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Radiative Kihler moduli stabilization
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We propose a new type of Kahler moduli stabilization mechanisms in type IIB superstring theory on
Calabi-Yau manifolds with the positive Euler number. The overall Kihler modulus can be perturbatively
stabilized by radiative corrections due to sparticles. Its minimum is the anti-de Sitter vacuum, where
supersymmetry is broken. We can uplift it to the de Sitter vacuum by introducing anti-D-branes, keeping the
modulus stabilized. Although our numerical results depend on the choice of the cutoff scale and degeneracies
of sparticles, at any rate there exist the parameter spaces where the masses of Kaluza-Klein and stringy modes
are larger than the cutoff scale. Furthermore, this stabilization scenario predicts an ultralight axion.
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I. INTRODUCTION

The moduli fields appear ubiquitously in four-dimensional
low-energy effective field theory derived from superstring
theory on six-dimensional compact space. These fields
correspond to a geometrical character of compact space.
Unless these moduli fields are stabilized at a high scale, it will
lead to the fifth force. Hence, moduli stabilization is one of the
major topics in the string cosmology and phenomenology.

So far, moduli stabilization has been well studied in the
type IIB superstring theory on Calabi-Yau (CY) manifolds.
The closed string moduli are categorized into the dilaton S,
complex structure moduli U and Kihler moduli T." Here,
we denote the numbers of complex structure moduli and
Kihler moduli by A%! and A'!, which correspond to the
numbers of three-cycles and four-cycles of CY, respec-
tively. Three-form fluxes in the type IIB superstring theory
can stabilize the dilaton S and all the complex structure
moduli U at the compactification scale [3] and they
generically generate the nonvanishing flux-induced super-
potential W, = (Wp,,) [4]. The remaining Kihler
moduli are stabilized at an anti-de Sitter minimum in the

*kobayashi@particle.sci.hokudai.ac.jp
omoto @particle.sci.hokudai.ac.jp
h.otsuka@aoni.waseda.jp
§t—h—tatsuishi@particle.sci.hokudai.ac.jp
'In this paper, we do not discuss the stabilization of open string
moduli. For discussion of open string moduli in F-theory context,
see, e.g., Ref. [1,2], where the open string moduli are identified
with the complex structure moduli of CY fourfold.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2018,/97(10)/106006(1 1)

106006-1

Kachru-Kallosh-Linde-Trivedi (KKLT) scenario [5] and
large volume scenario (LVS) [6] using the nonperturbative
superpotential for the Kédhler moduli. Such an anti-de Sitter
minimum is uplifted to a metastable de Sitter minimum
by introducing anti-D3 branes [5]. The F-term uplifting
scenario is another way to realize the de Sitter minimum
[7,8]. In the KKLT scenario, the stabilization of Kéihler
moduli is achieved by tuning |W,| < Mj,, where Mp, is
the reduced Planck mass. On the other hand, even if
|Wo| ~ O(M3,), the LVS works for CY manifolds with
the negative Euler number, y = 2(h'! — h?1) <0, ie.,
h2! > p1 > 1.2 Note that stringy modes and Kaluza-
Klein modes should be sufficiently heavier than all the
moduli fields to justify description of the low-energy
effective field theory.

In this paper, along the line of Ref. [10], we propose a
new type of Kéhler moduli stabilization mechanisms in
type IIB superstring theory on CY orientifolds with the
positive Euler number y > 0, namely A"! > h>! > 1. In
Ref. [11], it was discussed that the overall volume modulus
can be stabilized perturbatively by one-loop corrections to
the Kihler potential. In that scenario, one needs a certain
amount of fine-tuning of complex structure moduli to
realize the Kéhler moduli stabilization. In contrast to
Ref. [11], here we focus on the radiative corrections due
to the sparticles living on D7-branes wrapping a divisor of
CY. Such corrections generate the potential of overall
volume modulus through the Coleman-Weinberg potential
[12]. Since the soft masses are functions of only the
overall volume modulus, the overall Kihler modulus can
be perturbatively stabilized at a sufficiently large volume
region without tuning W, In this large volume region, the

*For the LVS with zero or positive Euler number, see Ref. [9].
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string axion associated with the overall volume modulus
remains light and it could be a candidate of dark matter.
Other Kihler moduli could be stabilized by the non-
perturbative effects and/or moduli-dependent D-terms.
(See, e.g., Refs. [13].) We find that stringy and Kaluza-
Klein modes are sufficiently heavier than sparticles and
Kihler moduli at the anti-de Sitter minimum. We can uplift
the anti-de Sitter vacuum to the de Sitter vacuum by
introducing anti-D branes, and such uplifting does not
change the behavior of the moduli stabilization.

