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We consider a nonsupersymmetric USp Yang-Mills Chern-Simons gauge theory coupled to fundamental
flavors. The theory is realised in type-IIB string theory via an embedding in a Hanany-Witten brane
configuration which includes an orientifold and antibranes. We argue that the theory admits a magnetic
Seiberg dual. Using the magnetic dual we identify dynamics in field theory and brane physics that
correspond to various phases, obtaining a better understanding of three-dimensional bosonization and
dynamical breaking of flavor symmetry in USp QCD3 theory. In field theory both phases correspond to
magnetic “squark” condensation. In string theory, they correspond to open string tachyon condensation and
brane reconnection. We also discuss other phases where the magnetic ‘squark’ is massive. Finally, we
briefly comment on the case of unitary gauge groups.
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I. INTRODUCTION AND CONCLUSIONS

Quantum chromodynamics in three spacetime dimen-
sions (QCD3) is an interesting variant of the more familiar
QCD in four dimensions. In a sense, the three-dimensional
theory is richer because three dimensions allow the addition
of a topological Chern-Simons (CS) term which blocks the
RG running of the Yang-Mills interaction towards strong
coupling and alters the infrared (IR) dynamics.
In the past decade or so, there has been significant progress

in understanding the dynamics of three-dimensional super-
symmetric gauge theories including the dynamics of a large
class of supersymmetric Chern-Simons theories coupled to
different types of matter. Steps forward have also been
achieved in the study of nonsupersymmetric Yang-Mills-
Chern-Simons (YM-CS) theories like QCD3. For example,
consider a CS theory coupled to Nf Dirac fermions in the
fundamental representation. A recent intriguing result is a
conjecturedduality between the followingpairs of theories [1]

SUðNcÞKþNf
2

⊕Nffermions↔U
�
KþNf

2

�
−Nc

⊕Nfscalars:

ð1:1Þ

A variant of this duality postulates that

UðNcÞKþNf
2
;KþNf

2
�Nc

⊕ Nffermions

↔ U

�
K þ Nf

2

�
−Nc;−Nc∓ðKþNf

2
Þ
⊕ Nfscalars: ð1:2Þ

In these expressions, and in what follows, the notation
SUðNÞk quotes bare CS levels. These are written in terms
of the shifted level K defined as kbare −

Nf

2
. Similarly, in the

notationUðNÞk;l the first level refers to the bare level of the
SU part and the second to the bare level of the Uð1Þ part.
Since both of these dualities relate a theory with fermions to
a theory with bosons they are frequently referred to as
bosonization (in close analogy with the more familiar
bosonization in two dimensions). The scalars on the
bosonic side have quartic interactions tuned to a Wilson-
Fisher fixed point. The duality holds for 1

2
Nf ≤ K.

Versions of this duality for SOðNcÞ and USpð2NcÞ
gauge groups have also been formulated [2]. In this paper,
we will mostly focus on results that are very closely related
to the USpð2NcÞ version of the duality

USpð2NcÞ2KþNf
⊕ 2Nffermions

↔ USpð2K þ NfÞ−2Nc
⊕ 2Nfscalars: ð1:3Þ

Similar to the SUðNcÞ case, the bosonic side requires that
the scalars are at aUSpð2NfÞ invariant Wilson-Fisher fixed
point. This duality is also expected to be valid for 1

2
Nf ≤ K.

More recently, Komargodski and Seiberg (KS) argued
for a scenario [3] that describes the infrared dynamics of the
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fermionic theory when Nf > 2jKj. According to that
scenario there is a window, for 2jKj < Nf < N�, where
the theory exhibits a phase of flavor symmetry breaking:
UðNfÞ → UðNf=2 − KÞ × UðNf=2þ KÞ in the unitary
case and USpð2NfÞ→USpðNf−2KÞ×USpðNfþ2KÞ
in the symplectic case. N� is a critical number of flavors
whose precise value is currently unknown. The evidence in
favor of this scenario includes the matching of anomalies
and consistency under several RG flows [3]. For Nf > N�
it is conjectured [3,4] that the theory flows to some IR fixed
point that does not exhibit flavor symmetry breaking.

A. Summary of results

1. Benefits of an ultra-violet embedding

In this paper, we provide new evidence in favor of the
above scenario for QCD3 (bosonization, symmetry break-
ing, CFT) by embedding the IR dynamics of QCD3 in
an ultra-violet (UV) YM-CS theory, which is a three-
dimensional cousin of a four-dimensional nonsupersym-
metric orientifold QCD theory [5]. The main part of the
paper will focus on the case of USpð2NcÞ gauge group. In
that case, the UVembedding involves aUSpð2NcÞ YM-CS
theory at bare level 2k coupled to a real scalar field in the
2-index symmetric representation (“scalar gaugino”), a
Dirac fermion in the 2-index antisymmetric representation
(“gaugino”), 2Nf scalars in the fundamental representation
(“squarks”) and 2Nf fermions in the fundamental repre-
sentation (“quarks”). We argue that there are regimes when
k ≠ 0 where the quantum effects lift the scalars and the IR
behavior is dominated by standard QCD3 physics. The
level K that appears in KS [3], e.g. in Eq. (1.3), is related to
k via the relation

K ¼ jkþ 1 − Ncj −
Nf

2
: ð1:4Þ

The combination kþ 1 − Nc arises naturally when we
integrate out the antisymmetric gaugino and will appear
frequently in our formulas. It is therefore convenient to
introduce the integer

κ ≡ kþ 1 − Nc; ð1:5Þ

in terms of which K ¼ jκj − Nf

2
.

The great advantage of the additional degrees of freedom
in the orientifold QCD theory is that they allow us to
formulate a nonsupersymmetric version of Seiberg
duality. For Nf ¼ 0 this duality reduces to level-rank
duality [6]. For general Nf, the dual “magnetic" theory
is a USpð2Nf þ 2κÞ gauge theory whose details will be
described in detail in Sec. II. Four-dimensional versions of
the duality were studied in [5]. In this paper, we will show
that the finite Nf duality passes the standard checks of

consistency under RG flows, global symmetry and ’t Hooft
anomaly matching. Further favorable evidence is provided
by string theory. We will return to some of the salient
features of the string theory embedding in a moment.
The electric-magnetic duality operates when the rank of

the dual gauge group is positive, namely when Nf þ kþ
1 > Nc (equivalently, when Nf > −κ). For values of
k; Nc; Nf outside this window there is no magnetic dual
and one has to analyze separately the strong coupling
dynamics of the electric theory. It is unclear what the
infrared physics of the theory are in this regime. In
supersymmetric analogues, e.g. in three-dimensional
N ¼ 2 SQCD theories, the supersymmetric vacuum is
lifted by nonperturbative effects when the dual rank
becomes negative. When the dual rank vanishes, the dual
theory is a theory of free chiral multiplets.
In this paper, wewill work exclusively in the regimewhere

the dual magnetic description exists. The magnetic descrip-
tionwill provide an illuminating perspective on the dynamics
of the electric theory. In particular, wewill find, under certain
assumptions, that themagnetic theory leads to a rather natural
universal description for all the phases of QCD3 outlined
above. We will show that when Nf ≤ 2jKj bosonization
emerges naturally in the IR via magnetic squark condensa-
tion; a mechanism that reminds of monopole condensation
and the dual Meissner effect in four-dimensional physics.
We will not be able to prove conclusively the existence of
magnetic squark condensation, but we will provide evidence
indicating that it is a viable possibility and that it leads to a
suggestive consistent synthesis of known results.
This mechanism provides a new explanation of three-

dimensional bosonization. Unlike previous explanations
based on deformations of supersymmetric three-
dimensional Seiberg dualities and mirror symmetry (see
e.g. [7] for beautiful work in these directions) in this
mechanism bosonization arises dynamically in the infrared
as a consequence of a nonsupersymmetric version of
Seiberg duality. These effects describe the part of the
phase diagram denoted as I in the diagrams of Fig. 1.
Once magnetic squark condensation is assumed, the phase

of symmetry breaking for Nf > 2jKj follows naturally.
There are two regions in the phase diagram of orientifold
QCD3, regions II and II0 in diagram B of Fig. 1, that describe
in the IR the physics of QCD3 for Nf > 2jKj.
Interestingly, the magnetic description in regions II and

