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We propose a new type of Kähler moduli stabilization mechanisms in type IIB superstring theory on
Calabi-Yau manifolds with the positive Euler number. The overall Kähler modulus can be perturbatively
stabilized by radiative corrections due to sparticles. Its minimum is the anti-de Sitter vacuum, where
supersymmetry is broken. We can uplift it to the de Sitter vacuum by introducing anti-D-branes, keeping the
modulus stabilized. Although our numerical results depend on the choice of the cutoff scale and degeneracies
of sparticles, at any rate there exist the parameter spaces where the masses of Kaluza-Klein and stringy modes
are larger than the cutoff scale. Furthermore, this stabilization scenario predicts an ultralight axion.
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I. INTRODUCTION

Themoduli fields appear ubiquitously in four-dimensional
low-energy effective field theory derived from superstring
theory on six-dimensional compact space. These fields
correspond to a geometrical character of compact space.
Unless thesemoduli fields are stabilized at a high scale, it will
lead to the fifth force.Hence,moduli stabilization is one of the
major topics in the string cosmology and phenomenology.
So far, moduli stabilization has been well studied in the

type IIB superstring theory on Calabi-Yau (CY) manifolds.
The closed string moduli are categorized into the dilaton S,
complex structure moduli U and Kähler moduli T.1 Here,
we denote the numbers of complex structure moduli and
Kähler moduli by h2;1 and h1;1, which correspond to the
numbers of three-cycles and four-cycles of CY, respec-
tively. Three-form fluxes in the type IIB superstring theory
can stabilize the dilaton S and all the complex structure
moduli U at the compactification scale [3] and they
generically generate the nonvanishing flux-induced super-
potential W0 ¼ hWfluxi [4]. The remaining Kähler
moduli are stabilized at an anti-de Sitter minimum in the

Kachru-Kallosh-Linde-Trivedi (KKLT) scenario [5] and
large volume scenario (LVS) [6] using the nonperturbative
superpotential for the Kähler moduli. Such an anti-de Sitter
minimum is uplifted to a metastable de Sitter minimum
by introducing anti-D3 branes [5]. The F-term uplifting
scenario is another way to realize the de Sitter minimum
[7,8]. In the KKLT scenario, the stabilization of Kähler
moduli is achieved by tuning jW0j ≪ M3

Pl, where MPl is
the reduced Planck mass. On the other hand, even if
jW0j ∼OðM3

PlÞ, the LVS works for CY manifolds with
the negative Euler number, χ ¼ 2ðh1;1 − h2;1Þ < 0, i.e.,
h2;1 > h1;1 > 1.2 Note that stringy modes and Kaluza-
Klein modes should be sufficiently heavier than all the
moduli fields to justify description of the low-energy
effective field theory.
In this paper, along the line of Ref. [10], we propose a

new type of Kähler moduli stabilization mechanisms in
type IIB superstring theory on CY orientifolds with the
positive Euler number χ > 0, namely h1;1 > h2;1 > 1. In
Ref. [11], it was discussed that the overall volume modulus
can be stabilized perturbatively by one-loop corrections to
the Kähler potential. In that scenario, one needs a certain
amount of fine-tuning of complex structure moduli to
realize the Kähler moduli stabilization. In contrast to
Ref. [11], here we focus on the radiative corrections due
to the sparticles living on D7-branes wrapping a divisor of
CY. Such corrections generate the potential of overall
volume modulus through the Coleman-Weinberg potential
[12]. Since the soft masses are functions of only the
overall volume modulus, the overall Kähler modulus can
be perturbatively stabilized at a sufficiently large volume
region without tuning W0. In this large volume region, the
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1In this paper, we do not discuss the stabilization of open string
moduli. For discussion of open string moduli in F-theory context,
see, e.g., Ref. [1,2], where the open string moduli are identified
with the complex structure moduli of CY fourfold.

2For the LVS with zero or positive Euler number, see Ref. [9].
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string axion associated with the overall volume modulus
remains light and it could be a candidate of dark matter.
Other Kähler moduli could be stabilized by the non-
perturbative effects and/or moduli-dependent D-terms.
(See, e.g., Refs. [13].) We find that stringy and Kaluza-
Klein modes are sufficiently heavier than sparticles and
Kähler moduli at the anti-de Sitter minimum. We can uplift
the anti-de Sitter vacuum to the de Sitter vacuum by
introducing anti-D branes, and such uplifting does not
change the behavior of the moduli stabilization.
The remaining paper is organized as follows. In Sec. II,

we discuss the stabilization of overall Kähler modulus
without uplifting terms in type IIB superstring theory on
CYorientifolds with D7-branes. We add the uplifting term in
the setup of Sec. III to achieve a tiny cosmological constant.
We study the modulus potential with the uplifting terms
analytically and numerically in Secs. III A and III B,
respectively. Other Kähler moduli can be stabilized by
two scenarios. One is due to moduli-dependent D-terms
as discussed in Sec. III C, and the other is due to non-
perturbative effects as discussed in Sec. III D. Also, in
Sec. III E, we show that the nonperturbative effects generate
the mass of ultralight axion associated with the volume
modulus. Finally, Sec. IV is devoted to the conclusion.

