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We relate the notion of unitarity of a (0þ 1)-D conformally (SLð2;RÞ) invariant field theory with that of
a nonrelativistic conformal (Schrödinger) field theory using the fact that SLð2;RÞ is a subgroup of
nonrelativistic conformal (Schrödinger) group. Exploiting SLð2;RÞ unitarity, we derive the unitarity
bounds and null conditions for a Schrödinger field theory (for the neutral as well as the charged sector). In
noninteger dimensions the theory is shown to be nonunitary. The use of the SLð2;RÞ subgroup opens up
the possibility of borrowing results from (0þ 1)-D SLð2;RÞ invariant field theory to explore Schrödinger
field theory, in particular, the neutral sector, which has otherwise been unexplored.
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I. INTRODUCTION

The conformal field theory [1] has a rich literaturewithwide
application in describing physics at relativistic fixed points.
Much of its armory stems from the early papers on the
representation theory of SLð2;RÞ, a subgroup of the con-
formal group [2–4]. The unitarity bound along with the null
condition is one of the many consequences of the representa-
tion theory of SLð2;RÞ algebra [5]. The conformal bootstrap
program also relies on knowing conformal (SLð2;RÞ) blocks
[6–10]. The task we take up here is to use this arsenal of
SLð2;RÞ algebra to hammer a class of nonrelativistic con-
formal theories (NRCFT), which are SLð2;RÞ invariant.
The nonrelativistic conformal invariance emerges at

fixed points without Lorentz invariance, in particular, in
a scenario where the symmetry involves scaling time and
space in a separate way. If the theory permits, one can have
Galilean boost invariance and invariance under special
conformal transformations as well. A prime example of
such a kind is the theory described by the Schrödinger
equation, where the maximal kinetic invariance group is the
Schrödinger group [11]. Fermions at the unitarity limit
(when the S-wave scattering length a → ∞) are also
described by the Schrödinger field theory [12–16].
Examples of approximate nonrelativistic conformal field
theories include systems involving 85Rb [17], 133Cs [18],
39K [19], deuterons [20,21] and spin chain models [22].
Much like its relativistic cousin, progress has been made

regarding the form of correlators and convergence of

operator product expansion (OPE) in such theories for a
sector with nonzero charge using the symmetry algebra only
[11,12,14,23–28] (which is Schrödinger algebra). The state-
operator correspondence invoking the harmonic potential is
available for the charged sector. Nonetheless, the neutral
sector has remained elusive since the representation theory
along with the concept of primary and descendant breaks
down for the neutral sector [28]. Thus, there is no state-
operator correspondence available for the neutral sector;
neither is there a proof of OPE convergence if the four point
correlator involves neutral operator(s). On the other hand,
physically relevant operators like the Hamiltonian, number
current, and stress-energy tensor are neutral. This motivates
us in the first place to use SLð2;RÞ to explore the neutral
sector as one can organize the operator content according to
SLð2;RÞ representation, which is applicable to both the
neutral as well as the charged sector. To our favor, it so turns
out thatSLð2;RÞprovides strong constraints onproperties of
Schrödinger field theories even for the charged sector on top
of solving all the puzzles mentioned before in the context of
the neutral sector.
The purpose of this work is multifold. The most

important point that we make is that SLð2;RÞ establishes
a powerful and novel link between (0þ 1)-D conformal
field theory (CFT) and NRCFTs. Thus results proven for
(0þ 1)-D CFTs immediately apply to NRCFTs and vice
versa. In fact, using SLð2;RÞ, we come up with the state-
operator map, and subsequently derive the unitarity bound,
the null condition for the neutral sector for the first time.
Secondly, we reformulate the notion of unitarity in the
charged sector and rederive the unitarity bound without
invoking the standard map to the harmonic oscillator. This
in turn helps us to identify the nonunitary sector in
fractional dimensions, which has otherwise not been known
previously. Moreover, we explore the universal features of
Schrödinger field theories including the convergence of the
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OPE in the neutral sector. Convergence of OPE in all the
sectors also opens up the possibility of bootstrapping these
theories. We deduce the universal behavior of the three
point coefficient and establish for the first time that even in
NRCFT, there exists an infinite number of SLð2;RÞ
primaries. In short, we explicitly unveil a complete equiv-
alence between correlators of NRCFTs on ðτ; 0Þ slice and
(0þ 1)-D CFTs via the notion of SLð2;RÞ primaries and
descendants. Last but not the least, the use of SLð2;RÞ
primaries/descendants proves to be quintessential in oper-
ator counting of heavy particle effective field theory, where
neutral scalar operators appear in the Lagrangian. Only
with the aid of SLð2;RÞ, it is possible to organize the
operator basis of heavy particle effective field theory in
Schrödinger representation [29].
The paper is organized as follows. In Sec. II, we derive

the unitary bounds and null conditions for both the charged
sector as well as the neutral sector of Schrödinger algebra.
Nonunitarity in noninteger dimensions has been explored
in Sec. III. Section IV deals with the universality, in
particular, the OPE convergence, the asymptotic behavior
of three point coefficients in Schrödinger invariant field
theory. We conclude with an elaborate discussion pointing
out potential avenues of future research. To aid the main
flow of the paper, the details of SLð2;RÞ invariant theory
and representation of Schrödinger algebra have been
relegated to Appendices A and B, respectively. The role
of time reversal and parity is elucidated in Appendix C.
Appendix D expounds on defining the Euclidean
Schrödinger field theory, which comes out as a byproduct
of organizing the operator content of Schrödinger field
theory according to SLð2;RÞ algebra. We explore the
subtleties regarding antiparticles and crossing symmetry in
Schrödinger field theory in Appendix E.

II. UNITARITY BOUNDS AND NULL CONDITIONS

The Schrödinger group acts on space-time as follows
[11,12,23,25]:

t ↦
atþ b
ctþ d

; r ↦
Rrþ vtþ f

ctþ d
; ð1Þ

where ad − bc ¼ 1, R is a d-dimensional rotation matrix, v
denotes the Galilean boost and f is a spatial translation. For
the sector with nonzero charge, the representation is built
by translating all the operators to the origin and considering
the little group generated by dilatation operatorD, Galilean
boost generator Ki, and special conformal transformation
generator C. The highest weight states (ϕα) are annihilated
by C and Ki, i.e.,

½C;ϕαð0; 0Þ� ¼ 0; ½Ki;ϕαð0; 0Þ� ¼ 0: ð2Þ
These are called primary operators. The commutators withD
and particle number symmetry generator N̂ dictate the charge
and the dimension of these operators ϕα i.e., ½D;ϕαð0; 0Þ� ¼
{Δαϕð0; 0Þ and ½N̂;ϕαð0; 0Þ� ¼ Nαϕαð0; 0Þ. The time and

space translation generators H and Pi create descendant
operators by acting upon primary operators and raising the
dimension by 2 and 1 respectively. The concept of primaries
and descendants breaks downwithin the neutral sector. Since
Ki andPj commute in this sector,Pj acting on a primary spits
out a primary instead of a descendant.
The subgroup SLð2;RÞ is defined byR ¼ I, v ¼ 0, f ¼ 0

and generated byH,D andC. Evidently, the ðt; 0Þ slice is an
invariant domain of SLð2;RÞ. Using this SLð2;RÞ algebra,
one can reorganize the operator content. A SLð2;RÞ primary
O is defined by requiring ½C;Oð0; 0Þ� ¼ 0. Thus all the
primaries defined by (B2) are SLð2;RÞ primaries but not the
other way around. The situation is reminiscent of two-
dimensional conformal field theory where we have
Virasoro primaries as well as SLð2;RÞ primaries and the
SLð2;RÞ primaries are called quasiprimaries. We borrow
that nomenclature and call the Schrödinger primaries pri-
maries while we name SLð2;RÞ primaries quasiprimaries.
Remarkably the notion of quasiprimaries goes through even
for a zero charge sector. Henceforth, by ϕðtÞ (or OðtÞ), we
mean the operator ϕðt; 0Þ (or Oðt; 0Þ).
For a SLð2;RÞ invariant field theory, there is a notion of

unitarity/reflection positivity, which guarantees that the two
point correlator of two operators inserted at imaginary time
−τ and τ is positive definite. We exploit the SLð2;RÞ
subgroup of the Schrödinger group to borrow the notion of
reflection positivity in Schrödinger field theory. We con-
sider the following states for α ∈ R and β ∈ R:

jψαðτ1Þi ¼
Z

dτ½δðτ − τ1Þ þ 2τ1α
−1δ0ðτ − τ1Þ�OðτÞj0i;

