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George E. A. Matsas,1,§ and Daniel A. T. Vanzella5,∥
1Instituto de Física Teórica, Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz,

271, 01140-070 São Paulo, São Paulo, Brazil
2Department of Physics, Texas A&M University, College Station, Texas 77843-4242, USA

3Department of Mathematics, Texas A&M University, College Station, Texas 77843-3368, USA
4Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados, 5001,

09210-580 Santo André, São Paulo, Brazil
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Recently, the inverse β-decay rate calculated with respect to uniformly accelerated observers
(experiencing the Unruh thermal bath) was revisited. Concerns have been raised regarding the
compatibility of inertial and accelerated observers’ results when neutrino mixing is taken into account.
Here, we show that these concerns are unfounded by discussing the properties of the Unruh thermal bath
with mixing neutrinos and explicitly calculating the decay rates according to both sets of observers,
confirming thus that they are in agreement. The Unruh effect is perfectly valid for mixing neutrinos.
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I. INTRODUCTION

The Unruh effect, which states that uniformly acceler-
ated observers with proper acceleration a perceive the
Minkowski vacuum as a thermal state with temperature
TU ≡ a=2π, was initially derived assuming free quantum
fields [1]. Later, it was shown to be valid also for interacting
ones [2–5]. Surprisingly, perhaps, only recently the Unruh
effect has been discussed in the context of mixing neu-
trinos, with disturbing conclusions being drawn. In
Ref. [6], it is claimed that the inverse β-decay rate for
an accelerated proton as calculated with respect to inertial
and uniformly accelerated observers (experiencing the
Unruh thermal bath) would disagree with each other when
taking into account the existence of multiple families of
mixing neutrinos. We claim that this is impossible because
calculations of observables must necessarily yield the same
answer regardless of the frame used in intermediate steps.
Thus, either the Unruh effect is wrong (contradicting
several previous results [7], including what we consider
to be a virtual observation of it [8]) or some mistake was
made in the previously mentioned analysis. A similar
criticism of [6] has been made in [9]. While finding no
difference between inertial and accelerated frames, those

authors declared the Unruh effect for mixing neutrinos to be
in some sense nonthermal.
The purpose of this paper is to discuss the Unruh thermal

bath for mixing neutrino fields and also to revisit the
inverse β decay for accelerated protons with the aim of
showing that the Unruh effect is perfectly valid in this
setting. As we will argue below, working with mixing
neutrinos in quantum field theory is notoriously subtle
(see, e.g., Refs. [10,11]). Although working with flavor
neutrinos is useful in many situations, we must recall that
they only make physical sense in particular regimes.
Disregarding this fact leads one astray. The point is that
the neutrinos of definite mass are stable particles, and in the
absence of nucleons they (and the other leptons) can be
represented by standard free fermion fields (such processes
as neutrino-neutrino scattering and nucleon-nucleon pair
creation being very rare). Therefore, their thermal theory
should be routine, both for ordinary gases and for Unruh
thermal baths. States of definite flavor become relevant
only when the thermal state is detected, or observed, by
interaction with something else, such as a nucleon. The
flavor structure of the weak interaction may well leave its
traces on the amplitudes for such processes, but those traces
will be qualitatively the same for ordinary thermal baths
and Unruh ones (with differences in the details, stemming
from the different spectral decompositions of the respective
Hamiltonians). We cannot agree with [9] that any correct
result in this connection can be construed as a “nonthermal
signature”; at most, it can be a surprising aspect of a
thermal phenomenon observed by an interaction that is
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off-diagonal in the mass basis. We shall argue that the
introduction of canonical field operators for flavor fields is,
at best, unnecessary.
The paper is organized as follows. In Sec. II, we discuss

the Unruh thermal bath for the case of mixing neutrinos
with particular attention to when we can consider flavor
particle states as legitimate quantum states and how this is
reflected in measurements made involving the Unruh
thermal bath. In Sec. III we set the stage for calculating
the inverse β-decay rate for accelerated protons. Section IV
concerns the calculation of the inverse β-decay rate from
the inertial point of view. In Sec. V, we calculate inde-
pendently the inverse β-decay rate from the point of view of
uniformly accelerated observers and show that the result is
in full agreement with the one previously obtained in
Sec. IV. Our closing remarks appear in Sec. VI.
Throughout this work we use ðþ;−;−;−Þ signature

for the Minkowski metric, ημν, and natural units, ℏ ¼ c ¼
kB ¼ 1, unless stated otherwise. The same conventions as
in Ref. [12] are followed for the Dirac matrices and
normal modes.