The remaining paper is organized as follows. In Sec. II,
we discuss the stabilization of overall Kéhler modulus
without uplifting terms in type IIB superstring theory on
CY orientifolds with D7-branes. We add the uplifting term in
the setup of Sec. III to achieve a tiny cosmological constant.
We study the modulus potential with the uplifting terms
analytically and numerically in Secs. III A and IIB,
respectively. Other Kéhler moduli can be stabilized by
two scenarios. One is due to moduli-dependent D-terms
as discussed in Sec. III C, and the other is due to non-
perturbative effects as discussed in Sec. IIID. Also, in
Sec. I E, we show that the nonperturbative effects generate
the mass of ultralight axion associated with the volume
modulus. Finally, Sec. IV is devoted to the conclusion.

Il. KAHLER MODULI STABILIZATION
WITHOUT UPLIFTING

A. Setup

Let us consider the stabilization of closed string moduli
on the basis of type IIB superstring theory on CY orienti-
folds with D7-branes. For a general class of CY threefolds,
the total Kahler potential at the leading order of o is
obtained through Kaluza-Klein reduction of type IIB
supergravity action [14,15],

4
2

2

K = -2M3In <V+ ) +MEK(S,U) + 290, (1)

where V is the volume of CY manifold in Einstein frame
measured by the string length [, = 27V, K(S, U) repre-
sents the Kihler potential of dilaton S and complex

structure moduli U. The leading o'-correction is charac-

2(22%3/2 where y is the Euler number

of CY and g; is the string coupling [14]. Here, QE,i) are the
matter fields living on D7-branes wrapping the divisor

D; € H,(CY, Z) and their Kéhler metrics z' are given by

aa

terized by & = —

Zz(zla) =(T; +T)™, (2)
with n{ being the modular weights and 7'; = 7; + io; with

i€ {1,2,....h}"} denotes the Kihler modulus.® Also, the

*In this paper, we consider the orientifold projection to realize
Rl =0, namely A" = !

gaugino fields couple to the Kihler moduli through the
gauge kinetic function

T,
f=5t ()

To stabilize the complex structure moduli U and dilaton S,
we consider the following superpotential induced by
imaginary self-dual three-form fluxes [4],

W= Wﬂux(S’ U) (4)

By the flux-induced superpotential, all the complex
structure moduli and dilaton fields are stabilized at the
compactification scale [3]. When Wy = (Wg,,) # 0 at the
minima of the complex structure moduli and dilaton,
the scalar potential is nonvanishing because of the breaking
of the so-called no-scale structure [14]

Vg = eKEONKTTK K7 = 3)

o ks 3€ [Wol?
43 M3,

; (5)

where K. = 07 K and K T.7} is the inverse of Kihler metric
Krz, = or, 8TjK . The nonvanishing F-term of the Kihler
modulus
FTi — _eK/(2M§1)KTiTjKT.&’ (6)
" My

generates the soft scalar masses and gaugino masses [16],

vV, FTiFT
2 _ 2 i)
nmy M_Clél + m3/2 (aT,-aT ln(Zaa)) 1‘41231
Ve n | Fli |?
=2 4 m2 L _
M3 P MR T+ T,
V.,
:M% +(1 nf)m§/2 = (1 = nf)m3 ,,
Pl
FTi
M;=—0; InRe
£ = gy, Or ()
. FTi e<K(S,U)>/2W0 ;
Pl T, + Tz = VM%I =m3 o, ( )
with
(K(S.U)/2vy
_ e 0
m3/2 = BK/(2M%’1)W0MP12 ~ VT%I 5 (8)

evaluated in the large volume region.4 Here, we evaluate

FTi_ ~ K/(ZMIZ,I)
a1, = ¢

W o . .
iy = —m3;Mpy, which is satisfied in a

“We take W, as a real constant for simplicity and discuss the
case with n{ = 0 later.
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general class of CY threefolds with a sufficiently large volume. When these sparticles contribute to the radiative corrections,

the 1-loop Coleman-Weinberg (CW) potential is given by

1

AZ
VCW = W\/ dekZSTr ln(kz + M2)

: A>STr(M?) +3 STrM4 In m l—i— @)
T3 AZ 2

ot o) -3

3 3/2+Z

where M characterizes the mass matrix for canonically
normalized bosons and fermions, and

i :ZCZ(I —ni)=2cp+4, (10)

with ¢ and ¢ being the multiplicities of bosons Qa and
fermions, respectively. Here, we take the limit M? /A < 1,
where our description of low-energy effective theory is
valid and the supertrace is defined as

STef(M?) =trf (mg) = 2ucf (M) —4f (m3,) +2f (4m3 ).