¼ j½Oðτ1Þ − 2τ1α
−1ð∂τOÞðτ1Þ�i;

jΨβðτ1Þi ¼
Z

dτ

��
Nd
2Δ

−
N
β

�
δ0ðτ − τ1Þϕ†ðτÞj0i

þ δðτ − τ1ÞA†ðτÞj0i
�

¼
����
�
N
β
∂τϕ

† −
1

2
∇2ϕ†

��
τ¼τ1

; ð3Þ

whereO is a quasiprimary, ϕ† is a primary with charge −N
and A† ≡ ðNd

2Δ ∂τϕ
† − 1

2
∇2ϕ†Þ is a quasiprimary.1

To derive the unitarity bound for the quasiprimary, we
demand that the state jψαi ¼ jψαð1=2Þi2 has a positive norm,

hψαjψαi ≥ 0 ⇔ Δ2 þ ð2αþ 1ÞΔþ α2 ≥ 0; ð4Þ
where we have used hOðτ1ÞOðτ2Þi ¼ ðτ2 − τ1Þ−Δ. For
α < − 1

4
there is no constraint on Δ. For α ≥ −1=4, the

region ðΔ−;ΔþÞ is excluded where

1The details of SLð2;RÞ invariant field theory and Schrödinger
algebra can be found in Appendices A and B.

2Technically, the ratio, α=τ1 is dimensionless. So, in some
suitable unit, one can choose τ1 ¼ 1=2 and vary α in the same unit.
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Δ� ¼ ð−α − 1=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþ 1=4

p
Þ ≤ 0. ð5Þ

As we vary α, the wholeΔ < 0 region gets excluded (Fig. 1)
since Δþ − Δ− ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþ 1=4

p
.

Now we do the same for a primary and consider the norm
of the state jΨβi ¼ jΨβð1=2Þi,

hΨβjΨβi≥ 0⇔Δ2þΔð1−βdÞþ1

4
βdðβðdþ2Þ−4Þ≥ 0:

ð6Þ

To find out the norm of Ψβ, we have used the two point
correlator of primaries, fixed by Schrödinger algebra. This is
exactly where it becomes important that the actual symmetry
group is bigger than SLð2;RÞ and there are d spatial
dimensions. The region, excluded (Fig. 2) due to (6) is
given by ðΔ−;ΔþÞ where Δ�¼dβ−1

2
�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2dβ−2dβ2

p
.

As we vary β, on the ðβ;ΔÞ plane, the excluded region is
bounded by an ellipse. This, in turn, excludes Δ ∈ ð−1; d

2
Þ.

Thus we have (recalling that a primary is a quasiprimary
too and has to satisfy the bound for quasiprimary)

Δ ∉
�
−1;

d
2

�
∪ ð−∞; 0Þ ⇒ Δ ≥

d
2
: ð7Þ

The bound is saturated when Δþ ¼ d
2
, which implies that

β ¼ 1 and we arrive at the null condition,

hΨ1jΨ1i ¼ 0 ⇔ N∂τϕ
† −

1

2
∇2ϕ† ¼ 0: ð8Þ

The unitarity bound and the null condition, thus obtained
for the charged sector, is consistent with the results in [13].
A technical remark is in order: setting β ¼ 1 to begin with
would not suffice to derive the unitarity bound. This is
because merely demanding hΨ1jΨ1i ≥ 0would exclude the
region ðd

2
− 1; d

2
Þ only.

For a sector with N ¼ 0, the unitarity bound becomes the
one obtained by using jψαi; thus the null condition is

achieved when ΔþðαÞ ¼ 0 ⇒ α ¼ 0. Thus the null con-
dition for the neutral sector reads ∂τO ¼ 0. The bound in the
neutral sector is lower compared to the bound in charged
sectors; thus in free Schrödinger field theory there is no
neutral operator satisfying the bound except the identity
operator. The identity operator by definition creates the
neutral vacuum state, has 0 dimension and is trivially time
independent. It would be interesting to find an operator
besides the identity operator, which saturates the bound or
improves the bound for the nonidentity operators. Onemight
hope to come up with a stronger bound for the neutral sector
by considering the norm of the state Ajψαi þ BjΨβi, but this
is given by A2hψαjψαi þ B2hΨβjΨβi since jΨβi is charged
whereas jψαi is neutral, leading to hψαjΨβi ¼ 0. Now,
A2hψαjψαi þ B2hΨβjΨβi ≥ 0 by previous bounds.
Subtleties associated with null condition and nonre-

normalization: The derivation of the null condition
assumes that the only operator that can annihilate the
vacuum is the null operator (denoted as 0̂ henceforth).
This is not necessarily true in a nonrelativistic setup. For
example, the canonical way of quantizing free Schrödinger
field theory starts with the existence of an operator ϕ such
that ϕ annihilate the vacuum. Thus for τ > 0, we have
h0jϕ†ð0ÞϕðτÞj0i ¼ 0. But this does not imply that ϕ is a
null operator. In a theory with antiparticles, ϕ cannot
annihilate the vacuum since its Fourier decomposition
consists of several particle annihilation operators and
antiparticle creation operators. But a nonrelativistic field
theory admits a quantization process without having any
antiparticle in its spectrum. Thus, nontrivial operators like
ϕ can have the vacuum state as their kernel.
To state a generic null condition, we consider the set of

operators SN , defined by sN ∈ SN if and only if j0i ∈
kerðsNÞ, ½N̂; sN � ¼ NsN . The null condition then reads

N∂τϕ
† −

1

2
∇2ϕ† ∈ S−N ∪ f0̂g: ð9Þ

FIG. 1. Unitarity bound on ðα;ΔÞ plane: the projection of the
region bounded by two curves onto the Y axis excludes Δ < 0.

The blue thick curve is Δþ ¼ −α − 1
2
þ

ffiffiffiffiffiffiffiffiffiffiffi
αþ 1

4

q
while the orange

dashed curve is Δ− ¼ −α − 1
2
−

ffiffiffiffiffiffiffiffiffiffiffi
αþ 1

4

q
.

FIG. 2. Unitarity bound on ðβ;ΔÞ plane: the projection of the
region bounded by the ellipse onto the Yaxis excludesΔ ∈ ð−1; d

2
Þ.

