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We supersymmetrize the Hopfion studied by Gorsky et al. [Phys. Rev. D 88, 045026 (2013).]. This
soliton represents a closed semilocal vortex string inU(1) gauge theory. It carries nonzeroHopf number due to
the additional winding of a phase modulus as one moves along the closed string. We study this solution in
N ¼ 2 supersymmetric QED with two flavors. As a preliminary exercise, we compactify one space
dimension and consider a straight vortex with periodic boundary conditions. It turns out to be 1=2-BPS
saturated. An additional winding along the string can be introduced and it does not spoil the BPS nature of the
object.Next,we consider a ringlikevortex in a non-compact space and show that the circumference of the ring
L can be stabilized once the previously mentioned winding along the string is introduced. Of course, the
ringlikevortex is notBPSbut its energybecomes close to theBPSbound ifL is large,which canbeguaranteed
in the case that we have a large value of the angular momentum J. Thus we arrive at the concept of
asymptotically BPS-saturated solitons. BPS saturation is achieved in the limit J → ∞.

DOI: 10.1103/PhysRevD.97.105021

I. INTRODUCTION

Several years ago, Gorsky, Shifman, and Yung consid-
ered a Hopf-type soliton, i.e. with two different types of
windings [1]. This soliton was explicitly constructed as a
closed Abelian semilocal vortex string in QED with two
flavors and a special type of potential. Although the “bulk”
model in [1] was nonsupersymmetric, it was inspired by the
previous studies of supersymmetric QED (SQED).
In this paper, we present a supersymmetric version of the

model considered in [1] using the framework of [2]. In the
latter, the linear vortex string is a BPS saturated object of
great interest, since the emerging world-sheet sigma model
arising from its quantization is conformal. In this paper, we
construct a closed circular vortex string which satisfies the
condition

M2 ¼ J × 8πT at J ≫ 1; ð1:1Þ

where

T ¼ 2πξ ð1:2Þ

is the exact string tension. The parameter ξ is the Fayet-
Iliopoulos coefficient, to be defined below. This string
tension is produced by a winding of certain fields in the
plane transverse to the string (see Fig. 1) while J, the
angular momentum of the closed string configuration, is
generated by the winding of fields around the string itself.
Equation (1.1) is valid to the leading order in J. Corrections
run in powers of J−1 and presumably vanish in the strong
coupling regime of infinitely heavy Higgsed gauge bosons;
see [2]. The issue of subleading corrections will be
discussed separately.
First, we will discuss the internal structure of the linear

BPS string in SQED with two flavors in conjunction with
the appropriate superalgebra. We will then proceed to add

FIG. 1. Linear and circular vortex “thin” strings.
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the second winding, and then to make the string circular.
In the linear version, which serves as an auxiliary exercise
in the construction of the closed Hopf-like string, our
results are exact.
Closed strings stabilized by a large angular momentum

were discussed in the past in the framework of string
theory; see e.g. [3,4]. In [5], rotating strings in AdS5 × S5

with SOð6Þ angular momentum were shown to become
asymptotically BPS-saturated in the limit of infinite
momentum: they preserved 1=8-supersymmetry.
The organization of the paper is as follows. In Sec. II,

we formulate our model and consider first a straight
BPS string in a compact space with two windings and
periodic boundary condition, then, we will develop the
main features of an almost BPS-saturated ringlike vortex.
In Sec. III, we consider an explicit solution for a semilocal
ringlike vortex. We observe a Bogomolny bound and
supersymmetry transformations which produce first-order
equations. We also relate the mass of the soliton to the value
of the Hopf invariant.

II. PRELIMINARIES AND CONCEPTS

A. Model

The inspiration for this analysis comes from [1] (see also
references therein), which will be supersymmetrized.
The bulk model isN ¼ 2 SQED with a Fayet-Iliopoulos

term and two charged flavors,

L ¼
�

1

4e2

Z
d2θW2 þ H:c:

�

þ
�Z

d2θQ̃Að
ffiffiffi
2

p
AþmAÞQA þ H:c:

�

þ
Z

d4θ
X
A¼1;2

¯̃QAe−VQ̃
A þ

Z
d4θ

X
A¼1;2

Q̄AeVQA

− ξ

Z
d4θVðx; θ; θ̄Þ; ð2:1Þ

where Q and Q̃ are chiral matter superfields with masses
mA and electric charges �1, respectively, A ¼ 1, 2 is the
flavor index, Wα is the field strength for the vector
superfield V,

Wα ¼
1

8
D̄2DαV ¼ iðλα þ iθαD − θβFαβ − iθ2∂α _αλ̄

_αÞ:
ð2:2Þ

and A is a chiral superfield containing the extra scalar and
fermion components of the N ¼ 2 vector multiplet. The
Fayet-Iliopoulos parameter ξ is introduced in (2.1) which is
needed to make our construction BPS saturated. The need
for the introduction of a second flavor will become clear
shortly.