II. KÄHLER MODULI STABILIZATION
WITHOUT UPLIFTING

A. Setup

Let us consider the stabilization of closed string moduli
on the basis of type IIB superstring theory on CY orienti-
folds with D7-branes. For a general class of CY threefolds,
the total Kähler potential at the leading order of α0 is
obtained through Kaluza-Klein reduction of type IIB
supergravity action [14,15],

K ¼ −2M2
Pl ln

�
V þ ξ

2

�
þM2

PlKðS;UÞ þ ZðiÞ
aā

���QðiÞ
a

���2; ð1Þ

where V is the volume of CY manifold in Einstein frame
measured by the string length ls ¼ 2π

ffiffiffiffi
α0

p
, KðS;UÞ repre-

sents the Kähler potential of dilaton S and complex
structure moduli U. The leading α0-correction is charac-
terized by ξ ¼ − ζð3Þχ

2ð2πÞ3g3=2s
where χ is the Euler number

of CY and gs is the string coupling [14]. Here, QðiÞ
a are the

matter fields living on D7-branes wrapping the divisor

Di ∈ H4ðCY;ZÞ and their Kähler metrics ZðiÞ
aā are given by

ZðiÞ
aā ¼ ðTi þ T̄iÞ−nai ; ð2Þ

with nai being the modular weights and Ti ¼ τi þ iσi with
i ∈ f1; 2;…; h1;1þ g denotes the Kähler modulus.3 Also, the

gaugino fields couple to the Kähler moduli through the
gauge kinetic function

f ¼ Ti

2π
: ð3Þ

To stabilize the complex structure moduli U and dilaton S,
we consider the following superpotential induced by
imaginary self-dual three-form fluxes [4],

W ¼ WfluxðS;UÞ: ð4Þ
By the flux-induced superpotential, all the complex

structure moduli and dilaton fields are stabilized at the
compactification scale [3]. When W0 ¼ hWfluxi ≠ 0 at the
minima of the complex structure moduli and dilaton,
the scalar potential is nonvanishing because of the breaking
of the so-called no-scale structure [14]

Vα0 ¼ ehKðS;UÞiðKTiT̄jKTi
KT̄j

− 3Þ jW0j2
M2

Pl

≃ ehKðS;UÞi 3ξ

4V3

jW0j2
M2

Pl

; ð5Þ

whereKTi
¼ ∂Ti

K andKTiT̄j is the inverse of Kähler metric
KTiT̄j

¼ ∂Ti
∂ T̄j

K. The nonvanishing F-term of the Kähler
modulus

FTi ¼ −eK=ð2M2
PlÞKTiT̄jKT̄j

W̄0

MPl
; ð6Þ

generates the soft scalar masses and gaugino masses [16],

m2
a ¼

Vα0

M2
Pl

þm2
3=2 − ð∂Ti

∂ T̄j
lnðZðiÞ

aāÞÞ
FTiF̄Tj

M2
Pl

¼ Vα0

M2
Pl

þm2
3=2 −

nai
M2

Pl

���� FTi

Ti þ T̄i

����
2

≃
Vα0

M2
Pl

þ ð1 − nai Þm2
3=2 ≃ ð1 − nai Þm2

3=2;

Mf ¼
FTi

MPl
∂Ti

ln ReðfÞ

¼ M−1
Pl

FTi

Ti þ T̄i
≃
ehKðS;UÞi=2W̄0

VM2
Pl

≃m3=2; ð7Þ

with

m3=2 ¼ eK=ð2M2
PlÞW0M−2

Pl ≃
ehKðS;UÞi=2W0

VM2
Pl

; ð8Þ

evaluated in the large volume region.4 Here, we evaluate
FTi

TiþT̄i
≃ −eK=ð2M2

PlÞ W̄0

MPl
≃ −m3=2MPl, which is satisfied in a

3In this paper, we consider the orientifold projection to realize
h1;1− ¼ 0, namely h1;1 ¼ h1;1þ .

4We take W0 as a real constant for simplicity and discuss the
case with nai ¼ 0 later.
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general class of CY threefolds with a sufficiently large volume. When these sparticles contribute to the radiative corrections,
the 1-loop Coleman-Weinberg (CW) potential is given by

VCW ¼ 1

32π2

Z
Λ2

dk2k2STr lnðk2 þM2Þ

¼ 1

32π2

�
Λ2STrðM2Þ þ 1

2
STrM4

�
ln
�
M2

Λ2

�
−
1

2
þO

�
M2

Λ2

��	

≃
c1

32π2
Λ2m2

3=2 þ
X
a

cab
64π2

m4
a

�
ln

�
m2

a

Λ2

�
−
1

2

�
þ −2cf − 4

64π2
m4

3=2

�
ln

�
m2

3=2

Λ2

�
−
1

2

�
þ 32

64π2
m4

3=2

�
ln

�
4m2

3=2

Λ2

�
−
1

2

�
;

ð9Þ

where M characterizes the mass matrix for canonically
normalized bosons and fermions, and

c1 ¼
X
a

cabð1 − nai Þ − 2cf þ 4; ð10Þ

with cab and cf being the multiplicities of bosons QðiÞ
a

5 and
fermions, respectively. Here, we take the limitM2=Λ2 ≪ 1,
where our description of low-energy effective theory is
valid and the supertrace is defined as

