
 

Magnetic monopoles with internal structure
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We investigate the presence of magnetic monopoles in a model that extends the non-Abelian model
originally studied by ’t Hooft and Polyakov with the inclusion of an extra neutral field. The investigation
includes modifications of the dynamics of the gauged fields, and the main results unveil a route to construct
solutions that engender internal structure and live in a compact space.
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I. INTRODUCTION

Topological structures appear in a diversity of contexts in
high energy physics [1–5]. Among the several possible
configurations, perhaps the most known structures are kinks
in the line, vortices in the plane, and magnetic monopoles in
the space. In general, kinks are described by real scalar fields,
vortices by charged scalar coupled to an Abelian gauge field,
and monopoles require non-Abelian gauge fields.
In this work we concentrate on magnetic monopoles and

deal with a system similar to the model investigated before
in Refs. [6,7]. As one knows, magnetic monopoles are of
current interest in physics [1–3] and some studies on them
have been carried out recently, for instance, in [8–12] and in
references therein. In the current work, we enlarge the local
SUð2Þ symmetry described in [6,7] to accommodate an
extra neutral field ϕ that engenders the global Z2 sym-
metry. In this sense, we study a model that engenders the
SUð2Þ × Z2 symmetry, with the main motivation coming
from the recent work [13], in which we studied vortices in a
model with the local Uð1Þ symmetry enlarged to describe
the Uð1Þ × Z2 symmetry, with the additional Z2 symmetry
describing the inclusion of a neutral scalar field.
The study of monopoles is much more intricate since it

usually requires the presence of non-Abelian gauge sym-
metry and several degrees of freedom. For this reason, in
the current work we study a simple extension of the model
considered in [6,7], with the inclusion of the neutral field
and some modification in the Lagrangian of the original
model, as we explain below. In the recent work [14]
we have investigated issues related to the construction of
twinlike models in the presence of kinks, vortices, and

monopoles, in the line, plane, and space, respectively, and
the study of monopoles motivated us to elaborate the
current study. The investigation is also motivated by the
work of Ref. [15], which shows how a conventional
topological defect can acquire non-Abelian moduli local-
ized on its world sheet, and by the recent work [16], in
which the authors investigate the presence of color-
magnetic defects in dense quark matter, as in the interior
of compact stars, which may contribute to produce detect-
able gravitational waves. In condensed matter, another
motivation to study monopoles appears with the emergency
of magnetic monopoles [17] in a class of exotic magnets
known collectively as spin ice [18–20], in which the dipole
moment of the underlying structure may fractionalize into
monopoles. As shown in [21], for instance, magnetic
monopoles in spin ice, besides having magnetic charge,
may also have an electric dipole. We then say that magnetic
monopoles may engender internal structure.
In order to ease the current investigation, we require that

the equations of motion are solved by first order differential
equations, which appear from the Bogomol’nyi-Prasad-
Sommerfield (BPS) procedure [22,23]. This leads us to
stable finite energy configurations, and we describe the
possibility to add internal structure and make them com-
pact. Below we introduce the general model, explain the
procedure, investigate and solve some specific models with
a focus on the presence of internal structure, and then close
the work adding some new possibilities of study.

II. THE GENERAL MODEL

Let us consider an extension of the model considered in
[6,7]. To do this, we work in (3,1) spacetime dimensions
and take the Lagrangian density

L ¼ −
1

4
PðϕÞFa

μνFaμν −
MðϕÞ
2

Dμχ
aDμχa

−
1

2
∂μϕ∂μϕ − Vðϕ; jχjÞ: ð1Þ
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Here ϕ is a neutral scalar field, and χa is a triplet of scalar
fields in the adjoint representation that couples to the gauge
field Aa

μ under the SUð2Þ symmetry. The general model is
an extension of a model that is known to admit solutions of
the monopole type. We also have jχj ¼ ffiffiffiffiffiffiffiffiffi