II. THE UNRUH EFFECT FOR
MIXING NEUTRINOS

In this section, we will analyze some properties of the
Unruh thermal bath assuming the existence of mixing
neutrino fields ν̂i, i ∈ f1; 2; 3g, each with mass mi. For
this purpose, let us begin by setting our notation and briefly
reviewing some relevant features of the Unruh effect for
fermionic fields.

A. The Unruh effect for fermionic fields

Consider a fermionic field ψ̂ with mass m satisfying
Dirac’s equation. Inertial observers following the orbits of
the timelike Killing field ∂t, where ðt; x; y; zÞ are usual
Cartesian coordinates covering Minkowski spacetime,
expand ψ̂ in terms of positive- and negative-frequency
modes (with respect to ∂t), u

þω
k⃗;σ

and u−ω
k⃗;σ
, respectively, as

ψ̂ ¼
X
σ¼�

Z
d3kðâk⃗;σuþω

k⃗;σ
þ b̂†

k⃗;σ
u−ω
k⃗;−σ

Þ; ð1Þ

where ω≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk⃗j2 þm2

q
, k⃗ ¼ ðkx; ky; kzÞ ∈ R3, and

σ ∈ fþ;−g. The modes u�ω
k⃗;σ

are given by

u�ω
k⃗;σ

¼ e∓ikμxμ

ð2πÞ3=2 v
�ω
σ ðk⃗Þ; ð2Þ

where kμ ¼ ðω; k⃗Þ, xμ ¼ ðt; x; y; zÞ, and

v�ω
σ ðk⃗Þ ¼ ðkμγμ �mIÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½2ωðω�mÞ�p v̂σ; ð3Þ

with γμ ¼ ðγ0; γ1; γ2; γ3Þ being the Dirac matrices and

v̂þ ≡

2
6664
1

0

0

0

3
7775; v̂− ≡

2
6664
0

1

0

0

3
7775: ð4Þ

The modes are orthonormalized according to the inner
product

ðψ ;ϕÞ≡
Z
Σ
dΣμψ̄γ

μϕ; ð5Þ

where dΣμ ≡ dΣnμ, dΣ is the proper-volume element on
the Cauchy surface Σ, nμ is a future-pointing unit vector
field orthogonal to Σ, and ψ̄ ≡ ψ†γ0. The fermionic
annihilation and antifermionic creation operators, âk⃗;σ
and b̂†

k⃗;σ
, respectively, satisfy the usual anticommutation

relations:

fâk⃗;σ; â†k⃗0;σ0 g ¼ δ3ðk⃗ − k⃗0Þδσ;σ0 ; ð6Þ

fb̂k⃗;σ; b̂†k⃗0;σ0 g ¼ δ3ðk⃗ − k⃗0Þδσ;σ0 ; ð7Þ

with all the other anticommutators vanishing. We define the
Minkowski vacuum state, j0Mi, as the state annihilated by
all annihilation operators, i.e.,

ak⃗;σj0Mi ¼ bk⃗;σj0Mi ¼ 0; ∀ k⃗; σ: ð8Þ

On the other hand, uniformly accelerating (Rindler)
observers covering the right Rindler wedge portion of
Minkowski spacetime, z > jtj, quantize the field using a
different set of normal modes more appropriate to them. In
order to describe this quantization, it is convenient to cover
the right Rindler wedge with coordinates (v, x, y, u) in
which case the line element is written as

ds2 ¼ u2dv2 − dx2 − dy2 − du2; ð9Þ

where v ∈ ð−∞;∞Þ and u ∈ ð0;∞Þ are given by

v ¼ tanh−1ðt=zÞ; ð10Þ

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − t2

p
: ð11Þ

Rindler observers, which are labeled by constant values of
u, x, and y, expand ψ̂ (in the right Rindler wedge) in terms
of positive- and negative-frequency modes (with respect to
∂v), g

þϖ
k⃗⊥;σ

and g−ϖ
k⃗⊥;σ

, respectively, as
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ψ̂ ¼
X
σ¼�

Z
∞

0

dϖ
Z

d2k⊥½ĉϖ;k⃗⊥;σg
þϖ
k⃗⊥;σ

þd̂†
ϖ;k⃗⊥;σ

g−ϖ
k⃗⊥;−σ

�;