STrfðM2Þ¼ trfðm2
aÞ−2trfðM2

fÞ−4fðm2
3=2Þþ2fð4m2

3=2Þ;
ð11Þ

for an arbitrary function f. We consider the contribution of
ghosts in the gauge

P
3
μ¼0 γ

μψμ ¼ 0, where ψμ and γμ are
the gravitino and four-dimensional gamma-matrices, re-
spectively. (For more details, see Refs. [17].) Obviously,
there is no contribution from sfermion fields with nai ¼ 1.
For example, in the minimal supersymmetric standard

model (MSSM) with three generations of right-handed (s)
neutrinos, those multiplicities become

cðMSSMÞ
b ¼

X
a

cab¼49þ3¼52; cðMSSMÞ
f ¼12: ð12Þ

On the other hand, when the visible sector consists of
the MSSM with singlets and multi-Higgs doublets, the
multiplicities are given by

cb¼cðMSSMÞ
b þ4ðnH−1ÞþnS; cðMSSMÞ

f ¼12; ð13Þ

where nH and nS denote the numbers of multi-Higgs
doublets and singlet fields. Note that the following moduli
stabilization is also applicable to the scenario where
sparticles living on hidden D7-branes contribute to the
radiative corrections. If there exist multiple D7i-branes

wrapping the divisorDi, the matter fieldsQðiÞ
a and gauginos

living on D7i-branes contribute to the radiative corrections
through the soft masses (7). For sake of simplicity, we
discuss the D7-branes wrapping only the divisor Di with
volume τi in the following analysis.
To justify this low-energy effective action, the soft

masses and masses of Kähler moduli mT should be smaller
than those of Kaluza-Klein (KK) modes, stringy modes,
complex structure and dilaton moduli, namely

mT; m3=2 < mU; mS < mKK < mst < MPl; ð14Þ
and their typical masses are given by

mS;U ≃Nm3=2; mKK ≃
ffiffiffi
π

p
V2=3MPl; mst ≃

ffiffiffi
π

p
g1=4s

V1=2 MPl;

ð15Þ
with N > 1 being a parameter determined by three-form
fluxes. Note that we have taken the string-frame volume
Vs ¼ Vg3=2s ≃ ð2πRÞ6l6s , where R is the typical length of
CY in string units. Since the cutoff scale is a physical
quantity in the nonrenormalizable theory, there exist several
options for the cutoff scale. For concreteness, we take the
cutoff scale as the typical masses of KK modes in the
following analysis, since there exists N ¼ 2 supersym-
metry above the KK scale. The CW potential is then valid
below the cutoff scale. The string loop corrections to the
Kähler potential was discussed in Ref. [11], and they can
also be interpreted as the 1-loop CW potentials [18].
However, in this paper, we focus on the situation where
sparticle contributions dominate over the 1-loop CW
potential.6 Since the following analysis requires that a
relatively large number of sparticle contribute to stabilize
the CY volume, they could dominate over the string loop
corrections to the Kähler potential controlled by the string
coupling.

5We use the same notation of chiral superfields Qa and their
lowest components.

6The moduli stabilization involving the string loop corrections
to the Kähler potential is discussed for CY threefolds with
negative Euler number [19] and zero or positive Euler number [9].
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B. Stabilization of overall volume modulus

In the following analysis, we first consider the large
volume region V → ∞, where τi → ∞ with i ¼
1; 2;…; h1;1 for all of the divisors. (In the LVS, some of
the divisor volumes are not extremely large in string units
[6].) When there exist the D-brane instanton effects or
gaugino condensation on D7-branes, the nonperturbative
superpotential for the Kähler moduli is generated as

Wnon ¼
X
i

Aie−aiTi ; ð16Þ

where Ai are functions of the complex structure moduli and
ai ¼ 2π for the brane instanton and ai ¼ 2π=N for the
gaugino condensation on N stacks of D7-branes wrapping
the divisor with volume τi. In the moduli space τi → ∞,
these nonperturbative effects are negligible and the total
scalar potential consists of the leading α0-corrections and
radiative corrections. We come back to these nonperturba-
tive effects in Secs. III C–III E.
Including the radiative corrections due to sfermions and

gauginos, we can write the scalar potential by

VF ¼ Vα0 þ VCW

¼ ehKðS;UÞi 3ξ

4V3

jW0j2
M2

Pl

þ c1
32π2

Λ2m2
3=2

þ
X
a

cab
64π2

m4
a

�
ln

�
m2

a

Λ2

�
−
1

2

�

þ −2cf − 4

64π2
m4

3=2

�
ln

�
m2

3=2

Λ2

�
−
1

2

�

þ 32

64π2
m4

3=2

�
ln

�
4m2

3=2

Λ2

�
−
1

2

�
: ð17Þ

It turns out that the F-term scalar potential is a function
of only the overall volume V. In the large volume
regime V ≫ 1, the above scalar potential is further approxi-
mated as

VF ≃ ehKðS;UÞi 3ξ

4V3

jW0j2
M2

Pl

þ c1
32π2

Λ2
ehKðS;UÞijW0j2

V2M4
Pl

: ð18Þ

Let us fix the cutoff scale as the KK scale and consider
the following units

Λ ¼ mKK ¼
ffiffiffi
π

p
V2=3MPl ¼ 1; ð19Þ

and then the dimensional quantities are rewritten as

MPl ¼
V2=3ffiffiffi

π
p ;

W0 ≡ Ŵ0M3
Pl ¼ Ŵ0

V2

π3=2
: ð20Þ

In units of mKK, the approximated scalar potential
reduces to

VF ≃ ehKðS;UÞi jŴ0j2
π2

�
3ξ

4V1=3 þ
c1

32π2
π

V2=3

�
: ð21Þ

From this scalar potential, we aim to find the minimum
of V in the large volume regime V ≫ 1. The extremal
condition of modulus field h∂VVFi ¼ 0 in the large volume
limit,