(11)

for an arbitrary function f. We consider the contribution of
ghosts in the gauge > >, y*y, = 0, where y,, and y* are
the gravitino and four-dimensional gamma-matrices, re-
spectively. (For more details, see Refs. [17].) Obviously,
there is no contribution from sfermion fields with n¢ = 1.

For example, in the minimal supersymmetric standard
model (MSSM) with three generations of right-handed (s)
neutrinos, those multiplicities become

Zc

On the other hand, when the visible sector consists of
the MSSM with singlets and multi-Higgs doublets, the
multiplicities are given by

MSSM (MSSM) __ {5

=49+3=52, ¢} (12)

(MSSM)

(MSSM)
Cp=

+4(ny—1)+ng, ¢ =12, (13)

where ny and ng denote the numbers of multi-Higgs
doublets and singlet fields. Note that the following moduli
stabilization is also applicable to the scenario where
sparticles living on hidden D7-branes contribute to the
radiative corrections. If there exist multiple D7;-branes

>We use the same notation of chiral superfields Q, and their
lowest components.

)}

~2¢; — 4 min\ 1] 32 4m3,\ 1
e m§/2[ln</\2 2] Teaeme M) T2

©)

wrapping the divisor D;, the matter fields QE,’) and gauginos
living on D7;-branes contribute to the radiative corrections
through the soft masses (7). For sake of simplicity, we
discuss the D7-branes wrapping only the divisor D; with
volume z; in the following analysis.

To justify this low-energy effective action, the soft
masses and masses of Kihler moduli m; should be smaller
than those of Kaluza-Klein (KK) modes, stringy modes,
complex structure and dilaton moduli, namely

mr, m3/2 < my, mg < mMgg < My < MPI? (14)

and their typical masses are given by

mgsy 2Nm3/2, mgg z—v2/3

(15)

with N > 1 being a parameter determined by three-form
fluxes. Note that we have taken the string-frame volume

V, = Vg)* ~ (2zR)%I%, where R is the typical length of
CY in string units. Since the cutoff scale is a physical
quantity in the nonrenormalizable theory, there exist several
options for the cutoff scale. For concreteness, we take the
cutoff scale as the typical masses of KK modes in the
following analysis, since there exists N = 2 supersym-
metry above the KK scale. The CW potential is then valid
below the cutoff scale. The string loop corrections to the
Kihler potential was discussed in Ref. [11], and they can
also be interpreted as the 1-loop CW potentials [18].
However, in this paper, we focus on the situation where
sparticle contributions dominate over the 1-loop CW
potential.® Since the following analysis requires that a
relatively large number of sparticle contribute to stabilize
the CY volume, they could dominate over the string loop
corrections to the Kihler potential controlled by the string
coupling.

%The moduli stabilization involving the string loop corrections
to the Kihler potential is discussed for CY threefolds with
negative Euler number [19] and zero or positive Euler number [9].

106006-3



KOBAYASHI, OMOTO, OTSUKA, and TATSUISHI

PHYS. REV. D 97, 106006 (2018)

B. Stabilization of overall volume modulus

In the following analysis, we first consider the large
volume region V — oo, where 7;, > o0 with i=
1,2,.... A" for all of the divisors. (In the LVS, some of
the divisor volumes are not extremely large in string units
[6].) When there exist the D-brane instanton effects or
gaugino condensation on D7-branes, the nonperturbative
superpotential for the Kihler moduli is generated as

1’101’1 ZA e_a T ( 16)

where A; are functions of the complex structure moduli and
a; = 2z for the brane instanton and a; = 2z/N for the
gaugino condensation on N stacks of D7-branes wrapping
the divisor with volume z;. In the moduli space z; — oo,
these nonperturbative effects are negligible and the total
scalar potential consists of the leading «’'-corrections and
radiative corrections. We come back to these nonperturba-
tive effects in Secs. III C-III E.

Including the radiative corrections due to sfermions and
gauginos, we can write the scalar potential by

Vi=Vay+Vew
3¢ (W[
43 M3, 32 "2

p m2 1
e [1“ (ﬁ) - 5]

Cp
* Z 647>
—2c,—4 m3 1
e 3/2
e " [1“ <7> - 5}
32 4m3 o\ 1

It turns out that the F-term scalar potential is a function
of only the overall volume V. In the large volume
regime V > 1, the above scalar potential is further approxi-
mated as

— K(SV)

+

3¢ |Wy?
4V3 M3 32x°

KSV) W, |2

A2
VIMY,

VF ~ e<K(S~U)>

(18)

Let us fix the cutoff scale as the KK scale and consider
the following units

T
A—mKK—%Mpl— 17 (19)

and then the dimensional quantities are rewritten as

V2/3
Mp = ——,
Pl \/7—7'_
V2
= Wobd3y = Wo —75. (20)