χaχa
p

, Dμχ
a ¼

∂μχ
a þ gεabcAb

μχ
c, and Fa

μν ¼ ∂μAa
ν − ∂νAa

μ þ gεabcAb
μAc

ν.
The function PðϕÞ is generalized magnetic permeability
and MðϕÞ modifies the dynamics of the field χa; they only
depend on the neutral field ϕ, and we suppose that they are
non-negative functions. Moreover, g is the coupling con-
stant between the Aμ and χ fields, the indices a, b, c ¼ 1, 2,
3 stand for the SUð2Þ symmetry of the fields, and the greek
letters μ, ν ¼ 0, 1, 2, 3 represent the spacetime indices.
The metric tensor is ημν ¼ diagð−;þ;þ;þÞ and we use

natural units, that is, ℏ ¼ c ¼ 1. Previous investigations on
generalized models searching for magnetic monopoles in
the presence of magnetic permeability and modification of
the dynamics of the scalar field have been considered
before in [24,25], for instance; here, however, we approach
the problem from a very distinct perspective.
The equations of motion associated to the Lagrangian

density (1) are

∂μ∂μϕ ¼ 1

4
PϕFa

μνFaμν þ Vϕ; ð2aÞ

DμðMðϕÞDμχaÞ ¼ χa

jχjV jχj; ð2bÞ

DμðPðϕÞFaμνÞ ¼ gMðϕÞεabcχbDνχc; ð2cÞ
where DμFaμν ¼ ∂μFaμν þ gεabcAb

μFcμν, Vϕ ¼ dV=dϕ,
V jχj ¼ dV=djχj, and Pϕ ¼ dP=dϕ. To search for the
monopole, we consider static configurations and take
A0 ¼ 0. Also, we consider the relevant fields in the form

ϕ¼ϕðrÞ; χa¼xa
r
HðrÞ; Aa

i ¼ εaib
xb
gr2

ð1−KðrÞÞ; ð3Þ

with the boundary conditions

ϕð0Þ¼ϕ0; Hð0Þ¼0; Kð0Þ¼1;

ϕð∞Þ¼ϕ∞; lim
r→∞

HðrÞ¼�η; lim
r→∞

KðrÞ¼0. ð4Þ

The values ϕ0 and ϕ∞ are constants related to the behavior
of the neutral field, and η is a constant that control the
asymptotic value of HðrÞ. In this case, the equations of
motion (2) become

ϕ00 ¼ Pϕ

2

�
2K02

g2r2
þ ð1 − K2Þ2

g2r4

�
þ Vϕ ð5aÞ

ðr2MH0Þ0 ¼ 2MHK2 þ r2VH; ð5bÞ

r2ðPK0Þ0 ¼ KðMg2r2H2 − Pð1 − K2ÞÞ; ð5cÞ

where the prime denotes derivative with respect to r. The
above equations are coupled second order differential
equations. In order to get first order equations, we follow
the BPS procedure to minimize the energy. For the fields
(3), the energy density is conserved and can be calculated
standardly; it is given by

ρ ¼ PðϕÞ
2

�
2K02

g2r2
þ ð1 − K2Þ2

g2r4

�

þMðϕÞ
2

�
H02 þ 2H2K2

r2

�
þ 1

2
ϕ02 þ Vðϕ; jχjÞ: ð6Þ

In the caseMðϕÞ ¼ 1=PðϕÞ, we can introduce an auxiliary
function WðϕÞ and write the above equation as

ρ ¼ 1

2

�
ϕ0 ∓ Wϕ

r2

�
2

þ PðϕÞ
�
K0

gr
� HK
rPðϕÞ

�
2

þ 1

2PðϕÞ
�
H0 ∓ PðϕÞð1 − K2Þ

gr2

�
2

þ Vðϕ; jχjÞ − 1

2

W2
ϕ

r4

þ 1

r2

�
W þ ð1 − K2ÞH

g

�0
: ð7Þ

If we further suppose that the potential depends only on ϕ,
in the form

VðϕÞ ¼ 1

2

W2
ϕ

r4
; ð8Þ

we get the interesting result

ρ ¼ 1

2

�
ϕ0 ∓ Wϕ

r2

�
2

þ PðϕÞ
�
K0

gr
� HK
rPðϕÞ

�
2

þ 1

2PðϕÞ
�
H0 ∓ PðϕÞð1 − K2Þ

gr2

�
2

þ 1

r2

�
W þ ð1 − K2ÞH

g

�0
: ð9Þ

We then note that the above three first terms are non-
negative and therefore, the energy is bounded, i.e., E ≥ EB,
where

EB ¼ 4πjWðϕ∞Þ −Wðϕ0Þj þ
4πη

g
: ð10Þ

The solutions that minimize the energy of the system are
obtained when they satisfy the first order equations

