall restrict our
attention to the covariant choice scheme defined in
Sec. XI.B. 1. In Sec. XI.C.1 we prove a key identity.
In Sec. XI. C. 2 we derive the action of the operator product
(11.34) from the inputs (A) and (B) above together with the

= 1..m NU())(U(h) 0P ({N;,. 15

electric diffeomorphism commutators as indicated by
(2.11) and we would like to show that the first operator
products with Hamiltonian constraint commutators equals
this new product obtained by these replacements. Hence we
are interested in computing the action of operator products
of the form (11.33) where each O can be (a) a product of
Hamiltonian constraints, (b) a product of the type (1.1) or
(c) the product in (b) with the replacement of Hamiltonian
commutators by appropriate electric diffeomorphism ones.

Since LQG provides a representation of the relation
(11.31) on its kinematic Hilbert space, it immediately
follows that this relation is automatically implemented
on the space of distributions through dual action. Since
the anomaly free states are distributions, it follows that this
relation is already imposed. Given that this relation is
imposed it is easy to see that operator products of the form
(11.33) are equivalent to products of the form

A

() OV T ()T () OPT(hy)...
X U(,) 0" U(,)U(pnsr)

where the ¢’s are semianalytic diffeomorphisms. The
imposition of (11.32) and (2.11) on such operator products
yields the relation

(11.34)

=my + L. 7m2}) (¢2>)
n))ﬁ<¢n+l)

({¢2:Ni, iy = my +1,..,my})
m,, )U(¢n+])-

(11.35)

identity proved in Sec. XI. C. 1. The resulting action will be
seen to implement the relation (11.35) on the domain of
anomaly free states.

1. A key identity

Claim—1Let O({N,, €;}) be defined as in (11.18). Then
the following identity holds for all, f,{N;},c¢ and all
h’ab (S Hho:

(1 2| O (@) OUN: 1) U ()] )
= (¥1,,n | O{(4.Ni).€})[c) + O@E)  (11.36)

where O(€) indicates a quantity which vanishes in the
continuum limit:

lim lim ...limO() = 0.
€n—0¢,.1-0 €;—0

(11.37)
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Proof—From (11.29), (11.30) and (B) above, it follows
that

(1 2| U (@) OUN: 1) U ($)]c)

= Wy gn.p, [OUN;. € D)U(B)]c). (11.38)

Introduce the following notation for the action, on the
anomaly free state W7, p , of the continuum limit operator

O({N;) obtained from its discrete approximant
0({Ni1€i}):
(‘Pfjlah.Po|©({Ni’i: 1""m})|s> :=An1(]_p’}_l’{Ni}?s’{x}§)'

(11.39)

Here the left-hand side is defined as a continuum limit of
its discrete approximant as in (11.20). The right-hand side
is the appropriate explicitly calculated amplitude50 from
(10.8) and (10.9) with the substitutions f,h, s, {x}" for
f>h,c,{x} in those expressions. The resulting expression
depends on the arguments f, %, {N;},s, {x}". Since we
work within the covariant choice scheme, the coordinates
{x}" with respect to which the explicit expression is
defined are determined by £, and s; nevertheless despite
this redundancy, it is useful for pedagogical purposes to
retain this argument in A,,.

From the definition of the continuum limit it follows that
the corresponding discrete action can be written as

(W54.,.2,]OUN: €})]s)

== A, (. h, {N;}, s, {x}) + O(&). (11.40)

Setting |c,) = U(e)|c), Eqs. (11.38) and (11.40) imply
that

(1| 0T (@) OUN:. 1) U ()] )

= Au(¢*f " h AN} cp (x}E") + O().  (11.41)
From (11.22) it follows that
A @ F " h AN} ¢y 23E)
= A (@ f. " h AN}, e ™ {x}0). (11.42)

Using the properties of pullbacks by diffeomorphisms
together with definitions of the various quantities which
figure in the explicit expressions (10.8) and (10.9), it is
straightforward to see that

%Recall that we have shown in Sec. X. C that this amplitude is
consistent with (2.11).

An(@*f.¢"h AN}, ey ™ {x}0)

= A, (f h{p.Ni}. e {x}0). (11.43)

Using the appropriate substitutions in (11.40) we have that

An(f 1 Ap.Ni}. e {x}e)

= (P12, O{(ANi). €})]c) + O(E).  (11.44)
The claimed identity (11.36) immediately follows from
Eqgs. (11.41), (11.42), (11.43) and (11.44).

Key identity: As a corollary, we have the following key
identity which we shall use repeatedly in the next section:

(Tf,hﬂb,Po |O<{N17 Gi})0(¢)|c>

= (Y. 1.9.n, 2 O (D), €})[c) + O(E).  (11.45)
To see this, substitute f, h by ¢.f,¢.h in (11.36) to
obtain

(o s g U (@) O(UN; €1)U() )

= (P14 2 O (BNY). €} |c) + O(E).  (11.46)
From Input (B), O({N;,&;})U(¢)|c) is a finite linear
combination of charge nets so that we may apply
(11.29) to the left-hand side of (11.46) and obtain

A

(quﬁ*f,qS*hab,Po|UT(¢>O({Niv ei1)U(9)c)

= (Wrn,p, [OUN; 61 U()lc). (11.47)
Equation (11.45) immediately follows from (11.47)
and (11.46).

An alternative way to state the Claim is to dispense with
Inputs (A) and (B) and instead state that if (a), (b) below
hold then Eqgs. (11.36) hold where (a), (b) are as follows:
(a) We define the amplitude evaluation of any anomaly

free basis state labeled by any metric /), € Hj, on any
state ¢ to be with respect to the scheme Sj,.

(b) We choose the discrete action of the operator approx-
imant O({N;, ¢;}) on the left-hand side (lhs) of (11.36)
to be evaluated in the S, scheme and that of the
operator approximant O({(¢,.N;),€;}) on the right-
hand side (rhs) in the S; scheme.

It is straightforward to repeat the steps of the proof with
inputs (a) and (b) and thereby prove the claim. Similarly,
the corollary can be restated as follows. Let (a) hold and let
the discrete action of O({N;, ¢;}) on the lhs of (11.45) be
in the S, scheme and that of O({(¢,N;),;}) on the ths in
the Sy, scheme. Then Eq. (11.45) holds. Once again the
proof is basically a straightforward repetition of the proof
of the corollary sketched above.
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2. Action of the operator product in Eq. (11.34)

In this section we evaluate the action of the operator (11.34) on the anomaly free state Wy, , 3,,- This action is obtained

from that of the left-hand side of (11.35) on this state:

(s g, 50| (O (1)
x U(¢1))(U(¢h2) (0"
(U(¢,) O ({N;,. €5,

<1)({Ni, i =1,..,m})
({N127€125i2 =m; + 1, ..,mz})
mn—l + 17 *ey

2))

(¢
m, })U(¢,))U(¢ns1)lc)- (11.48)

In order to evaluate this discrete action we use Input (A), (B) above iteratively as follows. For any charge net s we have that

(P 8| (O(1) OV NG 65,0y = 1oom DU (41))]s)

= (s, 80 OV {p1Ni €1 1 = 1 om DU () |s1) +
Lmy})|si) + 0 (W)

= (Vi1 g | OV {93001 Ny 65,1y = 1.
= (s s o BPO|0 ({¢§¢1*Ni],€il,il =1,.,m})0"
(\Pfhuh BP0|0 ({¢1*N117€i1’i1 = 1,..,m1})0

where we have used (11.36) in the second line, (11.45)
in the third and fifth lines and where we have defined
S1, 82, by

|s) = U(g2)"[s1). |s1)

= OV ({Ny, eip.iy = m; + 1,...,my}) U (1) |52).
(11.50)

The symbol O,(¢'")) denotes a term which vanishes in
the partial continuum limit which sends the parameters
€1, €2, ..€,, to0 zero (in that order) while keeping €;,j > m;
fixed. Similarly the term O,(é®) vanishes in the partial
continuum limit over {¢,i=1,..,m,} while keeping
€j,] > my fixed. Clearly this procedure may be iterated
to obtain an expression for (11.48). It is easy to check that
the continuum limit of this expression yields the evaluation
of the right-hand side of Eq. (11.35) on the anomaly
free state.

Note that the application of Inputs (A), (B) to the
calculation above fixes the choice scheme for the definition
of each of OV) (Nj,.€,) in (11.48) to be S¢;h. We may also
restate the result by dispensing with Inputs (A) and (B) and
instead state that if (a), (b) below hold, then (11.35) holds.
Here (a) is identical to (a), Sec. XI.C.1 and (b) is as
follows: (b) In Eq. (11.48) let the choice scheme for the
definition of the discrete action of OV) (Ni]_, eij) be chosen
to be S¢; 5. It 1s straightforward to see that a proof may be

constructed by basically repeating the steps which lead us
from (11.48) to (11.49), iterating, and then taking the
continuum limit. Viewed in this way, defining anomaly free

({Niz’eiziZ = m, + 1
@ { Ny, €, 1 = my + 1,...my})|52) + O, (€2

04(&")

L ma ) U(h)]52) + 01 (V)
)+ 0,(EM)
(11.49)

states through (a) above, we have shown that there exist
discrete actions of operator approximants whose continuum
limit action lead to the relationship (11.35).

The considerations in this section show that the operator
actions of Secs. IX and X are consistent with Egs. (11.31),
(11.32) so that we have a diffeomorphism covariant
anomaly free single commutator implementation of the
constraint algebra. More in detail given any two operator
strings of the type (11.33) related by the substitution of
commutators between Hamiltonian constraints by the
appropriate combination of electric diffeormorphism
commutators, we (a) first convert the strings to the form
(11.34) through (11.31), (b) use (11.32) to remove all the
U(p;), U (¢;).i =1, ..,n — 1 operators from the string and
(c) appeal to the anomaly free single commutator results of
Secs. IX and X. The steps (a)—(c) show that we have a
diffeomorphism covariant anomaly free single commutator
implementation of the constraint algebra.

XII. BRIEF SUMMARY OF RESULTS

Consider an operator product of the form

o= (Iown)or ( 11 ow)os

=my+1

><< H U(l,/i"))d")(ﬁﬁ(wiw)) (12.1)

i,=m,_1+1 =1

where (a) the y’s are semianalytic diffeomorphisms, (b) the

0'"’s are products of Hamiltonian constraint operators of
each of density weight 4/3 and each smeared by a lapse of
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density weight —1/3, and (c) the total number of
Hamiltonian constraints in the operator product (12.1) is
less than k, the Cauchy slice ¥ being a C* semianalytic
manifold. Such an operator product has a well-defined dual
action on any anomaly free basis state W, , p , this dual
action being inferred from the amplitudes

(¥ py Ole), V€ (12.2)

where ¢ ranges over the set of all charge net states. These
amplitudes are such that the relations

U(g)U(g,) =

U(r 0 o), (12.3)

A

U'(¢)CINIU(¢) = Clp.N] (12.4)

hold so that any individual operator string, within the
big operator product (12.1), which is of the form of the
left-hand side of (12.3) or (12.4) can be replaced, in
the amplitude evaluation (12.2), by the corresponding
right-hand side and vice versa.