In units of myg, the approximated scalar potential
reduces to

<K(s,u)>|W0|2 3¢ 2 B

Vr=e 2 |4V T 32V

(1)

From this scalar potential, we aim to find the minimum
of V in the large volume regime V > 1. The extremal
condition of modulus field (9),V ) = 0 in the large volume
limit,

Wol? £ c,
o sy IWol™ [ _.a _
OVr=e P [ VT 48 VW} =0 @)
is satisfied at
3
(V}zl8664<—c11—(§> : (23)

in string units. In particular, when the CY volume is
dominated by a single Kihler modulus V ~ k(T + T)3/?
with k being a real positive constant, the value of overall
volume modulus is evaluated as

() = 3518( Cl/g) K23, (24)

where T =7 + ioc. We find that the ratio ¢;/& should be
negative and larger than 10> such that the Kéhler moduli
space resides in the physical domain.

Furthermore, the positivity of (0y,0,VE),

8
2§>

1

OpOyV ~9.14 x 108KV 1| 0, (25)

requires that c¢; should be positive. That indicates the
negative ¢ from Eq. (23). Obviously, the sfermions with
n¢ = 1 have no contribution in the potential. Thus, it turns
out that the case with n{ = 1 for all sfermions is prohibited,
because such a case corresponds to the negative ¢; from
Eq. (10). In addition, the potential energy becomes negative
at this minimum, namely anti-de Sitter minimum,

10°

(V) ~ 14 % 10—3e<K<S*U>>|WO2< .

>g<0 (26)

where £ is negative.
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At this minimum, the mass scales of typical modes
become

KOOy
Vv Pl

10° A
~2.1x 10_2 <—m> e<K<S‘U)>/2|W0|mKK,

my=M;~ms,=

10 A
mys=Nm3;=2.1x10" 2N( 61/5) KON W my .

mgg V2/3MP1 L,
Vag'" g5 \V4(_10°
= V9 M =2.9( -2 ,
Mgy vl/z Pl 10_1 C1/§ mKK
c1/€\?
Mp1:397 (-ﬁ) mgg - (27)

Especially, when the CY volume is dominated by a single
Kéhler modulus, the mass scale of canonically-normalized
overall Kéhler modulus is

10°

3/2
—> (—5)1/2’"1(19

m, ~ 1.1 x 1073 KEU)/2)1, (—
[Wo o JE

(28)

In this way, we find that the volume modulus can be
perturbatively stabilized at the anti-de Sitter minimum,
where four-dimensional supergravity description is reli-
able. The nonperturbative effects for the overall Kihler
modulus are suppressed enough by the value of Kihler
modulus, ¢ 2" « 1, but it generates the potential of
remaining massless axion as discussed in Sec. IIIE.
However, the negative £ indicates that we have to consider
the CY threefolds with the positive Euler number, namely a
large number of Kéhler moduli compared with that of
complex structure moduli.”(In the LVS, the negative Euler
number is required to realize the large CY volume.) Since
such CY threefolds with the positive Euler number account
for half of the whole CY threefolds in the sense of mirror
symmetry, the CY's with the positive Euler number are not
so restricted manifolds, but generic. The O7-plane con-
tribution will also help us to change the number of CY
Euler number in a weak coupling limit [21]. In Secs. III C
and III D, we discuss the stabilization of other Kéihler
moduli. Although for a generic value of ¢ X(S-U)/2| |, the
overall volume modulus can be stabilized at the anti-de
Sitter minimum in a way similar to the LVS, we require the
relatively large ¢, to realize the large volume of CY, e.g.,
c; ~O(10%) for €] ~ O(1071). Such a situation is easily
realized by the models with multi-Higgs doublets and

"Our result is similar to Ref. [20], where the higher-derivative
corrections are taken into account.

singlets via Eq. (13), and such models often appear from
concrete string model constructions. (For the string model
building, see e.g., Refs. [22,23].)

Finally, we comment on the case with no leading «'-
corrections, which corresponds to the CY manifold with the
vanishing Euler number, i.e., y = 0. Then, the scalar
potential consists of only the CW potential,

3/2 C3
Vew = 30x 2A2 3/2+64 M3 {ln( A2 >] +64ﬂ2m§/2,

(29)
with
=) cf(l—nd)?—2c, —4+32,
1
= Z{cg(l —n¢)? (—E—i-ln(l —nf’))] +cy
1
—|—2—|—32<ln4—§>. (30)

It can be rewritten in units of A = mgg = 1,

Vo o o (K(8.0)) |[Wo|? r i RSN, 2
o= (327%)n? REVZER VA3
K(SU) /2y, KU)W, 2
xln( V1/3\/7r )+c3 AT }

o K0 |W0|2 { ju Cze(K(S.U)>|WO|2

(G2e)a? VRT3 R ln(v)]’

(31)

in the large volume regime V> 1 and eK(SUN/2W  ~ O(1).
When ¢, is almost the same order of ¢, we cannot find the
minimum with a sufficiently large CY volume.