ϕ0 ¼ �Wϕ

r2
; ð11Þ

and
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H0 ¼ �PðϕÞð1 − K2Þ
gr2

; ð12aÞ

K0 ¼ ∓ gHK
PðϕÞ : ð12bÞ

In this case, the energy is minimized to E ¼ EB, given by
Eq. (10). One can show that the first order equations (11)
and (12) are compatible with the equations of motion (5).
We also notice that the two sets of first order equations (12)
are linked by the change HðrÞ → −HðrÞ.
We notice that the above BPS procedure that gives

Eqs. (7)–(12) naturally adds the radial factor in the potential
(8) and in the first order equations (11), and this reminds us
very much of the procedure used in Ref. [26] to circumvent
the Derrick-Hobart theorem [27,28]. This is an interesting
issue, and it also appeared before in [13], in the study of
vortex configurations in the plane. In the case of monop-
oles, we also notice that the potential in Eq. (8) does not
depend on the triplet scalar χ, in accordance with the result
of Ref. [22].
The equations for the neutral scalar field are decoupled

from the other two equations (12), which may describe the
magnetic monopole. This leads us to think of the neutral
field as a source field to generate the monopole, so we refer
to ϕ as the source field. In this sense, in order to find
monopole solutions, one first solves (11) and then intro-
duces a generalizedmagnetic permeabilityPðϕÞ to dealwith
(12). Before doing this, however, we note that the above first
order equations allow us to write the energy density in
Eq. (6) as ρ ¼ ρm þ ρs, with ρm representing the contribu-
tion of the monopole and ρs identifying the contribution of
the source field to the energy density. We have

ρm ¼ 2PðϕÞK02

g2r2
þ H02

PðϕÞ ; ð13aÞ

ρs ¼ ϕ02; ð13bÞ

showing that the energy density of the neutral field does not
depend on the other fields. As shown by the BPS procedure,
we see from Eq. (10) that the total energy changes only with
WðϕÞ. The monopole energy is fixed, Em ¼ 4πη=g, regard-
less of the magnetic permeability. On the other hand, the
source field energy changes with the function WðϕÞ and is
given by Es ¼ 4πjWðϕ∞Þ −Wðϕ0Þj.
From now on, we work with dimensionless fields,

keeping in mind that the rescale

χa → ηχa; ϕ → ηϕ; Aa
μ → ηAa

μ;

r → ðgηÞ−1r; Wϕ → g−1Wϕ; L → g2η4L ð14Þ

can be done. We also take g, η ¼ 1, for simplicity, and
illustrate the general procedure investigating some specific
models below.

III. SPECIFIC EXAMPLES

We have distinct possibilities to deal with the source
field, and here we consider some specific cases.

A. A simple model

Let us first consider the case in which the source field is
described by the function

WðϕÞ ¼ 1

3
ϕ3 − ϕ: ð15Þ

The associated potential has minima at ϕ ¼ �1 and a
maximum at ϕ ¼ 0. The first order equation (11) with the
above choice admits the intersting analytic solution

ϕðrÞ ¼ tanh

�
1

r

�
: ð16Þ

It connects the minimum ϕ ¼ 1 at the origin to the local
maximum ϕ ¼ 0 asymptotically, which we use as ϕ0 and
ϕ∞; see the boundary conditions for the neutral field in (4).
In this case, the energy density (13b) becomes

ρsðrÞ ¼
1

r4
sech4

�
1

r

�
: ð17Þ

A direct integration shows that the energy is Es ¼ 8π=3,
which is the result expected from Eq. (10). In Fig. 1, we
depict the solution (16) and the energy density (17).
We use this source to generate the magnetic permeability

controlled by the function

PðϕÞ ¼ 1þ ϕ2: ð18Þ

In this case, the first order equations (12) become

H0 ¼ ð1þ ϕ2Þð1 − K2Þ
r2

; ð19aÞ

K0 ¼ −
HK

ð1þ ϕ2Þ ; ð19bÞ

FIG. 1. The solution in Eq. (16) (left) and its energy density
(17) (right).
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with ϕ given by Eq. (16). These equations give rise to the
magnetic monopole. In Fig. 2 we display the numerical
solutions and the energy density of the monopole, which
can also be seen in Fig. 3 as a planar section passing
through the center of the structure. A numerical integra-
tion of the energy density leads to energy Em ¼ 4π, in
accordance with Eq. (10) for η, g ¼ 1.
As we see from Figs. 2 and 3, the energy density of the

magnetic monopole has standard profile, diminishing from
a given value at the origin toward 0 asymptotically. We
have considered another magnetic permeability, using
PðϕÞ ¼ ϕ2 to see if it could change the above features,
but the monopole solution presented similar qualitative
profile.

