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The baby Skyrme model is studied in the presence of an isospin chemical potential. The inclusion of the
chemical potential leads to an asymmetric vacuum. As a result, the residual SOð2Þ symmetry of the model
is broken into the discrete Z2 group. Nontrivial topological field configurations are found to be allowed in
the model. We obtained numerical solutions for the solitons on top of the new vacuum by minimizing the
energy functional using a simulated annealing algorithm. All the calculations were performed by relaxing
the rotational symmetry inherent to the hedgehog approximation. The corresponding soliton solutions
exhibit discrete symmetries imposed by the new vacuum.
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I. INTRODUCTION

The Skyrme model is a nonlinear theory for SUð2Þ
valued scalar fields in 3þ 1 dimensions which admits
topologically stable soliton solutions [1]. There is a good
number of related models sharing analogous topological
properties which are directly derived from a generalization
of the mathematical structure of the Skyrme model.
Published in the literature are realizations of the general
picture where the static fields are considered maps between
two Riemannian manifolds. Such is the case of the so-
called baby Skyrme model, which can be formally obtained
from a consistent truncation of the physical and the target
space of its parent SUð2Þ Skyrme model [2]. In that specific
model the physical space is two-dimensional euclidean
space, and the target space is the two-sphere S2.
Topological nontrivial soliton solutions in thebabySkyrme

model have proven to be relevant in the description of many
condensed-matter systems, such as ferromagnetic quantum
Hall systems, liquid crystals and helical magnets [3,4].
The existence of topological excitations in the Skyrme-

type models is quite often analyzed in a physical phase
where the vacuum field configuration exhibits a global
continuous symmetry from a subgroup of the full symmetry
group of the energy functional. Guided by physical
motivations one can however envisage different ways to
destabilize the symmetric vacuum, thus triggering a spon-
taneous breaking of the symmetry in the theory. One can for
instance endow the underlying scalar field theory with
chemical potentials associated with the conserved charges
corresponding to the global symmetries. Roughly speaking,
the mechanism provides the essential ingredients for
Bose-Einstein condensation and thus sets the proper

conditions to produce a broken physical phase. This idea
was explained in detail in Ref. [5]; though in the framework
of electroweak theory the guiding lines developed there are
entirely general and can be perfectly imported to Skyrme-
type models [6,7].
The phenomenon of symmetry breaking in the baby

Skyrme model has been studied from different perspectives,
namely that of spinning and isospinning Skyrmions [8–11].
For instance, authors in [9,10] go beyond the axially
symmetric solution ansatz for the baby Skyrme model by
allowing the isospining solitons to deform, thus breaking the
symmetries of the static configurations. On these grounds,
previous works highlighted the fact that in both 3þ 1 and
2þ 1 dimensions, a spinning Skyrmion becomes unstable
above a certain value of the angular velocity where it starts
radiating the excess energy and angular momentum [11,12].
As a result, the spinning Skyrmion slows down until its
stability is effectively restored. The authors in [8] present a
situation where the radiation is inhibited by a given
mechanism revealing numerical solutions with spontane-
ously broken symmetry, although the physical arguments
behind this numerical result remain unclear. Nonetheless,
the result is suggestive, and it is presumably related to a
change in the vacuum structure of the theory.
In this work we explore the possibility of having stable

topological solitons in the baby Skyrme model where an
isospin chemical potential destabilizes the symmetric
vacuum. The isospin chemical potential is coupled to the
Skyrme field in such a way as to reproduce the coupling of
a Uð1Þ isovector gauge field. Gauging the Skyrme field has
been proposed previously [13], and the idea has been used
in different physical contexts. Here the motivation for
gauging is to destabilize the symmetric vacuum, resulting
in possible new genuine solutions with discrete symmetries
describing solitons in a condensation phase.*japonciano@ecfm.usac.edu.gt
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In the next section we recall the main features of the
original baby Skyrme model, and then we develop the
description of the model in the presence of an isospin
chemical potential. We then construct the topological
solitons on top of an asymmetric field configuration which
minimizes the energy functional in the broken phase. The
numerical calculations in different topological sectors have
been performed by relaxing the axial symmetry on Skyrme
configurations and varying the isospin chemical potential
parameter μI.