ð12Þ

where ϖ ∈ ½0;∞Þ stands for the Rindler frequency and
k⃗⊥ ≡ ðkx; kyÞ ∈ R2 labels the transverse momentum quan-
tum number. The modes g�ϖ

k⃗⊥;σ
, orthonormalized according

to Eq. (5) (using the appropriate set of gamma matrices for
Rindler observers), have the form

g�ϖ
k⃗⊥;σ

¼ e∓iϖv=a−ik⃗⊥·x⃗⊥
ð2πÞ3=2 hσð�ϖ; k⃗⊥Þ; ð13Þ

where x⃗⊥ ¼ ðx; yÞ and

hσð�ϖ; k⃗⊥Þ ¼
�
cosh ðϖπ=aÞ

πal

�
1=2

× γ0½ð−k⃗⊥ · γ⃗⊥ þmIÞK�iϖ=aþ1=2ðluÞ
þilγ3K�iϖ=a−1=2ðluÞ�ĥσ; ð14Þ

with

ĥþ ≡

2
6664
1

0

1

0

3
7775; ĥ− ≡

2
6664

0

1

0

−1

3
7775; ð15Þ

l≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk⃗⊥j2 þm2

q
, γ⃗⊥ ≡ ðγ1; γ2Þ, and a being the proper

acceleration of fiducial observers labeled by u ¼ 1=a, with
respect to whom the quantization is performed. The Rindler
fermionic annihilation, ĉϖ;k⃗⊥;σ, and antifermionic creation,

d̂†
ϖ;k⃗⊥;σ

, operators satisfy the anticommutation relations:

fĉϖ;k⃗⊥;σ; ĉ
†
ϖ0;k⃗0⊥;σ0

g ¼ δðϖ −ϖ0Þδ2ðk⃗⊥ − k⃗0⊥Þδσ;σ0 ; ð16Þ

fd̂ϖ;k⃗⊥;σ; d̂
†
ϖ0;k⃗0⊥;σ0

g ¼ δðϖ −ϖ0Þδ2ðk⃗⊥ − k⃗0⊥Þδσ;σ0 ; ð17Þ

with all the other anticommutators vanishing. The Rindler
vacuum is the state j0Ri defined by

ĉϖ;k⃗⊥;σj0Ri ¼ d̂ϖ;k⃗⊥;σj0Ri ¼ 0; ∀ ϖ; k⃗⊥; σ: ð18Þ

By relating Minkowski and Rindler modes, Eqs. (2)
and (13), respectively, in the usual manner via a Bogolubov
transformation [13], the Minkowski vacuum state, j0Mi, as
seen by Rindler observers restricted to the right Rindler
wedge can be written as

ρ̂βU ¼ ⊗
ϖ;k⃗⊥;σ;J

Zϖ

X1
nJ¼0

exp ð−2πnJϖ=aÞ

× jnJ;ϖ; k⃗⊥; σihnJ;ϖ; k⃗⊥; σj; ð19Þ

where Z−1
ϖ ¼ 1þ exp ð−2πϖ=aÞ, J ¼ c, d label particles

(c) and antiparticles (d):

jnc;ϖ; k⃗⊥; σi≡ c†nc
ϖ;k⃗⊥;σ

j0Ri;

and

jnd;ϖ; k⃗⊥; σi≡ d†nd
ϖ;k⃗⊥;σ

j0Ri:

We see that ρ̂βU is a thermal state at inverse temperature
βU ¼ 2π=a, clearly showing the Unruh effect.
Now, let us take our fermionic field ψ̂ to be one of the

massive neutrino fields ν̂i. (No mixing appears at this point
because we are considering neither interactions nor flavor
neutrinos yet.) Then, it follows directly from Eq. (19) that
the mean flux of neutrinos with well-defined mass mi,
energyϖ, transverse momentum k⃗⊥, and spin σ, as seen by
Rindler observers, is given by

n̄ðϖ; k⃗⊥; σÞ≡ d
dτ

d2

d2x⊥
lim
ϖ0→ϖ
k⃗0⊥→k⃗⊥

D
c†i
ϖ0;k⃗0⊥;σ

ci
ϖ;k⃗i⊥;σ

E
ρ̂βU

¼ ð2πÞ−3nFðϖÞ; ð20Þ

where

nFðϖÞ≡ ð1þ eβUϖÞ−1; ð21Þ

and τ ¼ v=a is the proper time of fiducial Rindler observers
(at u ¼ 1=a). As expected, the result is proportional to the
Fermi-Dirac factor nFðϖÞ and only depends on the Rindler
energy ϖ. In particular, there is no dependency on the
neutrino mass. This does not mean, however, that detectors
carried by a given Rindler observer and sensitive to
neutrinos νi with different masses mi, would respond in
the same way to the Unruh thermal bath.