After passing to components (in the Wess-Zumino
gauge), setting fermions to zero, we arrive at the action
in the following form:

S ¼
Z

d4x

�
−

1

4e2
FμνFμν þ 1

e2
j∂μaj2 − Vðq; q̃; aÞ

þ
X
A¼1;2

½Dμq̄ADμqA þDμ ¯̃qADμq̃A�
�
: ð2:3Þ

Here, qA, q̃A, and a are scalar fields belonging to QA, Q̃A,
and A, respectively. The covariant derivative is defined as

Dμ ¼ ∂μ − iAμ: ð2:4Þ

The scalar potential is given by the sum of the D and F
terms,

Vðq; q̃; aÞ

¼ e2

2

h
ξ −

X
A¼1;2

ðq̄AqA − q̃A ¯̃qAÞþ
i
2

þ 2e2
���X

A¼1;2
q̃AqA

���2
þ

X
A¼1;2

fjð
ffiffiffi
2

p
aþmAÞqAj2 þ jð

ffiffiffi
2

p
aþmAÞ ¯̃qAj2g: ð2:5Þ

Without loss of generality, we can assume that the Fayet-
Iliopoulos parameter is positive,

ξ > 0: ð2:6Þ

This can always be achieved: if ξ was originally negative,
we can make it positive by making a C transformation.
We should note that only the difference of the electron

masses Δm ¼ m1 −m2 has a physical meaning, because
their sum always can be turned to zero by a shift of the
complex scalar a, a superpartner of the photon. For a
generic choice of Δm, we have two isolated vacua in the
above theory with hai ¼ −Δm=2

ffiffiffi
2

p
or hai ¼ Δm=2

ffiffiffi
2

p
.

However, in the equal mass limit,

Δm ¼ 0; ð2:7Þ

which we will mostly consider below, two vacua coalesce
and a Higgs branch develops from the common root at

hai ¼ 0: ð2:8Þ

The generic vacuum manifold determined by the con-
straint V ¼ 0 is four-dimensional, but we can reduce it to
two dimensions by setting the tilded fields to zero, Q̃A ¼ 0.
Then the tilded fields will play no role on the string
solution, neither will the scalar a, which is given by its
VEV in Eq. (2.8). This choice is self-consistent.
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The vacuum manifold is determined by the equation

jq1j2 þ jq2j2 ¼ ξ; ð2:9Þ

with a common phase eaten by the Higgs mechanism. This
is a sphere S2. We call it a base of the four-dimensional
Higgs branch. The string can be BPS saturated only if we
restrict ourselves to the base manifold (2.9). String sol-
utions in a generic vacuum with nonzero q̃ are not BPS [6].
Using the SUð2Þ flavor symmetry, one can always say

that in the vacuum (which also means far away from the
soliton core which is at the origin in the ðx; yÞ plane; see
Fig. 2),

jq1j2 ¼ ξ and q2 ¼ 0: ð2:10Þ

Of course, inside the soliton, both fields q1 and q2 can and
will appear. Moreover, since q1 will have a winding in the
ðx; yÞ plane, it must vanish in the core center. If so, it
becomes energetically expedient to develop a nonvanishing
value of q2 in the core (see [1]).
We pause here to make our definition of the linear string

“core” more precise. In fact, the core has two components.
The so-called “hard” core has the thickness of the order of
the inverse mass of the Higgsed photon, lh ∼ ðe2ξÞ−1=2.
This is similar to the standard ANO string. However, as we
will see shortly (see also [1]), the existence of the second
flavor implies that an additional complex moduli ρ is
develops on the string world sheet. The emergence of ρ is
due to Belavin-Polyakov instantons [7] on the vacuum
manifold (2.9).1 The absolute value of ρ plays the role of
the string thickness. Outside the hard core the soliton
solution falls off with distance from the center according to
a power law, rather than exponentially. Thus, the string at
hand is semilocal, the norms of the solution and some zero
modes logarithmically diverge; for more details, see [1] and
the reviews [8,9]. In order to make the thickness of the
“soft” core finite,2 we must introduce an infrared regulari-
zation into the theory under consideration. The most natural
way of the IR regularization is to introduce very small mass
difference Δm ∼ μIR. We will assume that not only
ðe2ξÞ=μ2IR ≫ 1, but the logarithm

log
e2ξ
μ2IR

≫ 1

too. For more details, see [9]. When the distance from the
center in the fx; yg plane (Fig. 2) exceeds μ−1IR , the power-
decaying functions in the solution become exponentially
decaying.

The linear string solution per se has no z dependence.
Upon quantization of the moduli, they become t, z
dependent moduli fields and produce a two-dimensional
sigma model. For the time being, we will consider a
linear string of Fig. 1(a). We will introduce a second
further winding, in addition to that inherent to the ANO
string.
Remembering that our final goal is transforming the

genuine BPS-saturated linear string into a circular one,
which can be viewed as approximately BPS-saturated in
the limit of large J, we will take an intermediate step.
Note that the circular string cannot be exactly a BPS object,
that is, form a short multiplet of supersymmetry, because
there is no appropriate global central charge in the super-
algebra, but the linear string can. After studying the linear
string, we will show that for the closed circular string,
there exists an approximate lower bound of the Bogomolny
type, which we can approach to leading order in our
approximation.

B. Linear string and periodic boundary conditions

Let us consider the linear BPS string in the geometry of
Fig. 2; i.e. we lift the requirement of full z independence of
the soliton solution, and impose instead periodic boundary
conditions in the z direction. Our task is to introduce an
additional winding of a field along the z axis, which will
result in a Hopfion-type field configuration (that is, one
with two different types of windings). The field q1 cannot
wind along the z direction, since this will produce an
infinite amount of energy in the ðx; yÞ plane. On the other
hand, nothing prevents q2 from winding since this field
falls off at infinity in the ðx; yÞ plane. The periodicity

y

L

BC2

BC1

x

z

FIG. 2. Spatial geometry. An intermediate step between the
linear string and the circular one is imposing periodic boundary
conditions (BC) in the z direction (with the period L), i.e.
BC1 ¼ BC2. The soliton axis is aligned with the z axis. The axis
y here will correspond to u in what follows; see Fig. 3. One can
introduce the radial parameter r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; see e.g. Eq. (3.7).