II0 is not identical. Consider first the situation in region II0
where −Nf < κ < 0. In this case, squark condensation
leads to a complete Higgsing of the gauge group leaving
behind a sigma model of Goldstone bosons for the
dynamically broken symmetry. The magnetic theory pro-
vides an explicit description of how the sigma model arises.
Region II of the phase diagram of orientifold QCD3

refers to the parameter regime Nf > κ > 0. The dictionary
(1.4) implies that this region describes the same IR physics
as QCD3 with Nf > 2jKj. Naively, it looks like a natural
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continuation of the bosonization regime where squark
condensation leads to a theory of 2Nf bosons. It is obvious,
however, that this theory cannot be the same as the bosonic
dual of region I, because bosonization is inconsistent for
Nf > 2jKj, which is also clear in the behavior of the
electric and magnetic orientifold QCD theories under mass
deformations. This suggests that Nf ¼ κ is a critical point
above which the magnetic theory reverts to the symmetry
breaking phase. We propose a particular scenario for the
mechanism behind this phase transition. This scenario is
consistent with expectations about the massive deforma-
tions of the fermionic (electric) theory and predicts natu-
rally a phase transition to a topological sector as the mass
of the fermions is increased. A dual bosonic formulation
appears at the transition point as anticipated by KS [3].
The symmetry pattern for sufficiently large Nf persists as

long as the magnetic squarks are tachyonic and condense.
Competing effects in the one-loop mass normalization of the
squarks suggest the possibility that whenNf is large enough,
Nf ≥ N� for some N�ðk; NcÞ, the squarks become massive.
Depending on the mass squared of the elementary magnetic
meson fields, Seiberg duality suggests a specific description
for the IR theory. We argue that the most likely scenario is
one where the elementary magnetic mesons are tachyonic.
The condensation of the elementary magnetic mesons leads
to an IR theory of free fermions and light mesons, a scenario
that agrees with the large-Nf results in [4].

2. Lessons from string theory

It is useful to consider a further UV embedding of the
orientifold QCD theory into a nonsupersymmetric brane

configuration in string theory. The immediate benefits of
this embedding are
(a) String theory is a useful guide to the spectrum and

tree-level Lagrangian of the magnetic dual and pro-
vides motivating evidence for a potential nonsuper-
symmetric Seiberg duality that is the center-point of
this paper.

(b) Nontrivial effects in field theory have a natural
description in terms of brane physics (frequently as
a geometric rearrangement of the brane configuration).
For example, the magnetic squark condensation that
drives the UV theory to bosonization in the IR has a
natural interpretation in brane physics as open string
tachyon condensation and brane reconnection.1

In this paper, we are interested in nonsupersymmetric
brane configurations in a Hanany-Witten brane setup in
type-IIB string theory along the lines of the Giveon-
Kutasov analysis [9]. In order to break supersymmetry,
we consider a combination of an O3 plane, anti-D5 branes
and anti-D3 branes suspended between two 5-branes, one
of which is a bound state of an NS5 brane and anti-D5
branes.2 The mutual presence of antibranes with an
orientifold plane breaks the N ¼ 2 supersymmetry com-
pletely. Supersymmetry is restored asymptotically when
Nc, Nf and k are taken to infinity. This feature is useful.

FIG. 1. Diagram A represents the phases of QCD3 anticipated by [3]. Region I is the phase of bosonization, region II the phase of
symmetry breaking and region III a phase with an IR CFT description. The curve separating the regions II and III occurs at some N�
which is potentially a function of both κ and Nc. The wiggly features of this curve are not a statement about its actual shape, but rather a
symbolic depiction of our ignorance about its precise form. A constraint on the shape of this curve was determined in Ref. [3]. Diagram
B represents the phases of orientifold QCD3 that arise naturally (under a certain set of assumptions) from the magnetic description of the
theory. With the exception of the region κ < −Nf where no Seiberg duality is available the remaining regions I, II=II0 and III, are
expected to describe the same IR physics as the corresponding regions in diagram A.

1A different embedding of three-dimensional bosonization in
string theory was recently proposed in ref. [8] which describes via
holography effects in gauge theory in the large-N limit.

2A similar four-dimensional brane configuration in tt-IIA
string theory and a corresponding nonsupersymmetric Seiberg
duality was proposed in [5].
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The large-N regime is a technically convenient regime
where supersymmetry is softly broken by 1=N effects.3

The broken supersymmetry leads to nontrivial potentials
between different components of the brane configuration.
On the electric side, the potentials are attractive and lead to
a stable brane configuration. On the magnetic side, how-
ever, the potentials can be repulsive, leading to open string
tachyon condensation and brane reconnection between the
flavor and color branes. The rich phase diagram that arises
in this manner is literally a web of phases driven by the
presence or absence of open string instabilities. The result
translates in gauge theory either as bosonization or
dynamical symmetry breaking, or a CFT.

B. Comments on the scales of the setup, RG flows
and nonsupersymmetric duality

In the absence of supersymmetry, there are quantum
effects that generate nontrivial RG flows. The details of the
RG flow and the resulting IR physics depends on the
specification of the UV parameters of the theory. How are
these parameters treated in the formulation of the electric/
magnetic orientifold QCD theories, the statement of non-
supersymmetric Seiberg duality between them and the
embedding in open string theory that was described above?
In this paper, the nonsupersymmetric orientifold QCD

theories are formulated at a UV cutoff scale Λ. When we
discuss an embedding in open string theory we identify Λ
with the natural scale in open string theory, 1ffiffiffi

α0
p . In the

quantum regime, there are effects taking place at scales of
the order of 1ffiffiffi

α0
p and effects below that scale that remain

finite when we take the field theory limit α0 → 0. Our
reference to open string theory is limited exclusively to
effects that occur at the string scale. We use such effects as a
partial guide to the ultra-violet physics of interest in the
nonsupersymmetric field theories that we want to study.
In particular, the orientifold QCD theories contain

scalars, fermions and gauge bosons. For scalars, other than
Nambu-Goldstone bosons, the quantum effects induce
either a positive or a negative (tachyonic) mass,2 which
behaves as a positive power of the cutoff. In that case, we
assume that a corresponding effect is present in open string
theory, and do not remove it by a corresponding counter-
term in field theory (see [10] for a related discussion based
on an earlier calculation in string theory in [11] and Sec. III
for further comments). We could apply this prescription
directly in field theory without reference to open string
theory, but we choose to keep the string theory language
because it makes the reference to certain effects more
natural. In this context, when the scalars are massive they
decouple from the low-energy dynamics and play no role in

the IR physics. Although such scalars may appear in our list
of fields (see Tables I and II), we do not consider them as
part of the spectrum of the IR field theory. On the electric
side, this effect leads naturally to a connection with QCD3.
On the magnetic side, we argue that the pattern is more
involved and the precise physics has a more sensitive
dependence on the regime of parameters.
The quantum effects also generate masses for the

fermions. The “gluino,” which has already a tree-level
Chern-Simons mass, and the quarks obtain a mass shift
proportional to the square of the gauge coupling times a
logarithm of the UV cutoff. Since this mass does not come
from a power divergence, fermions can participate actively
in the IR dynamics in our scheme.
Still, the above prescription does not specify completely

the UV parameters of the orientifold QCD theories. When
we make a statement about nonsupersymmetric Seiberg

TABLE I. The matter content of the electric theory. The
SOð2NfÞ global symmetry of the brane construction enhances
to USpð2NfÞ in the IR field theory.

Electric theory

Spð2NcÞ SOð2NfÞ
Aμ

Ncð2Nc þ 1Þ
•

σ
Ncð2Nc þ 1Þ

•

λ

Ncð2Nc − 1Þ
•

Φ □

2Nc

□

2Nf
Ψ □

2Nc

□

2Nf

TABLE II. The matter content of the magnetic theory. The dual
rank is expressed in terms of Ñc ¼ Nf þ kþ 1 − Nc.