An anomaly free basis state W, p is a linear combi-
nation of charge net bras, these bras comprising the bra set
Bp,. The coefficients of these bras in this linear combina-
tion are determined by a scalar density f of weight —1/3
which vanishes at most at a finite number of points, and a
metric h,, with no conformal symmetries. The explicit
action of a product of n < k — 1 Hamiltonian constraints on
the anomaly free basis state W,  p is given, for n even
and ¢ € Bpy by

(¥ (H ) ) e

. (3hN
— (—3)z<8m_> gLZ|q1| hyHI (N, .., N, ),
(12.5)
and for n odd and ¢ € Bp, by
gl (TLE00 )10
i=1
al 3aN\" -2\n = |n—1
= 37 () @Ire Yl
3
<Z > 2Ny, Ny o), (12.6)

where

HI(Ny o N,0) =(HN2“;;‘1 P )V (9)D, )
i=1

(P (D) VH IV

(12.7)

and where the products above are ordered from left to right
in increasing i. Here the reference coordinate patch (around
the nondegenerate vertex v of ¢) associated with the metric
hgp is {x}. The vertex structure is such that the edges of the
charge net ¢ in a small vicinity of v are straight lines in the
{x} coordinates. The Ith such edge has unit coordinate
edge tangents V¢ with V¢ pointing outward or inward from
v depending on the kink structure of ¢ in the vicinity of v.
These edge tangents are extended to constant (with respect
to {x}) vector fields at any point p in the vicinity of v in
Eq. (12.7). The ith edge charge on the edge I is denoted by
g} and v is the “volume” eigenvalue at v in c. The function
g. depends on the network of geodesic distances, as
measured by h,;,, between all pairs of C° kinks in c; a
C° kink is a point at the intersection of two edges such that
the edge tangents of the two edges at this point are not
proportional to each other. For ¢ & Bp the right-hand sides
of (12.5) and (12.6) vanish.

Equations (12.6) and (12.7) are consistent with anomaly
free single commutators. By this we mean that (a) these
equations can be used to compute the action, on an anomaly
free basis state, of any operator string of the form (1.1), and,
(b) each of the commutators in the resulting expression can
be replaced by the appropriate electric diffeomorphism
commutators in accordance with (the quantum correspond-
ent of) Eq. (2.11).

The action of a diffeomorphism ¢ on the anomaly free
basis state W,  p yields the state Wy ;40

ab-Po-

(‘Pf.hab,PO|UT(¢)|C> =

where ¢* is the pushforward action of ¢.

The explicit action of any operator product of the form
(12.1) can be obtained from (12.5), (12.6), (12.8) through a
judicious use of the identities (12.3) and (12.4) and the fact
that the reference coordinate patch {y} associated with the
metric ¢*h,, for the state U(¢)|c) is the pushforward of the
reference coordinate patch {x} associated with the metric
h,, for the state ¢ so that {y} = ¢*{x}.

(g rpongpolc)  (12.8)

XIII. DISCUSSION

A. Characterization of anomaly free domain

In the previous section we showed that the finite span of
anomaly free basis states constitute an arena wherein the
constraint algebra admits a diffeomorphism covariant and
anomaly free implementation. We refer to this finite span as
the anomaly free domain D,r. We know very little about
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this domain. For example given all the amplitudes (¥|c) of
astate ¥ € Dy, we do not know of any operational way of
using these amplitudes to reconstruct the expansion of ¥ in
terms of anomaly free basis states. We do not even know if
this expansion is unique. On the other hand, the action of
the constraint operators depends on the basis expansion by
virtue of the covariant choice scheme wherein the regula-
tion (and hence continuum limit action) of constraint
operators depends on the metric label of the basis state
being acted upon. Hence if the expansion in basis states is
not unique neither is the definition of the action of the
constraints. Nevertheless given any such expansion, the
Hamiltonian constraint commutators can be replaced by
appropriate electric diffeomorphism constraint commuta-
tors and the action of the constraint operator products in
(11.34) is diffeomorphism covariant within the context of
this particular basis state expansion. If there are several
such expansions then defining all operators of interest
with respect to any one fixed expansion ensures that the
relations between these operators are consistent with
anomaly free commutators and diffeomorphism covari-
ance. Itis in this sense that (11.31), (11.32) and (2.11) hold.

B. Physical states and their off shell deformations

The anomaly free states introduced in Sec. VII and used in
Secs. VIII-XI do not satisfy the Hamiltonian constraint as
can be seen from Eq. (9.27). They also do not satisfy the
diffeomorphism constraint, as can be seen from Eq. (11.30).
Hence they are off shell states. We would like to see them as
off shell deformations of on shell states. The simplest way to
do this is to define the distribution W, p,:

(lPsol,Po‘ = Z <E|

(¢leBpy

(13.1)

It is then easy to check that the action of the distribution
Wo1p, ON (9.25) vanishes independent of which h,;, € H,,
is used to regulate the constraint in that equation. More in
detail, if we fix any h,;, € H,,, and use the choice scheme
S,, we have that the continuum limit of the resulting
Hamiltonian constraint on W, p, vanishes. Further, by
inspection, W, p, is invariant under the (dual) action of
operators which implement finite diffeomorphisms. Hence
W01 p, 1 a solution to all the constraints and constitutes a
physical state.

Next, consider the following one parameter family of

states based on the bra set Bp:

‘Pfshalppo,f = lPSO].PO + T‘Pfshah-BPU’ T > 0 (132)
Clearly, ¢, , p,. 1s an off shell state such that its action on
operator products of the type (11.34) is diffeomorphism
covariant and implements anomaly free single commuators.

Further, W, ), . p, . can be deformed into the physical state

Wo1p, by allowing 7 to vanish. Thus the one parameter set
of states {¥;,  p, .. 7> 0} constitute an off shell defor-
mation of the physical state ¥, p, such that on these states
the implementation of the constraint algebra is diffeo-
morphism covariant and displays anomaly free single
commutators. More generally, we may consider any state
¥ in Dyp and construct ¥, = Wy, p, +7¥ as off shell
deformations of Wy, p,. The comments of Sec. XIII. A
above then apply to the manner in which the implementa-

tion of the constraint algebra on such states is consistent
with (11.31), (11.32) and (2.11).

C. Contrast with the conventional notion of anomaly
free constraint algebras

As mentioned in the Introduction, the conventional
notion of anomaly free constraint algebras also includes
multiple (as opposed to single) anomaly free commutators.
In the absence of structure functions, this conventional
notion is powerful and appropriate as it (a) typically
incorporates a representation of some underlying Lie group
of gauge tranformations and (b) ensures that there is a
sufficiently large space of physical states.

In contrast, in the case of gravity, as is well known, the
4d diffeomorphism group (and its Lie algbera of vector
fields) is not represented through the constraint algebra
because a spatial slice with respect to one spacetime metric
is generically not spatial with respect to the image of this
metric by a diffeomorphism. Further, due to the presence of
structure functions, the multiple Poisson brackets between
constraints, while weakly vanishing, yield constraints with
more and more complicated phase space dependent lapses
and shifts rather than simple Lie algebra like structures.
Thus property (a) of the Lie group case seems absent so that
the motivation for anomaly free multiple commutators
stems in this context mainly from (b). However, if we
drop the requirement of anomaly free multiple commuta-
tors, we may nevertheless directly check (b) i.e. the
conventional notion with regard to (b) may be viewed
only as a sufficient rather than necessary condition for a
nontrivial physical state space. Another reason to question
the need for anomaly free multiple commutators is that they
represent properties which are higher that leading order in 7
and hence their implementation seems to be unnecessary
from a naive view of obtaining the correct classical limit.

Our view point is then as follows. While the constraints
do not offer a representation of 4d diffeomorphisms, there
exists a subset of constraints whose algebra is that of 3d
diffeomorphisms. Accordingly we seek quantum represen-
tation of the group of 3d diffeomorphisms and LQG
provides this. Next, even though the 4d diffeomorphism
Lie algebra is unavailable, one can nevertheless interpret
the single Poisson bracket (2.8) as the representation of 4d
deformations in spacetime of the 3d Cauchy slice [8]. More
in detail, in Ref. [8] it is shown that commutator of a pair of
such infinitesimal geometric deformations normal to the
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Cauchy slice to leading order exactly mirrors the single
Poisson bracket (2.8).5] Hence we seek to represent these
single Poisson brackets in an anomaly free manner through
(2.11). After doing this we may then check (b) i.e. we may
check if we have a large enough solution space. While the
work in this paper suggests that the constraint action is
compatible with a large enough solution space, a con-
firmation of this suggestion rests on Sec. XIII. G below.

D. Dependence of solution space
on regulating choices

The key regulating choice is that of the primary coordinates
when the metric label is /), other choices being fixed through
our covariant regulator choice requirement. This preferred
choice seems to lead to the existence of preferred structural
properties of physical states in that such states are combina-
tions of charge net bras which are multiple deformations of
primordial bras, these multiple deformations being defined
with respect to this choice of primary coordinates. Hence it
would be advisable to see if we could build on the work here
so that our considerations yield physical states which are
combinations of multiply deformed charge net bras these
multiple deformations arising from all possible choices of
linear coordinates for primordial states.

E. Structural inputs in our demonstration
of anomaly free commutators

1. Interventions

The interventions by judiciously chosen holonomies in
order to define deformations in Secs. IV and V play an
essential role in our demonstration of the existence of
anomaly free commutators. These interventions are far
from obvious and could not have been arrived at without
guidance from the requirement of anomaly freedom. Thus
the requirement of anomaly free commutators plays a key
role in homing in on the (hopefully) correct choice of
(discrete approximants to) the Hamiltonian constraint.

2. Gauge invariance

U(1)? gauge invariance plays a key role in our consid-
erations; without it, the results of Appendix C which related
net charges to primordial ones would not hold. As a result of
the interventions in Sec. XIII. E. 1, it is the properties of the
net charges (as opposed to the charges themselves) which
become important (see the Note and related discussion at
the beginning of Sec. IX). U(1)* gauge invariance then
plays a key role in our considerations; without it, the results

3!t would be of interest to see if this correspondence also holds
between multiple Poisson brackets and higher order contributions
to the commutator between infinitesimal geometric deformations;
if the correspondence breaks down due to “‘embedding depend-
ence” [8], this would provide added justification for dropping the
requirement of anomaly free multiple commutators.

of Appendix C which relate net charges to primordial ones
would not hold and there would no longer be a correlation
between properties of primordial charges and those of net
charges. This would negatively impact many important
structures/concepts such as the definition of nondegener-
acy of CGR vertices, the properties of the bra set discussed
Sec. VI. B, the invariance of the inequalities (6.7) and (6.8)
under the replacement of primordial charges by net
charges, and the equivalence of (10.1) with (10.2).