Here d ¼ 10. The blue thick curve is Δþ ¼ dβ−1
2

þ
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2dβ − 2dβ2

p
while the orange dashed curve is Δ−¼

dβ−1
2

−1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2dβ−2dβ2

p
.
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Wesee that, unlike relativisticCFT, Eq. (9) can be satisfied at
an interacting fixed point. It has, therefore, consequences in
terms of anomalous dimension of ϕ. For example, let us
consider a free Schrödinger field theory and perturb by an
operator of the form sðxÞϕðxÞ where s ∈ SN . If the theory
flows toanother fixedpoint such thatEq. (9) holds, the fieldϕ
cannot acquire an anomalous dimension. This happens
because the null condition (9) implies that even at the
nontrivial fixed point ϕ has dimension d

2
, which equals the

dimension at the free fixed point.
The nonrenormalization theorem can be utilized in the

following way: consider a free Schrödinger field theory with
free elementary fields ϕα (the ones that appear in Lagrangian
at free fixed point) and ½N̂;ϕα� ¼ Nαϕα with Nα < 0. We
further assume without loss of generality that ϕ†

1 has the
minimumpositive charge given by−N1 > 0. The absence of
antiparticles mean ϕα annihilates the vacuum. Now we
perturb the theory by adding a classicallymarginal s−N1

ϕ1 þ
H:c term, where s−N carries charge −N > 0 and annihilates
the vacuum. Assuming that the theory flows to another fixed
point invariant under Schrödinger symmetry, we can show
that the fieldϕ1 does not acquire any anomalous dimension at
the nontrivial fixed point.
We proceed by observing that all the terms that might

get generated due to renormalization group flow preserve
Uð1Þ. Furthermore, we only look for the operators of the
form s0ϕ1, as they contribute to the equation of motion
ϕ†
1. Now, the Uð1Þ charge conservation guarantees that s0

has −N1 charge. We need to show that s0 annihilates the
vacuum. This would not be the case if s0 ¼ ϕ†

1, but this
operator cannot be generated from a classically marginal
term. So we are left with the other option which requires
having at least two elementary field operators such that
their charges add up to −N1. Since −N1 is the least
possible positive charge, there exists at least one operator
with negative charge and this implies that s0 ∈ S−N1

, i.e.,
s0 annihilates the vacuum. Thus the null condition
ðN1∂τ þ∇2Þϕ†j0i ¼ 0 is always satisfied for the field
with the least possible charge and the corresponding field
operator does not acquire any anomalous dimension at the
nontrivial fixed point. For example, fermions at unitarity
are described by two equivalent theories living at a
nontrivial Wilson-Fisher fixed point: one in 2þ ϵ dimen-
sions, another one in 4 − ϵ dimensions. It is easy to verify
from [14] that both of them conform to the above
theorem. The one fermion operator ψ does not acquire
anomalous dimension in both 2þ ϵ and 4 − ϵ dimensions
whereas in 4 − ϵ dimensions, the two fermion operator ϕ
does acquire an anomalous dimension, which should be
the case since even at tree level the equation of motion ϕ†

does not belong to S−N where

s−N ∈S−N iff j0i∈ kerðs−NÞ& ½N̂;s−N � ¼−Ns−N: ð10Þ

III. NONUNITARITY IN
NONINTEGER DIMENSIONS

The unitarity of a SLð2;RÞ invariant field theory can
be defined in noninteger dimensions by analytically con-
tinuing the appropriate correlator. Relativistic CFTs in
noninteger dimensions can have evanescent operators,
corresponding to states with negative norm, and thus have
a nonunitary sector. These operators cease to exist when-
ever d becomes integer; nonetheless they are present and
nontrivial whenever one extends the theory away from
integer (spatial) dimensions [30–33]. Here we consider a
free Schrödinger field theory in dþ 1 dimensions and show
the presence of such operators. In particular, we consider
the following set of operators for n ≥ 2,

Rnðt; xÞ ≔ δi1½j1δji2jj2 � � � δjinjjn�∶Mi1j1Mi2j2 � � �Minjn∶;

where Mij ¼ ∂i∂jϕðt; xÞ, ϕ is a primary operator
with dimension d=2 and all the j indices are antisymme-
trized. For example, R2ðt; xÞ ≔ ðδi1j1δi2j2 − δi1j2δi2j1Þ∶
Mi1j1Mi2j2∶. For integer d < n dimensions, at least one of
the indices has to repeat itself; thus the operator becomes
trivially 0. For noninteger d < n − 1 and for d ≥ n, the
operators are indeed nontrivial.
The operator R2 produces a negative norm state [we are

using the notion of state borrowed from SLð2;RÞ invariant
field theory, as explained in Appendix A] in a theory living
on ð1 − ϵÞ þ 1 dimensions with 1 > ϵ > 0. The norm of R2

is given by
	
R2

�
−
1

2
; 0

�
R†
2

�
1

2
; 0

��
¼ #ðdþ 2Þðdþ 1Þdðd − 1Þ

ð11Þ
where # is a positive number, determined by the two point
correlator of ϕ and number of independent ways to contract.
Herewe have also set τ ¼ 1

2
without any loss of generality. As

expected, the norm becomes 0 as d ¼ 0, 1. The norm is
negative when 0 < d < 1. Similarly, we find that

FIG. 3. The norm of R5 as a function of d. This becomes
negative for 3 < d < 4. The zoomed in version shows that the
norm is non-negative when d ∈ ð0; 3Þ and becomes 0 if and only
if d is an integer below 5, i.e., d ¼ 0, 1, 2, 3, 4.
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R3

�
−
1

2
; 0

�
R†
3

�
1

2
; 0

��
¼ #ðdþ 2Þðdþ 1Þd2ðd − 1Þðd − 2Þ

	
R4

�
−
1

2
; 0

�
R†
4

�
1

2
; 0

��
¼ #ðdþ 2Þðdþ 1Þd2ðd − 1Þ2ðd − 2Þðd − 3Þ

	
R5

�
−
1

2
; 0

�
R†
5

�
1

2
; 0

��
¼ #ðdþ 2Þðdþ 1Þd2ðd − 1Þ2ðd − 2Þ2ðd − 3Þðd − 4Þ;

where # is a positive number, determined by the two point
correlator of ϕ and number of independent ways to contract.
In general, the operator Rn produces a negative norm state,

	
Rn

�
−
1

2
; 0

�
R†
n

�
1

2
; 0

��
¼ #ðd − nþ 3Þn

Yn−1
j¼0

ðd − jÞ;

where ðd − nþ 3Þn ¼ Γðdþ3Þ
Γðd−nþ3Þ is the Pochhammer

symbol. The norm becomes negative (see Fig. 3) when
ðn − 2Þ < d < ðn − 1Þ.
These negative norm states are robust and do survive at

the Wilson-Fisher fixed point as long as the fixed point can
be reached perturbatively, i.e., ϵ ≪ 1 [32].

IV. UNIVERSALITY

(0þ 1)-D SLð2;RÞ invariant field theory has universal
features, irrespective of the details of the theory. They
come out as a natural consequence of SLð2;RÞ invariance
and crossing symmetry. Schrödinger field theory, by virtue
of being SLð2;RÞ invariant theory as well, inherits
these universal features, especially in the neutral sector.
Following [34], we consider the four point correlator
of four Hermitian operator hOð0ÞOðτÞOð1ÞOð∞Þi ¼
τ−ΔOGðτÞ, where, from the SLð2;RÞ algebra, it follows that

GðτÞ ¼
Z

∞

0

dΔpðΔÞGΔðτÞ; ð12Þ

GΔðτÞ ¼ τ
Δ
2
2F1

�
Δ
2
;
Δ
2
;Δ; τ

�
; ð13Þ

where pðΔÞ is the weighted spectral density and given by
jcOOΔj2ρðΔÞ. Here ρðΔÞ is the density of quasiprimaries at
Δ, cOOΔ is the three point coefficient and GΔ is the
SLð2;RÞ block. We refer to the (C3) in Appendix A for
the generic form of the three point correlator. The con-
vergence of this integral for finite τ holds true for the same
reason it holds true in (0þ 1)-D conformal field theory.
Now, as τ → 1, the OPE of OðτÞOð1Þ is dominated by the
contribution from the identity operator; thus we have