Magnetic theory

Spð2ÑcÞ SOð2NfÞ
aμ

Ñcð2Ñc þ 1Þ
•

s
Ñcð2Ñc þ 1Þ

•

l

Ñcð2Ñc − 1Þ
•

ϕ □

2Ñc

□

2Nf

ψ □

2Ñc

□

2Nf
M •

Nfð2Nf − 1Þ
χ •

Nfð2Nf þ 1Þ
3In this paper, the conjectured nonsupersymmetric Seiberg

duality is applied at finite-N and the statements resulting from this
application are also intended as statements for the finite-N theory.
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duality between two theories we assume that there is a
specific tuning of UV parameters, e.g. masses and other
couplings, that drives that electric and magnetic theories to
identical IR physics. This is a tuning that refers to couplings
that remain finite as the UV cutoff Λ is sent to infinity. The
main point of the paper is that themagnetic theory exhibits all
the phases needed to reproduce known dualities and phases
in QCD3. In that sense, in this paper we do not generate new
IRdualities and theUV tunings ofmass parameters and other
couplings that we need to do in the orientifold QCD theories
are assumed to be closely related to the ones needed in
previous treatments of QCD3. The novelty here is that we
find a single description (following from the magnetic
theory) for all phases and dual descriptions of QCD3.
Wewill not attempt to embed the above fine tunings of the

field theory UV parameters to open string theory. In that
sense, there is no claim in this paper about a rigorous
embedding of nonsupersymmetric Seiberg duality in open
string theory and no such claim is necessary for our purposes.
Such a claim, which may or may not be possible, would
require a better understanding of quantum effects in open
string theory that goes beyond the scope of the present paper.
Nevertheless, despite the lack of such a statement we argue
that classical open string theory provides a useful starting
point in a field theory discussion of the electric and magnetic
orientifoldQCDtheories and that it givesmotivating evidence
for a potential IR duality (see Sec. II C).

C. Outline of the paper

The paper is organized as follows. In Sec. II, we present
the orientifold field theories of interest, describe how
they are embedded in suitable brane configurations in
ten-dimensional type-IIB string theory, and formulate the
nonsupersymmetric electric-magnetic duality that they are
conjectured to obey. Motivating evidence in favor of the
duality is summarized in a separate subsection.
In Sec. III, we discuss perturbative nonsupersymmetric

effects in both the electric and magnetic gauge theories. We
discuss the expected behavior of the electric theory in the
IR and its relation to QCD3. A description of the IR physics
from the magnetic theory point of view is relegated to the
subsequent sections.
In Sec. IVA, we consider the parameter regime where

kþ 1 − Nc ≥ 0. In that case, the magnetic squarks can
lead to “full color-flavor recombination” (color-flavor
locking) on the magnetic side. This is translated to
three-dimensional bosonization of the electric side. The
magnetic description does not provide only the correct
matter content for bosonization, but also the requisite
USpð2NfÞ-invariant quartic interaction needed for the
Wilson-Fischer fixed point. It is argued that this picture
is consistent forNf ≤ kþ 1 − Nc, but fails for larger values
of Nf, where the most natural scenario, in accordance
with expectations from QCD3, is a scenario of a symmetry
breaking phase.

The other regime is when−Nf ≤ kþ 1 − Nc < 0. In that
regime, the squark condensationHiggses themagnetic gauge
group completely and leads to “partial color-flavor recombi-
nation.” Section IV B provides a detailed description of the
effects that take place in this regime. On the electric field
theory side, these effects are translated as dynamical sym-
metry breaking. TheNambu-Goldstone bosons are identified
as massless modes in the low-energy spectrum of the open
string theory on the branes and as massless modes after
squark condensation in the magnetic Lagrangian.
In Sec. IV C, we discuss the possibility of a phase where

the magnetic squark becomes massive. This leads to a
phase with a CFT description in the IR in accordance with
field theory expectations in QCD3 [4]. The magnetic dual
provides a specific prediction for the IR CFT. This
possibility requires the existence of a critical number N�
with the new phase being realized when Nf ≥ N�.
In the above analysis, it is always assumed that the bare

CS level of the orientifold QCD theory k is nonzero. When
k ¼ 0 the IR physics is dominated by the YM interaction.
The IR physics of this theory, which besides the effects of
the fundamental fermions involves nontrivial dynamics
from Dirac fermions in the 2-index antisymmetric repre-
sentation as well as additional scalar fields, is an interesting
question that has not been explored in the past. This
situation is discussed in Sec. V. A recent discussion of
CS theories with matter in the adjoint representation but no
fundamentals can be found in [12].

D. Open problems

In this paper, we focus on the case of (orientifold) QCD3

theories with symplectic gauge group. This choice is
dictated by the fact that this case is the most straightforward
one from the viewpoint of the string theory construction
that underlies part of this work. Since the analysis of
unitary groups with even rank, Uð2NÞ, shares many
similarities with the analysis of the USpð2NÞ case (and
is related to it by a nonperturbative planar equivalence), it is
rather natural to put forward a corresponding picture for
Uð2NÞ (orientifold) QCD3. Preliminary comments in this
direction are summarized in Appendix B.
The formulation of nonsupersymmetric Seiberg duality

for orientifold QCD3 theories with general unitary gauge
groups and orthogonal groups remains an open problem.
We hope to return to these cases in a future publication.

E. Summary of conventions

In what follows, when we mention the level of a UV
gauge theory, we will always refer, unless otherwise stated,
to the bare level k (or 2k in the USp gauge theories). k is
always an integer—it is the same integer (or related to the
integer) that appears in the 5-brane bound states in our
brane configurations. This convention is to be contrasted
with other notation in the literature, e.g. [3] that is closely
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related to our discussion, where the quoted level is
K ¼ kbare þ kquantum with kquantum ¼ − Nf

2
.

When we integrate out massive particles the CS level
shifts. In the YM-CS regularization (which we follow), only
the fermions contribute to the shift. We will use conventions
natural in string theorywhere the integration of a singleDirac
fermion with positive mass m leads to the IR level

kIR ¼ kþ 1: ð1:6Þ
A list of possible mass deformations, and their string theory
interpretation, is summarized in Appendix A 2.
Another useful fact in our discussion is the fact that when

we integrate out a gaugino (in the 2-index antisymmetric
representation) in the USpð2NÞ theory we obtain the CS
level shift

kIR ¼ k − sgnðkÞðN − 1Þ: ð1:7Þ

II. NONSUPERSYMMETRIC USp
SEIBERG DUALITY

The gauge theories of interest can be phrased independ-
ently of string theory. Nevertheless, since string theory
provides a convenient organising principle for the non-
supersymmetric duality of interest we will present in
parallel the gauge theories in question and their embedding
in classical open string theory. We consider the USp YM-
CS theories that describe classically the IR physics on the
Hanany-Witten brane configurations depicted in Figs. 2, 3.
As we emphasized in subsection IB, the construction in
this section should not be viewed as a rigorous claim
towards an embedding of nonsupersymmetric Seiberg
duality in open string theory, but rather as a useful starting
point of a study of an IR duality in field theory.

A. Electric theory

Let us start with a description of the electric theory. The
brane configuration that engineers the theory consists of Nc
anti-D3 branes suspended between an NS5 brane and a
tilted ð1; 2kÞ five-brane. In addition, there is an orientifold
O3. The orientifold plane changes from O3þ to O3− when
it crosses the five-brane. This is identical to the brane
configuration of [6]. In addition, we add Nf anti-D3 branes

which are attached to the right of the NS5 brane and end on
D5 branes. The resulting brane configuration is depicted in
Fig. 2. It consists of

(i) an NS5 brane along the 012345 directions,
(ii) a tilted ð1; 2kÞ five-brane along 012(37)89 direc-

tions. The latter five-brane is a bound state of an NS5
brane and 2k anti-D5 branes and is tilted in the (37)
plane by an angle θ such that tanðθÞ ¼ −2gsk. With
this choice of angle, we would preserve N ¼ 2
supersymmetry, had we not had an orientifold. The
minus sign reflects the presence of antibranes in the
construction.

(iii) anO3 plane along the 0126 directions, which isO3−

at x6 ¼ �∞,
(iv) Nc (color) anti-D3 branes (and their mirrors) along

the 012j6j directions (j6j denotes that the branes
have a finite extent in the 6-direction),

(v) Nf (flavor) anti-D3 branes (and their mirrors) along
the 012j6j directions. The flavor branes end on anti-
D5 branes, which are oriented along the 012789
directions.

The matter content of the theory is similar to the matter
content of the supersymmetric theory, except that the fields
transform differently with respect to the gauge group, due
to the presence of the orientifold. The full matter content of
the electric theory is given in Table I below. Note that the
gauge fields Aμ and the scalar gaugino σ transform in the
two-index symmetric (adjoint) representation of the gauge
group, while the Dirac gaugino λ transforms in the two-
index antisymmetric representation. The complex scalarsΦ
(squarks) and the Dirac fermions Ψ (quarks) are both in a
fundamental pseudoreal representation of USpð2NcÞ×
SOð2NfÞ. Note that although the global symmetry on
the brane is SOð2NfÞ, the global symmetry of the low
energy QCD theory is USpð2NfÞ. This is due to irrelevant
interactions inherent to the string realization of the theory.
The classical Lagrangian of the electric theory is

L ¼ Lgauge þ Lmatter: ð2:1Þ
Thegaugepart isYang-Mills-Chern-Simons theory at level2k

Lgauge ¼ LYM þ LCS; ð2:2Þ

NS5(1,2k)

D5
Nf anti D3 branes

Nc anti D3 branes
O3

FIG. 2. The electric theory. It is a nonsupersymmetric
USpð2NcÞ Yang-Mills theory with a level 2k Chern-Simons
term and 2Nf flavors.