B. Fermionic particle detector

To illustrate this point, let us define a generalization of
the Unruh-DeWitt detector which couples to the neutrino
field ν̂i through the interaction action

ŜD ≡ λ
X
i

Z
dτ½ ˆ̄mðτÞν̂i½xμDðτÞ� þ H:c:�; ð22Þ

where λ is a (dimensional) constant, xμDðτÞ is the detector’s
trajectory, and
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m̂ðτÞ ¼ m̂0ðτÞ
�
η̂

ξ̂

�
; ð23Þ

with m̂0ðτÞ being a monopole operator such that

hejm̂0ðτÞjgi ¼ eiΔEτhejm̂0ð0Þjgi: ð24Þ

Here, η̂ and ξ̂ are arbitrary bispinors satisfying the nor-
malization conditions η̂†η̂ ¼ ξ̂†ξ̂ ¼ 1 and ΔE is the energy
gap between the detector’s excited, jei, and unexcited, jgi,
states. (In Appendix A, we analyze the behavior of this
detector in the simpler setting of an inertial thermal bath
and highlight its nice features).
The worldline of a uniformly accelerated detector with

proper acceleration a in (v, x, y, u) coordinates is given by

xμDðτÞ ¼ ðaτ; 0; 0; 1=aÞ: ð25Þ

For such a detector, the excitation rate, i.e., the excitation
probability (with absorption of a Rindler neutrino with
mass mi) per detector proper time, when the field is in the
Minkowski vacuum is

dPexc;i

dτ
¼ d

dτ

X
σ¼�

Z
∞

0

dϖ
Z

d2k⊥jAexcj2nFðϖÞ; ð26Þ

where

Aexc ¼ −ihej ⊗ h0RjŜDjνi;ϖ; k⃗⊥; σi ⊗ jgi: ð27Þ

Using Eqs. (22), (25), and (27) in Eq. (26) yields

dPexc;i

dτ
¼ Λ2

Z
∞

0

dϖδðϖ − ΔEÞe−πϖ=a

×
Z

d2k⊥ðli=aÞjKiϖ=aþ1=2ðli=aÞj2; ð28Þ

where the constant Λ2 ¼ jλj2jhejm̂0ð0Þjgij2=2π3 depends
on the detector’s specifics and we recall that

li ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk⃗⊥j2 þm2

i

q
. Note that the detector is only sensitive

to particles with Rindler energy ϖ ¼ ΔE.
The excitation rate should be proportional to the local

neutrino density. We can confirm this by extending the
scalar-field construction of the finite-volume particle num-
ber operator given in Ref. [14] (borrowed from quantum
optics) to spinor fields. By making use of the inner product
(5), we define the neutrino density operator in an infini-
tesimal volume around the detector as

n̂i;D ≡ dðνþi ; νþi Þ=dud2x⊥ jxμðτÞ¼xμDðτÞ ð29Þ

¼ ν̄þi γ
0νþi jxμðτÞ¼xμDðτÞ; ð30Þ

where νþi denotes the (Rindler) positive-frequency part of
Eq. (12) and Eq. (29) was evaluated over a v ¼ const
surface. The expectation value of this density operator in
the Minkowski vacuum j0Mi is given by

h0Mjn̂i;Dj0Mi ¼
1

2π4

Z
∞

0

dϖe−πϖ=a

×
Z

d2k⊥ðli=aÞjKiϖ=aþ1=2ðli=aÞj2: ð31Þ

Clearly, Eq. (28) is proportional to Eq. (31) when restricted
to particles with ϖ ¼ ΔE, confirming that the excitation
rate is proportional to the local neutrino density. We also
note from Eq. (28) that Rindler observers will have a harder
time detecting more massive neutrinos since they concen-
trate closer to the horizon. This is in accordance with
previous results obtained for the scalar field case [14,15].

C. On flavor neutrinos and the
Unruh thermal bath

Let us consider now the properties of the Unruh thermal
bath in terms of flavor neutrinos. It is possible to
define phenomenologically flavor states jνα; k⃗; σi and
jνα;ϖ; k⃗⊥; σi for inertial and Rindler observers, respec-
tively, in the realm of quantum field theory, where α ∈
fe; μ; τg labels the leptonic flavor. Their usual form

jνα; k⃗; σi≡
X
i

U�
α;ijνi; k⃗; σi; ð32Þ

jνα;ϖ; k⃗⊥; σi≡
X
i

U�
α;ijνi;ϖ; k⃗⊥; σi; ð33Þ

with Uα;i being the PMNS matrix [16], arise as a useful
approximation when it is possible to disregard the mass
differences in neutrino production and detection processes
[17,18]. This is achieved whenΔm2