Gð1 − τÞ ∼ τ−ΔO ; τ → 0: ð14Þ

Using the fact

GΔð1 − τÞ ≃ 2Δ

ffiffiffiffiffiffi
Δ
2π

r
K0ð

ffiffiffi
τ

p
ΔÞ; ð15Þ

one can obtain [34]

pðΔÞ ∼
Δ→∞

2−Δ

ffiffiffiffiffiffi
2π

Δ

r
41−ΔO

ΓðΔOÞ2
Δ2ΔO−1: ð16Þ

The difference in factors of 2, as compared to Ref. [34], is
coming from the definition of the dilatation operator and Δ
in Schrödinger field theory. We remark that the Schrödinger
group has Uð1Þ subgroup, which implies that each of the
operatorsO carries zero charge underUð1Þ. Thus, we are in
fact probing the neutral sector, where one cannot define the
notion of the Schrödinger primary. The subtleties associ-
ated with crossing symmetry are discussed in Appendix E.
Furthermore, the nonzero asymptotics of pðΔÞ in Eq. (16)
directly implies that there has to be an infinite number of
quasiprimaries.
Infinite number of quasiprimaries: One can prove the

existence of an infinite number of quasiprimaries in the
OO → OO OPE channel using the crossing symmetry as
well. It might seem that the existence of an infinite number
of quasiprimaries is trivial as in the charged sector,
operators that are some number of spatial derivatives acting
on a primary do appear and they can be written down as a
linear combination of SLð2;RÞ descendants and quasipri-
maries. But here we consider hOð0ÞOðτÞOð1ÞOð∞Þi and
all the operators lie at x ¼ 0. As a result, the operators that
appear in the OPE are not of the form of some spatial
derivative acting on a primary.
The proof goes by noting that the crossing symmetry

implies

ð1 − τÞΔOGðτÞ ¼ τΔOGð1 − τÞ ð17Þ

where ΔO is the dimension of the operator O.
As τ → 0, the leading contribution to the left-hand side

of (17) comes from identity; i.e., we have ð1 − τÞΔOGðτÞ ¼
1þ � � �. If we look at the right-hand side in terms of blocks,
we realize that each GΔð1 − τÞ goes like logðτÞ; thus each
term in the block decomposition of τΔOGð1 − τÞ behaves
like τΔO logðτÞ, which goes to 0 as τ → 0. If we have a finite
number of quasiprimaries, since each of the summands
goes to 0, we could never have (17) satisfied in the τ → 0
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limit. This proves the existence of an infinite number of
quasiprimaries which are not descendants of a primary. A
similar argument works for SLð2;RÞ primaries of con-
formal field theories as well. This line of argument has first
appeared in [10] (see also [35]).
Analyticity of three point function: The three point

function of Schrödinger primaries is given by

hϕ1ðx1; t1Þϕ2ðx2; t2Þϕ3ðx3; t3Þi

¼ exp

�
−N1

jx13j2
τ13

− N2

jx23j2
τ23

��Y
i<j

τ
Δk−Δi−Δj

2

ij

�
Fðv123Þ;

ð18Þ

where v123 ¼ 1
2
ðjx23j2τ23

þ jx12j2
τ12

− jx13j2
τ13

Þ and xij ¼ xj − xi,
τij ¼ τj − τi. F is a model dependent function and 0 ifP

iNi ≠ 0, where Ni is the charge carried by ϕi. By
translation invariance, we can set τ3 ¼ 0 and x3 ¼ 0. As
ϕð0; τÞ is a quasiprimary, upon setting x1 ¼ x2 ¼ x3 ¼ 0,
we immediately obtain that Fð0Þ is a finite number and
given by three point coefficient c123.
For simplicity, let us work in the d ¼ 1 dimension, set

x1 ¼ x3 ¼ 0 and investigate the behavior of F as a function
of x2. The SLð2;RÞ algebra guarantees that F is infinitely
differentiable at x2 ¼ 0. This follows from noting that

hϕ1ð0; t1Þϕ2ðx2; t2Þϕ3ð0; 0Þi

¼
X
β

1

β!
xβ2hϕ1ð0; t1Þ∂β

x2ϕ2ð0; t2Þϕ3ð0; 0Þi ð19Þ

and finiteness of hϕ1ð0; t1Þ∂β
x2ϕ2ð0; t2Þϕ3ð0; 0Þi. The finite-

ness follows from finiteness of norm and the fact that
∂β
x2ϕ2ð0; t2Þ can be written down as a linear combination of

quasiprimaries and descendants of the quasiprimary. For
example, we list out the first two quasiprimaries (in d
spatial dimensions), given that ϕ is a primary (which is
trivially a quasiprimary too),

Bð1Þ
i ≡ ∂iϕ; Bð2Þ ≡ Nd

2Δ
∂τϕþ 1

2
∇2ϕ:

V. DISCUSSION AND OUTLOOK

We have shown that the features of (0þ 1)-D conformal
field theory are inherited by the Schrödinger field theory.
SLð2;RÞ algebra can be leveraged to derive the unitary
bounds and null conditions, to prove the convergence of
operator product expansion in the kinematic limit, where all
the operators are inserted at the same x, but at different
times. Moreover, if we consider the four point correlator of
Schrödinger primaries with all but one inserted on ðτ; 0Þ
slice and one operator inserted at some different x ≠ 0, we
can still prove the OPE convergence by using SLð2;RÞ

invariance. This happens because x dependence of the four

point correlator is simply given by exp½Njxj2
2τ �whereN < 0 is

the charge of the operator. The use of SLð2;RÞ reveals the
universal behavior of the weighted spectral density function
and the existence of infinitely many quasiprimaries. We
emphasize the salient role of SLð2;RÞ in this context, as
the concept of Schrödinger primaries and descendants
breaks down in the neutral sector. Moreover, one can
easily deduce the analyticity of three point coefficient
function as a consequence of SLð2;RÞ. It is worth
mentioning that the usual oscillator picture also relies on
SLð2;RÞ algebra in hindsight. In fact, the state-operator
correspondence using the oscillator picture works beyond
the primary operator: for every quasiprimary operator, one
can define a state jOi ¼ e−HOj0i such that ðH þ CÞjOi ¼
ΔjOi, whereH þ C can be interpreted as a Hamiltonian for
the same system under harmonic trap.
The use of SLð2;RÞ algebra provides us with a neat way

to define the Euclidean Schrödinger theory. We refer to
Appendix D for more details. This justifies the Wick
rotation done in [36] to evaluate the heat kernel and the
Weyl anomaly. Moreover, the use of the Euclidean
Schrödinger operator in [37,38] comes under question in
this light as the correlator obtained from the heat kernel of
such operators does not satisfy the constraint coming from
SLð2;RÞ algebra. In this connection, it deserves a remark
that the notion of parity (τ → −τ) and time reversal
(τ → −τ with charge conjugation) is subtle in (0þ 1)-D
conformal field theory and the same subtlety is also present
in Schrödinger field theories (the details have been rel-
egated to Appendix C). If one can consistently impose
parity invariance beyond the ðτ; 0Þ slice, such theories
should have antiparticles and are suspected to have a
nonzero entanglement entropy in the vacuum in contrast
with its cousin where antiparticles are absent. One also
wonders about the presence of Weyl anomalies in such
parity invariant theories on coupling to a nontrivial curved
background in the same spirit of [39–44].
The most important take-home message is that boot-

strapping the Schrödinger field theory on the ðτ; 0Þ slice
exactly amounts to bootstrapping 0þ 1-D conformal field
theory. Thus one can extend the analysis for the four point
correlator of operators with different dimensions, not
necessarily the Hermitian ones with an aim to use the
SLð2;RÞ bootstrap [45–48] program to derive useful
constraints for Schrödinger field theories. Furthermore,
the four point correlator hOð0ÞOðtÞOð1ÞOð∞Þi is analytic
in the complex t domain. One might hope to gain more
mileage for (0þ 1)-D conformal field theory as well as the
Schrödinger field theory using analyticity in the complex
plane [45,46]. In fact, if one is interested in knowing the
spectra of the dilatation operator, then bootstrapping on the
ðτ; 0Þ slice is sufficient as well. Should one consider a four
point correlator of operators Oi inserted at different x, the
OPE would have operators ½Pi1 ; ½Pi2 ; � � � ½Pin ;Ok��� while