Nc anti D3 branes

NS5 (1,2k)

O3

D5

Nf anti D3 branes

FIG. 3. The magnetic theory. It is a nonsupersymmetric
USpð2Nfþ2k−2Ncþ2Þ Yang-Mills theory with a level −2k
Chern-Simons term.
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LYM¼ 1

g2
Tr
�
−
1

4
ðFμνÞ2þ

1

2
ðDμσÞ2þiλ̄=Dλ−iλ̄½σ;λ�þ1

2
D2

�
;

ð2:3Þ

LCS ¼ k
4π

Tr

�
εμνρ

�
Aμ∂νAρ −

2i
3
AμAνAρ

�
þ 2Dσ − 2λ̄λ

�
:

ð2:4Þ

Dμ is the standard gauge covariant derivative and the
contraction of spinor indices has been kept implicit. For the
matter part

Lmatter ¼ DμΦ̄aiDμΦai þ iΨ̄ai=DΨai − Φ̄aiðσ2ÞabΦbi

þ Φ̄aiDa
bΦbi − Ψ̄aiσa

bΨai

þ iΦ̄aiλ̄a
bΨbi − iΨ̄aiλa

bΦbi; ð2:5Þ
where a; b;… ¼ 1;…; 2Nc are color indices and i; j;… ¼
1;…; 2Nf are flavor indices. The pseudoreality condition
imposes on bosons and fermions

Φ̄bj ¼ ΦaiΩabΩ̃ij; ð2:6Þ
with Ω, Ω̃ the USpð2NcÞ, USpð2NfÞ symplectic tensors.
As we discussed in Sec. I B, the tree-level couplings in

the above Lagrangian are modified by nontrivial quantum
effects. We will later adopt a scheme where some of the
fields acquire large positive masses of the order of the
cutoff. Other couplings will be implicitly assumed to be
suitably fine-tuned in order to achieve the IR physics of
interest.

B. Magnetic theory

We define the proposed magnetic dual classically as the
theory that describes the infrared dynamics of the brane
configuration in Fig. 3, which results from that in Fig. 2 by
swapping the NS5 and ð1; 2kÞ 5-branes across the x6

direction. In the presence of the orientifold, kþ 1 additional
D3 branes are created during this swap. As a result, we find

Ñc ¼ Nf þ kþ 1 − Nc ¼ Nf þ κ

D3 branes suspended between the NS5 and ð1; 2kÞ 5-branes.
The dual theory is a USpð2ÑcÞ gauge theory at bare CS

level −2k. It exists when Ñc ≥ 0. Note that classically the
flavor anti-D3 branes can slide freely between the tilted
five-brane bound state and the Nf D5 branes (which share
the common directions (89))4 leading to corresponding
elementary meson and mesino degrees of freedom. The
meson M transforms in the 2-index antisymmetric of

SOð2NfÞ and the mesino χ in the 2-index symmetric
representation of SOð2NfÞ. The full matter content of
the magnetic theory is summarized in Table II.
Let us discuss the classical Lagrangian of the magnetic

theory. Besides the gauge interactionsLgauge ¼ LYM þ LCS

for gauge group USpð2ÑcÞ

LYM¼ 1

g2
Tr

�
−
1

4
ðfμνÞ2þ

1

2
ðDμsÞ2þ il̄=Dl− il̄½s;l�þ1

2
D2

�
;

ð2:7Þ

LCS ¼ −
k
4π

Tr

�
εμνρ

�
aμ∂νaρ −

2i
3
aμaνaρ

�
þ 2Ds − 2l̄l

�

ð2:8Þ

a part of the Lagrangian includes the same terms

Lmatter;1 ¼ Dμϕ̄
aiDμϕai þ iψ̄ai=Dψai − ϕ̄aiðs2Þabϕbi

þ ϕ̄aiDa
bϕbi − ψ̄aisabψai

þ iϕ̄aiλ̄a
bψbi − iψ̄aiλa

bϕbi ð2:9Þ

for the magnetic squarks ϕi, and quarks ψ i as the electric
theory. In addition, it includes kinetic terms for the mesons
M½ij� and mesinos χðijÞ

Lmatter;2 ¼ ∂μM̄ij∂μMij þ iχ̄ij=∂χij ð2:10Þ

and a set of interactions that constitute the nonsupersym-
metric orientifold version of the supersymmetric cubic
superpotential between mesons/mesinos and squarks/
quarks.
The complete matter Lagrangian is

Lmatter ¼ Dμϕ̄
aiDμϕai þ iψ̄ai=Dψai − ϕ̄aiðs2Þabϕbi

þ ϕ̄aiDa
bϕbi − ψ̄aisabψai þ iϕ̄aiλ̄a

bψbi

− iψ̄aiλa
bϕbi þ ∂μM̄ij∂μMij þ iχ̄ij=∂χij

−
1

4
y2ϕaiϕ

a
jϕ̄b

iϕ̄bj − y2M̄ikMijϕ̄a
kϕa

j

− 2yψaiχ
ijϕa

j − yψaiMijψa
j ð2:11Þ

and the total Lagrangian

L ¼ Lgauge þ Lmatter: ð2:12Þ

y is a coupling with mass dimension 1=2 that appears in
front of the cubic superpotential interactions in the super-
symmetric version of the theory. In the nonsupersymmetric
theory at hand, the RG flow will not respect the relations
between the couplings that appear in front of the terms in
the last line of (2.11). The expression (2.11) is written here
only as a specific bare Lagrangian that follows from its

4As we discuss later, the moduli associated with motion in
the (89) plane are lifted by quantum effects. Hence, they are
pseudomoduli.
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supersymmetric ancestor by appropriately modifying the
representations of certain fields.

C. Evidence for duality

We claim that with a suitable definition of the UV
parameters the above electric and the magnetic theories
form a Seiberg dual pair, namely they lead to the same IR
physics. The construction in classical open string theory
based on swapping five-branes is the first weak evidence
for a potential relation between the two theories.
Independently, in Appendix A we provide standard evi-
dence in the form of ’t Hooft anomaly matching and a
preliminary map between deformations and RG flows.
In addition, we note that at large Nc, Nf and k the two

theories become supersymmetric. The reason is that in this
limit there is no difference between the two-index sym-
metric and the two-index antisymmetric representations.
In the brane picture, this statement translates to the fact that
the orientifold (the Möbius amplitude) is a 1=N effect.
Therefore, in the large N limit the electric and magnetic
theories are dual to each other as a supersymmetric pair
similar to the one analyzed in [9].
It is not straightforward to make a claim of a rigorous

embedding of nonsupersymmetric Seiberg duality in open
string theory and in this paper we do not attempt to put
forward such a claim. Nevertheless, it is interesting to note
here another argument from string theory in favor of the
duality, due to Sugimoto.5 This argument does not involve
five-brane swapping. It relies on the SUSY duality and,
under certain assumptions, leads to the non-SUSY duality.
The idea is that the same operation (adding Nf þ k
antibranes) on a pair of dual supersymmetric theories
leads to a duality between nonsupersymmetric electric
and magnetic theories. The electric SUSY theory becomes
the magnetic non-SUSY theory and the magnetic SUSY
theory becomes the electric non-SUSY theory.
More explicitly, start from a supersymmetric Giveon-

Kutasov brane configuration that realizes a USp electric-
magnetic pair [9]. Consider the electric side with Nc − 1
color branes and the magnetic side with Nf þ k − Nc color
branes. Both sides contain Nf flavor branes. Add Nf þ k
infinite anti-D3 branes on top of the SUSY electric theory
and Nf þ k infinite anti-D3 branes on top of the SUSY
magnetic theory. On both sides of the duality, the Nf þ k
antibranes extend over the flavor branes, the color branes
and beyond them where there are no D3 branes.
On the original electric side of the duality, we obtain

Nf þ k − Nc þ 1 anti-D3 branes as color branes. Let us
split the Nf þ k flavor segment of the antibranes into Nf

and k antibranes. The Nf antibranes annihilate the Nf

branes and the k antibranes make the five-brane bound state

an NS5 brane. Similarly, on the “other side” of the brane
configuration the Nf þ k antibranes become Nf flavor
antibranes and a tilted five-brane bound state. The result is
the magnetic USpð2ðNfþk−Ncþ1ÞÞ non-SUSY theory.
In a similar way, adding Nf þ k antibranes to the color

part of the SUSY magnetic theory with Nf þ k − Nc color
brane results in Nc antibranes. The annihilation of branes
in the other segments of the configuration leads to the
USpð2NcÞ non-SUSY electric theory.
In this way, we obtained the nonsupersymmetric duality

between the electric USpð2NcÞ theory and the magnetic
USpð2ðNf þ k − Nc þ 1ÞÞ theory from the SUSY pair.
This argument does not explain the full role of non-
supersymmetric quantum effects in the duality and its
potential embedding in string theory, but it provides a
potentially useful, complementary viewpoint in our dis-
cussion. It will be interesting to repeat this exercise in a
pure field theory language.