II. BABY SKYRMION IN THE PRESENCE
OF AN ISOSPIN CHEMICAL POTENTIAL

We start by considering the Skyrme-type Lagrangian
density in two spatial dimensions,

L¼−
F2

4
TrfLαLαgþK2

16
Trf½Lα;Lβ�2g−

m2

2
Trf1þ iτ3Ug;

ð1Þ
where U ∈ SUð2Þ, and the Maurier-Cartan operator Lα is
defined by Lα ¼ U†∂αU.
From the Lagrangian density (1) one can derive the baby

Skyrme model by restricting the Skyrme field to an
equatorial 2-sphere of the SUð2Þ target space. In the
baby Skyrme formulation the basic field is a real three-
component vector Φ⃗≡ ðΦ1;Φ2;Φ3Þ which satisfies the
constraint Φ2

1 þΦ2
2 þΦ2

3 ¼ 1. The associated restricted
Skyrme field is U ¼ iΦ⃗ · τ⃗.
The field Φ⃗ is defined in the three-dimensional

Minkowski spaceM3. Togetherwith the constraint Φ⃗ · Φ⃗¼ 1
it defines a map of the physical space into the field space,

Φ⃗ðt; x1; x2Þ∶M3 ↦ S2: ð2Þ
The target manifold S2 is the 2-sphere of unit radius.
Substituting the restricted Skyrme field into the

Lagrangian (1) results in the baby Skyrme Lagrangian
density,

L ¼ F2

2
∂μΦ⃗ · ∂μΦ⃗ −

K2

4
fð∂μΦ⃗ · ∂μΦ⃗Þ2

− ð∂μΦ⃗ · ∂νΦ⃗Þð∂μΦ⃗ · ∂νΦ⃗Þg −m2ð1 −Φ3Þ; ð3Þ

or, equivalently,

L¼F2

2
∂μΦ⃗ ·∂μΦ⃗−

K2

4
j∂μΦ⃗×∂νΦ⃗j2−m2ð1− n⃗ · Φ⃗Þ; ð4Þ

where n⃗ ¼ ð0; 0; 1Þ.
The classical solutions in this model were first studied in

detail in Refs. [2,11,14]. The finite energy configurations
require that the field Φ⃗ tends to the constant field n⃗ at
spatial infinity,

lim
jx⃗j→∞

Φ⃗ðx⃗Þ ¼ n⃗: ð5Þ

As a result the fields Φ⃗ at a fixed time can be regarded as
maps from the compacted physical space R2 ∪ f∞g to S2.
Thus topologically Φ⃗ðx⃗Þ defines a map,

Φ⃗ðx1; x2Þ∶S2 ⟼ S2: ð6Þ

A given configuration can thus be considered as a repre-
sentative of a homotopy class in π2ðS2Þ ≃ Z, labeled by an
integer topological degree,

N ¼ 1

4π

Z
d2xΦ⃗ · ∂1Φ⃗ × ∂2Φ⃗: ð7Þ

The size stability of the field configurations in each
topological sector is ensured by the interplay among the
different terms in the Lagrangian, which scale either as
negative or as positive powers of a spatial dilation factor.
The fourth order term in the field derivatives, or Skyrme

term, breaks the scale invariance of the underlying σ model.
According to the Derrick’s theorem [15], the contribution
with no derivatives is further needed to prevent the soliton
from collapsing under the rescaling Φ⃗ðx⃗Þ → Φ⃗ðx⃗=λÞ, where
λ < 1. This contribution becomes a mass term for the field
Φ⃗ when it is regarded as a small fluctuation around the
vacuum given by Eq. (13). In the (3þ 1) dimensional
model, which has been widely used as an effective
description for strong interactions, this term gives the pions
a tree level mass.
The baby Skyrme model (4) is invariant under the

symmetry group,

G ¼ E2 × SOð2Þ × P: ð8Þ

Here, P is a combined reflection in both space and the
target space S2, namely,

P∶ðx1; x2Þ ↦ ðx1;−x2Þ and

ðΦ1;Φ2;Φ3Þ ↦ ðΦ1;−Φ2;Φ3Þ: ð9Þ

The model inherits the Oð3Þ symmetry group from the
linear σ model which is applicable to some condensed-
matter systems. A particular selection in (4) of the constant
field n⃗ at spatial infinity breaks Oð3Þ into H ≡ SOð2Þ.
We shall analyze the baby Skyrme model in the presence

of an isospin chemical potential μI , following a completely
general prescription to include it into the model. The
coupling of μI modifies the vacuum structure giving rise
to a new phase where the global SOð2Þ symmetry of the
original model is spontaneously broken. This corresponds
to the regime where it becomes energetically favorable to
condense field excitations of mass m out of the vacuum,
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that is to say, when μI > m. We are interested in studying
the existence of topological solitons on top the new
vacuum.
The coupling of the isospin chemical potential μI to the