SRIDIP PAL PHYS. REV. D 97, 105031 (2018)

105031-6



on the ðτ; 0Þ slice, we would only have theOk operator. But
the dimension of ½Pi1 ; ½Pi2 ; � � � ½Pin;Ok��� is completely
fixed by Ok. This feature elucidates why it is sufficient
to bootstrap on the ðτ; 0Þ slice to know the spectra of the
dilatation operator. A similar argument applies for knowing
the OPE coefficients.
On a different note, the operator basis for the heavy quark

effective field theory (HQEFT), nonrelativistic QED/QCD
[49] can be organized according to the representation of the
Schrödinger algebra [or of SLð2;RÞ algebra] like it is done
for the standard model effective field theory [50–52]. As the
operators appearing in the Lagrangian of HQEFT are
necessarily neutral, the concept of the quasiprimary is
quintessential in that context as reported in a separate paper
[29] with an application towards construction of an operator
basis [53–55] for heavy particle effective field theory.
There are further questions which require more

attention. Fermions at unitarity [14] are described by a
nontrivial fixed point in 4 − ϵ dimensions; it is important to
investigate whether there is any imprint of nonunitarity in
the physics of that fixed point. A step towards this would be
to find out whether heavy enough operators acquire
complex anomalous dimension at Wilson Fisher fixed
point. For a relativistic scenario, this has been done in
[32]. It is also worthwhile to investigate whether SLð2;RÞ
constrains the properties of a thermal Schrödinger field
theory [56]. At 0 temperature, one can calculate all the
correlators using the OPE coefficients. For T > 0, the OPE
is expected to hold true for time jtj ≪ ℏ

kBT
[57]. Thus using

the SLð2;RÞ algebra, it seems possible to obtain sum rules
involving conductivities as done in [57–59], particularly for
CFTs. Furthermore, the idea presented here is extendable to
the theories invariant under a symmetry group which
contains SLð2;RÞ as subgroup. The natural question is
to ask whether the generalized z (z ≠ 2) group can have a
bound. It is shown [26] that the algebra does not close with
the special conformal generator C, if one has the particle
number symmetry generator N̂. Thus the SLð2;RÞ sub-
group is absent and they cannot be realized with a finite
dimensional basis of operators [60]. Nonetheless, if one
does not have the Uð1Þ associated with particle number
symmetry, the algebra closes with C and it does have a
SLð2;RÞ piece, so a similar analysis can be done for field
theories invariant under such a group. For the sake of
completeness, we write down the algebra so that SLð2;RÞ
becomes manifest,

½D;C�¼−2{C; ½D;H�¼2{H; ½H;C�¼−{D

½D;Pi�¼ {αPi; ½D;Ki�¼2{ðα−α−1ÞKi; ½H;Ki�¼−{Pi

½H;Pi�¼ ½Pi;Pj�¼ ½Ki;Pj�¼0;

where α ¼ 1
z. The commutation relations of these with the

generators of the rotation group are the usual ones. Last but
not the least, in 1þ 1 dimensions, SLð2;RÞ algebra gets

extended to infinite Virasoro algebra. One can then
introduce Virasoro conformal blocks and one has more
analytical control over such theories. One wonders whether
there exists any such extension for the Schrödinger algebra.
If it exists, it would imply the possibility of borrowing the
arsenal of Virasoro algebra.
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APPENDIX A: SLð2;RÞ INVARIANT
FIELD THEORY

The SLð2;RÞ group is generated by the three generators
H, D, C satisfying the following algebra:

½D;H� ¼ 2H; ½D;C� ¼ −2C; ½H;C� ¼ D: ðA1Þ

The spectrum of D is real and physically represents the
dimension. H raises the dimension and C lowers the same.
The highest weight representation is the one annihilated by
C. A nice and brief exposition of SLð2;RÞ invariant field
theory can be found in the appendix of [34]. Here we
discuss them for the sake of completeness and make the
paper self-contained.
An SLð2;RÞ invariant field theory is defined on a one-

dimensional manifold, parametrized by τ (say time), where
the SLð2;RÞ group acts on the coordinate τ in the
following way:

τ ↦
aτ þ b
cτ þ d

; where ðad − bcÞ ¼ 1: ðA2Þ

In terms of the generators above, the H generates a time
translation, C generates a special conformal transformation
and D generates a scale transformation. The theory has a
privileged class of operators (the highest weight represen-
tation) Oα satisfying

½C;Oαð0Þ� ¼ 0 ðA3Þ

and carrying dimension Δα, i.e., ½D;Oαð0Þ� ¼ ΔαOαð0Þ.
These are called SLð2;RÞ primaries. They have the
following commutators with SLð2;RÞ generators:
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½D;OαðτÞ� ¼ ð2τ∂τ þ ΔαÞOαðτÞ; ðA4Þ

½C;OαðτÞ� ¼ ð−τ2∂τ − τΔαÞOαðτÞ; ðA5Þ

½H;OαðτÞ� ¼ ∂τOαðτÞ: ðA6Þ

It follows that under a finite SLð2;RÞ transformation,
SLð2;RÞ primaries transform as3

OðτÞ ↦ ½ðcτ þ dÞ−2�Δ2Oðτ0Þ: ðA7Þ
The correlators of the form hOðτ1ÞOðτ2ÞOðτ3Þ � � �OðτnÞi

are of our primary interest. As SLð2;RÞ preserves the
ordering of time, the two distinct orderings of τi need not
be related to each other. In what follows, we are assuming
0 < τ1 < τ2 < τ3 < � � � < τn. The unitarity for a SLð2;RÞ
invariant theory is defined via existence of an antilinear
conjugation map taking O ↦ O† such that the following
relations hold.

(i) Time reversal:

hO†ð−τnÞ � � �O†ð−τ3ÞO†ð−τ2ÞO†ð−τ1Þi
¼ hOðτ1ÞOðτ2ÞOðτ3Þ � � �OðτnÞi�: ðA8Þ

(ii) Reflection positivity: One can define a state jΨi

jψi ¼
Z �Y

dτi

�
gðτ1; τ2;…; τnÞ

× jOðτ1ÞOðτ2Þ � � �OðτnÞj0i ðA9Þ

with

hΨjΨi ≥ 0: ðA10Þ

In terms of the correlator this reads

Z �Y
dτ0i

�Z �Y
dτi

�
g̃ðτ01; τ02;…; τ0nÞ

× gðτ1; τ2;…; τnÞhO†ðτ0nÞ � � �O†ðτ02ÞO†ðτ01Þ
×Oðτ1ÞOðτ2Þ � � �OðτnÞi ≥ 0;

where g̃ðτÞ ¼ gð−τÞ�. Here g is an arbitrary function
or distribution having support away from coincident
points to avoid singularity.