III. PERTURBATIVE DYNAMICS OF THE
ELECTRIC AND MAGNETIC THEORIES

Given that the electric and magnetic theories are non-
supersymmetric we anticipate potentials for the various
scalars.6 The potentials are due to nonplanar effects (1=N
effects) and they vanish in the large-N limit where both
the electric and magnetic theories become a dual pair with
N ¼ 2 supersymmetry. In some cases, the field theory
potentials have an interpretation as potentials between
branes in the brane configuration. The potentials depend
on the UV cut-off of the theory. Within field theory we can
remove this dependence by renormalization. The embed-
ding in string theory, however, provides a natural UV cut-
off, Λ2 ¼ 1

α0, and a physical meaning to the potentials.
In all cases, the effects that we consider are due to the

difference between the representations of bosons and fer-
mions. Similar dynamics and considerations were involved
in a proposal of a nonsupersymmetric S-duality [10].
Consider a scalar propagator: in perturbation theory the

difference between a bosonic loop and a fermionic loop
will produce either a massive scalar or a tachyonic scalar,
depending on whether there are more bosonic degrees of
freedom or more fermionic degrees of freedom, as depicted
schematically in Fig. 4 below.
If a scalar is massive it will not acquire a vev and the

perturbative expansion near the origin (zero vev) is stable.
If a scalar is tachyonic we anticipate a new minimum where
a vev is acquired and symmetries (global or local) may be
broken.

5Private discussions with AA about four-dimensional non-
supersymmetric Seiberg duality, IPMU, 2013.

6Potentials, e.g. mass terms, are also generated for the
fermions, as we noted in subsection IB. These are typically
subleading as a function of the UV cutoff. In this section, we
focus on the scalar potentials, which, by definition, can affect the
stability of the theory.
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A. Electric theory

The electric theory contains two scalars, the squark Φ
and the scalar gaugino σ.
The scalar gaugino couples to itself, to the gauge boson

and to the fermionic gaugino λ. The generated mass due to
the bosonic and fermionic loops is

M2
σ ¼ g2ð2Nc þ 2Þ

Z
Λ d3k
ð2πÞ3

1

k2
− g2ð2Nc − 2Þ

×
Z

Λ d3k
ð2πÞ3

1

k2
∼ g2Λ ð3:1Þ

namely M2
σ > 0. When Λ → ∞ the mass of the field σ

becomes infinitely heavy and the field decouples from the
low-energy physics. The one-loop correction (3.1) can be

trusted in the limit g2

Λ ≪ 1, since higher loop corrections
are suppressed in this regime by positive powers of the
dimensionless ratio g2=Λ. In particular, the two-loop
corrections are Oðg4Þ. In field theory, we keep these
perturbative, power-divergent corrections as a specific
choice of scheme.
A similar one-loop computation in weakly coupled string

theory would produce the potential VðσÞ ∼M2
σσ

2. M2
σ > 0

has an interpretation in the brane picture: the Nc color
branes are attracted to the orientifold plane and the brane
configuration is stable (nontachyonic). The field theory
computation (3.1) is a hint that M2

σ > 0 also in string
theory.
A similar analysis can be performed for the squark Φ.

The squark couples to the “gauge multiplet”, namely to Aμ,
σ, λ. Since there are more bosonic than fermionic degrees of
freedom perturbation theory suggests that M2

Φ > 0. The
squark therefore decouples from the low energy physics.
As a result, the low energy field theory contains a

USpð2NcÞ gauge field Aμ, a gaugino λ and 2Nf quarks Ψ.
When k ≠ 0 there are Chern-Simons terms. The Chern-

Simons terms provide a mass MCS ¼ g2k to the gauge
field and to the gaugino. We therefore anticipate that the
IR dynamics will be dominated by the topological
Chern-Simons theory coupled to the quarks.7 In that sense,
for k ≠ 0, the electric theory is very similar to QCD3.
The case k ¼ 0 is special, as there is no Chern-Simons

term. The IR theory involves the strong coupling dynamics

of the Yang-Mills interaction between the gauge field, the
gaugino and the quarks.

B. Magnetic theory

Similarly to the electric theory, the scalar gaugino of the
magnetic theory acquires a mass and decouples. The color
branes are therefore attracted to the orientifold plane.
The dynamics of the squarks and the mesons is more

complicated. Let us focus on the squarks.
At the one-loop level there are effects due to the coupling

with the gauge multiplet and effects due to the coupling
with the meson multiplet. Let us denote the magnetic gauge
coupling by gm and the coupling to the meson multiplet
by y.
There are more bosonic than fermionic degrees of

freedom in the gauge multiplet and more fermionic than
bosonic degrees of freedom in the meson multiplet. As a
result,

M2
ϕ ∼ ð−y2 þ g2mÞΛ: ð3:2Þ

As in (3.1), this correction is dominant in the limit
g2=Λ ≪ 1. There are two competing effects in (3.2) and
the squark may become either massive or tachyonic. In
field theory, what happens depends on the choice of UV
parameters. In string theory, however, the result is a matter
of computation, which, unfortunately, is not immediately
obvious. In what follows, we will consider both possibil-
ities and identify the various phases associated with each
one of them. We note that at large-k the gauge field
becomes very massive and decouples, therefore we antici-
pate that in this limit the dynamics is dominated by a
tachyonic squark.
The magnetic theory includes a coupling of the form

y2M̄ikMijϕ̄a
kϕa

j: ð3:3Þ

If the meson field acquires a vev of the form hM̄ikMiji ¼
v2δjk the squark field becomes massive. If the squark field
acquires a vev of the form hϕa

ji ¼ vδaj, and if flavor
symmetry is not broken (bosonized phase), the mesons
become massive. We propose that the most likely scenario
in the context of electric-magnetic duality is one where in
all phases

Bosonic loop Fermionic loop

−

FIG. 4. Perturbative contributions to a scalar mass.

7Integrating out the gaugino to obtain QCD3 in the IR is most
straightforward in the semiclassical regime k ≫ 1. Away from
this regime the relation with QCD3 in the IR is harder to establish,
but the expectation is that the IR phases are the same even for
finite k unless something drastic happens in the infrared behavior
of OQCD3. The breakdown of the magnetic description outside
the window of Seiberg duality could be such an effect. Inside the
window of Seiberg duality with k ≠ 0 there are currently no
indications of drastic effects that would lead to significant
deviations from QCD3 dynamics.
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M2
ϕ ×M2

M < 0: ð3:4Þ

In the following sections, we will discuss several phases
of the magnetic theory, their realization in the brane picture
and their relation to the electric theory.

