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We investigate the radiative processes of a quantum system composed by two identical two-level
atoms in the de Sitter spacetime, interacting with a conformally coupled massless scalar field prepared in
the de Sitter-invariant vacuum. We discuss the structure of the rate of variations of the atomic energy for
two static atoms. Following a procedure developed by Dalibard, Dupont-Roc, and Cohen-Tannoudji, our
intention is to identify in a quantitative way the contributions of vacuum fluctuations and the radiation
reaction to the generation of quantum entanglement and to the degradation of entangled states. We find that
when the distance between two atoms larger than the characteristic length scale, the rate of variation of
atomic energy in the de Sitter-invariant vacuum behaves differently compared with that in the thermal
Minkowski spacetime. In particular, the generation and degradation of quantum entanglement can be
enhanced or inhibited, which are dependent not only on the specific entangled state but also on the distance
between the atoms.
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I. INTRODUCTION

Superposition of quantum states and quantum entangle-
ment are the most peculiar features of quantum systems
arguably, without analogs in classical mechanics [1]. When
global states of a composite system cannot be factorized
into a product of the states of their individual subsystems, it
is known as quantum entanglement, exhibiting the nonlocal
nature of quantum mechanics. Moreover, quantum entan-
glement is an important physical resource, which is at the
basis of many quantum information processing tasks such
as quantum teleportation [2] and dense coding [3]. There
exist several works to generate entangled two-level systems
interacting with a bosonic field as shown in Refs. [4–10].
On the other hand, spontaneous emission and excitation

are one of the most important features of atoms, which can
be attributed to vacuum fluctuations [11,12], or the radi-
ation reaction [13], or a combination of them [14,15]. In
this respect, radiative processes of entangled states have
been sufficiently investigated in Refs. [16–19]. Recently,
Ref. [20] presented a heuristic scenario to consider radi-
ative processes of entangled two-level atoms which
coupled with a massless scalar field prepared in the vacuum
state in the presence of boundaries, investigating the
spontaneous transition rates from the entangled states to

their collective ground state which is triggered by vacuum
fluctuations of the quantum field. Nevertheless, following
the seminal work of Ackerhalt et al. [13], it is possible to
interpret spontaneous decay as a radiation-reaction effect.
As carefully demonstrated by Milonni in Ref. [21], both
effects of vacuum fluctuations and the radiation reaction are
dependent on a particular ordering chosen for commuting
and field operators. Subsequently, Dalibard et al. developed
the Dalibard-Dupont-Roc-Cohen-Tannoudji (DDC) for-
malism, asserting that one can distinctively separate the
contributions of vacuum fluctuations and the radiation
reaction as having an independent physical meaning, if a
symmetric ordering of the commuting atom and field
variables is adopted [22,23]. This is a consequence of
the fact that within such a formalism the atom is stable in its
ground state due to the balance between vacuum fluctua-
tions and the radiation reaction. We remark that in recent
investigations regarding quantum entanglement, the DDC
formalism was employed to understand the radiative
processes involving entangled atoms in Minkowski and
Schwarzschild spacetime [24–26]. Moreover, the DDC
formalism has been proved to substantially implemented
in many physical situations [27–34]. There also exist
related works on the resonance interaction between
entangled atoms in the literatures [35–40].
De Sitter space is the unique maximally symmetric

curved spacetime which enjoys the degree of symmetry
similar to the Minkowski spacetime and has ten Killing
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vectors. More importantly, our current observations and the
theory of inflation suggest that our universe may approach
the de Sitter geometries in the far past and the far future.
And a holographic duality may exist between quantum
gravity on the de Sitter space and a conformal field theory
living on the boundary identified with the timelike infinity
of de Sitter space [41]. In the present paper, we focus our
attention on applying the DDC formalism to investigate the
quantum entanglement of atoms in de Sitter spacetime.
Being more specific, we consider that both atoms interact
with a conformally coupled massless field in the de Sitter
invariant vacuum. In addition, we intend to study the
contributions of vacuum fluctuations and the radiation
reaction in the radiation process of the entangled states.
The organization of the paper is as follows. In Sec. II we

discuss the implementation of the DDC formalism in the
situation of interest. In Sec. III, we calculate in detail the
rate of variation of the atomic energy in de Sitter invariant
vacuum when both atoms are at rest, and compare it with
the scenario involving the Minkowski spacetime with a
field in a thermal state. Finally, a summary of the main
results of our work is present in Sec. IV. In this paper, we
use units such that c ¼ ℏ ¼ G ¼ kB ¼ 1.