C. Numerical estimation

In this section, we numerically analyze the stabilization
of moduli fields. The unapproximated scalar potential of
the overall volume modulus (17) in units of A = myy is
drawn as functions of V' and 7 in Fig. 1, where we set the
following parameters,
nt =0,

1

cp=12. (32)

KSR, | = 1,
¢y = 120,

At this vacuum in Fig. 1, the CY volume is determined
by

(V) ~ 18433, (33)
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FIG. 1.
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= _0.00011F
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~0.00014}
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T

The scalar potential (17) as functions of CY volume V and noncanonically normalized modulus z, where the CY volume is

approximated as V = (T + T)*? with T = 7z + ic in the right panel.

as shown in the left panel and the vacuum expectation value
of overall Kédhler modulus is
(7) = 3489, (34)

as shown in the right panel. The mass scales of typical
modes become

m; = Mf = m3/2 =21x lo_meK,

mys = Nm3/2 =2.1x 10_2NmKK,

mgg = 1,
Js 1/4
mgy = 2.9 (F) MKk,
Mp] = 394mKK. (35)

In addition, the mass scale of canonically-normalized
overall Kédhler modulus is

m, ~3.5 x 10™*mgg, (36)
when the volume of CY is dominated by the single Kihler
modulus 7 = 7+ is. Hence, even when we involve the
next leading terms in the scalar potential, which are

volume-suppressed, the numerical result is in agreement
with the analytical one in Sec. II B.

III. KAHLER MODULI STABILIZATION
WITH UPLIFTING

In this section, we introduce the uplifting term to achieve
a tiny cosmological constant. In particular, we focus on the
anti-D3 branes to uplift the anti-de Sitter minimum to the de
Sitter minimum.

A. Analytical estimation

When there exist anti-D3 branes at certain moduli space
of CY manifold, the uplifting term is given by

€

VUP = VZ

M3, (37)

where € is a real constant suppressed by the warp factor.
Hence, the total scalar potential is a sum of V. in Eq. (17)
and V.

Similar to the analysis in Sec. II, we aim to find the
minimum of modulus field analytically. In the large volume
regime, the above scalar potential in units of mygg is
simplified as

V=Vi+V,

o oy Mol

”2

3¢ c, €
[41;1/3 T v2/3} TRV 38

from which the minimum of overall volume modulus is
determined by solving 0),V = 0,

c1/&\?
(V) ~ 5530( 07 ) , (39)
and ¢ is chosen such that V ~0,
A 1033
€34 x 1075 KSUN2|W 2 (=) (— —) . (40)
/¢

In particular, when the CY volume is dominated by a
single Kihler modulus V ~ k(T + T)*/? with k being a real
positive constant, the modulus value at this minimum is
evaluated as

(r) ~ 156 <— Cl—/5> = (41)

10

It turns out that the deviation from the SUSY-breaking anti-
de Sitter minimum to the uplifted minimum is estimated as

<T> |a.nti—de Sitter — <T> ‘de Sitter ~0.56.

(42)
<T> | anti—de Sitter

Our scalar potential still resides in the supergravity-
controlled regime, since the mass scales of typical modes
have a desirable hierarchical structure,
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TABLE I. The volume of CY (V) and divisAor (1), and typical
scales of several modes, setting e!X(SUV)/2|Wy| =1, g, = 0.1,
and & = —0.1.

Scale c; =50 ¢, = 100 ¢, = 1000
)% 691 5530 5.5 x 10°
T 39x~2/3 156x~2/3 1.6 x 10*~2/3
m,[GeV] 1.7 x 10™ 1.5%x 10" 4.8 x 10°
ms»[GeV] 3.5 x 1015 4.4 x 10" 4.4 x 101
mys[GeV]  3.5N x 101 44N x 10' 44N x 101
mgx[GeV] 5.5 x 10'® 1.4 x 10'° 1.4 x 10
mg[GeV] 9.1 x 106 3.2 x 106 1.0 x 10"
Mp[GeV] 2.4 %108 2.4 %108 2.4 %108

eKSUN2 W,
V)

mg=~Myp~ms3,= Mp,

3
~32x% 10_2 (—10> €<K(S’U)>/2|W0|mKK,
/&
103 o
my.s :Nm3/2 =32x 10_2N <—> €<K<S’U>>/2|W0|mKK,
/¢
NG
mKK:M—ZBMPIZ],
\/Eg}/“ g, \ /4 103\ 1/2
mst:WMPIZZA' 10-1 _T/g MKk
2
MP1:176(—611(§> M. (43)

Furthermore, when the CY volume is dominated by a single
Kéhler modulus, the mass scale of canonically-normalized
overall Kédhler modulus is

103

m, 3.5 x 102K SO || <_?
€

3/2
) (—f)l/meK-
(44)
We find that the volume modulus is still stabilized at the

supergravity-reliable de Sitter minimum, even after the
anti-de Sitter minimum is uplifted to the de Sitter vacuum.