IV. PHASES OF ORIENTIFOLD QCD3 AND QCD3

A. Bosonization

We focus on the magnetic description of the orientifold
QCD3 theory. The first region of parameter space under
consideration is the region where κ≡ kþ 1 − Nc ≥ Nf,
namely region I in diagram B of Fig. 1. The rank of the
magnetic gauge group, Ñc ¼ Nf þ κ is automatically
positive in this regime. The one-loop computation of the
previous section suggests that the 2Nf squarks are
tachyonic, at least for sufficiently small Nf at fixed κ.
Henceforth, we will operate under this assumption for the
whole region I in diagram B of Fig. 1.
We assume that the magnetic squarks condense. Let us

examine first what happens from the viewpoint of the brane
configuration that describes the magnetic theory, Fig. 3.
The magnetic squarks are low-lying modes of the open
strings that stretch between the Nf þ κ color D3s to the Nf

flavor D3s (and their images). In the language of string
theory, condensation of the squarks is open string tachyon
condensation through a process that reconnects the 2Nf

color D3s with 2Nf flavor D3s.
After reconnection 2Nf D3 branes are stretching

between the NS5 brane and the 2Nf D5 branes, and 2κ
color D3 branes are stretching between the NS5 brane and
the ð1; 2kÞ five-brane, see Fig. 5.
Since the 2Nf reconnected D3 branes have no common

directions with the five-branes on which they end their low
energy spectrum does not have a gauge field, gaugino,
mesons or mesinos. The only low lying modes arise from
the strings on the 2κ color D3s and the strings stretching
between the color D3s and the reconnected D3s. The theory
on the color D3s is a USpð2κÞ gauge theory at level −2k
with a massive 2-index antisymmetric gaugino. The mass
of the gaugino remains proportional to the level 2k. At
energies below this mass the gaugino can be integrated out.
In addition, the field theory analysis below suggests that the
modes of the strings stretching between the color and
reconnected flavor D3s are 2Nf scalars in the fundamental
representation of the USpð2NfÞ gauge group. The recon-
nection preserves the original SOð2NfÞ global symmetry
which enhances to USpð2NfÞ in the low energy theory.
In this manner, brane reconnection implies that the IR

physics is dominated by a USpð2NfÞ CS theory coupled to
2Nf bosons. Deformations of the brane setup that induce a
nonvanishing mass to the quarks in the electric description
show that the magnetic theory has the right interactions
to be the bosonic theory appearing in bosonization. The

deformation 2 in Fig. 7 leaves the level unchanged and
Higgses the dual gauge group. The deformation 4 shifts the
level but does not Higgs the dual gauge group.
Let us take a closer look at the features of the magnetic

field theory. In terms of the low-energy magnetic theory
of Sec. II B, it is easy to see that the color-flavor locking
vev of the magnetic squarks Higgses the color gauge group
from

USpð2Nf þ 2κÞ → USpð2κÞ ð4:1Þ

and leaves behind the gauginos in the 2-index antisym-
metric of the Higgsed gauge group and 2Nf fundamental
squarks. The 2Nf magnetic quarks become massive in the
presence of the squark vev because of the Yukawa coupling
between the squarks, the gauginos and the quarks.
Similarly, both the elementary mesons and mesinos obtain
masses and decouple at low energies.
The resulting low energy theory has global symmetry

USpð2NfÞ. After integrating out the massive gaugino (with
the assumption that k ≠ 0 everywhere in this section),
we obtain a USpð2κÞ CS theory at level −2Nc coupled
to 2Nf squarks. The magnetic tree-level Lagrangian that
was Higgsed leads automatically to a USpð2NfÞ-invariant
quartic interaction for the squarks of the form

Lquartic ¼ ðϕ̄aiϕajÞðϕ̄bjϕbiÞ: ð4:2Þ

This is one of the two possible quartic scalar interactions
that are USpð2NfÞ-invariant (see [2] for related comments;
the interaction Ω̃ijϕajΩabϕbkΩ̃klϕclΩcdϕdi is the second
possibility). The renormalization group will naturally
induce this second interaction, as well as the USpð2NfÞ-
invariant mass term

P
a;ijϕaij2. As in previous studies of

bosonization we assume there is an appropriate fine-tuning
of the UV parameters that allows a match between the
fermionic and bosonic theories. The match of massive
deformations in the electric and magnetic theory above
via suitable brane motions reinforces the picture that
the bosonic theory has the right ingredients for the

NS5 (1,2k)

O3

D5

Nf anti D3 branesκ anti D3 branes

FIG. 5. A realization of the bosonized phase in the magnetic
theory. Nf flavor branes reconnect with color branes. The gauge
group is USpð2κÞ.
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existence of a Wilson-Fischer fixed point as required
by bosonization.
To summarize, after integrating out the gaugino, in the IR

of the electric theory we have

USpð2NcÞ2κ ⊕ 2Nf quarks: ð4:3Þ

In the IR of the magnetic theory, we have

USpð2κÞ−2Nc
⊕ 2Nf scalars: ð4:4Þ

In the regime of this subsection, the nonsupersymmetric
Seiberg duality implies the three-dimensional bosonization
duality (1.3) with the identification (1.4), K ¼ κ − Nf

2
.

B. Symmetry breaking

Next we discuss the regions II and II0 in the phase
diagram B in Fig. 1. We will argue in favor of a symmetry
breaking scenario in both regions. Region II is character-
ized by the inequalities Nf > κ > 0 and region II0 by the
inequalities −Nf < κ < 0. It is convenient to consider first
the region II0.

1. Region II0

κ < 0 means that there are more flavor D3 branes than
color D3 branes. As a result, at most 2Nf þ 2κ D3 branes
can reconnect. The color group is fully Higgsed and one
is left with 2jκj flavor D3s stretching between the ð1; 2kÞ
and the flavor D5s over an O3− plane in addition to the
reconnected D3s, see Fig. 6.
The elementary mesons on the 2jκj D3s are massive. The

flavor D3s stay attached to the orientifold and their global
symmetry remains SOð2jkjÞ.
At the same time there is a global SOð2ðNf þ κÞÞ

symmetry associated with the 2ðNf þ κÞ D3s. We deduce
that in string theory there is a breaking of the global
SOð2NfÞ symmetry of the form

SOð2NfÞ → SOð2ðNf þ κÞÞ × SOð2jκjÞ: ð4:5Þ

In the IR field theory, the global symmetries enhance and
it is not hard to show that the color-flavor locking vev of the
squarks breaks the global USpð2NfÞ in the following way

USpð2NfÞ → USpð2Nf þ 2κÞ ×USpð2jκjÞ: ð4:6Þ

This is exactly the same pattern of symmetry breaking

USpð2NfÞ → USpðNf − 2KÞ ×USpðNf þ 2KÞ ð4:7Þ

anticipated in [3] with the identification (1.4),K ¼ jκj − Nf

2
.

This identification is consistent with massive deformations
of the theory.

Consequently, the IR physics of this phase is described
by the coset σ-model of the Nambu-Goldstone modes
associated with the breaking (4.5). There are

1

2
2Nfð2Nf − 1Þ − 1

2
ð2Nf þ 2κÞð2Nf þ 2κ − 1Þ

−
1

2
2jκjð2jκj − 1Þ ¼ 4jκjðNf þ κÞ

¼ ðNf − 2KÞðNf þ 2KÞ ð4:8Þ

massless Nambu-Goldstone bosons, which arise as mass-
less modes on the open strings stretching between the
2jκjD3-branes and the 2ðNf þ κÞD3-branes, see Fig. 6. As
a check, notice that the result (4.8) (derived from (4.5)
agrees with the counting of Nambu-Goldstone bosons in
QCD3 (4.7).
The order parameter for the breaking is hϕaiΩabϕbji.

2. Region II

The region II, characterized by the parameter regime
Nf > κ > 0, is more intriguing. On one hand, this is a case
where, at first sight, all 2Nf flavor D3s can reconnect with
color D3s leading to an IR USpð2κÞ theory coupled to 2Nf

bosons implying bosonization and no global symmetry
breaking. On the other hand, the dictionary (1.4) implies
that this phase should still be describing the symmetry
breaking phase of QCD3 with Nf > 2jKj where bosoniza-
tion is inconsistent. It is hard to believe that the association
of the orientifold QCD3 with QCD3 breaks down in this
region because we can go to a limit of large k where the
gaugino becomes arbitrarily massive and can be integrated
out safely. The only logical conclusion seems to be that
something critical is happening to the brane configuration
as one crosses the threshold Nf ¼ 2κ.
A natural guess is the presence of additional instabilities

in the brane setup that describes the magnetic theory.
Previously, in region I, it was sensible to expect that the
brane reconnection leads to a stable vacuum. We would
like to propose that the vacuum after brane reconnection
is unstable, namely the 2Nf scalars in the resulting IR
description have a negative mass squared. In that case, it

NS5 (1,2k)