The SLð2;RÞ algebra fixes the functional form of the
two point and the three point correlator. One can choose a
Hermitian basis of operators O ¼ O† such that

hOαðτ1ÞOβðτ2Þi ¼
δαβ

ðτ2 − τ1ÞΔ
ðA11Þ

hO1ðτ1ÞO2ðτ2ÞO3ðτ3Þi
¼ c123

ðτ2 − τ1Þ
Δ2þΔ1−Δ3

2 ðτ3 − τ2Þ
Δ3þΔ2−Δ1

2 ðτ3 − τ1Þ
Δ3þΔ1−Δ2

2

:

ðA12Þ

Time reversal symmetry guarantees that cγβα ¼ c�αβγ . In
general, cαβγ can be complex numbers. All the higher point
correlators can be obtained using the operator product
expansion, which reads

O1ðτ1ÞO2ðτ2Þ ¼
X
α

c12α
1

ðτ2 − τ1Þ
Δ1þΔ2−Δα

2

½Oα þ � � ��

ðA13Þ
where… are contributions coming from SLð2;RÞ descend-
ants and fixed by SLð2;RÞ invariance. Thus the knowledge
of the spectrum of D i.e., set of SLð2;RÞ primaries and
three point coefficient cαβγ amounts to a complete knowl-
edge of all the correlators.

APPENDIX B: SCHRÖDINGER ALGEBRA,
PRIMARIES AND QUASIPRIMARIES

Here we provide a detailed account of Schrödinger
algebra. We expound the concepts of primaries and
quasiprimaries. The Schrödinger group acts on space-time
as follows [11,12,23,25]:

t ↦
atþ b
ctþ d

; r ↦
Rrþ vtþ f

ctþ d
; ðB1Þ

where ad − bc ¼ 1, R is a d-dimensional rotation matrix, v
denotes the Galilean boost and f is a spatial translation. For
the sector with nonzero charge, the representation is built
by translating all the operators to the origin and considering
the little group generated by dilatation operatorD, Galilean
boost generator Ki, and special conformal transformation
generator C. The highest weight states (ϕα) are annihilated
by C and Ki, i.e.,

½C;ϕαð0; 0Þ� ¼ 0; ½Ki;ϕαð0; 0Þ� ¼ 0: ðB2Þ

These are called primary operators. The commutators with
D and particle number symmetry generator N̂ dictate the
charge and the dimension of these operators ϕα,

½D;ϕαð0; 0Þ� ¼ {Δαϕð0; 0Þ;
½N̂;ϕαð0; 0Þ� ¼ Nαϕð0; 0Þ: ðB3Þ

The time and space translation generator H and P create
descendant operators by acting upon primary operators,

3The presence of the factor of 1
2
in the weight, as compared to

the weight noted in [34] is due to the presence of extra 2 with τ∂τ
in the expression for ½D;OαðτÞ�. This is done, in hindsight, to
make the notation consistent with the dilatation operator in
Schrödinger field theory; i.e., the dilatation operator acting on
a Schrödinger primary at x ¼ 0 becomes the dilatation operator
acting on a SLð2;RÞ primary.
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consequently raising the dimension by 2 and 1 respectively.
It deserves mention that the concept of primaries and
descendants breaks down within the neutral sector. Since
Ki and Pj commute in this sector, Pj acting on a primary
spits out a primary instead of a descendant.
The subgroup defined by R ¼ I, v ¼ 0, f ¼ 0 is gen-

erated by H, D and C and is in fact SLð2;RÞ. This acts as
follows:

t ↦
atþ b
ctþ d

; r ↦
r

ctþ d
; ðad − bcÞ ¼ 1: ðB4Þ

It becomes evident that the ðt; 0Þ slice is an invariant
domain of SLð2;RÞ. Now one can reorganize the operator
content using SLð2;RÞ algebra. A SLð2;RÞ primary O is
defined by requiring ½C;Oð0; 0Þ� ¼ 0. Thus all the pri-
maries defined by (B2) are SLð2;RÞ primaries but not the
other way around. As mentioned in the main text, the
situation is reminiscent of two-dimensional conformal field
theory where we have Virasoro primaries as well as
SLð2;RÞ primaries and the SLð2;RÞ primaries are called
quasiprimaries. We have borrowed that nomenclature and
called the Schrödinger primaries primaries and SLð2;RÞ
primaries quasiprimaries. We emphasize that the notion of
quasiprimaries goes through even for the neutral sector. The
commutator of quasiprimary OðtÞ [for notational simplic-
ity, ϕðtÞ [or OðtÞ] implies the operator ϕðt; 0Þ [or Oðt; 0Þ]]
with the generators H, D, C is given by [27]

½H;OðtÞ� ¼ −{∂tOðtÞ; ðB5Þ

½D;OðtÞ� ¼ {ð2t∂t þ ΔÞOðtÞ; ðB6Þ

½C;OðtÞ� ¼ ð−{t2∂t − {tΔÞOðtÞ: ðB7Þ

This follows from ½C;Oð0; 0Þ� ¼ 0 and

½D;H� ¼ 2{H; ½D;C� ¼ −2{C; ½H;C� ¼ −{D:

ðB8Þ

In terms of Euclidean time τ ¼ {t, and D0 ¼ −{D, we
have

½D0; H� ¼ 2H; ½D0; C� ¼ −2C; ½H;C� ¼ D0 ðB9Þ

and

½D0;OðτÞ� ¼ ð2τ∂τ þ ΔÞOðτÞ; ðB10Þ

½C;OðτÞ� ¼ ð−τ2∂τ − τΔÞOðτÞ; ðB11Þ

½H;OðτÞ� ¼ ∂τOðτÞ: ðB12Þ

Thus we have a SLð2;RÞ invariant theory defined on the
ðτ; 0Þ slice. SLð2;RÞ acts on τ in the usual manner,

τ ↦
aτ þ b
cτ þ d

; ðad − bcÞ ¼ 1: ðB13Þ

We note that if ϕ is a primary operator, then

A≡ −
�
Nd
2Δ

∂τϕþ 1

2
∇2ϕ

�
;

A† ≡ Nd
2Δ

ð∂τϕ
†Þ − 1

2
∇2ϕ† ðB14Þ

are quasiprimaries but not primaries unless Δ ¼ d
2
. This

follows from the commutation relations [27],

½C;ϕðτ; xÞ� ¼
�
−τ2∂τ − τΔ − τx · ∇þ Njxj2

2

�
ϕ;

½Kj;ϕðτ; xÞ� ¼ ð−τ∂j þ NxjÞϕ:
The operatorsA andA† played a crucial role in proving the
unitarity bound. In fact, A† annihilates the vacuum when
Δ ¼ d

2
and at free fixed point, this is precisely the null

operator.

APPENDIX C: TIME REVERSAL AND PARITY

The notion of time reversal and parity is subtle in
0þ 1-D conformal field theories. The same subtlety is
inherited by the Schrödinger field theory. Both of the
symmetries come with a transformation of the form
τ → −τ, but the time reversal is realized as an antiunitary
operator acting on the fields whereas the parity does not
involve any complex conjugation. To be precise, time
reversal symmetry guarantees that

hO†ð−τnÞ � � �O†ð−τ3ÞO†ð−τ2ÞO†ð−τ1Þi
¼ hOðτ1ÞOðτ2ÞOðτ3Þ � � �OðτnÞi� ðC1Þ

while the parity invariance implies that

hOð−τnÞ � � �Oð−τ3ÞOð−τ2ÞOð−τ1Þi
¼ ð−1ÞnphOðτ1ÞOðτ2ÞOðτ3Þ � � �OðτnÞi ðC2Þ

where p ∈ f0; 1g is the parity of the SLð2;RÞ primary
operator O.
The three point correlators, as pointed out earlier, are

given by

hO1ðτ1ÞO2ðτ2ÞO†
3ðτ3Þi

¼ CO1O2O3

ðτ2 − τ1Þ
Δ2þΔ1−Δ3

2 ðτ3 − τ2Þ
Δ3þΔ2−Δ1

2 ðτ3 − τ1Þ
Δ3þΔ1−Δ2

2

:

ðC3Þ
Now the time reversal implies that CO1O2O3

¼ C�
O†

2
O†

1
O†

3

.