II. TWO IDENTICAL ATOMS COUPLED WITH
A CONFORMALLY COUPLED MASSLESS

SCALAR FIELD IN DE SITTER SPACETIME

In this section we assume that two identical two-level
atoms labeled by 1 and 2, respectively, are in interaction
with a conformally coupled massless field in de Sitter
spacetime. It is well know that the de Sitter metric is a
solution of the Einstein equations with the cosmological
constant Λ. Four-dimensional de Sitter spacetime is most
easily represented as the hyperboloid

z20 − z21 − z22 − z23 − z24 ¼ −α2; ð1Þ

which is embedded in the five dimensional Minkowski
spacetime with the metric

ds2 ¼ dz20 − dz21 − dz22 − dz23 − dz24; ð2Þ

where α ¼ ffiffiffiffiffiffiffiffiffi
3=Λ

p
. There are several different coordinate

systems that can be chosen to characterize the de Sitter
spacetime [42–44]. If we choose the static coordinates
system ðt; r; θ;ϕÞ, which is

z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − r2

p
sinh t=α;

z1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − r2

p
cosh t=α;

z2 ¼ r cos θ;

z3 ¼ r sin θ cosϕ;

z4 ¼ r sin θ sinϕ; ð3Þ

then the corresponding line element becomes

ds2¼
�
1−

r2

α2

�
dt2−

�
1−

r2

α2

�
−1
dr2− r2ðdθ2þ sin2θdϕ2Þ:

ð4Þ
Noting that the cosmological horizon is located at r ¼ α,
the position in the de Sitter coordinate becomes singular.
Now let us identify the distinct contributions of vacuum

fluctuations and the radiative reaction to entanglement
dynamics of atoms in de Sitter spacetime. With this regard,
we will work within the Heisenberg picture. Let us consider
both atoms following different stationary trajectories
xμðτaÞ, where τa denotes the proper time of the atom a
with a ¼ 1, 2. Hereafter we describe the time evolution of
the total system is to be taken with respect to the proper
time τ of the atoms. It is worth it to note that the stationary
trajectory guarantees the existence of stationary states.
Within the multipolar coupling approach, the purely atomic
part of the total Hamiltonian describes the free Hamiltonian
of two identical atoms. Then the Hamiltonian of the two
atoms can be written as

HAðτÞ ¼
ω0

2
½ðσ13ðτÞ ⊗ 1̂Þ þ ð1̂ ⊗ σ23ðτÞÞ�; ð5Þ

where σa3 ¼ jeaiheaj − jgaihgaj, a ¼ 1, 2. Here, jg1i and
jg2i are the ground states of the isolated atoms with energies
−ω0=2, and je1i and je2i are the respective exited states with
energies þω0=2. One has that the space of the two-atom
system is spanned by four product stationary states which
are eigenstates of HA with respective energies [45,46]

Egg ¼ −ω0; jggi ¼ jg1g2i;
Ege ¼ 0; jgei ¼ jg1e2i;
Eeg ¼ 0; jegi ¼ je1g2i;
Eee ¼ ω0; jggi ¼ je1e2i: ð6Þ

In this paper, we can conveniently take the Bell state basis
instead of the above product-state basis, which is

jψ�i ¼ 1ffiffiffi
2

p ðjg1e2i � je1g2iÞ;

jϕ�i ¼ 1ffiffiffi
2

p ðjg1g2i � je1e2iÞ: ð7Þ

It is known that such states constitute familiar examples of
four maximally entangled two-qubit Bell states, and form a
convenient basis of the two-qubit Hilbert space. However,
we note that the Bell states jϕ�i are not eigenstates of the
atomic Hamiltonian HA. Here we consider the interaction
between the two-atom system and a conformally coupled
massless field. We can obtain the free Hamiltonian of the
quantum scalar field which is
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HFðτÞ ¼
Z

dkωka
†
kðtðτÞÞakðtðτÞÞ

dt
dτ

; ð8Þ

where a†k and ak denote the creation and annihilation
operators with momentum k and dt=dτ ¼ jg00j−1=2 ¼
ð1 − r2=α2Þ−1=2. In addition, we have neglected the zero-
point energy. Hence one can obtain the Hamiltonian which
describes the interaction between the atoms and the field

HIðτÞ ¼ λm1ðτÞφðx1ðτÞÞ þ λm2ðτÞφðx2ðτÞÞ; ð9Þ

where λ is the coupling constant that we assume to be small
and φðxÞ is the scalar field operator in de Sitter spacetime.
maðτÞ is the monopole moment operator for the a-th atom

maðτÞ ¼ σþa ðτÞ þ σ−a ðτÞ; ð10Þ

where σþa ¼ jeaihgaj and σ−a ¼ jgaiheaj are the atomic
raising and lowering operators, respectively.
We first solve the Heisenberg equations of motion for the

dynamical variable of the atoms and the field with respect
to τ which can be derived from the total Hamiltonian
HðτÞ ¼ HAðτÞ þHFðτÞ þHIðτÞ. Therefore, the solutions
of the equation of motion can be separated in two parts,
namely, the free part which is the absence of the coupling
between the atoms and fields, and the source part which
is caused by the interaction between atoms and fields.
Therefore, one can obtain the atomic operators