0.00008
0.00006 |
> 0.00004}

0.00002

2000 4000 6000 8000 10000 12000
(V

By setting e KSUN/2|Wi| =1, g, = 0.1, and £ = —0.1, we
list the volume of CY, the typical scales of gravitino,
moduli fields, KK and stringy modes for several values of
c; in Table 1.

B. Numerical estimation

Next, let us numerically estimate the unapproximated
scalar potential V = Vp + V, setting the same parameters
as ones in Sec. II C and

€~3.437 x 1076, (45)
under which the scalar potential with the uplifting term is
drawn in Fig. 2.
In the left panel in Fig. 2, the CY volume is
determined as
(V) ~ 5424, (46)

and in the right panel, the vacuum expectation value of
overall Kdhler modulus is

(t) ~154.4. (47)
The mass scales of typical modes become
m; =M =myz,, =32 x 10~ mgg,
mys = Nmyp =3.2 x 1072 Nmgg,
myg = 1,
my = 2.4 (1?—1) R
My = 174myx. (48)

and in addition the mass scale of canonically-normalized
overall Kdhler modulus is

m, =~ 1.1 x 10_3mKK. (49)
Hence, even when we involve the next leading terms in the

scalar potential, which are volume-suppressed, the numeri-
cal result is in agreement with the analytical one.

0.0007 f
0.0006
0.0005¢
0.0004 ¢
0.0003 ¢
0.0002
0.0001 ¢
0.0000¢

200 400 600 800 1000

T

FIG. 2. The scalar potential in units of A = myg as functions of CY volume V and noncanonically normalized modulus z, where the
CY volume is approximated as V = (T + T)¥? with T = 7 + ic in the right panel.
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C. Inclusion of the D-terms

So far, we have not considered the nonperturbative
effects for the Kihler moduli, since those are negligible
in the large volume regime ) — oo, where 7; — oo for all
the volumes of divisors. To stabilize the Kéhler moduli
fields expect for the overall volume modulus, we consider
the D-term potential induced by the Fayet-Iliopoulos (FI)
term [13]. When the anomalous U(1) symmetries appear
on D7;-branes wrapping the divisors 7;, the D-term
potential is written by

B = Rty (180~ Lt )

(50)

where fp;, are the gauge kinetic functions of D7;-branes,

q(T]iﬁ") represent the gauge fluxes and ¢,, with U(1) charges

q((p],)i") are the canonically normalized matter fields living on

D7;-branes. In addition to these D7-brane contributions,
anomalous U(1) symmetries on the fractional D3-branes
located at the singularities of CY also induce the D-terms

1 D3,) D3 2
VD3 — <q( k K %) P 2) ,
B =2 ey (90 K [
(51)

where fp3, are the gauge kinetic functions of D3,-branes

with k being the number of singularities, q(T]zg”‘) represent

the U(1) charges of moduli fields and ¢,, with U(1) charges
qf/)]?f) are the canonically normalized matter fields living on
the fractional D3;-branes. In both cases, the anomalous
U(1) gauge bosons eat the linear combination of string
axions through the Stiickelberg couplings and become
massive at the compactification scale. In order not to spoil
the stabilization of F-term potential, we require the
vanishing D-term potential, VB’ = VB3 = 0, namely

D7 D7;
)K i = Zq(fa'” )|¢m : Zq |(pm z
m

(52)
|

bl ( KTk

’

VM = X (K'TiDy WDz W = 3)|W|?

which fix the linear combination of closed string moduli
and matter fields (open string moduli). In addition, we
consider the F-term potential of matter fields,

matter
VF

= mg|® + Ag| @ + do|@[*,  (53)

where @ denotes ¢,, and @,,, m3, Ag, Agp are T;-dependent
functions. When @ develops a nonvanishing value, the
D-term and F-term contributions are possible to stabilize
all the moduli fields except for the overall volume modulus,
although it depends on a topology of CY manifold. We
leave an explicit moduli stabilization for a future work,
since it is difficult to analyze the topology of CY threefold
with huge h'!. (For the model building in the LVS with
small 2!, see Ref. [24].)