ij ≡ jm2
i −m2

j j are much
smaller than the intrinsic uncertainties in the neutrino
momenta, where by “intrinsic” we mean the uncertainties
as calculated in the reference framewhere they acquire their
minimal values. [Hence, the states on the right-hand side of
Eqs. (32) and (33) must be seen as wave-packets peaked at
momentum k⃗ and k⃗⊥, respectively.] In what follows we will
denote this situation byΔm2

ij ∼ 0. For more details, we refer
the reader to Appendix B. (See also the next-to-last
paragraph of Sec. III.)
Once we have established the conditions where Eqs. (32)

and (33) are valid, we use our νi-neutrino detector [see
Eq. (22)] to calculate the probability per proper time of
finding an α-flavor neutrino, dPα=dτ, in the Unruh thermal
bath. We note from Eq. (33) that the probability of a νi
neutrino (reaching the detector) to collapse as a να neutrino
is jUα;ij2. Then, we find
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dPα

dτ

����
Δm2

ij∼0
¼

X
i

jUα;ij2
dPexc;i

dτ

����
Δm2

ij∼0

≈
dPexc;i

dτ

����
mi≈const

; ð34Þ

where we have used the unitarity of the PMNSmatrix in the
last step. From Eq. (34) we see that detectors of flavor
neutrinos will behave as if they were immersed in the
Unruh thermal bath of a fermionic field with mass m1 ≈
m2 ≈m3 (which can be taken to be approximately zero in
many physical situations).
We proceed now to evaluate the inverse β-decay rate for

accelerated protons with neutrino mixing from the point of
view of both inertial and accelerated observers and show
that they agree. This illustrates how the Unruh effect is
perfectly consistent with neutrino mixing.

III. SEMICLASSICAL INVERSE β DECAY
WITH NEUTRINO MIXING

For the sake of our purposes, we adopt the same
approach as [6,19], where the proton, jpi, and neutron,
jni, are seen as unexcited and excited states of a two-level
system with the corresponding (proper) Hamiltonian Ĥ
satisfying

Ĥjpi ¼ mpjpi; ð35Þ

Ĥjni ¼ mnjni; ð36Þ

where mpðnÞ is the proton (neutron) mass. The proton-
neutron system is assumed to have a well-prescribed space-
time trajectory described by the semi-classical current:

ĵμ ¼ q̂ðτÞffiffiffiffiffiffi−gp
u0

uμðτÞδ3ðx⃗ − x⃗0ðτÞÞ; ð37Þ

where g ¼ detðημνÞ, uμðτÞ is the four velocity of the linearly
accelerated proton-neutron system with proper time τ,
proper acceleration a ¼ const, and x⃗0ðτÞ is its spatial
trajectory. The monopole operator q̂ðτÞ is defined via the
Hamiltonian by

q̂ðτÞ ¼ eiĤτq̂ð0Þe−iĤτ; ð38Þ
where the Fermi constant, GF, will be given by
GF ≡ jhnjq̂ð0Þjpij. The leptonic fields, in turn, will be
treated as quantum fields.
The effective weak interaction action considered here is

ŜI ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �X
α

ˆ̄ναγ
μP̂Ll̂αĵμ þ H:c:

�

¼
Z

d4x
ffiffiffiffiffiffi
−g

p �X
α;i

U�
α;i
ˆ̄νiγ

μP̂Ll̂αĵμ þ H:c:

�
; ð39Þ

where

P̂L ≡ ðI − γ5Þffiffiffi
2

p ; ð40Þ

γ5 ≡ iγ0γ1γ2γ3, and we recall that ĵμ is given by Eq. (37),
α ∈ fe; μ; τg labels the leptonic flavor,

ν̂α ≡
X
i

Uα;iν̂i; ð41Þ

and l̂α stand for all electrically charged leptonic
fields, fe−; μ−; τ−g.
We should view the neutrino fields ν̂i with well defined

mass as the fundamental ones with the PMNS matrix
elements contributing to the interaction coupling constants
between the mass neutrinos and other fields. We note that
the usual canonical quantization procedure is perfectly
valid for these fields. In contrast, we stress that ν̂α should be
viewed only as a shorthand notation for the particular
combination of massive neutrino fields [given by Eq. (41)].
Attempts to canonically quantize the ν̂α fields in terms of
positive (and negative) norm modes give annihilation (and
creation) operators whose physical meaning is unclear [20],
precluding us from constructing the associated Fock space
(see, e.g., Refs. [10,21]). Overlooking this fact, as in
Ref. [6], leads to contradictory results.
For the reasons outlined above, we focus only on states

associated with the fundamental ν̂i fields, for which the
Unruh effect must be valid and the inverse β-decay rate
calculated in both inertial and accelerated frames must
coincide as shown next.