σa3ðτÞ ¼ σa;f3 ðτÞ þ σa;s3 ðτÞ;
maðτÞ ¼ mf

aðτÞ þms
aðτÞ; ð11Þ

and the field operators

akðtðτÞÞ ¼ afkðtðτÞÞ þ askðtðτÞÞ; ð12Þ

where the superscripts “f” and “s” stand for the free
and source parts, respectively. Therefore, one can also
construct φðxaðτÞÞ ¼ φfðxaðτÞÞ þ φsðxaðτÞÞ. Nonetheless,
there arises an ambiguity of operator ordering problem
which indicates that one must choose an operator ordering
when discussing the effects of vacuum fluctuations (which
are originated from φf) and the radiation reaction (which is
caused by φs). In this way, it allows us to interpret the
effects of such phenomena as independent physical mean-
ings [22,23,27]. Following the above prescription, let us
present the contributions of quantum vacuum fluctuations
and the radiation reaction in the evolution of the atoms’
energies, which are given by the expectation value of HA,
given by Eq. (5). By employing a perturbative treatment, we
take into account only terms up to order λ2. Furthermore, we
perform an averaging over the field degrees of freedom by
taking vacuum expectation values. In turn, since we are
interested in the evolution of expectation values of atomic

observables, we also take the expectationvalue in the atoms’
state jωi, with energy ω. Such a state can be one of the
product states given by Eq. (6) or the Bell states Eq. (7).
Therefore, one has the vacuum-fluctuation and radiation-
reaction contributions to the rate of change of hHAi,
respectively,

�
dHA

dτ

�
VF

¼ iλ2

2

Z
τ

τ0

dτ0
X2
a;b¼1

DabðxaðτÞ;xbðτ0ÞÞ
d
dτ

Δabðτ;τ0Þ;
�
dHA

dτ

�
RR

¼ iλ2

2

Z
τ

τ0

dτ0
X2
a;b¼1

ΔabðxaðτÞ;xbðτ0ÞÞ
d
dτ

Dabðτ;τ0Þ;

ð13Þ

where a, b ¼ 1, 2, and h· · ·i ¼ h0; νj · · · j0; νi with j0i
being the field in the de Sitter invariant vacuum state, and the
subscripts “VF” and “RR” stand for the vacuum-fluctuation
and radiation-reaction contribution, respectively. In the
above equations, the statistical functions of the field, Dab
and Δab, are defined as

DabðxaðτÞ; xbðτ0ÞÞ ¼ h0jfφfðxaðτÞÞ;φfðxbðτ0ÞÞgj0i; ð14Þ

and

ΔabðxaðτÞ; xbðτ0ÞÞ ¼ h0j½φfðxaðτÞÞ;φfðxbðτ0ÞÞ�j0i; ð15Þ

where Dab is called the Hadamard elementary function of
the field,Δab is the Pauli-Jordan function of the field, as well
as f; g and ½; � denote the anticommutator and the commu-
tator, respectively. Besides, they are also expressed in term
of the statistical functions of the free part of the atom’s
variable,

Δabðτ; τ0Þ ¼ hωj½mf
aðτÞ; mf

bðτ0Þ�jωi; ð16Þ

and

Dabðτ; τ0Þ ¼ hωjfmf
aðτÞ; mf

bðτ0Þgjωi; ð17Þ

where Δab and Dab are the linear susceptibility and the
symmetric correlation function of the two-atom system in
the state jωi, respectively.
It is worth noting thatΔab andDab are only characterized

by the two-atom system itself, which is not dependent on the
trajectory of the atoms. In Eq. (13), it implies that the two
contributions in the rate of the atoms’ energies not only are
related with the isolated atoms, and also are due to the cross
correlations between the atoms mediated by the field. This
interference attributes to the interaction of each atom with
field. Such observations show that such a formalism can
make it possible for us to investigate the interaction between
the vacuum fluctuations and the radiation reaction in the
entanglement generation or degradation between atoms.
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According to the completeness relation
P

ω0 jω0ihω0j ¼ 1

and mf
aðτÞ ¼ eiHAτmf

að0Þe−iHAτ, one can obtain explicit
forms of statistical functions for the two-atom system
which are given by

Δabðτ; τ0Þ ¼
X
ω0

½Mabðω;ω0Þei△ωðτ−τ0Þ

−Mbaðω;ω0Þe−i△ωðτ−τ0Þ�; ð18Þ

and

Dabðτ; τ0Þ ¼
X
ω0

½Mabðω;ω0Þei△ωðτ−τ0Þ

þMbaðω;ω0Þe−i△ωðτ−τ0Þ�; ð19Þ

where △ω ¼ ω − ω0 with ω0 being the energy of the state
jω0i, and the sum extends over the complete set of atomic
states. In addition, the atomic transition monopole moment
Mabðω;ω0Þ is defined by

Mabðω;ω0Þ ¼ hωjmf
að0Þjω0ihω0jmf

bð0Þjωi: ð20Þ

In this paper we are interested in transitions from
entangled states [currently represented by the Bell states]
to one of the separable states, or the inverse, where the
separable states and the Bell states are given by Eqs. (6) and
(7), respectively. On the one hand, to study the entangle-
ment degradation between atoms as a spontaneous emis-
sion phenomenon, we suppose the atoms prepared in an
entangled state jψ�i. Therefore, according to Eqs. (6) and
(7), the only allowed transitions are jψ�i → jggi, with
the energy gap Δω ¼ ω − ω0 ¼ ω0 > 0, as well as
jψ�i → jeei, with Δω ¼ ω − ω0 ¼ −ω0 < 0. On the other
hand, if one wishes to investigate the entanglement gen-
eration between atoms, we assume that the atoms were
initially prepared in the atomic separate state. When the

atoms prepared in the ground state jggi initially, only the
transition jggi → jψ�i, with Δω ¼ ω − ω0 ¼ −ω0 < 0, is
permitted. Similarly, when the atoms are initially prepared
in the excited state, we have jeei → jψ�i with
Δω ¼ ω − ω0 ¼ ω0 > 0. We also note that if one considers
the transition from the jggi or jeei to jϕ�i, we get
Δω ¼ ω − ω0 ¼ 0. This implies that the rate of variation
of atomic energy is zero, i.e., hdHA=dτi ¼ 0. Hence it is
not necessary to consider the generation of such Bell states
out of the separate states.