Skyrme field U mimics the coupling of a Uð1Þ isovector
gauge field [16,17]. It is introduced in the Lagrangian
density (1) by performing the replacement,

∂αU → ∂αU − i
μI
2
½τ3; U�gα0; ð10Þ

where τ3 is the third Pauli matrix and gαβ is the metric
tensor in Minkowski spaceM3. The coupling of the Skyrme
field to a gauge field is based on the idea first introduced in
[13] and underlying a version of the Skyrme model where
the dynamics is governed by a Maxwell term.
Upon the substitution (10), the Lagrangian density in the

presence of isospin chemical potential results in

L ¼ −
F2

4
TrfLαLαg þ K2

16
Trf½Lα; Lβ�2g − i

m2

2
Trfτ3Ug

þ iμIF2

4
TrfwL0g −

iμIK2

4
TrfwLα½L0; Lα�g

þ μ2IF
2

16
Trfw2g − μ2IK

2

32
Trf½w; Li�2g; ð11Þ

with w ¼ U†τ3U − τ3.
The field configuration which minimizes the energy is

modified by the inclusion of the isospin chemical potential.
In order to find the vacuum energy of the static Skyrme
field we need to consider the following potential terms of
the full Lagrangian presented in (11),

V ¼ −
F2

8
μ2ITrf1 − τ3Uτ3U†g þ i

m2

2
Trfτ3Ug: ð12Þ

Notice that the first term in (12) lowers the energy if U
aligns along the τ1 or τ2 directions, while the second term
favors the τ3 direction.
The configurations that minimize the energy are found

by using an ansatz which allows for a general rotation
between the τ3 and τ1 or τ2 directions. A convenient way
for writing the vacuum is

U ¼ ifτ3 cos αþ sin αðτ1 cosΦ0 þ τ2 sinΦ0Þg; ð13Þ

where the angle α provides the rotation between the τ3 and
τ1 or τ2 isospin directions.
The vacuum is not unique because there is a Uð1Þ

degeneracy corresponding to rotations generated by gα0τ3.
The arbitrary phase Φ0, which appears in Eq. (13), reflects
the infinite degeneracy of the vacuum.
Substituting the ansatz (13) in (12), it is found that the

minimum occurs at α ¼ 0 in the phase where jμIj < m and
cos α ¼ m2

F2μ2I
in the phase where jμIj > m.

The existence of topological solitons corresponding to
α ¼ 0 has been analyzed for the ð3þ 1ÞD Skyrme model in
Ref. [16,17]. In order to describe the soliton in the pion
condensation phase, a suitable ansatz for a finite energy
configuration is

Ũ ¼ U1=2
0 UðtÞU1=2

0 ; ð14Þ

where U1=2
0 is given by

B=1

 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2
 1.4
 1.6
 1.8
 2

B=2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-10 -8 -6 -4 -2  0  2  4  6  8  10

B=3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-10 -8 -6 -4 -2  0  2  4  6  8  10

B=4

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

FIG. 1. Energy density contour plots for the baby skyrmion B ¼ 1, B ¼ 2, B ¼ 3 and B ¼ 4 corresponding to μI ¼ 0.
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U1=2
0 ¼ i

n
τ3 cos

α

2
þ sin

α

2
ðτ1 cosΦ0 þ τ2 sinΦ0Þ

o
: ð15Þ

The static energy solution is found by minimizing

MðμIÞ ¼ M0 −
1

2
Λμ2I ; ð16Þ

where

M0 ¼ −
Z

d2x

�
F2

4
TrfLiLig þ

K2

16
Trf½Li; Lj�2g

− i
m2

2
Trfτ3 · ðŨ − ŨjvacÞg

�
; ð17Þ

and

Λ¼ 1

8

Z
d2x

��
F2Trfω̃2− ω̃2jvacgþ

K2

4
Trf½ω̃; L̃i�2g

��
;