IV. INERTIAL CALCULATION

The inverse β-decay process, as seen by Minkowski
observers, can be generically cast in the form

p → nl̄ανi; ð42Þ

where lα ¼ fe−; μ−; τ−g and νi ¼ fν1; ν2; ν3g. The transi-
tion amplitude associated with Eq. (42) is

AI
α;i ¼ −ihnj ⊗ hl̄ανijŜIj0Mi ⊗ jpi; ð43Þ

where the charged leptons lα and neutrinos νi have quantum
numbers σαðiÞ ∈ fþ;−g and k⃗αðiÞ ¼ ðkxαðiÞ; kyαðiÞ; kzαðiÞÞ, and
ŜI is given in Eq. (39).
In usual inertial coordinates, xμ ¼ ðt; x; y; zÞ, current

(37) is written as

ĵμ ¼ q̂ðτÞ
az

uμðτÞδðxÞδðyÞδ
�
z −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − a−2

p 	
; ð44Þ
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where uμ ¼ ðazðτÞ; 0; 0; atðτÞÞ with tðτÞ ¼ a−1 sinh ðaτÞ
and zðτÞ ¼ a−1 cosh ðaτÞ.
The differential decay probability per momentum-space

volume dVk ¼ d3kαd3ki is given by

dPp→nl̄ανi

dVk
¼

X
σα;σi

jAI
α;ij2; ð45Þ

allowing us to define the decay rate per momentum-space
volume as

dΓp→nl̄ανi

dVk
¼ 1

Δτ
dPp→nl̄ανi

dVk
; ð46Þ

where Δτ is the total proper time along the trajectory of the
proton-neutron system. Inserting Eqs. (39), (44), and (1)
into Eq. (43), we write Eq. (46) as

dΓp→nl̄ανi

dVk
¼ 2G2

FjUα;ij2
ð2πÞ6

×
Z

∞

−∞
dξ exp ð2i½Δmξþ a−1ðωαωiÞ sinh ðaξÞ�Þ

×
1

ωαωi
½kzi kzα þωiωα þFðkxi;α; kyi;αÞ�; ð47Þ

where Δm≡mn −mp, we have made an inverse boost in
the z-direction [to factor out the proper time integral
implicitly contained in Eq. (45)], and Fðkxi;α; kyi;αÞ is an
odd function of its arguments whose form is not important
here since it will not contribute to the decay rate when
integrated over dVk.
By integrating over momenta, we obtain the total decay

rate

Γp→nl̄ανi ¼ G2
FjUα;ij2
π4a

e
−πΔm

a

Z
∞

0

dkαk2α

Z
∞

0

dkik2i

× K2iΔm=að2ðωα þ ωiÞ=aÞ; ð48Þ

where kαðiÞ ≡ jk⃗αðiÞj. Now, by using the same complex
integration procedure employed in Ref. [12] we can rewrite
the expression above as a double integral over the complex
plane, i.e.,

Γp→nl̄ανi ¼ G2
Fa

5jUα;ij2
32π7=2

e−πΔm=a

×
Z
Ct

dt
2πi

Z
Cs

ds
2πi

jΓð3 − s − tþ iΔm=aÞj2

×
Γð−sÞΓð−tÞΓð2 − tÞΓð2 − sÞ
Γð3 − s − tÞΓð7=2 − s − tÞ

�
mα

a

�
2t
�
mi

a

�
2s
;

ð49Þ

where Cs and Ct are integration contours containing all
poles of the Γ functions both in the s and t planes.
Although apparently unwieldy, this expression for the

decay rate is convenient for our purposes of analytically
confirming the equality between Eq. (49) and the analogous
result obtained with respect to Rindler observers, to which
we proceed now.

V. RINDLER CALCULATION

Uniformly accelerated observers see the single inverse
β-decay process considered by inertial observers, Eq. (42),
as a set of three processes, namely

(i) pþ lα → nþ νi,
(ii) pþ ν̄i → nþ l̄α,
(iii) pþ lα þ ν̄i → n,

i.e, protons lying at rest with the Rindler observers would
decay into neutrons by the absorption (and possible
emission) of leptons from (to) the Unruh thermal bath.