∂VVF ≃ ehKðS;UÞi jŴ0j2
π2

�
−

ξ

4V4=3 −
c1

48π2
π

V5=3

�
¼ 0; ð22Þ

is satisfied at

hVi ≃ 18 664

�
−
c1=ξ
103

�
3

; ð23Þ

in string units. In particular, when the CY volume is
dominated by a single Kähler modulus V ≃ κðT þ T̄Þ3=2
with κ being a real positive constant, the value of overall
volume modulus is evaluated as

hτi ≃ 351.8

�
−
c1=ξ
103

�
2

κ−2=3; ð24Þ

where T ≡ τ þ iσ. We find that the ratio c1=ξ should be
negative and larger than 102–3 such that the Kähler moduli
space resides in the physical domain.
Furthermore, the positivity of h∂V∂VVFi,

∂V∂VVF ≃ 9.14 × 108ehKðS;UÞijŴ0j2
ξ8

c71
> 0; ð25Þ

requires that c1 should be positive. That indicates the
negative ξ from Eq. (23). Obviously, the sfermions with
nai ¼ 1 have no contribution in the potential. Thus, it turns
out that the case with nai ¼ 1 for all sfermions is prohibited,
because such a case corresponds to the negative c1 from
Eq. (10). In addition, the potential energy becomes negative
at this minimum, namely anti-de Sitter minimum,

hVFi ≃ 1.4 × 10−3ehKðS;UÞijŴ0j2
�
−

103

c1=ξ

�
ξ < 0; ð26Þ

where ξ is negative.
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At this minimum, the mass scales of typical modes
become

ma≃Mf≃m3=2¼
ehKðS;UÞi=2jŴ0j

V
MPl

≃2.1×10−2
�
−
103

c1=ξ

�
ehKðS;UÞi=2jŴ0jmKK;

mU;S¼Nm3=2¼2.1×10−2N

�
−
103

c1=ξ

�
ehKðS;UÞi=2jŴ0jmKK;

mKK¼
ffiffiffi
π

p
V2=3MPl¼1;

mst¼
ffiffiffi
π

p
g1=4s

V1=2 MPl¼2.9

�
gs

10−1

�
1=4

�
−
103

c1=ξ

�
1=2

mKK;

MPl¼397

�
−
c1=ξ
103

�
2

mKK: ð27Þ

Especially, when the CY volume is dominated by a single
Kähler modulus, the mass scale of canonically-normalized
overall Kähler modulus is

mτ ≃ 1.1 × 10−3ehKðS;UÞi=2jŴ0j
�
−

103

c1=ξ

�
3=2

ð−ξÞ1=2mKK:

ð28Þ

In this way, we find that the volume modulus can be
perturbatively stabilized at the anti-de Sitter minimum,
where four-dimensional supergravity description is reli-
able. The nonperturbative effects for the overall Kähler
modulus are suppressed enough by the value of Kähler
modulus, e−2πτ ≪ 1, but it generates the potential of
remaining massless axion as discussed in Sec. III E.
However, the negative ξ indicates that we have to consider
the CY threefolds with the positive Euler number, namely a
large number of Kähler moduli compared with that of
complex structure moduli.7(In the LVS, the negative Euler
number is required to realize the large CY volume.) Since
such CY threefolds with the positive Euler number account
for half of the whole CY threefolds in the sense of mirror
symmetry, the CYs with the positive Euler number are not
so restricted manifolds, but generic. The O7-plane con-
tribution will also help us to change the number of CY
Euler number in a weak coupling limit [21]. In Secs. III C
and III D, we discuss the stabilization of other Kähler
moduli. Although for a generic value of ehKðS;UÞi=2jŴ0j, the
overall volume modulus can be stabilized at the anti-de
Sitter minimum in a way similar to the LVS, we require the
relatively large c1 to realize the large volume of CY, e.g.,
c1 ≃Oð102Þ for jξj ≃Oð10−1Þ. Such a situation is easily
realized by the models with multi-Higgs doublets and

singlets via Eq. (13), and such models often appear from
concrete string model constructions. (For the string model
building, see e.g., Refs. [22,23].)
Finally, we comment on the case with no leading α0-

corrections, which corresponds to the CYmanifold with the
vanishing Euler number, i.e., χ ¼ 0. Then, the scalar
potential consists of only the CW potential,

VCW¼ c1
32π2

Λ2m2
3=2þ

c2
64π2

m4
3=2

�
ln

�
m2

3=2

Λ2

��
þ c3
64π2

m4
3=2;

ð29Þ

with

c2 ≡
X
a

cabð1 − nai Þ2 − 2cf − 4þ 32;

c3 ≡
X
a

�
cabð1 − nai Þ2

�
−
1

2
þ lnð1 − nai Þ

��
þ cf

þ 2þ 32

�
ln 4 −

1

2

�
: ð30Þ

It can be rewritten in units of Λ ¼ mKK ¼ 1,

VCW≃ehKðS;UÞi jŴ0j2
ð32π2Þπ2

�
c1

π

V2=3þc2
ehKðS;UÞijŴ0j2

V4=3

×ln

�
ehKðS;UÞi=2Ŵ0

V1=3 ffiffiffi
π

p
�
þc3

ehKðS;UÞijŴ0j2
2V4=3

�

≃ehKðS;UÞi jŴ0j2
ð32π2Þπ2

�
c1

π

V2=3−
c2
3

ehKðS;UÞijŴ0j2
V4=3 lnðVÞ

�
;

ð31Þ

in the large volume regime V≫1 and ehKðS;UÞi=2Ŵ0∼Oð1Þ.
When c2 is almost the same order of c1, we cannot find the
minimum with a sufficiently large CY volume.