1These are the Belavin-Polyakov instantons [7] in the two-
dimensional Oð3Þ sigma model.

2This will be needed for the construction of the closed string
below.
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condition then naturally requires that the z dependence is
periodic,3 that is, that the field has a winding number:

q2ðx; y; z; tÞ ¼ q2ðx; yÞeiαðz;tÞ; αðz; tÞ ¼ 2πk
L

ðz� tÞ:
ð2:11Þ

The solution (2.11) represents left- and right-moving
plane waves propagating in the �z direction inside the
vortex string. One readily calculates the momentum carried
by this wave,

pz ¼
Z

d3xΘtz; ð2:12Þ

where Θμν is the energy-momentum tensor. Since q2 is the
only part of the configuration that is dependent on t, z
we haveZ

d3xΘtz ¼
Z

d3xðD0q̄2D3q2 þD3q̄2D0q2Þ

∼
k2

L

Z
d2x⊥jq2j2: ð2:13Þ

As one could expect, pz is simply proportional to L−1.
The expression for the corresponding energy is

Z
d3xΘtt ¼

Z
d3x2ðD0q̄2D0q2Þ ∼ k2

L

Z
d2x⊥jq2j2:

ð2:14Þ

The energy is equal to the absolute value of the momentum
in the z direction, as is obvious, of course, from Eq. (2.11).

C. Superalgebra

For simplicity, we restrict ourselves to theN ¼ 1 part of
the superalgebra in this section; see Sec. III. E for N ¼ 2
analysis.
The N ¼ 1 subalgebra obeyed by the supercharges in

the case at hand takes the form

fQα; Q̄ _αg ¼ 2Pα _α þ 2Zα _α ≡ 2ðPμ þ ZμÞðσμÞα _α; ð2:15Þ

where Pμ is the momentum operator, and

Zμ ¼ ξ

Z
d3xϵ0μνρð∂νAρÞ þ � � � ð2:16Þ

is the string “central charge” [10] (CC in what follows, in
application to vortex strings referred to as brane charges,

see [11]). In the case depicted in Fig. 2, it has only one
nonzero component, which can be written as

Z ¼ −Z3 ¼ −Lξ
Z

d2xB; ð2:17Þ

where

B ¼ ∂Ay

∂x −
∂Ax

∂y ð2:18Þ

i.e. the z component of the magnetic field. In the rest frame
in the ðx; yÞ plane, we choose P1;2 ¼ 0 and denote
P3 ≡ −p. This is the momentum carried by the field q2,
which is a massless mode, and therefore does not vanish in
any frame. We also note that Zμ is aligned with p⃗z.
In this case, the superalgebra (2.15) reduces to

fQ; Q̄g ¼ 2

�
E − p − Lξ

R
d2xB 0

0 Eþ pþ Lξ
R
d2xB

�

ð2:19Þ

The general condition of the BPS saturation is

E ¼ pþ Lξ
Z

d2xB ð2:20Þ

for which Q1 and Q̄_1 will annihilate the soliton, while Q2

and Q̄_2 will act nontrivially on the solution, producing
fermion zero modes.
As is well known, the integral

R
d2xB is quantized on the

solution at hand [9], Z
d2xB ¼ 2πn ð2:21Þ

where n is the integer winding number in the ðx; yÞ plane.
For the minimal string we take n ¼ 1; in what follows we
will assume it from now on for simplicity.
The linear string with periodic boundary conditions in

the z direction has two windings, and is 1=2 BPS saturated
and topologically stable. One cannot expect the closed
circular string with the double winding to be exactly BPS
saturated. However, it is intuitively clear that as the
circumference of the circular string becomes much larger
than its transverse size, i.e. at L ≫ ðμIRÞ−1, it approaches
the BPS bound, and at L → ∞ there is no difference
between our pedagogical example and the actual circular
vortex string.

D. Outlining how to make a circular vortex string

One can make a circular string by bending a linear one;
see Fig. 1. For self-consistency, we need to do this in such a
way that diametrically opposite points of the core do not

3In this section, the interval of periodicity is denoted by L. In
the subsequent sections, L will be used for circumference of the
closed circular string. We assume that L ≫ ðμIRÞ−1.
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overlap significantly, as in general the semilocal solution
described previously is not a solution to a linear system of
equations. This is especially important given that the fields
at hand have a power-law decay rather than an exponential
one. It must be assumed therefore that the length of the
circular loop L is a very large scale of the problem, in
particular compared to the size of the vortex core, so that
the string looks long and thin, away from the so-called
“thick string regime.” The winding of the q2 field generates
angular momentum, in integer units, which contributes to
the mass of the object: in the rest frame,

M ¼ 2πJ
L

þ 2πLξ: ð2:22Þ

Comparison with the superalgebra (2.20) is crucial in order
to determine the coefficient in front of the 1=L part in (2.22)
in terms of the quantum number J ¼ Rjpj where R is the
radius of the circle in Fig. 1(b). The occurrence of the 1=L
term was known previously (see [1] and references therein),
but the coefficient in front of 1=L was obtained in terms of
an integral depending on details of the particular solution.
The formula (2.22) becomes exact in the limit J → ∞. At
finite values of J, corrections in powers of 1=J exist; see
Sec. III. D.
Comparing Eqs. (2.13) and (2.22), we see that