3. Linearity

Linearity of charge net vertices plays a key role in our
constructions. It allows for unambiguous extensions of
graphs, such extensions being required for the construction
of certain conical deformations (see Sec. V). It also allows
for a natural definition of “along edge” vertex displace-
ments (see Sec. III. B. 2). This definition together with the
linearity of the scrunching diffeomorphism G (6.17) leads
to constant Jacobian factors which can be pulled out when
analyzing the contraction behavior of the function H', in
(F26) and (F27). This contraction behavior neatly dovetails
with that of the function g.. All this would be impacted if
we did not have linearity. Our proof of the validity of the
replacement of reference coordinates by contraction coor-
dinates for amplitude evaluations relies on the invariance of
the regular conicality of deformations under rigid trans-
lations; this, too, relies crucially on linearity.

Itis not clear to us if our constructions can be generalized
if we drop the requirement of linear vertices; however, any
such putative construction would be incredibly baroque.
The linearity property implies that higher order moduli
vanish [25]; since no physically interesting operators in
LQG to date involve higher order moduli, linearity does not
seem to signify a strong physical restriction. Linearity also
plays a role in interpretations of kinematic states [26] and in
the application of the Minkowski theorem to our consid-
erations in P1 [27].

4. Restrictions on charge labels

As mentioned earlier the “eternal nondegeneracy”
restriction on all members of a primary family is a key
property without which it would be difficult to proceed.
However, it may be worthwhile to think about how this
restriction may be weakened or removed. The restriction
(6.6) seems to be an overkill and likely can be removed
without damaging our final results; this should be con-
firmed. The restrictions (6.6) and (6.5) seem to play a role
only for the products involving more than two constraints
(see Sec. X). In this regard, see Sec. XIII. F below.

5. Restriction on valence

We have restricted our attention to the case that the
valence N of any primordial at its nondegenerate vertex is
even. The reason is that any regular conical deformation of a
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GR vertex with N odd results in a vertex which is not GR.
This follows from the fact that the projections perpendicular
to the cone axis of the edges pointing along the cone for a
regular conical configuration separate into pairs which point
opposite to each other. This in turn is due to the fact that 7 is
an integer multiple of the azimuthal angle ¢ = % between
successive projections i.e. 7 = NT_lgb.

The GR property is used crucially in the proof of the
Lemma in Sec. III of P2, this Lemma being used in the
arguments of Sec. VIIL C involving the replacement of
reference coordinates by contraction coordinates. If N is
odd, let us assume that there do exist charge nets which
satisfy eternal nondgeneracy under repeated conical defor-
mations. It should still be possible to replace reference by
contraction coordinates by restricting attention to charge
nets in the ket set which have no vertex symmetries. By this
we mean that the only diffeomorphism which maps any
such charge net to itself is necessarily identity in the
vicinity of the nondegenerate vertex of the charge net.
This can be achieved, for example, by arranging for the
primordial charges on distinct edges to be unequal to
each other, provided the various charge restrictions in
Sec. XIII. E. 4 can be show to hold. A careful check must
also be made that all other considerations in this work go
through for the N odd case. While these issues need careful
investigation, we believe that with suitable genericity
assumptions which lead to the absence of vertex sym-
metries, it should be possible to generalize our work to the
case of N odd.

6. Role of the C', C? kinks

The reader is urged to peruse the last paragraph of
Sec. V. E wherein the necessity of correlation of the upward
direction between members of a lineage is emphasized. The
upward directions at any parent vertex are inferred from the
positioning of the C!, C?> and C° kinks about the parent
vertex and the placement of kinks around the child vertex is
correlated with the set upward directions at the parent vertex.
While the C? kinks occur naturally from our picture of the
deformations generated by the constraints as the ‘abrupt
pulling of edges along some particular edge, we have
introduced the C', C? kinks purely as diffeomorphism
invariant markers for the reconstruction of consistent upward
directions. Their presence stems from our desire to exercise
adequate control on the calculations in this work. However
we feel that they constitute an inessential technical overkill
and that it should be possible to do away with them.

F. Products of more than two constraints

It seems unlikely to us that the treatment of products of
multiple constraint products in Sec. X will go through for the
SU(2) case of Euclidean gravity. This is because the analogs
of an ith charge component is the ith component of a left or
right invariant vector field on SU(2) i.e. the analogs of these

charges are gauge variant operators. Hence it seems difficult
to define the Q factors in Eqgs. (10.22) and (10.38). On the
other hand all the ingredients in our treatment are fixed
already by the requirements of an anomaly free commutator
for the case of two constraints (see Sec. IX). Given these
ingredients, the —1 structure of the constraints ensures that
any solution to the constraints is of the type discussed in
Sec. XIII. B above. Hence even if we manage to generalize
only the considerations of Sec. IX (and Sec. XIII) to the
SU(2) case, it would constitute significant progress.

G. Multivertex states

The extension of our results to the multivertex case is a
key open problem. It is only in the context of such an
extension that we can analyze propagation in the sense of
Smolin [6,9]. In [10] we make reasonable assumptions on
the solution space emerging from such a putative extension
and analyze the issue of propagation.

H. Semianalytic assumption

We have assumed that semianalytic vector fields gen-
erate semianalytic diffeomorphisms and wused this
assumption in many of our constructions. An important
open technical problem is to construct a proof of the
validity of this assumption.

I. Speculations on role of the metric label

Anomaly free basis states have a metric label which plays
a key role in our implementation of diffeomorphism covari-
ance. We have restricted metric labels to have no conformal
symmetries; is it possible to allow for metric labels with
(asymptotic) symmetries such as (asympotitically) flat met-
rics? Can these metric labels have any other fundamental
role to play (for example in coupling to matter or in
considerations of Lorentz invariance or semiclassicality)?
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APPENDIX A: DEFINITION OF C°, C!, C* KINKS

CY kink: Let 2 semianalytic C* edges e and f intersect
at a point p. Let the edge tangent at p, in some para-
metrization ¢ of e, be . Let the edge tangent at p in some
parametrization s of f be f¢. Then p is called a C° kink if
¢, f* are linearly independent. Clearly this property is
invariant under diffeomorphisms.

Next, consider e, f as above. Let the intersection point p
be the end point of ¢ and the beginning point of f. Consider
a semianalytic coordinate patch in an open neighborhood
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of p. Dots will refer to derivatives of coordinate compo-
nents of points of e, f with respect to their respective
parameters £, s at the point p.
p is a C! kink iff: _

(al) There exists A; > 0 such that f* = 1,¢%.

(bl) There exists no 4, such that /¢ — (1,)%é* = 1,é°.
p is a C? kink iff: _

(a2) There exists A; > 0 such that f = 1,¢.

(b2) There exists 1, such that f¢ — (4,)%&% = e

(c2) There exists no A3 such that 74— (1,)%¢“—

3)«112@‘1 - /13&0.

Here the conditions (al), (a2) ensure that there exists a
reparametrization of e such that first order parameter
derivatives of e, f coincide at p. The condition (b1) implies
that no reparametrization of e, for which the first order
parameter derivatives of e, f coincide at p, is such that the
second order parameter derivatives coincide. The condi-
tions (b2), (c2) imply that such a reparametrization exists
but no such reparametrization can also make the third order
parameter derivatives of e, f coincide at p. It is straightfor-
ward to verify that these conditions are invariant under
change of semianalytic coordinate patch around p (assum-
ing, that the differentiability degree k of the semianalytic
manifold is greater than 3) as well as under change of
parametrizations of e, f. A straightforward consequence is
that the defining properties of C', C? kinks are diffeo-
morphism invariant.

APPENDIX B: REGULAR DOWNWARD
CONICAL DEFORMATIONS OF LINEAR
GR VERTEX STRUCTURE

The deformation is constructed in two steps. The first,
described in Sec. B. 1, endows the deformation with a
regular cone structure with the nonconducting edges in the
vicinity of the displaced vertex lying along a downward
regular cone with axis along the conducting edge. Here by
regular we mean that if we take the outward pointing upper
conducting edge as the z axis then the nonconducting edges
are at equispaced azimuthal angles around this axis along
the cone. In the second step described in Sec. B.2 we
introduce a C™ kink m € {1,2} on the upper conducting
edge. The same techniques used below can be adapted to
(a) construct regular downward conical deformations of
linear CGR vertex structures as discussed in Sec. IV, (b) use
(a) as in Sec. V. A. 1 to construct regular upward conical
deformations of linear GR vertex structures, and, (c) use (b)
to construct regular upward linear CGR vertex structures as
in Sec. V. A.2.

1. Step 1: Obtaining a regular cone about
the conducting line

Let ¢ be a charge net with a single linear nondegenerate
GR vertex v with N edges, N being even. We are interested
in deforming this charge net along its /th edge to obtain the

deformed charge net ¢. If the deformation is generated by
the Hamiltonian constraint this deformed charge net ¢ is
obtained as the product of three charge net holonomies; the
first holonomy is based on the deformed graph depicted in
Fig. 1(b) and the second and third on the undeformed graph
of Fig. 1(a) underlying c. If the deformation is generated by
an electric diffeomorphism, the charge net is based only on
the deformed graph depicted in Fig. 1(b) but is colored
differently from the first holonomy for the Hamiltonian
constraint alluded to above. The displaced vertex of ¢ is
CGR if the deformation is generated by the Hamiltonian
constraint and GR if the deformation is generated by an
electric diffeomorphism. Hence only in the former case do
we have a conducting line and an upper conducting edge.
Nevertheless, in this section we abuse this terminology
slightly and refer to the edge in ¢ along which the
deformation has taken place, variously, as the conducting
line, conducting edge or upper conducting edge.

In this section we construct the precise deformation
which leads to the deformed graph structure of Fig. 1(b).
Since we are exclusively concerned with graph structure
near the deformed vertex, we shall not be interested in the
colorings of ¢, ¢ in this section. We shall use the language
“deformation of ¢” to mean “deformation of the graph
underlying ¢ so as to yield the deformed part of the graph
near the deformed vertex in the graph underlying ¢.”

Let {x} be the chosen (linear) coordinate patch around v
so that there is a small enough coordinate ball, B,s(v) of
radius 26 around v whose surface intersects each edge
emanating from v only once and such that these edges
within this ball are straight lines. In what follows all our
considerations will be restricted to this ball and we shall
freely use coordinate structures with respect to {x} such as
(the restriction to this ball of) planes, lines, rigid rotations
etc. In what follows we shall also use the notation B,(p) to
denote a coordinate ball of radius z around the point p.