D. Inclusion of the nonperturbative effects

In contrast to the previous section, we study alternative
stabilization scenario for Kéhler moduli other than the
overall volume modulus. We consider the large volume
regime ) — oo, but the volume of one divisor 7, is not
extremely larger than the other Kéhler moduli 7;, namely
7;> 7, > 1 in string units. Note that we focus on the
Kihler cone where z, is larger than the string length to
suppress the KK and stringy corrections.

Let us assume the nonpertrubative superpotential with
respect to 7,

W=W,+Ae%Ts, (54)

where Wy = (Wy,.), A, and a; are the constants depending
on the origin of nonperturbative effects, e.g., a;, = 2z for
the brane instanton and a, = 2z/N for the gaugino con-
densation on N stacks of D7-branes wrapping the divisor
with volume 7,. To simplify the following analysis, we take
both the W, and A, as real constants. From the Kihler
potential (1) and superpotential (54), the F-term scalar
potential is simply given by

K(S.U) _ ) ) _ ] _
~° V2 |:KTxTx(1%|As|Ze_2aﬂs — KTI:T; (aTjK)asAse_“sTsW _ KTfTS(aTI,K)aSASe_“"TSW}
3
+4§ KSUW|2+O( >
e KS0) |2 214 (k) e — 5 ayz A, We ’v+ IWI2 +0 (55)
12 V2 V4
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in the large volume regime, where Dy W = Wi + Ky W
with Wy = 07W and the CY volume is taken as V =
Sk 2ttt with k;; being the intersection numbers
among the two-cycles ' of CY. Now, the imaginary part
of T, is set as its minimum and we use K T K T, = =27, +
O™y and K'Ti = —4Vi;ut* + 4oz, + O(V7') [25],
where the divisor volume is defined as 7; = 1x;;#/1*. Note
that the first term in Eq. (55) is positive, since it is
originating from the positive definite term. The simplified
above scalar potential is a well-known form as discussed in
the LVS, where the coefficient of ’-correction & is positive,
namely #>! > h''!' > 1. In LVS, the “small” modulus z,
and volume modulus V are stabilized at
V~etsts, g~ EB (56)
because of the positivity of &.
On the contrary, in this paper, we proceed to discuss the
opposite sign of & namely h'! > h>! > 1. The scalar

potential is given by a sum of the F-term and leading
radiative corrections,

VzJ“wMa[ 214, Py e~

4 ST €1 |VAV|2
——a,7,|A,W|e~s% W2+ =15 A?
V2 asTs| s ’e T3 4V3 | | 327[2 VZM%I
1
ro(L). -

where A, = A M3 and W = WM;,. In units of A=
mgg = /aMp/V*? = 1, the scalar potential reduces to

eK(SU)
Vo [ IA P (e
2
—4)2/3 A Wle—ats W2 L|W|
AVBaz|AWle +4v1/*| *+ 35217
1
+O<v4/3) (58)

The extremal condition of z, reads

ov N
~ ~ 4V5/3a%|As|ze_2““Ts |:

N

or :
or (_Kssj) - zas(_Kssitl):|

N

- 4V2/3(ls |ASW0|6—0:R [1 - asTs]

z4vs/3ase_2a”s[ 2a2|A | ( Kssi )

I } —0, (59)

with W, = WoM3,, where we use 0t//0r, <1 and
a,t, > 1 to suppress the higher instanton effects. In this
way, we obtain

eaxtx

|A WOla Ty = 2a2|A | ( Kissi ) (60)

Another extremal condition of V) gives rise to

oV 203 o 8a,7,
@ = 3 a§|As|2(_Kssitl)e 2t — V1/3 |A W0|e “h
_ ¢ W2 — S [Wo?
Y ER N VT PR VEIE
2a Ty N ¢ 2 |WO|2
T1AWolemems — Wol* — o
A 443 48z VI3
~ (Ts)z | 7 |2_ | _i|W0|2
TRV (—kytt) O 43 48z V3/3
_ ‘% 2 12 Cq |‘;VO|2
= "Wl g v oy
where
% 4 (Tv)z
=f—-—"—. 62
5 é 3 (_Kssitl) ( )
Consequently, the volume modulus is stabilized at
V18 664( Cll({f) : (63)

by replacing £ of Eq. (23) into % Although the ;“ depends on
the topology of CY manifold as in Eq. (23), the stabiliza-
tion of volume modulus V and 7, is achieved inside the

Kibhler cone with V > 7, > 1. Indeed, when k' ~ —11/ 2,

A, =Wy=1, ¢, =200, £é=-10"' and a, =2x,
Egs. (60) and. (63) give
YV ~ 4098, 7, ~ 1.69. (64)

Furthermore, even if the Euler number of CY is vanishing,
ie., £ =0, both the moduli fields can be stabilized at
V ~ 3444, t, ~ 1.66, where we set the same parameters of
Eq. (64) except for & Following the same procedure of
Sec. Il A, we can achieve the de Sitter vacuum by
including the anti-D3 branes.