J ∼ k2jρj2ξ
�
log

1

μ2IRjρj2
�
: ð2:23Þ

Provided jρjμIR is small, this naturally makes the angular
momentum a large quantity.4 The above strong inequality
justifies our approximation. We should make a reservation,
however. Unlike the linear string with the double winding,
the circular one can presumably decay through tunneling
with the amplitude ∼ expð−JÞ.
We also note that classically the minimization with res-

pect to the string transverse size jρj would give jρj ¼ 0 for
this (almost) BPS case, as detailed in [1]. However, results
of [2] show that quantum effects at strong coupling stabilize
jρj even in N ¼ 2 supersymmetric theory.
The minimum of the right-hand side of (2.22) is

achieved at

L� ¼
ffiffiffi
J
ξ

r
; ð2:24Þ

guaranteeing that L�μIR ≫ 1. Thus, so long as the total
angular momentum is large enough, our solution is self-
consistent.
The value of the right-hand side (2.22) at the minimum is

4π
ffiffiffiffiffi
Jξ

p
, implying

M2 ¼ 8πTJ; ð2:25Þ

where T ¼ 2πξ
R
d2xB is the string tension. Both T and J

are proportional to integers, characterizing two different
types of windings that the fields composing the solution can
bear. In this scenario, we will then be able to show that our
solution saturates a Hopfian type topological invariant

H ¼ 1

4π2

Z
d3xðAαFμνÞεαμν; ð2:26Þ

as we will see in Sec. III. F.
Below, a more detailed study of the circular string in

SQED is presented.

III. DETAILED ANALYSIS

A. The action in cylindrical coordinates

In order to analyze the field configuration generated by
the toroidal soliton, it is preferable to exploit as best we can
its symmetries, in this case its invariance under rotations.
For this purpose we will employ cylindrical coordinates
from the get-go, this will simplify our task when writing the
relevant semilocal ansatz. The standard set of cylindrical
coordinates have a disadvantage, the radial coordinate is
bounded below by 0, a specificity to which we will have to
pay attention. We assume that none of the fields, save for
some phase dependence in q2, depend on the angular
variable, thus, we need only formulate an ansatz for the
fields in one half of a transverse slice of the torus, as
illustrated below.
The torus is supposed symmetric under rotations around

the axis x. We introduce a set polar coordinates ðu; θÞ to
parametrize, respectively, radial motion away from the axis,
and circular motion around it. These new coordinates fulfill
the role of ðy; zÞ in the straight string case, as shown in
Fig. 3. We employ the vierbein formalism; i.e. all objects
with spacetime indices will be expressed in a local Lorentz
basis, which we choose to consist of the following vectors:

e0 ¼ dt; e1 ¼ dx; e2 ¼ du; e3 ¼ udθ ð3:1Þ

Numbered indices will from now on correspond to
components of objects in this local Lorentz basis, while
world indices will be denoted with the letter corresponding
to the coordinate.
Importantly, because we are in geometrically flat space,

simply using curvilinear coordinates, making the action and
the equations of motion covariant is the only step we need
to perform in order to have the complete Lagrangian.
Nonminimal coupling to gravity such as Rϕ2 terms all
vanish when the Riemann tensor vanishes. This means that
the action expressed in Eq. (2.3) is still formally the right
one, so long as every derivative now becomes spacetime-
covariant and that the integration measure changes from

4An alternative is to assume nonminimal winding in the xy
plane, n ≫ 1.
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dtdxdydz to dtududxdθ. At this point we can attempt to
show that the energy is bounded below by performing
Bogomoln’yi completion: let us assume F12 > 0, we then
write for the scalar sector

ðD1qÞ†ðD1qÞ þ ðD2qÞ†ðD2qÞ
¼ ðD1q − iD2qÞ†ðD1q − iD2qÞ

þ iððD1qÞ†ðD2qÞ − ðD2qÞ†ðD1qÞÞ: ð3:2Þ

The first term is positive-definite, the second one
simplifies considerably after integration by parts, which
is not altogether trivial in this case as the metric has a
nonvanishing determinant. The expressions above are
multiplied by

ffiffiffiffiffiffiffiffiffi
det g

p
before being integrated, derivatives

thereof occur when performing integration by parts. For the
second term in the above expression, performing this
operation we get

iffiffiffiffiffiffiffiffiffi
det g

p q†ðD†
2

ffiffiffiffiffiffiffiffiffi
det g

p
D1 −D†

1

ffiffiffiffiffiffiffiffiffi
det g

p
D2Þqþ c:c:

¼ F12q†qþ i
∂u

ffiffiffiffiffiffiffiffiffi
det g

pffiffiffiffiffiffiffiffiffi
det g

p q†D
↔

xq − i
∂x

ffiffiffiffiffiffiffiffiffi
det g

pffiffiffiffiffiffiffiffiffi
det g

p q†D
↔

uq:

ð3:3Þ

The first term in this expression is the result of
½D1; D2�q†q and is the usual expression one gets in
Cartesian coordinates. The extra terms are new to our
setup: thankfully they simplify considerably5 given thatffiffiffiffiffiffiffiffiffi
det g

p ¼ juj, so that ∂u
ffiffiffiffiffiffiffiffiffi
det g

p ¼ sgnðuÞ, which comes to
multiply the term q†D1q. There is no reason for this term to

vanish for generic field configurations, and indeed it does
not for correctly chosen ones, but its contribution is
vanishingly small for configurations centered far from
the origin around a circle of large radius R. Similarly,
the integration by parts procedure generates boundary
terms