Let e; be the edge of ¢ at v along which the deformation
is to be constructed. We use hatted indices to denote the
edges of ¢ at v other than the /th so that such an edge is
denoted ej,J # I. Let By(v) intersect each e; at the point
75 and e, at the point v;. Join v; to each ¥, by the straight
line /5.

Each [;; is in the coordinate plane P;; spanned by the
tangent vectors 5,(1}), 5](1)) at v (these vectors are in the
direction of the straight line edges e; and e;). Since v is
GR, these N-1 planes (one for each J) only intersect along
the straight line along e;. Consider any such plane P;; and

the rotation vector field E ;7 about the axis passing through
v; normal to this plane. Consider B.(v;), € < & so that
B.(v;) C Bos(v). Let f be a semianalytic function of
compact support which is unity in Be(v;) and vanishes

outside B,(v;). Let ¢(f&;3, 1) be the one parameter family
of diffeomorphisms generated by fg,j. For an appropriate
value of # = #(0,J) apply this diffeomorphism only to the
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line /;5 s0 as to rotate it rigidly within B (v;) to the required

cone angle 6 while retaining its semianalytic character.
Performing this “rotation” for each line /;; yields a down-
ward cone structure in the vicinity of v;. With a slight abuse
of notation we shall continue to refer to {/,;} so deformed
by the same symbol. The above structure defines a
deformation of ¢ wherein {?;} are the C° kinks, v; is
the displaced vertex and the edges {e;} have been
“abruptly dragged” at the C° kinks so as to form the
curves I3 ; which are straight lines in the vicinity of v; and
point along the downward cone there with cone angle 6.
Further, due to the use of semianalytic diffeomorphisms the
graph so obtained remains semianalytic and, due to the
details of the procedure no unwanted intersections have
been created.

Our considerations hereon are restricted to B%(v 7)- Recall

that the edges at v; in B¢(v;) C B.(v) are all straight lines.

Since in this section we have occasion to refer to both the
undeformed edges of ¢ as well as their deformed counter-
parts in ¢, we denote these deformed counterparts through
“bars.” Accordingly, using the same numbering for the
deformed edges at v; in the deformed charge net as for their
undeformed counterparts at v in ¢, we denote the deformed
counterpart of e; at v; in ¢ by e;. Using the hatted index
notation, the edges {é;} are nonconducting at v; and the
conducting edge is e;.

Consider the projections of each of the nonconducting
edges transverse to the conducting edge at v; in ¢. These
projections take the form of radially directed rays in a two-
dimensional disk D | emanating outward from its center.
As shown in P1, the angular order of these projections
around this center is a coordinate invariant property. We
shall now further deform the structure around v»; so that
these transverse projections are at equal angles ¢ = %”]
with respect to each other while maintaining the downward
cone angle O of their unprojected nonconducting edge
correspondents. For this purpose it is useful to change our
notation slightly and denote the nonconducting edges by
g, e, ..exy_p Where we have numbered the edges in the
angular order of the transverse projections of their tangents
at v; with respect to €; and we have arbitrarily picked &, to
be some particular nonconducting edge. Let the edges
ey, ..ey_o be such that their transverse projections onto D |
make angles ¢1, .., ¢py_p with respect to &j. Starting at &,
and moving anticlockwise around the cone axis in order of
increasing ¢, let e; be the first edge encountered such that

. 2m .
Assume i > 1. Let Ed) be the rotational vector field about
the axis ;. Consider a semianalytic function of compact
Support .fi—l such that fi—l =1 on B%(U]) and fi =0

outside B¢(v;) with f; decreasing from 1 to 0 in the region

between the boundaries of these 2 spheres. Let ®(f;_&,. 1)
be the one parameter family of semianalytic diffeomor-
phisms generated by f ,-_15(/,. Then for an appropriate value
of t = t;_; apply the diffeomorphism ®(f;&,.#;,_) only to
e, so that its transverse angle with respect to the &, in the
vicinity of v; is increased to (i — 1) %.52 It can be checked
that this deformation does not create any additional
intersections between any edges. Next repeat this procedure
for the edge e;_, replacing f,_; by f,_, which is unity in
Be(v;), vanishes outside Bc(v;) and is between 1 and 0 in
the region between the boundaries of these 2 spheres. This
brings e;_, “forward” to its desired angular position.
Repeat this procedure for all the i — 1 edges between e;
and e,. This leads to a situation in which we have straight
line edges in Bﬁ(v,) and we proceed to the next step.”

The next step is to check if e; is already at its correct
position. If so we skip this paragraph and move on to the
step outlined in the next paragraph. If &; is not at its correct
position, we apply a similar procedure to e; with f; unity in
B_c (v;) and vanishing outside Bz%_(v,) so as to rotate e;

2it

clockwise about e; in the vicinity of »; to its desired
position. At the end of all this, we have created no
additional intersections, and we have edges ey, e, .., ¢;
at their desired positions with these edges being straight
lines in Bzﬁ(v,).

Next, if i < N — 1, repeat the considerations above for
the edges e;, j > i by replacing the role of e, in the above
procedure by é,. Clearly the procedure terminates in a finite
number of steps at the end of which the deformed graph
remains semianalytic without any additional intersections
between its edges, and, the vertex structure in a small
neighborhood of v; is exactly of the “regular conical” type
required.

Let us now revert to our old notation which numbered the
deformed and undeformed edge counterparts identically.
It is important to note that the following property holds for
the graph deformation we have just defined. Consider the
projections of the edge tangents for J # I transverse to the
Ith edge tangent at the vertex v of the undeformed charge

net c. Call this set of projections as {; | }. The elements of
this set can be ordered in order of increasing transverse

angle ¢. Let this ordering be <§il,r 5@@ - ngfl 1)-Recall
again that each undeformed edge ¢; has a unique deformed

2[f €,_; is already at its desired position set #;_; = 0.

3In the case that i = 1 satisfies (B1), there are no “in between”
edges and we can directly proceed to the next step. Also note that
if there is no edge i which satisfies (B1), then all edges are either
at their correct positions or need to be rotated anticlockwise to
their positions. In such a case we start our procedure as above by
setting i — 1 = N — 2 so as to first bring the N — 2th edge to its
correct position, then N — 3th edge all the way up to the second
edge (the second edge is e; since our numbering starts from 0) so
that all edges are now at their correct positions.
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nonconducting counterpart €; which departs from the
undeformed edge e¢; at the C° kink #; and terminates at
v;. Call the set of projections of these nonconducting
edge tangents transverse to the conducting edge tangent at

the vertex v; as {; , }. These also may be ordered in a
similar manner. Then the property which holds for the
deformanon is that these two orderings are identical i.e. the
collection (e, 1 er, 1, .., ejN_
of increasing ¢.

oL ) is also ordered in order

2. Step 2: Introducing a C* or C! kink
on the conducting line

The step above leaves us with a regular cone in some
small 7 < & sized neighborhood B, (v;) of v, in the
deformed charge net ¢. Recall that ¢ is the deformed
charge net obtained in Sec. B.1 above and, for a
Hamiltonian constraint deformation is based on the graph
depicted in Fig. 1(c) and for an electric diffeomorphism
deformation on Fig. 1(b). We now show how to place a C?
kink on the upper conducting edge of c.

Since the deformation of c is along its /th edge, the upper
conducting edge in ¢ is a subset of ¢; and we confine our
considerations to this subset below. Let 7 < 7 and let vy,

Ly be at distances £, 2= from v; on e; so that the outward
pomtmg upper conductlng edge runs from v; on to vy, and
then to Vne . We seek to deform this edge so that Ly
becomes a C? kink. We require that in doing this (a) the
segment of the edge between v; and v1g remains unde-
formed (and hence a straight line), and (b) the deformation
be confined to within a distance 7 <% of vgy in a small
enough cylindrical (with axis along e;) neighborhood U,
of the edge ¢; that no intersections of the deformed edgé
with any other edge of the graph underlying ¢ ensue.
Clearly the desired deformation can be generated
through the action of a small loop holonomy #; with
charge qff where the loop consists of two semianalytic
segments /., [, where (i) /|, runs from vy along ¢; for a
distance 5 to the point Vnzp ON e, (ii) /5, runs from Unie ;1O
vy w1th1n a small enough cylindrical nelghborhood Ueyi

of e; such that it does not intersect the deformed graph of
Step 1 except at the two points vy, Uitz and such that it

joins vy at a C? kink but leaves v, ; as a semianalytic C*

extension, and (iii) ¢/ is chosen to be the negative of the

charge which colors the (outgoing) upper conducting edge
at v; in ¢ (recall that the part of e; between vy and Vix g isa

subset of this upper conducting edge).

Recall that the deformed charge net obtained at the
end of Step 1 in the case of Hamiltonian constraint type
deformation can be thought of as being generated by the
product of appropriately defined holonomies [see, for
example, the line preceding Eq. (3.2) and the discussion

in Sec. II after Eq. (2.24)]. This deformation is further
modified through multiplication by the holonomy #,; . By
choosing U.,; and 7 small enough, the area of the loop can
be made as small as desired so that the corresponding
classical holonomy is unity to O(n™) for any desired m.
This implies that the above C? kink modification of the
discrete approximant constraint action still yields an
acceptable approximant to the constraint action. In a
similar fashion multiplication by this holonomy of the
electric diffeomorphism constraint approximant which
generates the deformation of Step 1 also yields an accept-
able approximant which generates the C? kink modified
deformation.

To summarize: The end result of our constructions is
that in a small enough neighborhood of the deformed
vertex v; the nonconducting edges are straight lines which
form a regular downward pointing cone around an axis in
the direction of the conducting edge which is also a
straight line in this neighborhood. The nonconducting
edges emanating from v; meet their undeformed counter-
parts in C° kinks whereas the conducting edge emanating
from v, is distinguished by its having a C? kink. The area
of the C? kink (i.e. the area of a holonomy which can
create this kink) can be made as small as desired. In
particular, given some o < 9, the departure of the edge
from linearity can be confined to a small sphere of radius
2a, around the kink.

It is straightforward to see that similar constructions
enable the placement of C? or C' kinks at desired locations
on the conducting line of the deformed charge nets
encountered in the main text.

APPENDIX C: COLORING OF MULTIPLY
DEFORMED STATES

The concept of net charge plays a key role in this
section. Equation (5.1) defines the net charge on a
conducting edge to be the sum of its outgoing upper
and lower conducting charges. Here we extend this
definition to the case that the edge is nonconducting;
in such a case we define the net charge g/, on such an
edge to be its outgoing charge.