ð18Þ
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FIG. 2. Energy density contour plots for the B ¼ 1, 2, 3 and B ¼ 4 soliton solutions in the baby Skyrme model, including the isospin
chemical potential. The results correspond to different values of μI .
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where we have introduced w̃¼Ũ†τ3Ũ−τ3 and L̃i ¼
U1=2†

0 LiU
1=2
0 .

The presence of the isospin chemical potential breaks the
SOð2Þ symmetry to the remanent discrete group Z2.
The full breaking pattern is thus

Oð3Þ → SOð2Þ → Z2: ð19Þ

III. STATIC SOLITON SOLUTIONS

In order to find static solutions in various homotopy
classes, numerical methods are needed to solve the
classical equations derived from the functional energy
of the static configurations. Alternatively, we can resort
to numerical optimization methods to find the field
configurations that minimize the energy functional (16)
in every topological sector. For the numerical analysis
we fix the parameters of the baby Skyrme model to
those used in the first works [2,11], that is to say, m ¼
1=

ffiffiffiffiffi
10

p
and F ¼ K ¼ 1.

The Skyrme field U can be cast in spherical coor-
dinates by proposing for the Skyrme field the following
form:

U ¼ ðsin½Fðr;ϕÞ� cos½BΦðr;ϕÞ�;
sin½Fðr;ϕÞ� sin½BΦðr;ϕÞ�; cos½Fðr;ϕÞ�Þ; ð20Þ

where B is the topological charge and Fðr;ϕÞ and
Φðr;ϕÞ satisfy the following boundary conditions,

∂F
∂ϕ

����
ϕ¼0

¼ 0;
∂F
∂ϕ

����
ϕ¼2π

¼ 0;

∂Φ
∂r

����
r¼0

¼ 0;
∂Φ
∂r

����
r¼∞

¼ 0;

Φðr; 0Þ ¼ 0; Φðr; 2πÞ ¼ 2πB;

Fð0;ϕÞ ¼ π; Fð∞;ϕÞ ¼ 0: ð21Þ
In Fig. 1 we present the energy density for soliton

solutions in some topological sectors for model (4), which
is equivalent to the case where μI ¼ 0 in (11). These results
were obtained by implementing a simulated annealing
method to find the minimum of the static energy functional
(16) on a grid containing 1002 lattice points. This method
has proven to be robust in determining the minimal energy
configurations of the Skyrme model in 2D and 3D (see for
example [18,19]). Results in Fig. 1 for the topological
sectorsB ¼ 1, 2, 3 and 4 clearly reflect the symmetric phase
in the model. The soliton masses in 4π units are found to be
M1 ¼ 1.567, M2 ¼ 2.942, M3 ¼ 4.487, and M4 ¼ 6.163,
which are in good agreement with those elsewhere [2,9,20].
For nonzero values of the chemical potential μI , the axial

symmetry of the energy density is broken and reduced to
discrete symmetries. The corresponding results for different
topological sectors are displayed in Figs. 2 and 3. In Fig. 2
we present the energy density contour plots for a sequence
of values of μI.

IV. CONCLUDING REMARKS

We have examined a gauged version of the baby Skyrme
model motivated by the inclusion of an isospin chemical
potential μI . A new vacuum structure arises by virtue of the
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FIG. 3. Energy density contour plots for the baby skyrmion in the presence of isospin chemical potential corresponding to B ¼ 5,
B ¼ 6, B ¼ 7 and B ¼ 8 and μI ¼ 0.8.

BROKEN PHASE SOLITONS IN THE BABY SKYRME MODEL PHYS. REV. D 97, 105028 (2018)

105028-5



coupling of the isospin chemical potential to the Skyrme
field. As a consequence, the rotational symmetry of the
original baby Skyrme model is broken.
Regarding the physical content of the model, the variation

of μI sets the possibility to condense field excitations out of
thevacuum.Wehave applied numerical techniques to look for
the minimal energy soliton solutions of the modified baby
Skyrmemodel on top of the new vacuum. The corresponding
solutions in different topological sectors exhibit discrete
symmetries and remain stable by their topological nature.
The results open the possibility for a good number of

analyses about the physics of solitons in the baby Skyrme
model on top of the condensate vacuum. The features

discussed here for the model in 2þ 1 dimensions might
also serve as guidelines to investigate the Skyrme model in
3þ 1 dimensions, where the presence of an isospin
chemical potential could provide a description of a pion
condensate, in agreement with the findings of chiral
perturbation theory [6].
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