½
ffiffiffiffiffiffiffiffiffi
det g

p
q†Diq�∞u¼0; ð3:4Þ

which need not vanish: certainly the matter currents are
expected to decay at infinity on physical grounds, but on
the edge of the radial plane, the above term generates a
contribution. Again, assuming that the distribution of the
current is centered on a point far away from the origin will
make this term vanishingly small. The relative importance
of subleading corrections due to this approximation will be
dealt with in Sec. III. D.
The former term in the expression above, like in

Cartesian coordinates, comes to complete another part of
the Lagrangian

−
1

2e2
F2
12 − F12q†q −

e2

2
ðq†q − ξ2Þ

¼ −
1

2

�
eF12 −

1

e
ðq†q − ξÞ

	
2

þ ξF12; ð3:5Þ

which is again a positive-definite part and a remainder term.
We integrate it over all of space and combine it with the
approximated sub-leading term computed above to find an
approximate bound for the energy,

E ≥ ξ

Z
ududxdθF12 þO

�
1

R

�
: ð3:6Þ

We obtain an approximate lower bound for the energy,
valid for large configurations localized away from the
origin, which is an approximation we will need to assume
several times in the following derivations.
Finally, if F12 < 0we can of course complete the squares

with opposite signs and get a similar result in terms of����
Z

ududxdθF12

����:
If the positive-definite terms we have isolated in this

derivation can be made to vanish (perhaps only to leading
order in 1

R), then we will obtain a finite-energy solution
whose energy is very close to this topological-looking
lower bound. Because this derivation is only approximate,
the system will never truly be BPS, but the configurations
are nevertheless of interest.

B. An ansatz for the fields

The low energy limit of our theory (2.3) is the O(3)
sigma model on the base of the Higgs branch [we restrict

FIG. 3. Part of the toroidal configuration. The usual semilocal
vortex is inserted at u ¼ R, x ¼ 0. The z axis is perpendicular to
the given plane.

5The denominators
ffiffiffiffiffiffiffiffiffi
det g

p
in (3.3) are cancelled by

ffiffiffiffiffiffiffiffiffi
det g

p
in

the integration measure.
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ourselves to the ansatz with q̃ ¼ 0; see (2.9)]. The semi-
local string solution at large distances approaches the
instanton of the two-dimensional O(3) sigma model lifted
in four dimensions; see [6,8] for details.
The semilocal ansatz is an approximate solution to the

equations of motion that approach a minimal energy
configuration, i.e. BPS saturation, even in the case of
the straight infinite string; see [9]. In its original formu-
lation, we write the ansatz for the straight string thus: where
r is the radial distance in the plane of the vortex, we
introduce the complex core thickness parameter ρ and
consider the vortex winding (flux) number n ¼ 1, then we
write the two scalars and the gauge field in terms of profile
functions F1, F2 and G in the following way [6,8]:

q1ðrÞ ¼
ffiffiffi
ξ

p rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ jρj2

p ¼ F1ðrÞ;

q2ðrÞ ¼
ffiffiffi
ξ

p ρffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ jρj2

p e−iθ ¼ F2ðrÞe−iθ;

Ai ¼ ϵijxj
r2

fðrÞ ¼ jρj2
r2ðr2 þ jρj2Þ ϵ

ijxj ¼ GðrÞϵijxj;

ði ¼ 1; 2Þ;

F12 ¼ −
1

r
f0ðrÞ; ð3:7Þ

where we used the expression for the gauge profile function
for the semilocal string

fðrÞ ¼ jρj2
r2 þ jρj2 ; ð3:8Þ

while prime denotes derivative with respect to r. Note that
we are using a singular gauge, so that there is no overall
winding at infinity but both the field q2 and the gauge field
have singular behavior at r ¼ 0. For the generic flux
number n the gauge profile function fðrÞ satisfies boundary
conditions

fð0Þ ¼ n; fð∞Þ ¼ 0: ð3:9Þ
We mostly restrict ourselves to the case n ¼ 1.

We adapt this ansatz to a curved string of radius R. In our
coordinates, we must write

q1ðx; uÞ ¼ F1ðx; u − RÞ þ F1ðx; uþ RÞ;
q2ðx; uÞ ¼ F2ðx; u − RÞe−i arctanðu−Rx Þ

þ F2ðx; uþ RÞei arctanðuþR
x Þ

Ai ¼ ϵij½Gðx; u − RÞðxj − RjÞ
−Gðx; uþ RÞðxj þ RjÞ�; ð3:10Þ

where Ri ¼ ð0; RÞ.
This ansatz is composed of two terms, one due to a

vortex centered at u ¼ R, x ¼ 0 and the other being the tail
of a fictitious antivortex centered at u ¼ −R, x ¼ 0.
Though the u < 0 domain is unphysical, some portion
of the tail of this fictitious antivortex protrudes into the
physical region. The interpretation of this ansatz is the
following: as seen from any particular vortex along
the circular string, an antivortex is situated diametrically
opposite it, on the other side of the torus. Though it is very
far away, we should in theory consider that the profiles for
these two vortices overlap a little. Figure 4 shows a graph of
the radial profiles for the gauge field.
From this, we can compute the leading term in the energy

bound found earlier,

Z ¼
Z

jujdudxdθξF12 ≈
R≫jρj

2πξLfð0Þ ¼ 2πnξL; ð3:11Þ

where we used (3.7) and (3.9), while L is the total length
(circumference) of the vortex core.
Allowing L to be dynamical, the system clearly favors

shrinking as much as it can. At which radius it stabilizes is
unclear. At the point where the torus becomes of compa-
rable radial size as its cross-sectional width our approx-
imations fail.
It is possible that there is a stable end-point configuration

where the string tension is offset by the energy induced by
the overlapping of the vortex configurations, we cannot say.