Next, let ¢ be a state with a single nondegenerate GR or
CGR vertex v which is linear with respect to the coordinate
patch {x}. Let ¢ be deformed as described in Sec. V by
the deformation (i, I, 3, §). The detailed locations of kinks
associated with this deformation are not important here.
We have the following cases:

Case 1: The parent vertex is GR and there is no
intervention. From Secs. III, IV and V it follows that
the displaced vertex in the child is either GR or CGR.
We have two subcases:

Case la: Parent vertex is GR, Child vertex is displaced
along the edge e; of the parent in the outgoing

direction 5,: In this case, for any J # I, the Jth edge
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at the displaced vertex of the child is colored with
(i, B) flipped images (i.e. unflipped charges if =0
and p times the i flipped charges if f = 1) of the
charges on its undeformed parental counterpart. By
gauge invariance the net charge on the /th edge at the
displaced vertex in the child is the (i, §) flipped image
of the charge on the /th edge of c.

Case 1b: Parent vertex is GR, child vertex is displaced
along the linear extension of the edge e; of the parent
in the incoming direction -2 ; opposite to the outgoing
direction: In this case there is no conducting line in
the child at the displaced vertex and, by construction,
all edges at the displaced vertex of the child have
(i,p) flipped charges of their undeformed parental
counterparts.

Case 2: Parent vertex is CGR: Let the conducting line
through the parent vertex v in ¢ be the Kth one. Due to
the intervention by 4, (see Secs. IV and V), the parent
vertex v in ¢ becomes a GR vertex in ¢;. The edges at
v in ¢; are equipped with the net charges of their
counterparts at v in ¢c. We have two subcases:

Case 2a: The child vertex is displaced along the edge e;

of ¢; in the outgoing direction F ;- There are two further
subcases:

Case 2a.1: I # K: The displaced vertex is not located on
the conducting line in c. Hence the inverse interven-
tion h;! leaves this vertex untouched. From Case 1
above, the displaced vertex in the child ¢4 is
either CGR or GR. Since this vertex is untouched
by the inverse intervention, this vertex remains
CGR or GR in ¢(;;44). Note also from Case 1a that
the net charges at the displaced vertex in the deformed
child ¢4 are the (i,p) flipped images of the
corresponding net charges at v» in ¢;. Since
the inverse intervention does not touch this vertex,
the net charges at the displaced vertex in c(; ;4.5 are
also the (i,/) flipped images of the charges on ¢,
these charges on ¢; being the same as the net charges
at v in c.

Case 2a.2: I = K: The displaced vertex is located on the
conducting line passing through » in ¢. From Case 1 it
follows that the displaced vertex is CGR or GR in
Ci(i.k p.s)- Since the displacement is along the K'th edge
in ¢;, in the case that the displaced vertex is CGR the
upper and lower conducting edges at this vertex in
ciikps) are also the Kth ones. Since the inverse
intervention can only affect the vertex structure at the
displaced vertex in ¢;(; x 4,5 along this Kth conducting
line, it follows that the displaced vertex in c¢(; 45 18
also either GR or CGR. Moreover the inverse inter-
vention cannot change the net charges at the displaced
vertex so that the net charges at the displaced vertex in
C(i.k p.s) are the same as those at this vertex in ¢;(; g g.5)-
The latter, from Case 1a, are the (i, ) flipped images
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of their counterparts at » in ¢;, these charges in ¢;
being the same as the net charges at » in c.

Case 2b: The child vertex is displaced along the linear

extension of the edge e; of the ¢; in the incoming

direction —é; opposite to the outgoing direction. There
are two subcases:

Case 2b.1: I # K: The displaced vertex is not located on

the conducting line in ¢ so that the inverse intervention
;! leaves this vertex untouched. From Case 1b above
it follows that (i) the displaced vertex in ¢y(; ; 5,5, and
hence in c(; 45, is GR (ii) the net charges at the
displaced vertex in ¢y s 5.5, and hence in ¢(; ; 4 5), are
the (i,/) flipped images of the charges on c¢;. The
charges at v in ¢; are the same as the net charges at ¢
because the inverse intervention cannot change net
charges.

Case 2b.2: I = K: The displaced vertex is located on the

conducting line in c¢. From Case 1b, it follows that
the displaced vertex is GR in ¢ g 35 The inverse
intervention can only affect the vertex structure at the
displaced vertex in ¢ g5 along the Kth edge of
Cciikpo) at this vertex. It follows that the displaced
vertex in c(; g g 5) can only be GR or CGR. Moreover
the inverse intervention cannot change the net charges
at the displaced vertex so that the net charges at the
displaced vertex in c(; x5 are the same as those in
¢y(i.k p.s)- The latter, from Case 1b, are the (i, f) flipped
images of their counterparts at v in ¢; and the charges at
v in ¢; are the same as the net charges at v in c.

Case 3: Parent vertex is GR but an intervention is

required: This case is that of (2), Sec. V. B. 1. It is easy
to check that this is identical to the case of a CGR
vertex with vanishing upper conducting charge and no
new structures beyond those already encountered
ensue. Since our arguments for the CGR case did
not depend on the specific values of the edge charges,
we still have that Conclusion 1 below holds.

Thus we have Conclusion 1: The displaced vertex in the
child is either GR or CGR. The net charges on the edges of
the child at its displaced vertex are the (i, ) flipped images
of the net charges on their counterparts in the parent.

Also note the following:

(1a) In Case 1a above the undeformed parts of the edges

ez emanating from v in c(;;45) have vanishing ith
charge when f # 0. By gauge invariance, the /th edge
at v in c¢(; 155 also has vanishing ith charge so that v
is degenerate in ¢(;;45). Note that v remains GR in
cirps)- If =0 (i.e. for electric diffeomorphism type
deformations), v is absent in c(; 7 .5)-

(1b) In Case 1b above, similar to (1a) the undeformed

parts of the edges e,,; emanating from v in ¢(; ;4
have vanishing ith charge when f # 0. By gauge
invariance, net charge along the /th edge at v in
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C(i1ps has vanishing ith component so that v is
degenerate in c(;; 5,5 Note, however, that because of
the necessity of a graph extension, the vertex v in
C(irps can be either CGR or GR. If =0, then
because of the graph extension » is present (and
bivalent) in ¢(; 1 p.)-

(2) The deformed charge nets ¢;(; ;45 are obtained by
actions of the type in Cases 1a, 1b at the GR vertex v of
¢;. Accordingly we have that (2a) The transition from c;
to ¢y(;.15.5) 18 of type Case la: For f # 0, (1a) implies
that the edges at the vertex v in ¢y ;4.5) €ach have net
charge with vanishing ith component. The action of the
inverse intervention does not change these net charges
so that the net charges at v in c(; 45 also have
vanishing ith component. If v in c(;;45 remains
CGR, it is then easy to see that independent of which
edge at v in ¢(; ;5 5) We assign as upper, due to the fact
that the corresponding intervention which removes the
lower conducting edge at » does not change the net
charge, we have that v is unambiguously degenerate in
C(i1p.5) (see Definition 3, Sec. V.E).

If f = 0 then from (1a) v is absent in ¢;(; ; 5.5 SO that
it is bivalent in ¢(; ;4.5

(2b) The transition from ¢; to ¢;(; 1 4 5) 1s of type Case 1b.
Here it is important to delineate the two subcases,
(2b.1) with I # K and (2b.2) with [ = K:

(2b.1) From (1b), if p # 0, the edges at the vertex v in
Ciirps) €ach have net charge with vanishing ith
component. Note however that from (1b) the vertex
v in cy;rps) can be GR or CGR. If it is CGR, the
conducting line at v in ¢;(; 1 4 5) is along the Ith edge of
¢ and its extension. Since the inverse intervention only
affects the vertex structure at v along the Kth edge in
Ci(i1.p.5)» this Ith conducting line is also present at v in
C(i1p)- In addition the inverse intervention restores
the lower part of the Kth conducting edge so that there
are now mwo conducting lines through v in ¢(;;44)-
Note however that the inverse intervention cannot
change net charges so that the net charges on these
lines still have vanishing ith component. Definition 5,
Sec. V then implies that this “doubly CGR” vertex is
degenerate.

If p = 0, then from (1b) v is bivalent in ¢;(; ; 4 5) and
the inverse intervention renders this vertex 4 valent but
with only two linearly independent edge tangents.
Hence the vertex is planar (and hence neither GR nor
CGR) and hence, degnerate, in ¢(;;4.4)-

(2b.2) From (1b), if p # 0, the edges at the vertex v in
ik ps) €ach have net charge with vanishing ith
component. If the vertex v is CGR in ¢ k45 as a
result of the graph extension, then the conducting line
through v is along the Kth edge in ¢; and its extension.
Since the inverse intervention is also along the Kth

edge at v in ¢, the vertex v in ¢(; g 4.5) i8 either GR or
CGR but not doubly CGR. Since the inverse inter-
vention cannot change net charges, the net charges at »
in ¢(; g p.5) have vanishing ith component so that v is
unambiguously degenerate in c(; x 4,5 If # = 0, only
the Kth line passes through v in ¢k 4,5 so that v is
bivalent in ¢(; g 4 5)- The inverse intervention near v is
also along this line and the vertex v remains bivalent
(and hence degenerate) in c(; g 3.5)-

(3) As mentioned in Case 3 above, this is identical to the
case of a CGR vertex with vanishing upper conducting
charge and no new structures beyond those already
encountered ensue. Since our arguments for the CGR
case did not depend on the specific values of the edge
charges, we still have that Conclusion 2 below holds.

It is straightforward to check that in all cases, leaving
aside the vertex v and its displaced image in the child,
the only other vertices created by the deformation are of
valence at most 3 and hence degenerate. Hence the only
possibly nondegenerate vertices of ¢(; ; 5 5) are v (which we
have shown is degenerate) and its displaced image.

Thus we have Conclusion 2: The vertex v (if present) in
C(i1ps) 18 degenerate.

It then follows, if (as is assumed in the main text) the
displaced vertex is nondegenerate, then the deformed child
of a parent with a single linear, nondegenerate GR or CGR
vertex also has a single GR or CGR vertex with net charges
which are (i,f) flipped images of their parental corre-
spondents. Applying this to any c in the ket set, it follows,
by virtue of the fact that any such Ket arises as a multiple
deformation of some primordial ket, that (a) any ¢ € Sk
has a single nondegenerate vertex and (b) the net charges
at the nondegenerate vertex of ¢ € Sk are identical to, or
the flipped images of, the charges on such a primordial
ancestor.