C. Numerical estimation

In this section, we numerically analyze the stabilization
of moduli fields. The unapproximated scalar potential of
the overall volume modulus (17) in units of Λ ¼ mKK is
drawn as functions of V and τ in Fig. 1, where we set the
following parameters,

ξ ¼ −0.1; ehKðS;UÞi=2jŴ0j ¼ 1; nai ¼ 0;

κ ¼ 1; cb ¼ 120; cf ¼ 12: ð32Þ

At this vacuum in Fig. 1, the CY volume is determined
by

hVi ≃ 18433; ð33Þ
7Our result is similar to Ref. [20], where the higher-derivative

corrections are taken into account.
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as shown in the left panel and the vacuum expectation value
of overall Kähler modulus is

hτi ≃ 348.9; ð34Þ

as shown in the right panel. The mass scales of typical
modes become

mi ¼ Mf ¼ m3=2 ¼ 2.1 × 10−2mKK;

mU;S ¼ Nm3=2 ¼ 2.1 × 10−2NmKK;

mKK ¼ 1;

mst ¼ 2.9

�
gs

10−1

�
1=4

mKK;

MPl ¼ 394mKK: ð35Þ

In addition, the mass scale of canonically-normalized
overall Kähler modulus is

mτ ≃ 3.5 × 10−4mKK; ð36Þ

when the volume of CY is dominated by the single Kähler
modulus T ¼ τ þ iσ. Hence, even when we involve the
next leading terms in the scalar potential, which are
volume-suppressed, the numerical result is in agreement
with the analytical one in Sec. II B.

III. KÄHLER MODULI STABILIZATION
WITH UPLIFTING

In this section, we introduce the uplifting term to achieve
a tiny cosmological constant. In particular, we focus on the
anti-D3 branes to uplift the anti-de Sitter minimum to the de
Sitter minimum.

A. Analytical estimation

When there exist anti-D3 branes at certain moduli space
of CY manifold, the uplifting term is given by

Vup ¼
ϵ

V2
M4

Pl; ð37Þ

where ϵ is a real constant suppressed by the warp factor.
Hence, the total scalar potential is a sum of VF in Eq. (17)
and Vup.
Similar to the analysis in Sec. II, we aim to find the

minimum of modulus field analytically. In the large volume
regime, the above scalar potential in units of mKK is
simplified as

V ¼ VF þ Vup

≃ ehKðS;UÞi jŴ0j2
π2

�
3ξ

4V1=3 þ
c1

32π2
π

V2=3

�
þ ϵ

π2
V2=3; ð38Þ

from which the minimum of overall volume modulus is
determined by solving ∂VV ¼ 0,

hVi ≃ 5530

�
−
c1=ξ
103

�
3

; ð39Þ

and ϵ is chosen such that V ≃ 0,

ϵ ≃ 3.4 × 10−5ehKðS;UÞi=2jŴ0j2ð−ξÞ
�
−

103

c1=ξ

�
3

: ð40Þ

In particular, when the CY volume is dominated by a
single Kähler modulus V ≃ κðT þ T̄Þ3=2 with κ being a real
positive constant, the modulus value at this minimum is
evaluated as

hτi ≃ 156

�
−
c1=ξ
103

�
2

κ−2=3: ð41Þ

It turns out that the deviation from the SUSY-breaking anti-
de Sitter minimum to the uplifted minimum is estimated as

hτijanti–de Sitter − hτijde Sitter

hτijanti–de Sitter
≃ 0.56: ð42Þ

Our scalar potential still resides in the supergravity-
controlled regime, since the mass scales of typical modes
have a desirable hierarchical structure,

FIG. 1. The scalar potential (17) as functions of CY volume V and noncanonically normalized modulus τ, where the CY volume is
approximated as V ¼ ðT þ T̄Þ3=2 with T ¼ τ þ iσ in the right panel.
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ma≃Mf≃m3=2¼
ehKðS;UÞi=2jŴ0j

hVi MPl

≃3.2×10−2
�
−
103

c1=ξ

�
ehKðS;UÞi=2jŴ0jmKK;

mU;S¼Nm3=2¼3.2×10−2N

�
−
103

c1=ξ

�
ehKðS;UÞi=2jŴ0jmKK;

mKK¼
ffiffiffi
π

p
hVi2=3MPl¼1;

mst¼
ffiffiffi
π

p
g1=4s

hVi1=2 MPl¼2.4

�
gs

10−1

�
1=4

�
−
103

c1=ξ

�
1=2

mKK;

MPl¼176

�
−
c1=ξ
103

�
2

mKK: ð43Þ

Furthermore, when the CY volume is dominated by a single
Kähler modulus, the mass scale of canonically-normalized
overall Kähler modulus is

mτ ≃ 3.5 × 10−3ehKðS;UÞi=2jŴ0j
�
−

103

c1=ξ

�
3=2

ð−ξÞ1=2mKK:

ð44Þ

We find that the volume modulus is still stabilized at the
supergravity-reliable de Sitter minimum, even after the
anti-de Sitter minimum is uplifted to the de Sitter vacuum.

By setting ehKðS;UÞi=2jŴ0j ¼ 1, gs ¼ 0.1, and ξ ¼ −0.1, we
list the volume of CY, the typical scales of gravitino,
moduli fields, KK and stringy modes for several values of
c1 in Table I.