O3

D5

κ + Nf anti D3 branes anti D3 branesκ−

FIG. 6. A realization of the flavor breaking phase in the
magnetic theory. Nf þ κ flavor branes reconnect with color
branes. The magnetic gauge group is completely broken.
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seems likely that open string condensation could proceed
by annihilating the 2κ color D3s against another set of 2κ
color D3s eventually leaving behind 2ðNf − κÞ recon-
nected D3s (between 2ðNf − κÞ D5s and the NS5) and
2κ flavor D3s (between 2κ D5s and the ð1; 2kÞ bound state).
This is identical to the symmetry breaking configuration
in region II0.
As a check of this scenario let us consider a deformation

of the configuration with Nf reconnected D3s and κ D3s
between the ð1; 2kÞ bound state and the NS5 brane that
adds mass to the scalars (equivalently, a real mass to the
fermion quarks in the electric description). The deformation
(see deformation 4 in Fig. 7 in Appendix A) is implemented
by bringing the 2Nf D5s on top of the ð1; 2kÞ bound state
and breaking them up to two half-D5s separated symmet-
rically in the x3 direction. The ð1; 2kÞ bound state connects
with the broken D5s to create a ð1; 2kþ 2Þ five-brane
bound state. The reconnected D3s are attached to the
broken D5s and dragged along the x3 direction. Hence,
for a finite separation the low-lying scalar modes on the
strings stretching between the color D3s and the recon-
nected D3s acquire a positive mass squared shift. If they are
tachyonic at zero separation, as the above scenario dictates,
then there is a critical distance where they become mass-
less. Precisely at that point there is a dual description of
the system in terms of the bosonic degrees of freedom.
For larger separations the scalars are massive and can be
integrated out to recover a topological QFT in the infrared.
This picture reproduces nicely all the features of the phase
transition in Fig. 6 of Ref. [3]. Similar statements can be
made for the mass deformation represented by the brane
move 2 in Fig. 7 in Appendix A.
The above-mentioned checks imply an overall picture

which is consistent with the proposed scenario of a
transition in brane physics at Nf ¼ κ. It would be interest-
ing to find further evidence in favor of this scenario with a
more explicit computation in string theory.

C. Scenario of symmetry restoration

In QCD3, it is expected [4] that there is some N�ðk; NcÞ
such that whenNf ≥ N� the IR CFT is interacting and there
is no symmetry breaking. Can this possibility arise natu-
rally in our framework? We would like to argue that this
could be described in the magnetic brane setup by a regime
where the magnetic squarks are massive.
Assume that quantum effects make the squarks massive

(namely, their mass squared is positive). Integrating out the
massive squarks, we obtain

Lmatter ¼ iψ̄aiDψai þ ∂μM̄ij∂μMij þ iχ̄ij=∂χij
−Mi

jψaiψ̄
aj − μ2M̄ijMij þ � � � ; ð4:9Þ

where the dots indicate higher-dimension interactions
including an M4 interaction. μ2 is an induced tachyonic

mass squared to the mesons. To write this mass term we
employed the proposed relation (3.4) between the signs of
the mass squared of the squarks and the mesons, which
suggests that the mesons are tachyonic in this case. Then, as
the tachyonic mesons M condense the quarks become
massive. In the IR, we obtain the sum of a topological
QFTwith free mesinos. In addition, at the true vacuum of the
theory we have massive mesons, with M2 ∼ 1=Nf. Indeed,
in the large-Nf limit the theory on the flavor branes acquires
supersymmetry because there is no distinction between the
symmetric and the antisymmetric representations. 1=Nf

corrections should give a small mass to the mesons.

V. THE SPECIAL CASE OF YANG-MILLS
THEORY WITHOUT A CHERN-SIMONS TERM

Consider the special case where k ¼ 0. In the absence of
a bare CS term, the IR of the field theory is dominated by
the Yang-Mills interaction. The theory is parity invariant
classically. Due to the Vafa-Witten theorem [13] that states
that parity cannot be broken spontaneously, the theory is
also parity invariant quantum mechanically.
The brane dynamics is also expected to be different with

respect to the case k ≠ 0. Instead of having configurations
with an NS5 brane and a tilted five-brane, we have
configurations with parallel NS5 branes.
The magnetic theory is USpð2Nf − 2Nc þ 2Þ. For

Nc ≥ 1, we have Nf ≥ Nf − Nc þ 1, hence brane dynam-
ics implies that the bosonization phase cannot occur.
According to the philosophy advocated in this paper,

whether flavor symmetry is broken or not depends on
whether the magnetic squarks condense or become massive.
Brane dynamics suggests that if the squarks condense

the flavor symmetry is broken USpð2NfÞ → USpð2Nf−
2Nc þ 2Þ × USpð2Nc − 2Þ. This pattern, however, is not
consistent with the Vafa-Witten theorem, because such a
breaking pattern does not preserve parity.
According to Eq. (3.2), the squarks may become

tachyonic or massive. For large enough k they become
tachyonic. We propose that for k ¼ 0 the squarks are
massive.
When the squarks become massive flavor symmetry is

not broken. The dynamics is the same as that of the case
Nf ≥ N�, which was described in Sec. IV C. This result is
different from the one for QCD3 with K ¼ 0, as described
in the literature [4]. For sufficiently small Nf QCD3

without a Chern-Simons term is expected to break the
flavor symmetry in a pattern consistent with parity
USpð2NfÞ → USpðNfÞ ×USpðNfÞ. This disparity does
not lead to an obvious inconsistency, because the present
electric theory contains a massless gluino. The gluino
does not acquire a CS mass and its presence can alter
the IR dynamics.
We therefore make a prediction, using brane dynamics,

that three-dimensional Yang-Mills theory with a fermion in
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the antisymmetric representation and 2Nf fundamental
fermions does not break the USp flavor symmetry, as
opposed to the theory without the antisymmetric fermion.
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APPENDIX A: EVIDENCE FOR
NONSUPERSYMMETRIC SEIBERG DUALITY

1. ’t Hooft anomaly matching

In this subsection, we consider ’t Hooft anomaly matching
between the electric and magnetic sides of the orientifold
QCD theory in Sec. II. Both sides have a global USpð2NfÞ
symmetry. We can gauge this symmetry by coupling to
backgroundUSpð2NfÞ gauge fields. Wewant to identify the
CS counterterms for these fields. We follow the steps
outlined for USp bosonization in [2] (related discussions
about this type of anomaly can be found in [14]).
On the electric side, we have USpð2NcÞ2k ×

USpð2NfÞ2ke .8 On the magnetic side, we have
USpð2ÑcÞ ×USpð2NfÞ2km . Both ke, km ∈ Z and the
second USp factor is classical. Implementing the mass
deformation 4 of Fig. 7 we get USpð2NcÞ2ðkþNfÞ ×
USpð2NfÞ2ðkeþNcÞ on the electric side. On the magnetic

side, we get USpð2ÑcÞ−2ðkþNfÞ ×USpð2NfÞ2ðkmþÑcÞ.
Integrating out the gaugino on the dynamical USpð2NcÞ
and USpð2ÑcÞ factors, we recover level-rank duality in
the IR. The match of the CS levels of USpð2NfÞ on both
sides requires

ke þ Nc ¼ km þ Ñc: ðA1Þ

The global symmetry that acts faithfully on local
operators is USpð2NfÞ=Z2. This puts restrictions on the
CS counterterms. Consistency with the Z2 quotient on the
electric side requires

Nckþ Nfke ∈ 2Z: ðA2Þ

On the magnetic side, it requires

−Ñckþ Nfkm ∈ 2Z: ðA3Þ

We notice that

− Ñckþ Nfkm

¼ Nckþ Nfke þ ðNc þ ÑcÞðNf − kÞ − 2ÑcNf

¼ Nckþ Nfke þ ðNf þ kþ 1ÞðNf − kÞ − 2ÑcNf:

ðA4Þ

Since ðNf þ kþ 1ÞðNf − kÞ ∈ 2Z identically, we deduce
that the conditions (A2) and (A3) are automatically
satisfied together, which is a good consistency check.