APPENDIX D: EXAMPLES OF P
RIMORDIAL STATES

Consider a 4 valent gauge invariant linear vertex which is
linear with respect to some chart {x, y, z}. Let its outward
pointing edges be in either upward or downward conical
conformation with respect to {x, y, z} (by which we mean
that one edge points along the cone axis and the remaining
three are arranged in a regular upward or downward
configuration about this axis). We assume without loss
of generality that the 4th edge e, points along the z (or —z)
axis and that the remaining three edges e;, e,, e3 point
along a cone with angle 0 < € < z about the —z axis. Let
the projections of the outgoing tangents to e;, e,, e3 be
€1,,€,,.€3,. Let the edges be placed such that these
projections are ordered anticlockwise about the z axis as
{€11,€,,,¢3,} and let the angle between successive
projections be 27” so that the configuration is regular conical.
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Let the triplet of U(1) charges on the Ith edge be
g = (g}, 4%, q37). Choose G;,1 =1, 2, 3 to be linearly
independent vectors and set g4 = —(>_3_, g;) so that the
vertex is gauge invariant. It is straightforward to verify that
if the cone is in downward conformation (so that e, points
along the +z axis), the volume eigenvalue v (see (2.16)) is

.
q = -€"q\ 0545 (DI1)

v=4|ql, =13

and if the cone is in upward conformation (so that e4 points
along the —z axis) then the volume eigenvalue is
v=2|q|. (D2)

Let us denote a primordial charge net with a single 4
valent vertex of the type which results in (D1) by ¢p and
that with a single 4 valent vertex of the type which results
in (D2) by ¢;. We note the following:

(1) For both these choices of primordials, the linear
dependence of 3 of the 4 charge triplets together with
gauge invariance implies that these four charge
triplets define a GR set of charge vectors i.e. any
three of these vectors are linearly independent. Since
we have only used linear independence of three
charge vectors, gauge invariance and the conical
conformation of the edge tangents, it follows that we
could have chosen any of the four edges to be along
the cone axis and still obtained nondegeneracy.

(2) Let us subject the charges g;, I = 1,2,3,4toa (f, 1)
flip. It is easy to see that flipped charges also form a
gauge invariant set and that the volume eigenvalue is
invariant under the replacement of the charges
g, 1 =1, 2, 3, 4 by their flipped images.

(3) From Appendix C it follows that the net charges
which color the edges at the vertex of any charge net
obtained through multiple deformations of a pri-
mordial charge net are just multiply flipped images
of the charges on the primordial.

From (1)-(3) above in conjunction with Conclusion 2
of Appendix D, the deformations constructed in Sec. V. A—
V.C and Definition 3 of the nondegeneracy of CGR
vertices in Sec. V. E, it follows that any multiple deforma-
tion of either cp or ¢y results in a deformed charge net
which has a single nondegenerate GR or CGR vertex.

Finally, it is straightforward to see that we can easily
arrange for conditions (6.5), (6.6) to be satisfied, for example
by setting the charges on cp, Cy to be ¢} = M§" + 1,
I1=123 M>1.

APPENDIX E: JACOBIAN BETWEEN
REFERENCE AND CONTRACTION
COORDINATES

To avoid notational clutter we adopt the following
change in notation in this section relative to Step 1,

ref

Sec. VIII. C. We set Clirikpe, =5 (C[i,l,j,i(,/},e]m)o =57,
A1)k pe, = Drefs COlip50), = s and denote the diffeo-
morphism which maps s°" to s by ¢, [here the action of
¢con 18 Obtained by the action of an appropriate (composite)
contraction diffeomorphism followed by the diffeomor-
phism a of Step 1, Sec. VIII. C]. The reference coordinates
for s are ¢! {xo} where ¢ is the pushforward action of
¢r and the contraction coordinates for s are ¢}, {xq}. We
are interested in evaluating the Jacobian between these two
coordinate systems at the nondegenerate vertex v of s.

First note the following. The states s and s™f are
diffeomorphic to s and hence to each other. Hence there
exists a diffeomorphism ¢ which maps s to s°". This
diffeomorphism must map the nondegenerate vertex U{)"f of
s™! to the nondegenerate vertex 5™ of s and also map
the set of nearest kinks at these vertices to each other. In
particular the nearest C' kink if present in 5™ must be also
be present in s°°" and be mapped to it and similarly for a
nearest C? kink if present. Since at least one of these kinks
must be present and since the upward direction inferred
from the location of either or both of these kinks, if present,
is uniquely defined (see Sec. V. B), the upward direction 1%
at v is mapped to that at v°°". Since both 5™ and s<°" are
primaries, the vertex structure in a small vicinity of their
vertices must be either upward or downward conical. Note
however that if the structure is upward conical in s™ at v™f
then it must be upward conical in s°°" at v°°", and similarly
for downward conical structures. This follows from the fact
that no diffeomorphism connected to identity can map an
upward conical structure to a downward one.

To prove this, proceed as follows. Consider an upward or

downward cone with respect to V:
(1) (i) From P2, it follows that the anticlockwise order-
ing of the projections, transverse to V in the
coordinates {x,}, of the outward pointing edge

tangents which do not point along V is invariant
under orientation preserving changes of coordinates.
A quick way to see this is as follows. Clearly, the
two-dimensional vector space of these transverse
projections is isomorphic to the vector space of
equivalence classes of vectors where two vectors are
defined to be equivalent if they differ by a vector

proportional to V. Let us denote the transverse
projection of an edge tangent ¥ (or equivalently
its equivalence class as defined in the previous
sentence) by 7. Since in the regular conical con-
formation with respect to {x,}, the angle between
two successive projections in this anticlockwise
ordering is less that =z, the condition that two
projections ¥, U, , with ¥, occurring immedi-
ately after 7, in this ordering are successive is
equivalent to the conditions that (a) no other
edge tangent projection can be written as a linear
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(i)

combination of ¥,,,7,; with positive coefficients
i.e. there exist no «, f > 0 for which there exists an
edge tangent 75 such that av; | + fv,, = V3, and

(b) the vectors ¥, v, V form a right-handed triple
i.e. with respect to the alternating Levi-Civita tensor
Nape We have that 1,,,v$v5V¢ > 0 (this condition
encodes the fact that 7¥,, is encountered after ¥,
in the anticlockwise ordering; we have implicitly
assumed that {xy} is right handed). The conditions
(a) and (b) are invariant under positive rescalings of

U1, U, V. Clearly, any coordinate transformation can
only rescale these vectors with positive rescalings
since they refer to coordinate invariant directions
at the tangent space of the vertex in question. This
proves that the ordering of these projections is
defined in a coordinate invariant way,

The N — 1 edges not pointing along V are arranged

in a regular cone of angle 6 with respect to V when

viewed in the {x,} coordinates. Let V be the unit
vector along V unit with respect to the {x,}
coordinate norm and consider three successive units

(with respect to {xy}) outward pointing edge tan-
gents 125,<, i =1, 2, 3 arranged in anticlockwise order
as discussed in (a) so that the angle between two
successive pairs in these coordinates is ¢ = 2—”1 Itis

N—
straightforward to show that

T, + Uy — 4 cos Gsin2§‘7 =2cos¢v,. (E1)
This implies the relation
at, + by — ccos OV = dcos ¢,
for some a,b,c,d > 0. (E2)

This implies that if N =4, for some «,f,y > 0,
we have that

—(a¥, +pv3—yV)=10,, foraupwardcone  (E3)

—(av, + pv; + 717) =1,, for an downward cone;
(E4)

and that if N > 4, for some a, 5,y > 0, we have that

av; +pvz—yV =1,, foranupward cone;

(ES)

av, +pus+yV=1v,, foradownward cone.

(E6)

The above equations retain their form (as well as the
positivity properties of a, f5, y) irrespective of the

choice of coordinates because a change of coordi-
nates only provides a positive rescaling to the
vectors in these equations.

Clearly, any diffeomorphism ¢ connected to identity
which maps s™ to s is such that (a) it maps
outward pointing edge tangents at v, in s to
outward pointing edge tangents at v, in s°"; (b) it
maps, as noted in the second paragraph of this
section, the upward direction at v, to that at v.,;
(c) it retains the anticlockwise ordering of the
(N — 1) edge tangents (which are not along the cone
axis) around the upward direction; this immediately
follows from the fact that ¢ (which is orientation
preserving by virtue of its being connected to
identity) preserves conditions (i) (a),(b); and (d)
from (a)—(c), it follows that ¢ preserves conditions
(E3)—(EO6) so that if any one of these conditions hold
at v, in 5™, the same condition holds at v, in s,

The statement (d) implies that an upward conical
deformation cannot be mapped into a downward conical
deformation (and vice versa) by ¢. Next, recall that the
multiple deformation which generates any primary from
any reference primordial is confined to a coordinate ball
By, (po) with respect to the Primary Coordinates {x,}. We
show the following Lemma.

Lemma L1: Let the vertex structures in a small vicinity
of the nondegenerate vertices of stef geon be downward
conical. Denote the coordinate ball of size 7 (in {x}
coordinates) around a point p by B,(p). Then there exist
small enough open balls B, (v!), B,(v5™), together with a
rigid rotation R and a rigid translation 7" (with R, T’ defined
with respect to the {xy} chart) such that B (vf™") =
RTB,(v5") and such that RT(s™| 31(1/'};“")) = 5| BL(15)
where c|, refers to the restriction of the colored graph
defining the charge net ¢ to the set U.

Proof-—Clearly, there exists small enough 7 such that
B, (v5"), B,(v5") intersect s™f, s only in their conical
vertex structures. Thus s, (i), 5[5 (,on) both com-

70 L]

(iii)

prise of regular conical structures with respect to {x,} i.e.
each of these restrictions comprise of a cone vertex with
downward pointing nonconducting edges around the
upward pointing cone axis. Further both cones have the
same angle 6. Since s*, s are diffeomorphic (to s and
hence) to each other, there exists a diffeomorphism ¢ which
maps the preferred upward pointing axes to each other and
the set of downward pointing conical edges to each other.
Such a diffeomorphism induces a map between the sets of
downward pointing unit edge tangents so that

{¢*(6).T=1,..N=1} = {p;67.;,>0.1=1,..N—1}

(E7)

where the edge tangents ¢ 7 5; on the left- and right-hand
sides are unit with respect to the coordinates {x,} at
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vfff " respectively. From (iii)(c) above it follows that the
sets of projections of these edge tangents transverse to the
cone axis have the same ordering. Thus we may use ¢ to
identify each downward pointing edge of the cone in s™f
with a downward pointing edge in s°".

Let T be the rigid translation which maps vref to vg™".
Clearly T(B,(v§")) = B, (v§). Next, rotate (Tsref)|B (05m)

by R; so that its distinguished “up” direction 1% aligns with
that of s°°"| ;. Next, rotate around this preferred direction
by R, so that one of the downward pointing edges of
(R Ts™)|,(uem) aligns with its counterpart in s

UCO" as
identified by ¢. Since the transverse ordering is preserved,
this automatically aligns all the remaing downward point-
ing edges of (R,Ts™)] B,(ucn With their counterparts in

con

§€" yen. Since Ry, R, preserve (the coordinate ball)
B.(vi™) we set R = R,R; to obtain the desired trans-
formation RT.