B. Numerical estimation

Next, let us numerically estimate the unapproximated
scalar potential V ¼ VF þ Vup setting the same parameters
as ones in Sec. II C and

ϵ ≃ 3.437 × 10−6; ð45Þ
under which the scalar potential with the uplifting term is
drawn in Fig. 2.
In the left panel in Fig. 2, the CY volume is

determined as

hVi ≃ 5424; ð46Þ
and in the right panel, the vacuum expectation value of
overall Kähler modulus is

hτi ≃ 154.4: ð47Þ
The mass scales of typical modes become

mi ¼ M ¼ m3=2 ¼ 3.2 × 10−2mKK;

mU;S ¼ Nm3=2 ¼ 3.2 × 10−2NmKK;

mKK ¼ 1;

mst ¼ 2.4

�
gs

10−1

�
1=4

mKK;

MPl ¼ 174mKK; ð48Þ
and in addition the mass scale of canonically-normalized
overall Kähler modulus is

mτ ≃ 1.1 × 10−3mKK: ð49Þ

Hence, even when we involve the next leading terms in the
scalar potential, which are volume-suppressed, the numeri-
cal result is in agreement with the analytical one.

FIG. 2. The scalar potential in units of Λ ¼ mKK as functions of CY volume V and noncanonically normalized modulus τ, where the
CY volume is approximated as V ¼ ðT þ T̄Þ3=2 with T ¼ τ þ iσ in the right panel.

TABLE I. The volume of CY (V) and divisor (τ), and typical
scales of several modes, setting ehKðS;UÞi=2jŴ0j ¼ 1, gs ¼ 0.1,
and ξ ¼ −0.1.

Scale c1 ¼ 50 c1 ¼ 100 c1 ¼ 1000

V 691 5530 5.5 × 106

τ 39κ−2=3 156κ−2=3 1.6 × 104κ−2=3

mτ[GeV] 1.7 × 1014 1.5 × 1013 4.8 × 109

m3=2[GeV] 3.5 × 1015 4.4 × 1014 4.4 × 1011

mU;S[GeV] 3.5N × 1015 4.4N × 1014 4.4N × 1011

mKK[GeV] 5.5 × 1016 1.4 × 1016 1.4 × 1014

mst[GeV] 9.1 × 1016 3.2 × 1016 1.0 × 1015

MPl[GeV] 2.4 × 1018 2.4 × 1018 2.4 × 1018
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C. Inclusion of the D-terms

So far, we have not considered the nonperturbative
effects for the Kähler moduli, since those are negligible
in the large volume regime V → ∞, where τi → ∞ for all
the volumes of divisors. To stabilize the Kähler moduli
fields expect for the overall volume modulus, we consider
the D-term potential induced by the Fayet-Iliopoulos (FI)
term [13]. When the anomalous Uð1Þ symmetries appear
on D7i-branes wrapping the divisors τi, the D-term
potential is written by

VD7
D ¼

X
i

1

ReðfD7iÞ
�
qðD7iÞTi

KTi
−
X

m
qðD7iÞφm jϕmj2

�
2

;

ð50Þ

where fD7i are the gauge kinetic functions of D7i-branes,

qðD7iÞTi
represent the gauge fluxes and ϕm with U(1) charges

qðD7iÞφm are the canonically normalized matter fields living on
D7i-branes. In addition to these D7-brane contributions,
anomalous U(1) symmetries on the fractional D3-branes
located at the singularities of CY also induce the D-terms

VD3
D ¼

X
k

1

ReðfD3kÞ
�
qðD3kÞTk

KTk
−
X

m
qðD3kÞφm jφmj2

�
2

;

ð51Þ

where fD3k are the gauge kinetic functions of D3k-branes

with k being the number of singularities, qðD3kÞTk
represent

the U(1) charges of moduli fields and φm with U(1) charges

qðD3Þφm are the canonically normalized matter fields living on
the fractional D3k-branes. In both cases, the anomalous
U(1) gauge bosons eat the linear combination of string
axions through the Stückelberg couplings and become
massive at the compactification scale. In order not to spoil
the stabilization of F-term potential, we require the
vanishing D-term potential, VD7

D ¼ VD3
D ¼ 0, namely

qðD7iÞTi
KTi

¼
X
m

qðD7iÞφm jϕmj2; qðD3kÞTk
KTk

¼
X
m

qðD3kÞφm jφmj2;

ð52Þ

which fix the linear combination of closed string moduli
and matter fields (open string moduli). In addition, we
consider the F-term potential of matter fields,

Vmatter
F ¼ m2

ΦjΦj2 þ AΦjΦj3 þ λΦjΦj4; ð53Þ

where Φ denotes ϕm and φm, m2
Φ, AΦ, λΦ are Ti-dependent

functions. When Φ develops a nonvanishing value, the
D-term and F-term contributions are possible to stabilize
all the moduli fields except for the overall volume modulus,
although it depends on a topology of CY manifold. We
leave an explicit moduli stabilization for a future work,
since it is difficult to analyze the topology of CY threefold
with huge h1;1. (For the model building in the LVS with
small h1;1, see Ref. [24].)