E. Ultralight axion

Finally, we take a closer look at the mass of axion
associated with the overall volume modulus. To simplify
our analysis, we take into account the CY volume domi-
nated by the single Kihler modulus 7, i.e., V=«(T +T)%/?
with k being a positive real constant. When there exist the
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TABLE II. Axion mass in units of gravitino mass and its decay constant.

Scale n=1 n=3 n=>5 n="717 n=29
my/ms 2.3 x 10729 7.4 x 1078 9.7 x 10740 9.1 x 10728 3.7 x 10721
folGeV] 3 x 10" 9 x 101 1.5 x 10'° 2 x 10'° 2.7 x 106

D-brane instanton effects or gaugino condensation on
D7-branes, the axion potential can be extracted from the
superpotential

W =Wy +ADeT, (65)

where W, = (Wg,) and A7) are assumed to be real
constants, and n = 1 for the brane instanton and n = N
for the gaugino condensation on N stacks of D7-branes
wrapping the divisor with volume 7. Such a nonperturbative
superpotential term generates the axion potential,

V= eK/Mlz,] KTTKT (WTZVV WTZVV>
My, Mp,
KU AM W, (T+T)? 3 27[( L
—— (€ n
VIME, 3 T+Tn

KU AM W, 3an 2
=~ % B —ﬂ- 6_271 COS —ﬂd s (66)
VM, K n n

e=nT)

where T = 7 + io. After canonically normalizing the axion
0 = /2K 70, we obtain the tiny mass of axion and its
decay constant,

(T) 3\1/2 3/2 N
Mg =~ My, —(|A %MPI) (2_71) <E> e HQ7
K n K

n2Krr  Von [(k\2/3
= =5 Mp,,

fo (67)

2w 2r \V

where the CY volume and gravitino mass are given in
Egs. (39) and (43). Thus, large volume of CY results in the
ultralight axion associated with the volume modulus in a
way similar to the LVS.
Although the axion mass highly depends on the value of
n, we list the typical axion mass in Table II setting the same
parameters of Sec. II C and
k=1 JAD =My /g =100 (68)
It is interesting to discuss the astrophysical and cosmo-
logical physics of such an ultralight axion, which will be
studied in a separate work.

IV. CONCLUSION

We have discussed the stabilization of Kihler
moduli using the leading «'-corrections and the radiative

corrections due to the sparticles within the framework of
the type IIB superstring theory on Calabi-Yau orientifolds
with D7-branes. When all the volumes of the divisors in CY
threefold are sufficiently large in string units, the non-
perturbative effects for the Kéhler moduli are suppressed
enough compared with o'-corrections and the radiative
corrections. We find that these perturbative corrections give
rise to the stabilization of the overall Kéhler modulus for a
general class of CY threefolds, only if the Euler number of
CY is positive. Since the volume of CY scales as the
number of sparticles, we require that the relatively large
number of sparticles contributes to the Coleman-Weinberg
potential through the radiative corrections to achieve the
large CY volume. Such a large number of sparticle
contributions could dominate over the string loop correc-
tions to the Kihler potential discussed in Ref. [11] where
one needs a certain amount of fine-tuning of the complex
structure moduli to realize the large volume of CY.
Furthermore, our scenario of moduli stabilization does
not require the tuning of flux-induced superpotential in
contrast to the KKLT scenario. The Kaluza-Klein and
stringy modes are sufficiently heavier than Kéhler moduli
and sparticles. In this reason, the low-energy effective
action is controllable in the four-dimensional N = 1 super-
gravity. The vacuum in our scenario of moduli stabilization
is the ant-de Sitter minimum. The structure of moduli
stabilization is still maintained even after we uplift the anti-
de Sitter minimum to de Sitter vacuum by introducing anti-
D3 branes. Note that a requirement of the positive Euler
number is different from the conventional large volume
scenario, but CY threefolds with the positive Euler number
are accounted for half of the CY threefolds in the sense of
mirror symmetry.

However, the positive Euler number of CY threefold
indicates that we have to take into account a lot of
Kidhler moduli compared with the complex structure
moduli. We expect that the D-term contribution from
fractional D3-branes and magnetized D7-branes would
lead to the stabilization of these Kihler moduli except
for the overall volume modulus as discussed in Sec. III C.
The nonperturbative effects also allow us to stabilize some
Kéhler moduli without spoiling the stabilization of volume
modulus as shown in Sec. III D. In this moduli stabilization
scenario, the axion associated with the volume modulus
remains light and it could be a target of astrophysical and
cosmological observations. It is interesting to show explicit
moduli stabilization in a detailed setup, but we leave it for a
future work.
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