FIG. 4. Graphs of the individual vortex and fictitious antivortex contributions to the total gauge field profile, for fixed θ, x. The
negative u domain of the first graph is unphysical.
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C. Adding an extra winding

Wewould like for the configuration to not shrink outside
of our initial approximations, for this purpose we introduce
an extra winding in the action.
The ansatz above in Eq. (3.7) can be modified in the

following way: the modulus ρ, and therefore q2, can have
an extra phase, as shown previously. We write

ρ ¼ jρjeiαðt;θÞ; ð3:12Þ

cf. Eq. (2.11). The equations of motion read as

�
∂2
t þ

1

u2
∂2
θ

�
α ¼ 0: ð3:13Þ

The appearance of u in the equation is worrisome; we
would not like α to appear in the equations of motion of
radial fields. We must again use the approximation
employed previously, that the length of the string is much
larger than local variations of the support of the fields. That
is, for all the region where q2 is supported, u ∼ R. The
equation above is then only satisfied up to leading order in
1
R. At this cost, we get

αðt; θÞ ¼ k

�
t
R
� θ

�
: ð3:14Þ

Inserting this in the Hamiltonian, we get that the energy
increases by

ΔE ¼
Z

Rdudxdθjq2j2
�
2πk
L

�
2

: ð3:15Þ

Note again that we have replaced u → R in the metric
determinant. The ansatz we have written is nonsensical if
we do not perform this operation as it is grossly non-
normalizable with this curved metric. Already in flat space
the ansatz has difficulties, it is logarithmically divergent
when attempting to compute its norm. It was argued
previously [12] that this did not spoil the picture, and
indeed in our case it is beneficial.
We can compute the above integral by introducing a

suitable regulator scale μIR. The process simplifies con-
siderably if we ignore the contributions due to the overlap
between the profiles generated by diametrically-opposite
points, they lead to higher-order terms in the series
expansion in 1

R. We obtain

ΔE ¼ ξ
8k2π3

L
jρj2 log

�
1

jρjμIR

�
≡ 2πJ

L
; ð3:16Þ

where we have defined the quantity of angular momentum
added by the twist

J ¼ 4k2π2ξjρj2 log
�

1

jρjμIR

�
: ð3:17Þ

We recover the form that we guessed previously. This
should be a positive quantity, whatever we do. This is very
naturally achieved: in order for our assumptions to hold, we
must suppose the core size to be very small, at least
compared to the scale of far infrared processes. As ρ is a
modulus (in the supersymmetric case), we can pick it to be
small in comparison to the IR cutoff. This is actually
helpful; it means that the angular momentum contribution
to the total energy of the system is actually quite significant,
even when we only have one extra winding in the case
k ¼ 1. It is also a self-consistency check for our 1

R
expansion, despite this term scaling negatively with R it
should not be absorbed with our Oð1RÞ terms, since at
equilibrium it is expected to contribute as much to the
energy as the tension. Let us check this, we can then see
again how this counteracts the string tension: the total
energy of the system is now

Etot ¼
2πJ
L

þ 2πξLþO

�
1

R

�
: ð3:18Þ

By extremizing the energy over Lwe find that the system
stabilizes at a length L⋆ given by

L⋆ ¼ 2πjkjjρj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log

�
1

jρjμIR

�s
ð3:19Þ

Quite clearly, L⋆=jρj ≫ 1 by the arguments above, so
our initial ansatz is self-consistent. Finally, we can write
the mass of the object, placing ourselves in its rest frame,
we find

M ¼ 2πξjkjjρj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log

�
1

jρjμIR

�s
ð3:20Þ

with J ≫ 1, as advertised.
We can restore the dependence on the flux number n

using the following heuristic argument. Let us make n
toroidal solitons like the one described above in n well-
separated planes parallel to each other, each with magnetic
flux 2π. Each of these vortex rings has its own size ρi,
i ¼ 1;…; n. Now we consider configuration with

q2 ¼ q2ðx; uÞeiαðt;θÞ; αðt; θÞ ¼ k

�
t
R
� θ

�
: ð3:21Þ

This ensures that all ρi have the same phase dependence
αðt; θÞ determined by a single winding number k. For each
of these vortices we introduce the angular momentum Ji
given by (3.17) in terms of the size ρi.
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Given that the objects are approximately BPS, they
generate very little potential energy between them. So,
let us adiabatically fuse vortex rings together. Since both
the magnetic flux and angular momentum are conserved,
the fused n multi-soliton has magnetic flux number n and
total angular momentum nJ, where J given by (3.17), and
we assume that all jρj’s are stabilized at the same average
value. This gives for the energy of the multi-vortex

Etot ¼
2πJn
L

þ 2πnξLþO

�
1

R

�
; ð3:22Þ

where Jn equals to J in (3.17) multiplied by n.
Minimizing with respect to L we get the same result

(3.19) as for n ¼ 1 string while the mass of the soliton is
given by

M ¼ 2πξjnjjkjjρj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log

�
1

jρjμIR

�s
; ð3:23Þ

where we assumed that the flux number n could be both
positive or negative.
We must perform several other checks on this derivation

to ensure it is reasonable. First and foremost, we have
included a subleading term in some 1

R expansion, but there
could be plenty more to add.