D. Inclusion of the nonperturbative effects

In contrast to the previous section, we study alternative
stabilization scenario for Kähler moduli other than the
overall volume modulus. We consider the large volume
regime V → ∞, but the volume of one divisor τs is not
extremely larger than the other Kähler moduli τi, namely
τi ≫ τs > 1 in string units. Note that we focus on the
Kähler cone where τs is larger than the string length to
suppress the KK and stringy corrections.
Let us assume the nonpertrubative superpotential with

respect to τs,

W ¼ W0 þ Ase−asTs ; ð54Þ

whereW0 ¼ hWfluxi, As and as are the constants depending
on the origin of nonperturbative effects, e.g., as ¼ 2π for
the brane instanton and as ¼ 2π=N for the gaugino con-
densation on N stacks of D7-branes wrapping the divisor
with volume τs. To simplify the following analysis, we take
both the W0 and As as real constants. From the Kähler
potential (1) and superpotential (54), the F-term scalar
potential is simply given by

VFM2
Pl ¼ eKðKTiT̄jDTi

WDT̄j
W̄ − 3ÞjWj2

≃
eKðS;UÞ

V2

h
KTsT̄sa2s jAsj2e−2asτs − KTsT̄jð∂ T̄j

KÞasAse−asTsW̄ − KTiT̄sð∂Ti
KÞasĀse−asT̄sW

i

þ 3ξ

4V3
eKðS;UÞjWj2 þO

�
1

V4

�

≃ eKðS;UÞ
�
4

V
a2s jAsj2ð−κssitiÞe−2asτs −

4

V2
asτsjAsWje−asτs þ 3ξ

4V3
jWj2

�
þO

�
1

V4

�
; ð55Þ
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in the large volume regime, where DTi
W ¼ WTi þ KTi

W
with WTi ¼ ∂TiW and the CY volume is taken as V ¼P

ijk
κijk
6
titjtk with κijk being the intersection numbers

among the two-cycles ti of CY. Now, the imaginary part
of Ts is set as its minimum and we use KTiT̄jKT̄j

¼ −2τi þ
OðV−1Þ and KTiT̄j ¼ −4Vκijktk þ 4τiτj þOðV−1Þ [25],
where the divisor volume is defined as τi ¼ 1

2
κijktjtk. Note

that the first term in Eq. (55) is positive, since it is
originating from the positive definite term. The simplified
above scalar potential is a well-known form as discussed in
the LVS, where the coefficient of α0-correction ξ is positive,
namely h2;1 > h1;1 > 1. In LVS, the “small” modulus τs
and volume modulus V are stabilized at

V ∼ easτs ; τs ∼ ξ2=3; ð56Þ

because of the positivity of ξ.
On the contrary, in this paper, we proceed to discuss the

opposite sign of ξ, namely h1;1 ≥ h2;1 > 1. The scalar
potential is given by a sum of the F-term and leading
radiative corrections,

V ≃ eKðS;UÞM4
Pl

�
4

V
a2s jÂsj2ð−κssitiÞe−2asτs

−
4

V2
asτsjÂsŴje−asτs þ 3ξ

4V3
jŴj2 þ c1

32π2
Λ2

jŴj2
V2M2

Pl

�

þO
�

1

V4

�
; ð57Þ

where As ¼ ÂsM3
Pl and W ¼ ŴM3

Pl. In units of Λ ¼
mKK ¼ ffiffiffi

π
p

MPl=V2=3 ¼ 1, the scalar potential reduces to

V ≃
eKðS;UÞ

π2

�
4V5=3a2s jÂsj2ð−κssitiÞe−2asτs

− 4V2=3asτsjÂsŴje−asτs þ 3ξ

4V1=3 jŴj2 þ c1
32π

jŴj2
V2=3

�

þO
�

1

V4=3

�
: ð58Þ

The extremal condition of τs reads

∂V
∂τs ≃ 4V5=3a2s jÂsj2e−2asτs

�∂tj
∂τs ð−κssjÞ − 2asð−κssitiÞ

�

− 4V2=3asjÂsŴ0je−asτs ½1 − asτs�

≃ 4V5=3ase−2asτs
�
−2a2s jÂsj2ð−κssitiÞ

þ easτs

V
jÂsŴ0jasτs

�
¼ 0; ð59Þ

with W0 ¼ Ŵ0M3
Pl, where we use ∂tj=∂τs < 1 and

asτs ≫ 1 to suppress the higher instanton effects. In this
way, we obtain

easτs

V
jÂsŴ0jasτs ¼ 2a2s jÂsj2ð−κssitiÞ: ð60Þ

Another extremal condition of V gives rise to

∂V
∂V ≃

20V2=3

3
a2s jÂsj2ð−κssitiÞe−2asτs −

8asτs
3V1=3 jÂsŴ0je−asτs

−
ξ

4V4=3 jŴ0j2 −
c1
48π

jŴ0j2
V5=3

≃
2asτs
3V1=3 jÂsŴ0je−asτs −

ξ

4V4=3 jŴ0j2 −
c1
48π

jŴ0j2
V5=3

≃
1

3V3=4

ðτsÞ2
ð−κssitiÞ

jŴ0j2 −
ξ

4V4=3 jŴ0j2 −
c1
48π

jŴ0j2
V5=3

≡ −
ξ̂

4V4=3 jŴ0j2 −
c1
48π

jŴ0j2
V5=3 ; ð61Þ

where

ξ̂≡ ξ −
4

3

ðτsÞ2
ð−κssitiÞ

: ð62Þ

Consequently, the volume modulus is stabilized at

V ≃ 18 664

�
−
c1=ξ̂
103

�3

; ð63Þ

by replacing ξ of Eq. (23) into ξ̂. Although the ξ̂ depends on
the topology of CY manifold as in Eq. (23), the stabiliza-
tion of volume modulus V and τs is achieved inside the
Kähler cone with V ≫ τs > 1. Indeed, when κssiti ∼ −τ1=2s ,
Âs ¼ Ŵ0 ¼ 1, c1 ¼ 200, ξ ¼ −10−1 and as ¼ 2π,
Eqs. (60) and. (63) give

V ≃ 4098; τs ≃ 1.69: ð64Þ

Furthermore, even if the Euler number of CY is vanishing,
i.e., ξ ¼ 0, both the moduli fields can be stabilized at
V ≃ 3444, τs ≃ 1.66, where we set the same parameters of
Eq. (64) except for ξ. Following the same procedure of
Sec. III A, we can achieve the de Sitter vacuum by
including the anti-D3 branes.