Since cyclic ordering is preserved by SLð2;RÞ, we have
CO2O1O3

¼ CO3O2O1
. Thus we have
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CO1O2O3
¼ CO†

3
O†

2
O†

1
: ðC4Þ

On the other hand, parity invariance implies that

CO1O2O3
¼ ð−1Þp1þp2þp3CO2O1O3

ðC5Þ

where pi is the parity of the field Oi.
We can easily show that the free Schrödinger field theory

without any antiparticle (discussed later in Sec. D) does not
satisfy the parity invariance. We recall that the two point
correlator on the ðτ; 0Þ slice is given by

hϕð0Þϕ†ðτÞi ¼ ΘðτÞτ−d=2: ðC6Þ

If one assumes parity invariance with ϕ and ϕ† carrying
opposite parity, the two point correlator satisfies

hϕð0Þϕ†ðτÞi ¼ hϕ†ð−τÞϕð0Þi ¼ hϕð0Þϕ†ð−τÞi: ðC7Þ

Here the last equality follows because the cyclic order of
the operator insertion is unaffected by SLð2;RÞ invariance.
Thus hϕð0Þϕ†ðτÞi has to be an even function of τ, which is
not the case in (C6). The presence of ΘðτÞ implies the
absence of antiparticles.
On the other hand, when the parity symmetry is present

one can write down a bootstrap equation (17) even for a
charged sector. Section IV of [61] elucidates the scenario
where a notion of parity is available. This motivates us to
ask whether one can impose parity invariance on top of
Schrödinger invariance. It indeed can be done by defining a
free field theory such that the two point correlator takes the
following form on the ðτ; 0Þ slice:

hψð0; 0Þψ†ðτ; 0Þi ¼ 1

jτjd=2 ; ðC8Þ

where N < 0 is the Uð1Þ charge carried by the field ψ . All
the higher point correlators are determined by Wick
contraction. On the ðτ; 0Þ slice, this theory is expected to
behave like generalized Bose/Fermi theory in 0þ 1 dimen-
sion [34]. We remark that even if it is possible to impose
parity invariance on the ðτ; 0Þ slice, it is not clear whether
one can impose such invariance even away from the above-
mentioned temporal slice. This is because the boost
invariance forces the x dependence of two point correlator

to be exp ð{N jxj2
2t Þwhich is clearly not symmetric under t →

−t unless one also imposes the N → −N constraint. One
way to impose this is to realize time reversal in an
antiunitary manner which involves charge conjugation. It
would be interesting to consider another scenario, where
one can have the following two point correlator,

hψð0; 0Þψ†ðτ; xÞi ¼ 1

jτjd=2 exp
�
Njxj2
2jτj

�
; ðC9Þ

and it is obtained by different analytical continuation to
imaginary time τ, depending on the signature of real
time t. It is not clear at present whether it carries any
physical significance and leads to a well-defined theory.
Nonetheless, one can indeed have theories which enjoy
parity invariance on the ðτ; 0Þ slice.

APPENDIX D: FREE SCHRÖDINGER FIELD
THEORY AND ITS EUCLIDEAN AVATAR

The free Schrödinger field theory in dþ 1 dimensions is
described by

L ¼ 2{ϕ†∂tϕþ ϕ†∇2ϕ; ðD1Þ

where t is the real time and we have taken the mass to be
unity. The propagator in momentum space representation
has a pole at

ω ¼ jkj2
2

; ðD2Þ

where ω is the energy and k is the momentum. This is in
fact the dispersion relation of an on-shell particle, described
by the field theory (D1). The presence of a pole brings in
ambiguity in defining the position space propagator and
thus necessitates a pole prescription. Similar ambiguity is
also present in the relativistic theory at free fixed point,
where there are two poles at ω ¼ �jkj. To circumnavigate
the pole(s), one usually works in the imaginary time τ ¼ {t,
ωE ¼ −{ω (the so-called Wick rotation), where the propa-
gator is uniquely defined. Upon analytic continuation back
to the Minkowski space-time, this provides us with a pole
prescription. In what follows, we follow the same pro-
cedure for the free Schrödinger field theory and come up
with an expression for the propagator consistent with the
SLð2;RÞ algebra.
The Wick rotated Schrödinger theory has a propagator of

the following form:

1

jkj2 − 2{ωE
: ðD3Þ

This does not have a pole on the real axis of ωE. Hence, the
Fourier transform is well defined and unique and one
obtains the Euclidean propagator GE,

GEðτ1; x1; τ2; x2Þ ¼
Z

dωE

2π

Z
ddk
ð2πÞd

e−{ðωEðτ1−τ2Þ−k·xÞ

jkj2 − 2{ωE

¼ ΘðτÞ
2

�
1

2πτ

�d
2

exp

�
−
x2

2τ

�
; ðD4Þ

where τ ¼ τ2 − τ1 and x ¼ x2 − x1. Upon Wick rotation
back to the real time, we have the following {ϵ prescription:
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{
2ω − jkj2 þ {ϵ

: ðD5Þ

The pole prescription, in momentum space, can be
visualized through a series of diagrams, e.g., Figs. 4
and 5. We recall that the Wick rotation involves defining
τ ¼ {t and ωE ¼ −{ω such that e{ωt ¼ e{ωEτ holds true. One
can rotate the contour clockwise by an angle of π=2 − ϵ on
the ωE plane, where ϵ is very small but a positive number,
without affecting the integral (see Fig. 4). At this point, one
effects the wick rotation, which recasts the integral and the
contour as shown in Fig. 5 and leads to the pole pre-
scription, as in Eq. (D5).
Several remarks are in order. First of all, the physical

significance ofΘðτÞ and hence the {ϵ prescription lies in the
fact that there are no antiparticles in the theory. This has
consequences; e.g., the vacuum does not have any spatial
entanglement entropy and the Weyl anomaly is absent upon
coupling the theory with a nontrivial Newton-Cartan
structure [36]. Furthermore, one can analytically continue
the theory to live on a noninteger dimensional space. The
propagator as in Eq. (D4) can be defined by an analytic
continuation in d. The analytical continuation is always
understood to be in the number of spatial dimensions,
without affecting the time coordinate.
The Schrödinger algebra constrains the real time two

point correlator (G) of two primary operators of dimension
ΔO. It is given by

Gðt1; x1; t2; x2Þ ¼ ct−ΔOe{
NO
2

jxj2
t ðD6Þ

where t ¼ t2 − t1 and x ¼ x2 − x1. We Wick rotate the

expression, introducing τ ¼ {t and we choose c ¼
ΘðτÞ
2

ð 1
2π{Þd=2 where τ ¼ τ2 − τ1. Upon comparing this

expression with the Euclidean propagator, as in
Eq. (D4), the dimension of the free Schrödinger field is
found out to be

Δϕ ¼ d
2

ðD7Þ

which is precisely the engineering dimension as evident
from the Lagrangian (D1).
We emphasize that the real time propagator, given in

Eq. (D6), is generic in the sense that it is suitable to describe
any Schrödinger invariant fixed point including the interact-
ing ones. Thus the take-home message is that the usual trick
ofWick rotation is consistent, as it should be, with the notion
of the Euclidean Schrödinger group and the Euclidean
Schrödinger operator is indeed given by ð∂τ −∇2Þ.