III. RATE OF VARIATION OF THE ATOMIC
ENERGY FOR STATIC ATOMS

In this section let us consider our static two-atom system
in a situation where both atoms move along different
trajectories r1¼r;θ1¼θ;ϕ1¼ϕ and r2 ¼ r;θ2¼ θ0;ϕ2¼ϕ,
respectively. We are interested in the de Sitter-invariant
vacuum state which describes the conformally coupled
massless scalar field, due to the fact that it is an analogous
state to the Minkowski vacuum in flat spacetime [47]. Then
wewill calculate the rate of variation of atomic energy for the
atoms in de Sitter spacetime interacting with a conformally
coupled massless scalar field in the de Sitter-invariant
vacuum.We discuss the permissible transition as considered
at the end of the previous section. The relevant correlation
function of the conformally coupled massless scalar field
which appears in Eq. (13) is given by

Gþðx; x0Þ ¼ −
1

4π2
1

ðz0 − z00Þ2 −△z2 − iϵ
; ð21Þ

where △z2¼ðz1−z01Þ2þðz2−z02Þ2þðz3−z03Þ2þðz4−z04Þ2
and ϵ is an infinitesimal constant. According to the trajectory
of two-atom systemandEq. (21), the associatedHadamard’s
elementary functions of the field, Dab, can be calculated

DabðxaðτÞ; xbðτ0ÞÞ ¼ −
1

16π2

�
1

κ2sinh2ðτ−τ0
2κ − iϵÞ þ

1

κ2sinh2ðτ0−τ
2κ − iϵÞ

�
; ða ¼ bÞ;

DabðxaðτÞ; xbðτ0ÞÞ ¼ −
1

16π2

�
1

κ2sinh2ðτ−τ0
2κ − iϵÞ − r2sin2ðθ−θ0

2
Þ þ

1

κ2sinh2ðτ0−τ
2κ − iϵÞ − r2sin2ðθ0−θ

2
Þ

�
; ða ≠ bÞ; ð22Þ

where κ ¼ ffiffiffiffiffiffi
g00

p
α ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2=α2

p
α and τ − τ0 ¼ ffiffiffiffiffiffi

g00
p ðt − t0Þ. Applying the statistical functions of the field Eq. (22) and

the statistical functions of the atom Eq. (18) into the Eq. (13), the contribution of the vacuum-fluctuation to the rate of
variation of the atomic energy can be evaluated. Performing a change of variable μ ¼ τ − τ0, with Δτ ¼ τ − τ0, we have

�
dHA

dτ

�
VF

¼ λ2

32π

X
ω0

△ω

Z
△τ

−△τ
du

	
ðM11ðω;ω0ÞþM22ðω;ω0ÞÞ

�
1

κ2sinh2ð u
2κ− iϵÞþ

1

κ2sinh2ð u
2κþ iϵÞ

�
ei△ωu

þðM12ðω;ω0ÞþM21ðω;ω0ÞÞ
�

1

κ2sinh2ð u
2κ− iϵÞ− r2sin2ðΔθ

2
Þþ

1

κ2sinh2ð u
2κþ iϵÞ− r2sin2ðΔθ

2
Þ
�
ei△ωu



; ð23Þ
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where ϵ → 0þ and Δθ ¼ θ − θ0. Through the contour integral, we may compute the relevant integrals. For sufficiently
long times △τ → ∞, one has

�
dHA

dτ

�
VF

¼ −
λ2

4π

X2
a;b¼1

�X
ω>ω0

Mabðω;ω0Þð△ωÞ2
�
1þ 2

e2πκ△ω − 1

�
fabð△ω; L=2Þ

−
X
ω<ω0

Mabðω;ω0Þð△ωÞ2
�
1þ 2

e2πκj△ωj − 1

�
fabð△ω; L=2Þ

�
; ð24Þ

where we have defined

fabð△ω; L=2Þ ¼
8<
:

1; ða ¼ bÞ;
sin½2κ△ωsinh−1ðL=2κÞ�
L△ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þL2=ð2κÞ2

p ; ða ≠ bÞ; ð25Þ

with L ¼ 2r sinðΔθ=2Þ being the distance between the two
atoms in the 5-dimensional embedding space (1)–(2). It
becomes clear to note that when only the first term (ω > ω0)
contributes, i.e., △ω > 0, we have hdHA=dτiVF < 0,
which means that the vacuum fluctuations lead to a
deexcitation of the two-atom system. However, when
△ω < 0 (ω < ω0), there is only contribution from the

second term. One has hdHA=dτiVF > 0 which implies
the excitation of two-atom system. This is reminiscent
from the fact that the stimulated excitation and deexcitation
have equal Einstein B coefficients when an atom interacting
with quantized radiation, which indicates that vacuum
fluctuations will excite an atom in the ground state as well
as deexcite an atom in the excited state [48]. As discussed at
the end of the previous section, this tells us that vacuum
fluctuations can promote the entanglement degradation or
the entanglement generation between the atoms.
On the other hand, applying the trajectory of two-atom

system and Eq. (21) into the equation Δab, the Pauli-Jordan
functions of the field are given by

ΔabðxaðτÞ; xbðτ0ÞÞ ¼ −
1

16π2

�
1

κ2sinh2ðτ−τ0
2κ − iϵÞ −

1

κ2sinh2ðτ0−τ
2κ − iϵÞ

�
; ða ¼ bÞ;

ΔabðxaðτÞ; xbðτ0ÞÞ ¼ −
1

16π2

�
1

κ2sinh2ðτ−τ0
2κ − iϵÞ − r2sin2ðθ−θ0

2
Þ −

1

κ2sinh2ðτ0−τ
2κ − iϵÞ − r2sin2ðθ0−θ

2
Þ

�
; ða ≠ bÞ: ð26Þ

Performing similar calculations as above, one has the contribution of the radiation reaction

�
dHA

dτ

�
RR

¼ λ2

32π

X
ω0

△ω

Z
△τ

−△τ
du

	
ðM11ðω;ω0ÞþM22ðω;ω0ÞÞ

�
1

κ2sinh2ð u
2κ− iϵÞ−

1

κ2sinh2ð u
2κþ iϵÞ

�
ei△ωu

þðM12ðω;ω0ÞþM21ðω;ω0ÞÞ
�

1

κ2sinh2ð u
2κ− iϵÞ− r2sin2ðΔθ

2
Þ−

1

κ2sinh2ð u
2κþ iϵÞ− r2sin2ðΔθ

2
Þ
�
ei△ωu



: ð27Þ

By invoking the method of residue, we extend the range of integration to infinity for △τ → ∞ and the result is

�
dHA

dτ

�
RR

¼ −
λ2

4π

X2
a;b¼1

�X
ω>ω0

Mabðω;ω0Þð△ωÞ2fabð△ω; L=2Þ þ
X
ω<ω0

Mabðω;ω0Þð△ωÞ2fabð△ω; L=2Þ
�
: ð28Þ

We note that the effect of the radiation reaction is to induce
a loss of atomic energy hdHA=dτiRR < 0 which is inde-
pendent of how the qubit was initially prepared. In other
words, the radiation reaction does not contribute to the
entanglement generation between the atoms through an
absorption process. Besides, it leads always to disentan-
glement via spontaneous emission processes. This is

reminiscent from the fact that for an entangled two-level
system interacting with classical noise. Such noise
will generally tend to decoherence and disentanglement
processes.
Adding up the contributions of vacuum fluctuation and

the reaction given by Eqs. (24) and (28), the total rate of
change of the atomic energy can be obtained
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�
dHA

dτ

�
tot

¼ −
λ2

2π

X2
a;b¼1

�X
ω>ω0

Mabðω;ω0Þð△ωÞ2

×

�
1þ 1

e2πκ△ω − 1

�
fabð△ω; L=2Þ

�

þ λ2

2π

X2
a;b¼1

�X
ω<ω0

Mabðω;ω0Þð△ωÞ2

×
1

e2πκj△ωj − 1
fabð△ω; L=2Þ

�
: ð29Þ

It clearly shows that the delicate balance between the
contributions of vacuum fluctuations and the radiation
reaction is broken. Therefore, the transitions to higher
levels states from ground state are possible. In the present
context, it is possible to generate entanglement between the
atoms via absorption processes for large asymptotic times.
In addition, from Eqs. (6) and (7), as discussed above, the
nonzero monopole matrix elements in Eq. (20) are given by

M11ðω;ω0Þ ¼ 1

2
;

M22ðω;ω0Þ ¼ 1

2
;

M12ðω;ω0Þ ¼ M21ðω;ω0Þ ¼ � 1

2
; ð30Þ

where ω represents the separate state jggi (or jeei) and ω0

denotes the entangled states jψ�i, or vice versa. Hence the
explicit result for the contribution of vacuum fluctuations to
the rate of change of the atomic energy in Eq. (24) is

�
dHA

dτ

�
tot
¼−

λ2

2π

�X
ω>ω0

ð△ωÞ2
�
1þ 1

e2πκ△ω−1

�

× ð1�fð△ω;L=2ÞÞ

−
X
ω<ω0

ð△ωÞ2 1

e2πκj△ωj−1
ð1�fð△ω;L=2ÞÞ

�
;