D. Estimating the error

For good measure, we must make a note of verifying the
self-consistency of the Oð1RÞ approximations we have
performed. Subleading terms come from four different
sources, which should be compared. The first is directly
due to the effect of the twist: the term we introduced
to stabilize the solution. This is a subleading effect in
that it scales with ρ

R, but it has a very large numerator to
compensate, so we have not neglected it, and shown in the
above analysis that the consequences of this choice are
self-consistent.
The second comes from neglecting an extra, metric-

induced piece of the leftover terms that were produced
by performing Bogomoln’yi completion, in Eq. (3.3):
sgnðuÞq†Dxq. Before substituting the full form of the
ansatz, we will first only make the assumption that the
current component in question is in a toroidal configura-
tion, invariant under rotations in the angle θ, and taking its
maximal value on the circle u ¼ R, x ¼ 0. We make no
strong assumptions about the decay of the current or the
fields composing it so far, which means points at angle θ
and θ þ π are in theory able to influence each other. We can
thereby write the current with the following substitution:

q†Dxq ¼ Jxðu − R; xÞ þ Jxðuþ R; xÞ ð3:24Þ

for some regular function Jx that takes its maximum at
(0,0). We are tasked to compute

ΔE2¼
ZZ

R2

dudxsgnðuÞðJxðu−R;xÞþJxðuþR;xÞÞ

ð3:25Þ

¼
ZZ

R2

dudxðsgnðuþRÞþsgnðu−RÞÞJxðu;xÞ ð3:26Þ

¼2

Z
∞

−∞
dx

�
−
Z

−R

−∞
Jxðu;xÞþ

Z
∞

R
Jxðu;xÞ

�
: ð3:27Þ

This expression generically need not vanish, particularly
since Jx is expected to not be even in u: it is a vector
quantity and so is not parity invariant. However, if we
assumeR to be large, these integrals above should vanish: if
ϕ is normalizable (or, at worst, with log-divergent norm),
then the current Jx should behave this way on either
interval above,

jJxðu; xÞj ¼ O

�
1

ðu2 þ x2Þ3=2
	
: ð3:28Þ

Assuming again that the two leading-order contributions
need not cancel, after integration this term vanishes at least
as Oð1RÞ, with only these few assumptions, so that the
Bogomoln’yi bound given previously is a good estimate of
the lowest available energy of large configurations that
peak away from the origin.
In the case of our ansatz, it is actually of much lower

order: the original semilocal ansatz for the straight string
generates no net current. The x-current generated by q1 is
exactly opposite to the current generated by q2,

1

2i
ðq1†D↔xq1Þ ¼ −

ρ2uξ
ðρ2 þ x2 þ u2Þ2 ¼ −

1

2i
ðq2†D↔xq2Þ

ð3:29Þ
Thus, in our case, Jx is only nonzero due to the overlap of
the fields generated by diametrically opposite points, which
is therefore already a subleading contribution before
integration. The scaling arguments above then show that
the total contribution after integration must vanish at even
higher order than 1=R. We are therefore justified in
ignoring it, as well as the surface term generated via
integration by parts, for much the same reasons.
Another source of error comes from the computation of

the form of the angular momentum, specifically in comput-
ing the normalization of the radial function q2. We only
considered the contributions due to the peaks of the
function, assumed widely separated, but there is another
piece due to the overlap of the two peaks. This corresponds
to the following integral:

ΔE3¼
Z

dudx
jρj2ξffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðu−RÞ2þx2þρ2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðuþRÞ2þx2þρ2
p :

ð3:30Þ
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This is a logarithmically divergent integral again, which
contains two scales, ρ and R. The computation simplifies
considerably in the case ρ ≪ R, which we want to assume
throughout. Introducing again an arbitrary mass scale due
to regularization, and up to combinatorial dimensionless
constants, this term is proportional to

ΔE3 ∝
jρj2ξ
R

log

�
1

jρjμ
�

ð3:31Þ

and can be neglected.
Finally we must investigate the error committed by

ignoring the variations of u in the extra twist, we replaced
u → R and assumed a phase factor that depended only on
ðt; θÞ, which allowed the t, θ part of the Laplacian to vanish
independently of the ðx; uÞ terms. This is not quite correct,
with their exact form these terms are�

D2
t −

1

u2
D2

θ

�
q2 ¼

�
k
R

�
2
�
1 −

�
R
u

�
2
�
q2

∼
�
k
R

�
2
�
δu
R

�
q2 ð3:32Þ

where in the last relation we express this term for
u∼ ∓ ðRþ δuÞ. As a term in the action this is a higher-
order term in the series that generated the angular momen-
tum term that we add, so we should not consider it.
Therefore, we believe that the extra term due to the

second winding we have added to the theory is indeed
the main component, the most influential consequence
of the introduction of the extra phase factor, and we
conclude that the analysis above is self-consistent.
We have yet to discuss another form of self-consistency.

Has this extra mode changed the near-BPS nature of our
soliton? To do this we must look at the superalgebra of the
theory.