1. Time ordering

The time-ordered (or antitime-ordered) real time corre-
lator is obtained from the Euclidean correlator by proper
analytic continuation. Equation (D4) implies that

hϕð0Þϕ†ðτÞiE ∝ ΘðτÞ; ðD8Þ

where we have put in the subscript E to clearly specify that
it is a Euclidean correlator. Now we show that the time-
ordered correlator can be obtained by taking τ ¼ −{t while
the antitime-ordered one can be obtained by taking τ ¼ {t.
For t > 0, we obtain the time-ordered correlator by analytic
continuation (τ ¼ −{t)

h0jϕ†ðtÞϕð0Þj0i ∝ Θð−{tÞ ¼ {Θð−tÞ ¼ 0; ðD9Þ

while for t < 0, we obtain

h0jϕð0Þϕ†ðtÞj0i ∝ Θð−{tÞ ¼ {Θð−tÞ ≠ 0: ðD10Þ

Similarly, for t < 0, the antitime-ordered correlator can be
obtained by (τ ¼ {t)

h0jϕ†ðtÞϕð0Þj0i ∝ Θð{tÞ ¼ {ΘðtÞ ¼ 0 ðD11Þ

while for t > 0, we have

h0jϕð0Þϕ†ðtÞj0i ∝ Θð{tÞ ¼ {ΘðtÞ ≠ 0: ðD12Þ

It is easy to verify that all the equations (D9)–(D12)
conform to the fact that the field ϕ annihilates the vacuum,
which is a manifestation of absence of antiparticles. We

FIG. 4. Contour in the Wick rotated plane (ωE plane).

FIG. 5. Contour in the real ω plane.
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also remark that (D10) has an interpretation of the
amplitude associated with a particle being created at time
t < 0 and subsequently propagating to t ¼ 0. In the main
text, we have used the analytic continuation τ ¼ {t; one
could have equivalently chosen the other analytic continu-
ation τ ¼ −{t and obtained similar results.

2. A different convention

The Euclidean time correlator can alternatively be
defined in the following way where Θð−τÞ appears instead
of (D4):

Galt
E ðτ1; x1; τ2; x2Þ ¼

Z
dωE

2π

Z
ddk
ð2πÞd

e−{ðωEðτ2−τ1Þ−k·xÞ

jkj2 − 2{ωE

¼ Θð−τÞ
2

�
1

2πτ

�d
2

exp

�
−
x2

2τ

�
; ðD13Þ

where τ ¼ τ2 − τ1 and x ¼ x2 − x1. With this convention,
τ ¼ {t yields the time-ordered correlator while τ ¼ −{t
gives the antitime-ordered one. As mentioned earlier, in
the main text, we have adopted the convention as in (D4).

APPENDIX E: SUBTLETIES ASSOCIATED WITH
CROSSING SYMMETRY AND ANTIPARTICLES

The implementation of crossing symmetry is subtle in
the canonically quantized Schrödinger field theory. In the
canonical quantization, the field ϕ (with charge N < 0)
annihilates the vacuum and there is no antiparticle in the
theory. The absence of the antiparticle is reflected in the
expression for the two point correlator, which comes with a
factor ofΘðτÞ, as in Eq. (C6). Thus, in such a quantized free
field theory, the four point correlator of ϕ is given by

hϕð0Þϕ†ðτÞϕð1Þϕ†ð∞Þi ¼ ΘðτÞ
τd=2

þ Θðτ − 1Þ
ðτ − 1Þd=2 : ðE1Þ

Evidently, this is not symmetric under τ → ð1 − τÞ. As a
result, the crossing symmetry is spoilt, particularly due to
the presence of theΘ function. Furthermore, if we construct
neutral operators out of ϕ and ϕ†s, they also fail to ensure
crossing symmetry. For 0 < τ < 1, Eq. (E1) implies that all
the operators appearing in the ϕϕ† OPE channel have 0
three point coefficient with ϕð0Þϕ†ðτÞ. This is in fact an
effect of not having antiparticles in the spectrum.
Thus should we consider bootstrapping Schrödinger

field theories, we must ensure that the theory has both
particles and antiparticles. For example, we can consider
the parity invariant version of the free Schrödinger field
theory, introduced in the last section. Clearly, in such a
theory, we have, for 0 < τ < 1,

hϕð0Þϕ†ðτÞϕð1Þϕ†ð∞ÞiP ¼ τ−
d
2 þ ð1 − τÞ−d

2 ¼ τ−
d
2GðτÞ;

ðE2Þ

where the subscript P stands for parity and GðτÞ is given by

GðτÞ ¼ 1þ
�

τ

1 − τ

�
d=2

¼
X∞
n¼0

ðd
2
Þ2n

n!ðdþ n − 1Þn
Gdþ2nðτÞ;

ðE3Þ

where G is the SLð2;RÞ block, defined in the main
text. The four point correlator, in this case, is symmetric
under τ → ð1 − τÞ; hence the crossing symmetry applies.
Decomposition (E3) in terms of the SLð2;RÞ block reveals
that the ϕϕ† OPE contains the identity operator and the
operators of dimension dþ 2n for n ≥ 0. This is exactly
0þ 1-dimensional generalized complex scalar field
theory [61].
One can further consider hϕð0ÞϕðτÞϕ†ð1Þϕ†ð∞Þi. For

the parity invariant free Schrödinger field theory, this is
given by

hϕð0ÞϕðτÞϕ†ð1Þϕ†ð∞ÞiP ¼ 1þ ð1 − τÞ−d=2

¼ τ−d=2
�
τd=2 þ

�
τ

1 − τ

�
d=2

�
ðE4Þ

for 0 < τ < 1. The function τd=2 þ ð τ
1−τÞd=2 contains the

information about the ϕϕ OPE channel. In the crossed
channel, where ϕ and ϕ† fuse with each other, we have

hϕ†ð0ÞϕðτÞϕð1Þϕ†ð∞ÞiP ¼ 1þ τ−d=2

¼ τ−d=2ð1þ τd=2Þ: ðE5Þ

The scenario above can be compared with that of the
canonically quantized free Schrödinger field theory, where
the four point correlator is given by

hϕð0ÞϕðτÞϕ†ð1Þϕ†ð∞Þi¼ 1þΘð1− τÞð1− τÞ−d=2; ðE6Þ

which is the same as Eq. (E4) for 0 < τ < 1. Thus the ϕϕ
OPE channel is the same in both the theories. But in the
crossed channel, where ϕ fuses with ϕ†, the result is
different compared to that of the parity invariant case [given
by Eq. (E5)],

hϕ†ð0ÞϕðτÞϕð1Þϕ†ð∞Þi ¼ Θð−τÞð−τÞ−d=2; ðE7Þ

and this is 0 for 0 < τ < 1. In fact, this peculiarity
associated with the ϕϕ† OPE channel is not particular to
the canonically quantized free field theory. One can
consider perturbing the free fixed point by the ðϕ†ϕÞ2
operator in 2 − ϵ dimensions. The presence of the Θ
function in the two point correlator guarantees that only
the s channel (where ϕ-s fuse with each other) contributes
to the 2 → 2 scattering process while the t and the u
channel do not contribute since in the t and u channel ϕ
fuses with ϕ† [62].
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Since Eq. (E4) describes the ϕϕ OPE channel in both the
cases, we can take a closer look at this and read off the part,
G0ðτÞ, that admits expansion in terms of SLð2;RÞ blocks,

G0ðτÞ ¼
�
τd=2 þ

�
τ

1 − τ

�
d=2

�

¼
Xn¼∞

n¼0

2ðd
2
Þ2n

2n!ðdþ 2n − 1Þ2n
Gdþ4nðτÞ: ðE8Þ

From this, one can obtain contributions coming from
different primaries. For example, the n ¼ 0 piece

contains the contribution from ϕ2 and its SLð2;RÞ
descendants.
The take-home message we want to convey is that

implementation of crossing symmetry is subtle. The four
point correlator of ϕ is not a convenient one to discuss the
implication of crossing symmetry in canonically quan-
tized Schrödinger field theory where there are no anti-
particles. On the other hand, on the ðτ; 0Þ slice, it is
possible to define a theory or have operators such that
four point correlators of such operators do satisfy the
crossing symmetry.
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