2. RG flows

In the tree-level orientifold QCD3 theory we can con-
sider four types of mass deformations. In this appendix, we
mostly ignore the potential quantum-induced instabilities.
When such instabilities exist we implement the deforma-
tions at the unstable vacuum. It is convenient to see first
how the deformations of interest map between the classical
electric and magnetic descriptions in the brane setup.
See [9] for analogous deformations in a d ¼ 3 N ¼ 2
setup. The brane deformations are summarized pictorially
in Fig. 7.
The first deformation, number 1 in Fig. 7, moves an

image pair of D5s in the (45) plane. On the electric side,
this reduces Nf → Nf − 1 while Nc → Nc and k → k.
On the field theory side, this involves a complex mass
deformation of the form

δLelectric ¼ m11m̄11ϕ̄
a1ϕa1 −m11ψa

1ψa1 − m̄11ψ̄
a1ψ̄1

a;

ðA5Þ

which indeed removes one flavor, Nf → Nf − 1, but does
not shift the level k or the rank of the gauge group Nc.
On the magnetic side, the deformation has the effect
Nf → Nf − 1, Ñc → Ñc − 1, k → k. The corresponding
deformation gives a vev to ϕa1 so that

ϕa1ϕ
a
1 ¼ −m̄11: ðA6Þ

The vev of ϕa1 breaks the magnetic gauge group,
Ñc → Ñc − 1, removes one flavor (Nf → Nf − 1) and
leaves k invariant as anticipated.
The second deformation, number 2 in Fig. 7, moves an

image pair of D5s in the 3 direction dragging along a pair
of flavor D3s stretching between a D5 and the NS5. On
the electric side, this reducesNf → Nf − 1 while Nc → Nc

and k → k. On the field theory side this involves equal and
opposite sign masses for one flavor

δLelectric ¼ mψ̄a;Nfþ1ψa1 þmψ̄a1ψa;Nfþ1

¼ mψa
1ψa1 −mψa;Nfþ1ψa;Nfþ1: ðA7Þ

The scalars are not involved in this deformation. Indeed,
(A7) removes the fermions of one flavor and after8In our notation, 2k and 2ke are the bare Chern-Simons levels.
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integrating out all auxiliary fields we find a potential for the
scalars ϕa1 with a quartic and sextic term. There are two
potential vacua for this potential. One at the origin and one
away from the origin. The deformation number 2 in Fig. 7
does not Higgs the gauge group so it corresponds to the
vacuum at the origin. On the magnetic side the moved
flavor D3s reconnect with 2 image color D3s and stretch
between the D5s and the NS5. This reduces Nf → Nf − 1,
Ñc → Ñc − 1 and keeps k → k.
The third deformation, number 3 in Fig. 7, moves an

image pair of D5s in the 3 direction but now in the electric
side the corresponding flavor D3s reconnect with the
ð1; 2kÞ 5 brane. This deformation reduces Nf → Nf − 1,

Nc → Nc − 1 and keeps k → k. On the field theory side this
is still a case of equal and opposite sign masses for one
flavor; see Eq. (A6). In this case, the scalars get a vev
and the gauge group is Higgsed, i.e. Nc → Nc − 1. On the
magnetic side the moved flavor D3s stretch between the
D5s and the ð1; 2kÞ bound state. This reducesNf → Nf − 1

but leaves Ñc and k intact. Notice that this move is only
possible if the flavor and color D3s are not reconnected. If
the magnetic squarks are tachyonic, the move would have
to be implemented on an unstable vacuum.
The final deformation, number 4 in Fig. 7, moves a pair

of flavor D5s along the 6 direction on the ð1; 2kÞ bound
state where they merge to form a ð1; 2kþ 2Þ bound state.

FIG. 7. Summary of mass deformations in the electric and magnetic brane setups. The red lines denote the O3− planes and the blue
lines the O3þ planes. The horizontal solid black line in the middle of each diagram is the NS5 brane. The circle in diagrams 1 and 4, and
the grey belt in diagrams 2 and 3 is the five-brane bound state. The vertical solid black lines are the color D3 branes and the vertical
dashed black lines are the flavor D3 branes. The vertical direction is always along x6 and the horizontal along the (45) plane in diagram 1
and along x3 in diagrams 2 and 3.
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This operation reduces Nf → Nf − 1 but Nc → Nc and
k → kþ 1. On the field theory side, this operation involves
giving same sign real masses to one flavor

δLelectric ¼ mψ̄a1ψa1 þmψ̄a;Nfþ1ψa;Nfþ1 ¼ 2mψ̄a1ψa1:

ðA8Þ
On the magnetic side, the magnetic quarks acquire corre-
sponding masses and as these masses are sent to infinity
Nf → Nf − 1, Ñc → Ñc and k → kþ 1 consistently with
the duality.

APPENDIX B: UNITARY GROUPS

In this section, we propose a duality for a Uð2NcÞ
orientifold QCD3 theory. In order to have a string theory
realization of a nonsupersymmetric theory and a Seiberg
duality, we follow [6] where the Nf ¼ 0 case was consid-
ered (see also [15,16] for the analogous four-dimensional
theory).
The field theory lives on a type-0B brane configuration.

The electric and magnetic brane configurations are iden-
tical to those we considered in Sec. II. The orientifold
projection is special to type-0 strings: it decouples the bulk
tachyon from the brane and projects out half of the RR
fields [17].9 The matter content of the electric theory on the
brane configuration is given in Table III. In the planar
(large-N) limit, the theory is equivalent to the correspond-
ing N ¼ 2 Uð2NÞ gauge theory that lives on type-IIB
branes. Note also that the Uð2NfÞ global symmetry is the
symmetry of the IR theory.
By swapping the five-branes, we arrive at the magnetic

theory. Its matter content is given in Table IV.
The dynamics of the theory based on unitary groups is

similar to the dynamics of the theory based on USp groups.
This is not surprising: there exists nonperturbative planar
equivalence between USpð2NÞ and Uð2NÞ gauge theories.
On the electric side, the scalars (squark and scalar

gaugino) acquire mass and decouple. The CS level is
shifted due to the antisymmetric gluino.
The IR levels of the electric theory 2KSU, 2KUð1Þ are

given by

KSU ¼ jkþ 1 − Ncj −
Nf

2
;KUð1Þ ¼ kþ 1 −

Nf

2
ðB1Þ

thanks to the fundamental fermions and the antisymmetric
fermion that shift the bare level 2k. Note that in the
bosonized phase KUð1Þ ¼ KSU þ Nc.
In the preliminary discussion of this appendix, we single

out the case with even color, 2Nc and even flavor, 2Nf,
which proceeds as in the USp case.
When Nf ≤ 2KSU the squarks condense, the Higgs

mechanism takes place, and we find a dual bosonized
theory of the form Uð2KSU þ NfÞ with shifted levels

K̃SU ¼ −Nc; K̃Uð1Þ ¼ −Nc þ KSU þ Nf

2
: ðB2Þ

When 2KSU ≤ Nf ≤ N� the reconnected branes suggest
that Uð2NfÞ → UðNf þ 2KSUÞ ×UðNf − 2KSUÞ, in
agreement with the conjecture by KS [4]. There are

TABLE IV. The matter content of the magnetic theory.
Ñc ¼ Nf þ k − Nc þ 1.

Magnetic theory

Uð2ÑcÞ Uð2NfÞ
aμ adjoint

ð2ÑcÞ2
•

s adjoint
ð2ÑcÞ2

•

l

2Ñcð2Ñc − 1Þ
•

ϕ □

2Ñc

□

2Nf

ψ □

2Ñc

□

2Nf

M •

2Nfð2Nf − 1Þ
χ • adjoint

ð2NfÞ2

TABLE III. The matter content of the electric theory.

Electric theory

Uð2NcÞ Uð2NfÞ
Aμ adjoint

ð2NcÞ2
•

σ adjoint
ð2NcÞ2

•

λ

2Ncð2Nc − 1Þ
•

Φ □

2Nc

□

2Nf
Ψ □

2Nc

□

2Nf

9A more careful treatment of this setup requires its formulation
in a noncritical type-0 string theory with Sagnotti-type orienti-
folds. This construction was performed in the context of the
analogous four-dimensional theory in [15] following earlier work
on nonsupersymmetric noncritical strings in [18]. In that con-
struction, the noncritical type-0 string theory is classically
stable and is not plagued by closed string tachyons. The
corresponding formulation of a noncritical string theory for
the three-dimensional theory at hand would require exact
world-sheet techniques for backgrounds with RR fluxes, which
are currently beyond reach.
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ð2NfÞ2 − ð2Nf þ 2κÞ2 − ð2κÞ2 ¼
¼ 8jκjðNf þ κÞ ¼ 2ðNf − 2KSUÞðNf þ 2KSUÞ ðB3Þ

massless Nambu-Goldstone bosons that corresponds to
massless modes of the oriented open strings stretched
between the 2jκj branes and 2ðNf þ κÞ branes

The case k ¼ 0 (or KSU ¼ 0) is special. As in the USp
theory we propose that there is no symmetry breaking and
the theory is described by the magnetic theory of Nf ≥ N�.
For Nf ≥ N� the magnetic theory consists of a massless
mesino and a light meson of mass square 1=Nf.
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