ð31Þ

where the (minus) plus sign refers to the
(anti)symmetric Bell state (jψ−i) jψþi and fð△ω; L=2Þ ¼
sin½2κ△ωsinh−1ðL=2κÞ�
L△ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þL2=ð2κÞ2

p . It is worth noting that the rate of variation

of atomic energy is modified by an extra term fð△ω; L=2Þ
as compared to that of an atom in de Sitter spacetime [33].
Such a functionfð△ω; L=2Þ quantifies the effect of the cross
correlations mediated by the scalar field on the quantum
entanglement between two atoms. This is in sharp contrast
with the case of an atom [33] where the effect of the
spacetime curvature on the contributions of vacuum fluc-
tuations and radiation reaction is only a “thermal” correction
with temperature T ¼ 1=ð2πκÞ. Therefore, with these
differences between the two-atom system and an atom in

de Sitter spacetime,wemay find new effects that allows us to
get the difference between the de Sitter spacetime and the
thermal Minkowski spacetime.
Firstly, let us investigate the behavior of the rate of

variation of energy between two atoms in de Sitter
spacetime in the well known extreme cases. We identify
a characteristic length scale κ [39] which is a function of r,
and that the trajectories considered are not geodesics
(unless r ¼ 0) but have curvature determined by r. In the
case of that the distance between two atoms are smaller
than κ, it is possible to find a local inertial frame where
the linear susceptibility of field is well described in
Minkowski spacetime. In the other case when the inter-
atomic distances are larger than κ, the curvature of de Sitter
spacetime may have a nontrivial character. Thus, in the
limit of L ≪ κ, one has

�
dHA

dτ

�
tot
≈ −

λ2

2π

X
ω>ω0

ð△ωÞ2
�
1þ 1

e2πκ△ω − 1

�

×

�
1� 1

L△ω
sinðL△ωÞ

�

þ λ2

2π

X
ω<ω0

ð△ωÞ2 1

e2πκj△ωj − 1

×

�
1� 1

L△ω
sinðL△ωÞ

�
; ð32Þ

while for L ≫ κ, i.e., when the atoms are far apart
compared to the radius of curvature of their worldlines,
we get

�
dHA

dτ

�
tot
≈ −

λ2

2π

X
ω>ω0

ð△ωÞ2
�
1þ 1

e2πκ△ω − 1

�

×

�
1� 2κ

L2△ω
sin

�
2κ△ω log

�
L
κ

���

þ λ2

2π

X
ω<ω0

ð△ωÞ2 1

e2πκj△ωj − 1

×

�
1� 2κ

L2△ω
sin

�
2κ△ω log

�
L
κ

���
: ð33Þ

Let us note that when the distance between two atoms is
smaller than the characteristic length scale (L ≪ κ), the
function fð△ω; L=2Þ in Eq. (31) varies with the interatomic
distance as 1=L which is shown in Eq. (32). However, for
the case of that the interatomic distance is larger than the
characteristic length scale given by Eq. (33), i.e., L ≫ κ,
the cross correlations behave with the interatomic distance
as 1=L2.
It is worth it to compare the above results with that in the

thermal Minkowski spacetime scenario. Let us consider the
rate of variation of energy between the two-atom system in
Minkowski spacetime. In this case, the quantum system is
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composed by two identical two-level atoms interacting with
a massless scalar field in a thermal bath of temperature
which is described by T ¼ 1=ð2πκÞ. When the distance
between the two static atoms is L ¼ 2r sinðΔθ=2Þ in a
thermal bath of Minkowski spacetime, then the field
correlation functions can be written as

GþðxaðτÞ;xbðτÞÞ

¼−
1

4π2
X∞
n¼−∞

1

ðΔτ− in=T− iϵÞ2 ; ða¼ bÞ;

GþðxaðτÞ;xbðτ0ÞÞ

¼−
1

4π2
X∞
n¼−∞

1

ðΔτ− in=T− iϵÞ2−L2
; ða≠ bÞ; ð34Þ

where Δτ ¼ t − t0 with t being the proper time of the static
atoms in flat spacetime and ϵ is an infinitesimal constant.
According to the definition of statistical functions in
Eqs. (14)–(17), we can obtain the contributions of thermal
fluctuations and the radiation reaction to the rate of change
of the atomic energy, for sufficiently large Δτ, which are
given by

�
dHA

dτ

�
VF

¼−
λ2

4π

�X
ω>ω0

ð△ωÞ2
�
1þ 2

e△ω=T −1

��
1�sin½L△ω�

L△ω

�

−
X
ω<ω0

ð△ωÞ2
�
1þ 2

ej△ωj=T−1

��
1�sin½L△ω�

L△ω

��
; ð35Þ

and

�
dHA

dτ

�
RR

¼ −
λ2

4π

�X
ω>ω0

ð△ωÞ2
�
1� sin½L△ω�

L△ω

�

þ
X
ω<ω0

ð△ωÞ2
�
1� sin½L△ω�

L△ω

��
: ð36Þ

Adding the contributions of thermal fluctuations (35) and
the radiation reaction (36), one can get the total rate of
change of the atomic energy

�
dHA

dτ

�
tot

¼ −
λ2

2π

X
ω>ω0

ð△ωÞ2
�
1þ 1

e△ω=T − 1

�

×

�
1� sin½L△ω�

L△ω

�

þ λ2

2π

X
ω<ω0

ð△ωÞ2 1

ej△ωj=T − 1

�
1� sin½L△ω�

L△ω

�
;