B. Other models

To change the profile of the magnetic monopole, we have
to investigate other models, and here we further illustrate
the construction of solutions considering the source field to
be driven by the function

WðϕÞ ¼ 3

7
ϕ7=3 −

3

5
ϕ5=3: ð20Þ

This is a particular case of the model considered before in
Eq. (6) of Ref. [26] for the value p ¼ 3, and it allows that
we explore compact solutions. Thus, before going on and
searching for explicit solutions, let us further comment on
the presence of compact solutions. In recent years, we have
been investigating compact structures in a diversity of
contexts, including compact kinks [29], lumps [30], Q-balls
[31] and vortices [32,33], and these results motivate us to
investigate the possibility of finding magnetic monopoles
of the compact type as well, which we describe below.
We now return to theW introduced in Eq. (20) to see that

the minima of W2
ϕ are located at ϕ ¼ 0 and ϕ ¼ 1, which

define the values ϕ0 and ϕ∞ that we considered before in
(4). In this case, the first order equations (11) admit the
solution

ϕðrÞ ¼
�
tanh3ð 1

3r −
1
3r0
Þ; r ≤ r0

0; r > r0;
ð21Þ

where r0 is an integration constant, used to control the size
of the solution. It connects the aforementioned minima in
the compact space r ∈ ½0; r0�. Notice that in the limit
r0 → ∞, the solution loses its compact profile and becomes
ϕ∞ðrÞ ¼ tanh3ð1=3rÞ.
The energy density can be calculated from Eq. (13b); the

result is

ρsðrÞ ¼
� 1

r4 tanh
4ð 1

3r −
1
3r0
Þsech4ð 1

3r −
1
3r0
Þ; r ≤ r0

0; r > r0;
ð22Þ

which also belongs to the compact space ½0; r0� for r0 finite.
It is possible to check that, by integrating the above
equation one gets the energy Es ¼ 24π=35, which is also
the value obtained via the Bogomol’nyi bound in Eq. (10).
In Fig. 4, we depict the solution (21) and its energy density
(22) for some values of r0, and note that the solution
presents a plateau near the origin. This makes the energy

FIG. 2. The solutionsHðrÞ (ascending line) andKðrÞ (descend-
ing line) of Eqs. (19) (left) with the source field given by (16) and
the corresponding energy density of the monopole (right).

FIG. 3. The monopole energy density of the solution of
Eqs. (19) with the source field given by Eq. (16). We depict a
planar section of the energy density passing through the center of
the structure, with the darkness of the color directly related to the
intensity of the energy density.

FIG. 4. The solution in Eq. (21) (left) and its energy density
(22) (right) for r0 ¼ 1 (dashed line) and for r0 ¼ 2, 4, 8, and 16.
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density of the source field exhibit a valley in this region. As
r0 increases, both the solution and the energy density get
wider, with the amplitude of the latter diminishing; this
behavior keeps the energy of the source field fixed.
We now use the solution (21) as a source to generate the

medium in which monopoles may appear. We suggest two
models with distinct behavior and discuss the presence of
compact structures. Since the source field solution (21) is
compact, we could think of generating compact monopole
structures, regardless of the form of the magnetic per-
meability. As we show below, however, this is not always
the case. The first example we consider is described by the
same permeability used before in Eq. (18). By remember-
ing the form of the source field in Eq. (21), we see that
PðϕÞ ¼ 2 for r ¼ 0 and PðϕÞ ¼ 1 for r ≥ r0. This is not
enough to make the monopole compact in this case. In
particular, it is straightforward to see that, for r ≥ r0, the
behavior is as in the standard case, with PðϕÞ ¼ 1, whose
solutions are given by HstdðrÞ ¼ cothðrÞ − 1=r and
KstdðrÞ ¼ rcschðrÞ, as shown in Ref. [22].
The above choice for the magnetic permeability changes

the first order equations (12) to the form given above by
Eq. (18), but now the neutral field is described by Eq. (21).
The solutions are depicted in Fig. 5, together with the
energy density. We have considered only r0 ¼ 1, because
this parameter does not modify the solutions significantly.
The energy density of the monopole starts increasing
abruptly near the origin, and then decreases toward 0
asymptotically. This is different from the behavior found
for the solutions presented before. A numerical integration
all over the space shows that the monopole presents energy
Em ¼ 4π, which matches with Eq. (10) for η, g ¼ 1.
The specific behavior of the source field and the