In the (v, x, y, u) coordinate system, current (37) is
expressed as

ĵμ ¼ q̂ðτÞuμðτÞδðxÞδðyÞδðu − a−1Þ ð50Þ

with uμ ¼ ða; 0; 0; 0Þ.
To obtain the total decay rate, we must sum incoherently

processes (i)–(iii). Let us outline now the procedure to
calculate the decay rate specifically for process (i), since
processes (ii) and (iii) will be similar. First, we calculate the
interaction amplitude by using Eqs. (12) and (39),

AR;ðiÞ
α;i ¼ −ihnj ⊗ hνijŜIjlαi ⊗ jpi

¼ −iGF

ð2πÞ2 ffiffiffi
2

p U�
α;iδðϖα −ϖi − ΔmÞ

× ½ḡþϖi

k⃗i⊥;σi
γ0ðI − γ5Þgþϖα

k⃗α⊥;σα
�; ð51Þ

where the neutrino νi has quantum numbers (σi, ϖi, k⃗i⊥)
and the charged lepton has quantum numbers (σα,ϖα, k⃗α⊥)
and we recall that ḡ ¼ g†γ0. We square it to obtain the
differential probability of decay per Rindler momentum-
space volume dVk;R ¼ dϖαd2kα⊥dϖid2ki⊥.
The interaction rate,

Γði;RÞ ¼
X
σα;σi

Z
dVk;R

jAR;ðiÞ
α;i j2
Δτ

nFðϖαÞ½1 − nFðϖiÞ�; ð52Þ

is obtained by dividing the differential probability by the
total proper time Δτ, multiplying it by the relevant
fermionic thermal factors, and integrating over dVk;R.
Following a similar recipe for processes (ii) and (iii) we

can write the total interaction rate, according to Rindler
observers, as
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Γp→nl̄ανi;R ¼
X
j

Γðj;RÞ

¼ G2
FjUα;ij2
8a2π7

e−πΔm=a

Z
∞

−∞
dϖi

ZZ
dkxi dk

x
α

×
ZZ

dkyi dk
y
αlilαjK1=2þiϖα=aðlα=aÞj2

× jK1=2þiðϖα−ΔmÞ=aðli=aÞj2: ð53Þ

Now, following the reasoning of Ref. [12] we use
Eqs. (6.412) and the definition of the Meijer G-function
[Eq. (9.301)] of Ref. [22], along with Eq. (5.6.66) of
Ref. [23], to write the total interaction rate according to
Rindler observers as

Γp→nl̄ανi;R ¼ G2
Fa

5jUα;ij2
32π7=2

e−πΔm=a

×
Z
Ct

dt
2πi

Z
Cs

ds
2πi

jΓð3 − s − tþ iΔm=aÞj2

×
Γð−sÞΓð−tÞΓð2 − tÞΓð2 − sÞ
Γð3 − s − tÞΓð7=2 − s − tÞ

�
mα

a

�
2t
�
mi

a

�
2s
;

ð54Þ

which can be seen to be exactly equal to Eq. (49), proving
our assertion that the two rates coincide.
It is worthwhile to note that in Ref. [6] different neutrino

asymptotic states are used when calculating decay rates in
the two frames. Thus, the two calculations have no
obligation to coincide at all (as in fact they do not).

VI. CONCLUSIONS

We have discussed the properties of the Unruh thermal
bath for mixing neutrinos and in which conditions we can
legitimately speak about flavor states. Also, we have shown
through an explicit calculation the equality of the decay
rates for the inverse β decay of protons as calculated by
Minkowski and Rindler observers. This is not surprising,
being the expected result from the general covariance of
quantum field theory, but it explicitly demonstrates the
importance of using the appropriate mode expansion (i.e.,
those that are eigenfunctions of an appropriate time-like
isometry) for the neutrino fields, where all calculations are
well defined and it is completely meaningful to talk of
particles. Finally, as previously stated, this also shows that
there is no incompatibility between the Unruh effect and
neutrino mixing, contrary to previous claims.
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APPENDIX A: THE FERMIONIC DETECTOR

In order to better understand the behavior of the
fermionic detector defined in Sec. II, we apply it to a
usual inertial thermal bath (at inverse temperature β) of
massive neutrinos, described by the density matrix