ð37Þ

where the (minus) plus sign refers to the (anti)symmetric
Bell state (jψ−i) jψþi. Hence, we note that for the case
L ≪ κ in de Sitter spacetime, the rate of variation of atomic
energy given by Eq. (32) recovers to the result obtained in
Eq. (37) for a two-atom system in the thermal Minkowski
spacetime.
Next, we would like to analyze the behavior of the total

rate of variation of atomic energy in terms of the distance L
between two atoms, which is associated with the transition
from the separate state to the Bell state jψ�i in de Sitter
spacetime and thermal Minkowski spacetime respectively.
This implies that we are investigating the generation of
entanglement in these two different spacetime.
On the one hand, we start considering the transition from

the ground state to the Bell state via an absorption process,
i.e., jggi → jψ�i with the energy gap △ω ¼ −ω0 < 0. For
the case of jggi → jψþi, according to the expressions of
Eqs. (31) and (37), in Fig. 1 it shows the behaviors of the
total rate of variation of atomic energy with respect to
the interatomic distance L in de Sitter spacetime and in the
thermalMinkowski spacetime, for fixed κ ¼ 0.5 and γ0 ¼ 1

in the unit of 1=ω0. Here, γ0 ¼ λ2ω0

2π is the spontaneous
emission rate. It is easy to find that hdHA=dτitot > 0 for both
spacetime, which means that the entangled state can be
created from ground-state atoms via absorption process all
the time.We also can see from the plot thatwhen the distance
between the atoms is smaller than κ, i.e., for small separation
between the atoms, the curve of this rate in de Sitter
spacetime is almost coincided with that in the thermal
Minkowski spacetime, which means that all the laws of
physics in de Sitter spacetime recover to that in flat
spacetime. Moreover, we are interested in noting that when
the atoms are very near each other, there is an increase of the
rate of variation of atomic energy induced by the influence of
cross correlation, which means that the cross correlations
create a constructive interference. However, as the distance
between the atoms increases, the rate of variation of atomic

de Sitter

Minkowski

0 5 10 15 20
L
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0.10
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d tot

0.000 0.002 0.004 0.006 0.008 0.010
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0.09034

0.09036

0.09038
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,

L

FIG. 1. The total rate of variation of atomic energy is associated
with the transition jggi → jψþi as functions of the parameter L.
Solid line corresponds to the de Sitter spacetime, and dashed line
to the thermal Minkowski spacetime, respectively. We choose
γ0 ¼ 1, and κ ¼ 0.5. Here, L, γ0 and κ are in the unit of 1=ω0.
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energy for the de Sitter spacetime case and that for the
thermal Minkowski spacetime case decrease differently.
This is due to the fact that when the distance between two
atoms is very large, i.e., the two-atom system is far apart
compared to the radius of curvature of their worldlines, the
constructive interference in de Sitter spacetime vanishes
more quickly with power law 1=L2, while for the thermal
Minkowski spacetime case, the constructive interference
fades away in an oscillatory with power law 1=L. More
importantly, to understand the difference behaviors plotted
in Fig. 1, it is significant to realize that the correlations in
(33), compared to those in (32), not only fall off faster, but
also have their oscillations greatly and increasingly slowed
down, because of the logarithm. This tells us that for short
distance between the atoms the generation of entanglement
via absorption process is magnified highly in comparison
with the case in which the distance between the atoms is
very large.
For the other case of the generation of the antisymmetric

Bell state via absorption process, we have jggi → jψ−i. In
Fig. 2 we plot the total rate of variation of energy between
two atoms, in de Sitter spacetime and thermal Minkowski
spacetime respectively, as functions of the interatomic
distance L for fixed κ ¼ 0.5 and γ0 ¼ 1. We note that
for small distance between the atoms, i.e., L ≪ κ, our
results for the de Sitter spacetime behave the same as those
of the thermal Minkowski spacetime. Besides, it is inter-
esting to find that as the atoms approach each other, one has
hHA=dτitot → 0, which means that the entangled state jψ−i
cannot be created from the ground state jggi as a conse-
quence of the destructive interference of quantum correla-
tions between the atoms. In this respect, we can recover the
well known result as considered in Ref. [46], which states
that for atoms confined in a region much smaller than the
optical wavelength, one regards the antisymmetric Bell
state as a decoherence-free state. However, when the
distance between the atoms is very large, i.e., L ≫ κ,

the rate of variation of energy increases differently, because
the interference in de Sitter spacetime will vanish more
quickly with power law 1=L2 than that for the thermal
Minkowski spacetime case with power law 1=L. Therefore,
the generation of quantum entanglement via absorption
process is largely inhibited when the distance between the
atoms is small compared with that for large distance.
On the other hand, we would like to discuss the transition