Next note that there exists a small enough neighborhood
V of the nondegenerate vertex » of s such that V is covered
by the reference as well as the contraction coordinates so
that () ™'V, (¢eon) "'V are in the domain of the coor-
dinate patch {x,}, and such that s|, only contains the
nondegenerate vertex v and segments of the edges emanat-
ing therefrom. Also note that there exists small enough
such that the open balls of the Lemma above are such
that B ( con) (¢con) IV B ( ref) (¢ref)_ V. It follows
from the Lemma above that ¢..,RTB,(v§') CV and
that this set is an open neighborhood of v. Hence
(¢ret) " PeonRT B (v5T) is covered by {x,} and is an open
neighborhood of vff. Setting (Pref) ' PeonRT =y, and
wB. (Vi) = BY( r"f), we have that both B,(v%") and
BY(v5") are open neighborhoods of ' and we can
compute the Jacobian

Ay xp)¥

Jb = .
OxY et
0 Lo

(E8)

From the proof of the Lemma in P2 and the discussion
above it follows that (a) y maps the set of edge tangents at
s™f at its vertex vff! to itself modulo overall scaling (b) the
upward direction is mapped to itself and the anticlockwise
arrangement of the transverse projections of the downward
pointing edge directions are mapped to themselves. From
the fact that the reference deformations of Appendix B are
regular conical, the results of (a) and (b) can be imple-
mented through the action of linear transformation on the
tangent space at vt which takes the form of a constant
times an SO(3) matrix in the {x} coordinates. Then it
follows from the last part of the proof of the Lemma in P2
that the action of y on the tangent space as expressed
through the Jacobian in the above equation must be that of
constant times as rotation i.e. we have that

Ji = CR! (E9)
for some C > 0 and some SO(3) matrix R.

Next note that with p € ¢onRTB.(v) and p :=
(RT) ™ (¢peon) ™' p € B.(v5") we have that

N rerxo)'(p) — _ Oxp((¢er)”'P)
(¢eon) RT*x0)"(p)  Ox5((RT)™ (peon) ™" P)
_ —3("(;;’;)‘2;4 )(p ) (E10)
Setting p = v we have from (E8) and (E9) that
8((¢ref)*x0)”(p) _ (PRU
O ()" D) 30l D)oy~ e 1
Next note that with p € ¢, RTB,(v'),
8((¢ref)*x0)ﬂ(p) — 8(((:brc::f)*xO) ( )
I(Peon) x0)"(P)  O((¢eon)” (RT) x0)*(p)
() (RT)x0)"(P) 1)

((¢c0n) xO) (p) ’

so that it remains to evaluate the second Jacobian in this
equation. Setting p = (¢beon) "' p € B, (v5") we have that

a( (¢con>* (RT)*XO )M (P) —

Ox5((RT)™'p)
a((¢c0n)*x0)y(p) '

9x5(P)

(E13)

Since R, T are rigid rotations and translations in {x;}, we
have that x,((RT)™'p) =x4(T"'R~' p) = (R7')\x4(p) — 1
where # is a constant vector corresponding to the trans-
lation 7' from which it follows that the Jacobian in the
above equation is the (R™'). Together with (E11) and
(E12), this implies that the Jacobian between the reference
and the contraction coordinates is a constant times a
rotation.

It is straightforward to check that an appropriate version
of Lemma 1 and the following argumentation leads to the
same conclusion for the upward conical case.

APPENDIX F: CONTRACTION BEHAVIOR
OF VARIOUS QUANTITIES OF INTEREST

1. Notation

To avoid notational clutter we adopt the following
change in notation in this section relative to Step 2,
Sec. VIII. C. We set, similar to Eq. (8.20),

€], €] €, €
xg' n = 1(6) Xg! Oml = x e =0

Clirikpe, =55 Kt =S

[11/)’6
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We are interested in the transition from the immediate
parent s = cj;; 4. j k-1 t0its child s5 = ¢ 5 & g - In this
transition the parent s is deformed conically along (or
opposite to) its /,,_; th edge at its nondegenerate vertex » SO
as to displace this vertex to the point v° which is the
nondegenerate vertex of the child ss. In our notation (F1),
this transition is (i—1. Ly—1. B € ) = (im-1> Ln-1. B, 6).

We denote the upward direction at » in s by V;  so that

\7,% . is parallel or antiparallel to the edge tangent ¢ I, atv
(see Sec. V.B).

Finally, all the edge charges referred to below will be net
charges (see the first paragraph of Appendix C for the
definition of net charge).

2. Contraction coordinates and choices
of upward direction

From (F1), the child ss of its immediate parent s has
contraction coordinates {x®}. Step 1 of Sec. VIILC
allows the evaluation of the coefficients which multiply
the bra correspondent of 55 in these contraction coordinates.
To extract their contraction behavior we need to transit to
the parental coordinates {x} in terms of which (see
Sec. VI.D.2) ¢ is measured. Following Egs. (6.15) and
(6.16), it is useful to rotate the {x}, {x!®} coordinates by
R; ! so as to obtain {y}, {y'¥} coordinates with y> pointing
along the straight line passing through v and »°. From the
last remark of Sec. VI.C it follows that y(®* also points
along this direction. Note that this direction is parallel
(antiparallel) to ‘71mf. if the deformation is downward

(upward). Note also that \7,”‘_1 is defined, strictly speaking,
only at v in 5. However due to the fact that v in s is linear
with respect to {x} (and, hence, {y}) we can naturally
define \7,%[ at every point in the domain of these
coordinates. It is in this sense that we refer to the direction
defined by \71”’7 . in this section. Note that the direction so
defined is consistent with C?, C' kink placements gen-
erated by the transformation (i,,_y, 1,,_;,f,5).

More in detail, any edge that emanates from vs in c;
which bears such a (C' or C?) kink is, in the vicinity of v%, a
straight line pointing along the /,,_;th edge emanating from
v in ¢ (or along the linear extension (with respect to {y})
of this edge. Hence its outward pointing edge tangent is
along or opposite to ‘71m_1' The placement of its nearest
kink (see Secs. V.B and V.C) then defines the upward

direction \75‘3 for such an edge to be equal to \71",7 .

3. Contraction behavior of H; .h; .f

Note that the structure in the immediate vicinity of the
nondegenerate vertex of ss is regular conical in terms of
{x@} (or {y!9}) because this structure and this coordinate
system are images by the same diffeomorphism (see

Sec. VI, especially Sec. VI. D. 2) of reference deformations
and reference coordinates in which the reference deforma-
tions are regular conical. Recall, from Sec. F. 2 above, that
the upward direction at v in c; is ‘71"17 .- Let the cone angle
as measured by the {y(®)} coordinates, with respect to this
upward direction be € so that 6 <7 defines an upward
conical deformation and & > 7 defines a downward conical
deformation. Consider any J,,th edge of ss with J,, # I,,_4
in the immediate vicinity of v5.54 Such an edge points along
the cone. Let its azimuthal angle in the {y(®)} coordinates
be ¢, . Thus we have that the unit (with respect to the
()

m

{y®} coordinates) outward pointing edge tangent ¢
along this edge has coordinates (in the {y(®} chart)’

éfn)ﬁ = (sin @ cos ¢, sin O sin ¢, & cos ) (F2)

where the 4+ sign in front of cos@ corresponds to
downward deformations (for which y®?3,y3 run upward)
and the — sign to upward deformations (for which y(®3, y3
run downward). Using Eq. (6.15), the components of 53? in

the {y} coordinates are
oM = (547 sin@ cos ¢, 54" sinOsin g, £cos).  (F3)

Since the y? direction is along ‘71m_1 for downward

deformations and opposite to \71m_] for upward deforma-
tions, the above equation takes the form

@@“ = cos 9\7?,"71 + 6‘1‘1w‘;m (F4)

m

where w§ is a § independent vector in the {y} (and hence

in the {x}) coordinates and V¢ _is the normalized (in the
{x} or, equivalently, {y} coordinates) vector parallel to
Vi - Note that these edges are such that the nearest kink is

a C kink so that the upward direction Vgi)a is along the
outward pointing J,,,th edge tangent (see Sec. V). Denoting
its normalized (with respect to the {y°} coordinates

associated with v;) by \A/(Ji)”, we may write (F4) as

A

P = o = cosoVy  + 5 ws . (E5)
Next consider the upper conducting edge ¢; —;  , (f
present) at v° in sz A similar analysis shows that the unit
(with respect to {x°}) edge tangent along this edge is also
unit with respect to the {x} coordinates so that we have

*Recall that we use the edge enumeration convention de-
scribed in Sec. VI. A

»Since {y®} and {x(®} are related by the rotation R,,
normalization in both these systems is identical.
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NG a
egm)zlm,l,u = Vllm_l' (F6)
Similarly the lower conducting edge (if present™®) at v in s4
has unit (with respect to {x°}) tangent

RC) A
eim)ilm—lad = _Vlm—l : <F7)

Note that by definition the outward upper conducting edge

(0)a

tangent is along the upward direction V™ at v;, and the

lower one opposite to it so that we may write (F6) and (F7)
as the single equation57

NG {; NG
5m)flm .U = V?m—] = _egm>jl —1> d VE ) =1, (FS)

It is then straightforward to obtain the following esti-
mates for the metric norms of the unit (with respect to
{x@}) edge tangent vectors at 2° in s:

Jm#m ] H = cos 0|\/hab Im_l ‘A/?m_l
% ( + C],Jm(v )5‘/—1 + Cz“jm(’[]’s)(&q_l)z)%
(o)
hab(vﬁ)wﬁ ‘A/?
Ciy (1) =2 > Fo
1Jm< ) cos Oh , (1°) 7, lvbm i o
hab(vé)w7 W?
C U§ — ,iﬂ m Fl 1
2,«]:11( ) COS2 ehab(yé) ? |th 1 ( )
A(8)a " 7
gn)flm 1U ,g‘ = Im*lm 1.d \/hab V In- Ime a
(F12)

From (F6)-(F12), we obtain the following behavior for
the quantities in (7.3) and (7.4):

— (va /b
HIm:]m—] - \/hab(vé)vlm—l Vlm—l ’

|cosOlH, _;  +0(877"),  (F13)

Hy 41, =

m—1

*Recall (see for example footnote 13) that while the upper or
lower conducting edge may be absent in 55 because the upper or
lower conducting charge happens to vanish, from Appendix C it
must be the case that at least one of these edges is present in the
child due to the relation of the net conducting charge with the
prlmord1al charge.