ρ̂β ¼ ⊗
k⃗;σi;i;J

1

1þ exp ð−βωiÞ

×
X1
ni;J¼0

exp ð−ni;JβωiÞjni;J; k⃗; σihni;J; k⃗; σj; ðA1Þ

where ωi satisfies the usual dispersion relation ωi ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk⃗j2 þm2

i

q
and J ¼ a, b label particles (a) and anti-

particles (b):

jni;a; k⃗; σi≡ a†ni;a
k⃗;σ

j0Mi;

and

jni;b; k⃗; σi≡ b†ni;b
k⃗;σ

j0Mi;

with a†k⃗;σ and b†k⃗;σ being the fermionic and antifermionic
creation operators, respectively. By using Eq. (22), we
compute the mean excitation rate of an inertial detector
with worldline xμDðτÞ ¼ ðτ; 0; 0; 0Þ (in ðt; x; y; zÞ coordi-
nates) due to the absorption of a neutrino with mass mi
giving

dPexc;i

dτ
¼ π−1jλj2jhejm̂0ð0Þjgij2

Z
∞

mi

dωδðω − ΔEÞ

×
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

i

p
eβω þ 1

: ðA2Þ

We see that the above excitation rate is, disregarding the
phase-space volume factor, proportional to the mean
number of particles with energy ΔE, as it should be. We
also note that this detector satisfies the detailed balance
condition, relating excitation and absorption rates [7].
Moreover, the excitation rate in this case is also propor-
tional to the expectation value of the (inertial) neutrino
density operator, constructed similarly as in Eq. (29), in the
state (A1):

hn̂i;Diρ̂β ¼
1

π2

Z
∞

mi

dωi
ωi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
i −m2

i

p
eβωi þ 1

: ðA3Þ

UNRUH EFFECT FOR MIXING NEUTRINOS PHYS. REV. D 97, 105022 (2018)

105022-7



APPENDIX B: FLAVOR NEUTRINOS
ONE-PARTICLE STATES

We elaborate here our statement that the usual neutrino
flavor states

jναi ¼
X
i

U�
α;ijνii; ðB1Þ

are only defined in particular situations.
As said before, a physical Fock space for flavor neutrinos

cannot be constructed [10,21]. However, the usual flavor
states have a well-defined meaning in the limit Δm2

ij ∼ 0.
To show this, here we reproduce an abridged derivation of
the “weak states” given in [10,17].
Weak states are phenomenological states in the sense that

their definition depends on the specific process being
considered. As a particular example, we consider the
inverse β decay pþ → nþ eþ þ “νe”, where our goal is
to give a meaning to the corresponding νe state given that
we do not have a legitimate creation operator of flavor
particles.
We assume here that (i) the flavor neutrino resulting from

the decay can be described as a superposition of massive
neutrino states (which are well-defined) and (ii) the cor-
responding massive neutrinos have some uncertainty in
their momenta (otherwise energy-momentum conservation
would single out a specific massive neutrino as the result of
the decay, see Ref. [24]).
The decay final state will be cast as

jfi≡ Sjpþi; ðB2Þ

where S is the S matrix of the theory. We write jfi as

jfi ¼
X
i

Aeijneþνii þ � � � ; ðB3Þ

where “…” stands for all other possible decay channels,
containing states orthogonal to the ones singled out above.
Here, jνii stands as a shorthand for either jν100i, j0ν20i, or
j00ν3i. From Eqs. (B2) and (B3) we obtain for the
amplitudes:

Aei ¼ hneþνijSjpþi: ðB4Þ

By projecting the state jfi over jneþi and normalizing the
resulting state, we define

jνei≡
X
i

AeiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
jjAejj2

q jνii: ðB5Þ

In order to reach Eq. (B1), we expand the S matrix of the
theory as

S ≈ I − iŜI; ðB6Þ

where ŜI is given by Eq. (39), and plug it in Eq. (B4), which
allows us to write Aei as

Aei ¼ U�
eiBei; ðB7Þ

where

Bei ¼ −i
Z

d4x
ffiffiffiffiffiffi
−g

p hneþνijð ˆ̄νiγμP̂Ll̂eĵμÞjpþi: ðB8Þ

We note that the neutrino masses only appear in Bei inside
the mode expansion of the ν̂i fields. Finally, assuming
Δm2

ij ∼ 0, we obtain the flavor neutrino states as

jνei ¼
X
i

U�
eiBeiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

jjU�
eiBeij2

q jνii ðB9Þ

≈
Beffiffiffiffiffiffiffiffiffiffi
jBej2

p X
i

U�
eijνii; ðB10Þ

where in the last equation we have defined that

Be ≡ Be1 ≈ Be2 ≈ Be3:

Therefore, Eq. (B10) agrees with Eq. (B1) (up to a
global phase).
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