jeei → jψ�i in de Sitter spacetime and thermal Minkowski
spacetime, and study the generation of entanglement via
emission process. With this respect, we get △ω ¼ ω0 > 0.
First, we consider the case of the generation of the
symmetric Bell state via spontaneous emission process,
i.e., jeei → jψþi. Then we plot the rate of variation of
atomic energy as a function of L in Fig. 3, for fixed κ ¼ 0.5
and γ0 ¼ 1 in de Sitter spacetime and the thermal
Minkowski spacetime respectively. We can see from the
Fig. 3 that hHA=dτitot < 0 is independent of how far the
atoms are separated for both spacetime, which implies that
the entangled state always can be generated via emission
process. Again, we find that as the distance between the
atoms is small (L ≪ κ), the results obtained in de Sitter
spacetime are the same with that in the thermal Minkowski
spacetime. In addition, as the atoms very close to each
other, both effects of fluctuations and the radiation reaction
lead to a violently loss of atomic energy via emission
process, because of the constructive interference of cross
correlations between the atoms. It is also worth noting that
for a large separation between the atoms (L ≫ κ), the loss
of atomic energy via emission process is weakened with
different behaviors in de Sitter spacetime and thermal
Minkowski spacetime. The reason is that the constructive
interference in de Sitter case decays quickly as a conse-
quence of the effect of the curvature of de Sitter spacetime,
while this interference dies off in an oscillatory manner in
flat spacetime. It shows that there is a greatly enhanced
generation of entanglement between the atoms via emission
process as the atoms approach each other.
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L
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,
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L

FIG. 3. The total rate of variation of atomic energy related to the
transition jeei → jψþi, is the functions of the parameter L. Solid
line corresponds to the de Sitter spacetime, and dashed line to the
thermal Minkowski spacetime, respectively. We choose γ0 ¼ 1,
and κ ¼ 0.5. Here, L, γ0 and κ are in the unit of 1=ω0.
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FIG. 2. The total rate of variation of atomic energy is associated
with the transition jggi → jψ−i as functions of the parameter L.
Solid line corresponds to the de Sitter spacetime, and dashed line
to the thermal Minkowski spacetime, respectively. We choose
γ0 ¼ 1, and κ ¼ 0.5. Here, L, γ0, and κ are in the unit of 1=ω0.

LIU, TIAN, WANG, and JING PHYS. REV. D 97, 105030 (2018)

105030-8



For the case jeei → jψ−i, we illustrate the behavior of
the rate of variation of atomic energy as functions of the
interatomic distanceL for fixed κ ¼ 0.5 and γ0 ¼ 1 in Fig. 4.
We note that the de Sitter spacetime and the thermal
Minkowski spacetime share the same properties when the
distance between the atoms is small (L ≪ κ). Moreover, we
remark that for the atoms are very near to each other, one gets
hdHA=dτitot → 0 for the antisymmetric state, which repre-
sents that the Bell state jψ−i is stable via emission processes
due to destructive interference of cross correlations between
the atoms. Besides, as the interatomic distance increases, the
absolute values of the rate of variation of atomic energy
increase differently for the case of de Sitter spacetime and
the thermal Minkowski spacetime, which implies that the
loss of atomic energy via emission process grows differently.
This is resulted from that the destructive interference in
de Sitter spacetime disappears quickly, but for the thermal
Minkowski spacetime case it dies off in an oscillatory
manner. Therefore, it tells us that the generation of entan-
glement via emission process is largely suppressedwhen the
atoms are near each other. Incidentally, when we study the
properties of the rate of variation of atomic energy associated
with the transition jψ�i → jggi and jψ�i → jeei, i.e.,
degradation of quantum entanglement, the results obtained
in de Sitter spacetime and thermalMinkowski spacetime are
qualitatively similar to those discussed above as expected.

IV. CONCLUSION

We have studied the radiative processes of two-level
atoms interacting with a conformally coupled massless

scalar field prepared in the de Sitter-invariant vacuum.
Employing the formalism developed by Dalibard, Dupont-
Roc, and Cohen-Tannoudji, we investigated the distinct
contributions of vacuum fluctuations and the radiation
reaction to the quantum entanglement between two iden-
tical static atoms in de Sitter spacetime. We have shown that
when the distance between the atoms smaller than the
characteristic length scale, the rate of variation of atomic
energy in de Sitter spacetime is similar to that in thermal
Minkowski spacetime. However, when beyond the char-
acteristic length scale, this rate in both spacetime behaves
differently. In this paper, two different entangled states, the
symmetric Bell state and the antisymmetric Bell state, have
been studied.
For the symmetric Bell state, it can always be generated

even if they are initially prepared in a separable state.
Moreover, we found that the generation or degradation
entanglement are highly magnified when the atoms are near
to each other, as a consequence of that the cross correlation
between the atoms generates a constructive interference
for short distance and then this interference decreases for
large separation between the atoms. However, when the
distance between the atoms is very large, the interference in
de Sitter spacetime vanishes quickly, while for the thermal
Minkowski spacetime, it dies off in an oscillatory manner.
On the other hand, for the antisymmetric Bell state case,

the generation or degradation entanglement will be largely
suppressed when the atoms approach each other in com-
parison with the case in which the interatomic distance is
very large. That is, when the atoms are very near to each
other, the antisymmetric Bell state is stable with respect to
radiation process. This is because for small distance, the
quantum correlation between the atoms creates destructive
interference which disappears for large distance. In addi-
tion, for a very large separation between the atoms, this
interference in de Sitter spacetime vanishes more quickly
than that in thermal Minkowski spacetime.
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