"Note that (F8) is consistent with last part of the discussion in
Sec. F. 1.

hy,=1,., = (N=1)(N=2)+0(5"),
h V- 2( 1 +cos?@+ (N —3)|cosd|) + O(8471).
dasts |cos 0|

(F14)

Next, consider any density weight —% scalar density S
evaluated at vz. From (6.16) it follows that

S(vs. {x°}) = 67348 (5. {x})

where we have used the notation S(p, {z}) to signify the
evaluation of S at the point p in the coordinate system {z}.
Setting S'=: f, Eq. (F15) yields the contraction behavior
of f. Note also that if {y} is related to {x} by a rotation
[say, as in Eqgs. (6.15) and (6.16)] we have by virtue of the
fact that the determinant of a rotation matrix is unity, that

(F15)

f(pAx}) = f(p.Ay}) (F16)
Next consider the quantity H IL,,, defined by
!
Hi, = L Vilos, GOV 00 (F (05 TN LD
7 (F17)

Here N;, f are density weight —1/3 scalars. The unit (with
respect to the { y(‘s)} coordinates) upward direction the L,,th
edge (or line) at 2° is denoted by V(L‘?“"

direction V<L§)“" is chosen in accord with the criteria of

Sec. V. The product in (F17) is ordered from left to right in
decreasing value of i so that the factor (N 1\72'2“‘8,11) is

, where the upward

. 76 . .
rightmost. The vector Vi,,), and its norm with respect to the

metric h,, are defined only at the vertex v° of cs. In order to
render (F17) well defined, we extend the domain of

definition of f/,(jz from wvs to a small neighborhood
U(1°) thereof so that the vector field on this extended
domain is constant in the {y(®} chart. This neighborhood is
small enough that Egs. (6.11) hold so that the vector field is
also constant in the {y} coordinates. Thus, for any point p
in this neighborhood, we define this “constant extension”

V(L‘sja" from which we define

Hj (N{,Nj,..Nj;p)

1
= HNi(p’ {y(é)})v(t?lai(p)aai (f(p, {y(é)})

x \Jhas () VO, (D) VP (p)): (F18)

Then we render (F17) well defined by setting
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Hy, =H) (N1.Ny,.Nip=1°).  (F19)

We are interested in the contraction behavior of Hj ~as Cr, (p)=2 hap (P )Wzm( PV, . (p) (F21)
defined above. Note that since the transformation between " cos Ohy,(p)Vi ( p)V?" (p)

{y} and {y®} is linear in the domain of interest, constant

vector fields in one system are also constant in the other.

It then immediately follows that with such extensions of

vectors éfga" ‘A/fn)‘a”, \A/',m_l,v_& ;. in Eqs. (F4)—(F8), these hay(P)WS (p Wt (p)

equations continue to hold in U(#°). It then follows that Ca4,(P) = —3 3 (F22)
. . . . cos ehab(P)Vlm_l(P)Vlm_l(P)

replacing these vectors by their constant extensions in (F9)

and (F12) and replacing h,,(1°) by hu(p) in these

equations, we obtain equations which hold in U(2°).

These equations can then be used to write (F18) in terms

of quantities natural to the {y} coordinates. Evaluating this H _ \/ N o V (7).

form of the equations at v° then allows us to derive the I"**I"’ vd a( P

contraction behavior of Hle as defined by (F19). (F23)

Accordingly (F9) and (F12) are extended to U(v?) as

A(8)a
elmzlm—lsu

J #m ]H = | cos 9|\/th o me (p) Usipg (F20)—(F23), (FlS), (FS.), (F8) in Eq.. (F18),' and
noting that the only objects in these equations with a
x(1+Cyy (p)gq—l +Cyy (p)(54—1)2)% nontrivial p dependence are h,;,, N;, f the other quantities
o o being constant in {y} coordinates, it is straightforward to
(F20) " Gobtain

m—l

Hi,,,zlmI(NI’NZN'NI;]’):5_(1+1)%<q_1>{ﬁNi(pv{y})f/lll;,() ( f(p.{y}) \/hab(p L (pV7 (p))}, (F24)

Hém#lm,l (N17 N2, Nl’ p)

= oo eos ofcos'®) [ . DVEL ()00, (100 0D hn )P, 91V, 1) + 06 . (F25)

i=1

As emphasized above, the derivatives in (F24) and (F25) are along constant coordinate directions in the {y} coordinates.
The only objects with nontrivial p dependence are h,,(p), N;, f and so the above expressions only involve coordinate
derivatives of components of the metric and of the evaluations of N;, f in the {y} coordinates. Setting p = 1° after
evaluating these derivatives, we write the contraction behavior of H ’L in a notation similar to that used in (F17) as

Hy , =H, (N.Np.Nip=1°)

—a—<'+1>%<q-l>{ﬁ (0 DDV 0 (10 O a5, 93 (F26)

Hé,n#lm_l = Him (Nl,Nz, th = 1}5)
]

:5‘(’+1)§<‘1‘1>{|c059|(cos19)HN,(115 v aa,( s {y}) \/th ywe b l)+0(5q—1)}. (F27)

m]

i=1
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APPENDIX G: THE FUNCTION g,
1. Specification of the function g,

Recall that g:X"(V=1) — R with no smoothness restric-
tions and that we are interested in the specification of g only
when none of its arguments are coincident.

First, define the function d(a;,a,) between any two
distinct points a;, a, € X as follows: If there exists a unique
geodesic with length [,/ < 1 which joins a; to a, then we
define d = [ else we set d = 1. We shall refer to d as a
“distance” function.

Let U, be the set of m(N — 1) (noncoincident) points in
2~ which serve as arguments of g. Consider the case in
which the elements of S can be uniquely segregated into
m — k + 2 sets of points S;, i = k— 1, k,...,m — 1, m with
each S;, i > k containing (N — 1) points as follows. Let S,
be such that the distance between any two elements of S, is
less than the distance between any element of §,, and any
element of U,, not in S,, as well as between any two
elements of U,, not in S,. This means that the (V')
distances between points in §,, are the shortest distances
among the (’"(A;_l)) distances between points in U,,,.

To define §,,_; we remove the points belonging to S,
from U. Call the resulting set of (m — 1)(N — 1) points as
U,,_- Let S,,_; be such that the distance between any two
elements of §,,_; is less than the distance between any
element of S,,_; and any element of U,,_; notin S,,_;, as
well as between any two elements of U,,_; not in §,,_;.

This means that the (V') distances between points in S,,,_;

are the shortest distances among the ((”H)z(N ~1) distances
between points in U,,_;. We assume that the structure of
points in U, is such that this procedure can be iterated so as
to define S,,_», S,,_3..., S; and that the procedure cannot be
iterated beyond this so that the remaining (k — 1)(N — 1)
points are contained in S,_;, where if k=1, §; is the
empty set.

Next, in each set S;, i > k—1, consider the (V')
distances between pairs of points. Order these distances
in decreasing value and denote this ordered set by

(), d,....d3L.), where d\ < d" iff r > 5. Then we
2
define

(G1)

If m > 1 and U,, is such that there exists no k > 1 for
which the above segregation exists, weset g = 1. If m = 1
then we define kK = 1 so that all the points are in the set S,
and interpret (G1) as

9= (G2)

2. Contraction behavior of g,

Consider the set of C° kinks of the child ClirJkpe,

which contract to the parent vertices v of the parent
Cli1ped.kjn-1- For the purposes of this section, we denote
the contraction parameter €; by €, the child ¢j; ;5 z 5 by
¢ and the parent cj;; 5. j gjm-1 DY ¢por and the contraction
coordinates associated with v, in cp, by {x}.

Then for small enough ¢ the function g, as defined in
Appendix G. 1 above separates as g. = ¢, Gepa where g, is a

function only of the N — 1 C° kinks which contract to the
parent vertex with, from (G1),

(G3)

where the (¥ 1) distances between pairs of these C” kinks
are ordered in decreasing value and denoted by
(dl,dQ, ...,d(Nz—l)), where dr < ds iff r > s.

For small enough e these distances are the geodesic
distances between pairs of C° kinks. Using the fact that
geodesic normal coordinates are (at least) C3 functions
(recall that Z is a semianalytic manifold of differentiability
class much larger than unity) of coordinate charts on X,
it is straightforward to show that the geodesic distance d
between points separated by a coordinate distance o is
estimated as

d(ay, ay) = 8|2y, 4| + O(5%) (G4)

where gal .a, 18 the unit (with respect to the coordinate norm)
coordinate vector along the coordinate straight line con-
necting a; to a, and ||§a1,a2|| is the metric norm (with
respect to A, at either of the points a; or a,):

||éa1.a2|| = hbc(a)égl,azéfz,,azv a=a Or a=da

(G5)

where the choice of a =a; or a, only affects the
expression (G4) at O(8%). We may now use (G4) to
estimate the required geodesic distances between the
contracting C° kinks.

We shall use the notation in (iii), (iv) Sec. VI. C. Note
that for the contraction of C? kinks we have p; < p, < p3
[see (i)—(iii), Step 2, Sec. VI.D. 1.b]. The C° kinks are
situated such that (a) one of them lies along the Jth edge at
the nondegenerate vertex vy, in cp, at a coordinate
distance €”' from wvp,, (b) a second lies along the Kth
edge at the nondegenerate vertex v, in ¢p,, at a coordinate
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distance Qe”> from v, and (c) the remaining N — 3 kinks
vertices lie at coordinate distances of size €3 from vy,

Clearly the largest distances among the pairs of these
kinks will be those between the kink in (a) and the others.
There are N —2 such distances. Clearly the N — 1th
distance in the prescribed decreasing order will be one
of the distances between the kink in (b) and those in (c).
These distances can be readily estimated using (G4) and
elementary plane geometry. We obtain

dy_y = Qe [|éx||(1 + O(err)),

dy = e |[&]|(1 + O(er)) (G6)

where ||¢; || denotes the metric norm of the unit coordinate

vector &; at the point v, in the coordinate system {x}
associated with vp,e in Cpyp,

ezl =/ ap(vpur) 2527, (G7)

and where we have used the following inequalities which
follow from (i)—(iii), Step 2, Sec. VL. D. 1. b [see (G11) and
(G12) below]:
P3>DP2> D1 (G8)

pP3—pP2>pr2—P1» DP1>P2—Di1-

From (G3) and (G6), we have that

2kl

Note also that during the contraction o/f the N — 1 kinks
created in the transition from cp, to ¢, the position of any
preexisting kinks in ¢, are left unchanged by virtue of (vi),
Step 2, Sec. VI.D. 1.b. Hence the contraction behavior
of g, is

g1 =€l (1 O(er)). (G9)

R

o el

14+ O(eP2P1 .
Z, ( ( ))9e,.

(G10)

Note that from (i)—(iii), Step 2, Sec. VL. D. 1. b we have,
for some j > 1, p,g > 1 that

.2 . 2
p1=Jp§(q—1), P2=J(P+1)§(CI—1)’
. 2 4
p3=J(p+1)§(q—1)+J§(q—1) (G11)
so that
2 4
pz—plzjg(q—l), P3—P2=J§(f1—1)~ (G12)
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