magnetic permeability modifies the internal structure of
the monopole, as we can see in Fig. 5. This motivated us to
display in Fig. 6 the energy density of the monopole in a
planar section that crosses the center of the structure. We
notice a slightly clearer region around the center of the
monopole in Fig. 6, which reflects the fact that the energy

density in Fig. 5 starts at a given value and then increases
abruptly before decreasing toward 0 asymptotically. This
identifies the presence of internal structure.
Another example arises with the magnetic permeability

given by

PðϕÞ ¼ ϕ2: ð23Þ

In this case, since the source field is compact, given by
Eq. (21), the magnetic permeability vanishes for r ≥ r0. As
we show below, this gives rise to interesting new features.
The first order equations (12) become

H0 ¼ ϕ2ð1 − K2Þ
r2

; ð24aÞ

K0 ¼ −
HK
ϕ2

; ð24bÞ

where ϕ is given by Eq. (21). Here, since the magnetic
permeability vanishes outside the compact space, one may
wonder if the compact profile of the source field makes the
monopole solutions become compact. Indeed, by inves-
tigating their behavior for r ≈ r0, we found that 1 −HðrÞ ∝
ðr0 − rÞ7 and KðrÞ ∝ expð−C=ðr0 − rÞ5Þ, for C real and
positive. Therefore, the above equations support solutions
that attain their boundary conditions at r ¼ r0, living only
in the compact space r ∈ ½0; r0�.
Unfortunately, we have not been able to find analytical

solutions for the above equations (24). A numerical
integration all over the space shows that the monopole
presents energy Em ¼ 4π, as in Eq. (10) for η, g ¼ 1. Also,
in Fig. 7, we display the compact solutions and the energy
density for some values of r0. The energy density is also
compact, vanishing outside the interval r ≤ r0. It is also
worth mentioning that, as in the source field, the parameter
r0 controls the width of the solutions and the energy

FIG. 6. The monopole energy density of the solution of
Eqs. (19) with the source field given by Eq. (21), for r0 ¼ 1.
We depict a planar section similar to that of Fig. 3.

FIG. 5. The solutionsHðrÞ (ascending line) andKðrÞ (descend-
ing line) of Eqs. (19) (left) with the source field given by (21) and
the energy density of the corresponding monopole (right), for
r0 ¼ 1.
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density, in the sense that the limit r0 → ∞ removes the
compact behavior of the system.
One may notice from the energy density in Fig. 7 that the

magnetic monopole also engenders internal structure,
which becomes more apparent as r0 decreases. For this
reason, in Fig. 8, we depict a planar section of the energy
density of the monopole passing through its center for
r0 ¼ 1. Clearly, it displays a rich internal structure, and the
compact profile.

IV. ENDING COMMENTS

In this work we studied magnetic monopoles in an
enlarged model, in which the SUð2Þ gauge symmetry is
extended to accommodate an extra neutral scalar field that
evolves under the Z2 symmetry. In this new model, we also
added a generalized magnetic permeability and a modifi-
cation in the dynamics of the scalar fields that evolve under
the SUð2Þ symmetry.
As we have shown, the BPS procedure to minimize the

energy of the solutions has led us to first order equations
that solve the equations of motion. To achieve the first order
equations, however, we had to include a specific radial
factor into the potential of the neutral field, in a manner
similar to that proposed before in [26] to circumvent the
Derrick-Hobart theorem. The mechanism is similar to the
case of planar vortices investigated recently in [13], and
here it allowed us to find magnetic monopoles with internal
structure and compact profile.
We think that the novel results of the work may find

applications of current interest both in high energy physics
and in condensed matter. In particular, since the BPS
procedure involves first order equations one can ask for
supersymmetric extensions of the model here considered,
to see if supersymmetry works to validate the results of the
bosonic model. Another issue concerns the inclusion of
fermions, to investigate the presence of fermionic states
attached to the monopole. Moreover, we can enlarge the
model and add other scalar and gauge fields. These two
possibilities are of current interest since they may lead us to
electrically charged monopoles, as the magnetic monopoles
that appeared in spin ice with an electric dipole [21]. Some
of these issues are currently under consideration, and we
hope to report on them in the near future.
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