E. Ultralight axion

Finally, we take a closer look at the mass of axion
associated with the overall volume modulus. To simplify
our analysis, we take into account the CY volume domi-
nated by the single Kähler modulus T, i.e., V¼ κðTþ T̄Þ3=2
with κ being a positive real constant. When there exist the
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D-brane instanton effects or gaugino condensation on
D7-branes, the axion potential can be extracted from the
superpotential

W ¼ W0 þ AðTÞe−2π
n T; ð65Þ

where W0 ¼ hWfluxi and AðTÞ are assumed to be real
constants, and n ¼ 1 for the brane instanton and n ¼ N
for the gaugino condensation on N stacks of D7-branes
wrapping the divisor with volume τ. Such a nonperturbative
superpotential term generates the axion potential,

V ¼ eK=M
2
PlKTT̄KT

�
WTW̄
M2

Pl

þ W̄T̄W
M2

Pl

�

≃
eKðS;UÞAðTÞW0

V2M2
Pl

ðT þ T̄Þ2
3

3

T þ T̄
2π

n
ðe−2π

n T þ e−
2π
n T̄Þ

≃
eKðS;UÞAðTÞW0

V2M2
Pl

�
V
κ

�
2=3 4π

n
e−

2π
n τ cos

�
2π

n
σ

�
; ð66Þ

where T ¼ τ þ iσ. After canonically normalizing the axion
θ ¼ ffiffiffiffiffiffiffiffiffiffiffi

2KTT̄
p

σ, we obtain the tiny mass of axion and its
decay constant,

mθ ≃m3=2
ðjAðTÞj=M3

PlÞ1=2ffiffiffi
3

p
κ

�
2π

n

�
3=2

�
V
κ

�
e−

π
2nðVκÞ2=3 ;

fθ ¼
n

ffiffiffiffiffiffiffiffiffiffiffi
2KTT̄

p
2π

¼
ffiffiffi
6

p
n

2π

�
κ

V

�
2=3

MPl; ð67Þ

where the CY volume and gravitino mass are given in
Eqs. (39) and (43). Thus, large volume of CY results in the
ultralight axion associated with the volume modulus in a
way similar to the LVS.
Although the axion mass highly depends on the value of

n, we list the typical axion mass in Table II setting the same
parameters of Sec. II C and

κ ¼ 1; jAðTÞj ¼ M3
Pl; jc1=ξj ¼ 103: ð68Þ

It is interesting to discuss the astrophysical and cosmo-
logical physics of such an ultralight axion, which will be
studied in a separate work.

IV. CONCLUSION

We have discussed the stabilization of Kähler
moduli using the leading α0-corrections and the radiative

corrections due to the sparticles within the framework of
the type IIB superstring theory on Calabi-Yau orientifolds
with D7-branes. When all the volumes of the divisors in CY
threefold are sufficiently large in string units, the non-
perturbative effects for the Kähler moduli are suppressed
enough compared with α0-corrections and the radiative
corrections. We find that these perturbative corrections give
rise to the stabilization of the overall Kähler modulus for a
general class of CY threefolds, only if the Euler number of
CY is positive. Since the volume of CY scales as the
number of sparticles, we require that the relatively large
number of sparticles contributes to the Coleman-Weinberg
potential through the radiative corrections to achieve the
large CY volume. Such a large number of sparticle
contributions could dominate over the string loop correc-
tions to the Kähler potential discussed in Ref. [11] where
one needs a certain amount of fine-tuning of the complex
structure moduli to realize the large volume of CY.
Furthermore, our scenario of moduli stabilization does
not require the tuning of flux-induced superpotential in
contrast to the KKLT scenario. The Kaluza-Klein and
stringy modes are sufficiently heavier than Kähler moduli
and sparticles. In this reason, the low-energy effective
action is controllable in the four-dimensional N ¼ 1 super-
gravity. The vacuum in our scenario of moduli stabilization
is the ant-de Sitter minimum. The structure of moduli
stabilization is still maintained even after we uplift the anti-
de Sitter minimum to de Sitter vacuum by introducing anti-
D3 branes. Note that a requirement of the positive Euler
number is different from the conventional large volume
scenario, but CY threefolds with the positive Euler number
are accounted for half of the CY threefolds in the sense of
mirror symmetry.
However, the positive Euler number of CY threefold

indicates that we have to take into account a lot of
Kähler moduli compared with the complex structure
moduli. We expect that the D-term contribution from
fractional D3-branes and magnetized D7-branes would
lead to the stabilization of these Kähler moduli except
for the overall volume modulus as discussed in Sec. III C.
The nonperturbative effects also allow us to stabilize some
Kähler moduli without spoiling the stabilization of volume
modulus as shown in Sec. III D. In this moduli stabilization
scenario, the axion associated with the volume modulus
remains light and it could be a target of astrophysical and
cosmological observations. It is interesting to show explicit
moduli stabilization in a detailed setup, but we leave it for a
future work.

TABLE II. Axion mass in units of gravitino mass and its decay constant.

Scale n ¼ 1 n ¼ 3 n ¼ 5 n ¼ 7 n ¼ 9

mθ=m3=2 2.3 × 10−209 7.4 × 10−68 9.7 × 10−40 9.1 × 10−28 3.7 × 10−21

fθ[GeV] 3 × 1015 9 × 1015 1.5 × 1016 2 × 1016 2.7 × 1016
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