E. Almost-supersymmetric solutions
and the central charge

We know that the soliton at hand is not a true BPS object,
so that BPS equations we write for this system are only
approximately solved by our version of the semilocal
ansatz, but their general structure is nevertheless inform-
ative. In particular, from our first-principles derivation,
there seems to be no correlation between the handedness of
the vortex around the core circle and the handedness of the
transverse mode in q2. Although strictly speaking we
cannot claim our configuration is BPS, inspecting the
BPS equations of our Lagrangian at least informs us if
we are free to pick the handedness for the transverse modes,
to see whether it leads to gross violation of the BPS bound.
We write the SUSY transformations of the fermionic

fields, and impose that they should be zero in such a way as
to keep arbitrary some components of the infinitesimal
spinor used to parametrize the transformation. We will

work with Euclidean conventions for coordinates and σ
matrices. Let R-symmetry indices being denoted abstractly
by f; g… and in components by Roman numerals I; II, we
transform each fermionic field with an infinitesimal doublet
of spinors ηαf. We assume that the gaugino (scalar part of
the gauge multiplet) vanishes, and introduce the most
generic D auxiliary with indices Df

g .
Finally, we use the following relations expressing the

squark SUð2Þ doublet in terms of the fields q, q̃:

qf ¼
�

q

−i ¯̃q

�
; q̄f ¼

�
q̄

iq̃

�
: ð3:33Þ

R-symmetry indices are raised and lowered with the ϵ
tensor. We can then write

δηψ̄ _α ¼ i
ffiffiffi
2

p
ηαfσ̄μ_ααDμq̄f: ð3:34Þ

δη ¯̃ψ _α ¼ i
ffiffiffi
2

p
ηαfσ̄μ_ααDμqf; ð3:35Þ

δηλ
f
α ¼ −ηβfðσμσ̄νÞαβFμν þ iηgαD

f
g: ð3:36Þ

To obtain the untwisted semilocal vortex configuration,
we make the choice to preserve η1II and η2I, thus we put
η2II ¼ η1I ¼ 0. We do not assume any invariances of the
fields in any of the coordinates. The above equations
produce the following:

δηψ̄ _α¼ i
ffiffiffi
2

p
η1IIσ̄μ_α1Dμq̄IIþ i

ffiffiffi
2

p
η̄2I σ̄μ_α2Dμq̄I ð3:37Þ

¼ i
ffiffiffi
2

p �
η1IIðD0þ iD3Þq̄IIþ iη2IðD1− iD2Þq̄I
iη1IIðD1þ iD2Þq̄IIþη2IðD0− iD3Þq̄I

�
ð3:38Þ

¼ i
ffiffiffi
2

p �
iη2IðD1 − iD2Þq̄
η2IðD0 − iD3Þq̄

�
; ð3:39Þ

and

δη ¯̃ψ _α¼ i
ffiffiffi
2

p
η1II σ̄μ1_αDμqIIþ i

ffiffiffi
2

p
η2Iσ̄μ2_αDμqI ð3:40Þ

¼ i
ffiffiffi
2

p �
η1IIðD0 þ iD3ÞqII þ iη2IðD1 − iD2ÞqI
iη1IIðD1 þ iD2ÞqII þ η2IðD0 − iD3ÞqI

�
ð3:41Þ

¼ i
ffiffiffi
2

p �
−η1IIðD0 þ iD3Þq
−iη1IIðD1 þ iD2Þq

�
; ð3:42Þ

where we put q̃ fields to zero in the last lines.
In the case where we have no twist, solving the BPS

equation

ðD1 þ iD2Þq ¼ 0 ð3:43Þ
would allow us to preserve η2I and η1II , i.e. half of the
original supersymmetry. However, when adding an angular
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dependency as per Eq. (3.12), the above equations show we
do not have the luxury of being able to choose the relative
sign, i.e. the handedness of the plane wave, the direction of
its propagation. It would break all of supersymmetry if we
impose the “wrong” choice. To preserve η2I and η1II we are
forced to choose

ðD0 þ iD3Þq ¼ 0; ð3:44Þ
a mode that moves along the direction of magnetic flux
(once back in Lorentzian signature). This comes at no
additional cost in terms of supercharges, the object is still
half-BPS. This occurs because Eq. (3.43) is not parity-
invariant, not only does it choose a preferred axis (the unit
normal axis to the ðx; uÞ plane), it also chooses a preferred
direction along that axis. This parity asymmetry propagates
everywhere in the BPS equations in a systematic and
consistent fashion.
For our approximate solution, this has the following

consequence. The configuration with the “correct” twist
has energy which is close to the theoretical lower bound,
given as a combination of the central charge and the
(angular) momentum, which both are vectorial quantities
and should point in the θ direction. Because they point in a
curvilinear direction, these quantities exist only as local
densities and not as total charges: there is no global θ̂ unit
vector to express such global objects with. Nevertheless,
we can express local supercharge density Q, 4-momentum
density P and central charge density Z, which we do not
integrate over all of space. These objects still obey the (anti)
commutation relations, locally: suppressing some space-
time δ functions due to commutation,

fQα; Q̄ _αg ¼ σμα _αðPμ þ ZμÞ: ð3:45Þ
We assume invariance under rotations in the angle θ. By
projecting this equation on a null vector field in the θ
direction, we can obtain that

E ≥ 2πj
Z

ududxðPθ þ ZθÞj: ð3:46Þ

On the other hand, the alignment of these two vector
densities has no bearing on the value of the energy:

E ≥ 2π

Z
ududxðjPθj þ jZθjÞ ð3:47Þ

The upshot is that in the case the second winding
generates momentum antiparallel to the central charge,
the minimal energy configuration obtained given this
requirement is very far from the theoretical minimum
given by the vector sum of the two quantities, and so is
far removed from being a BPS object, which we see via the
SUSY algebra. This is analogous to the setup of a kink-
antikink bound state, which has energy very far from the
theoretical lower bound. The gap between the actual lower

bound for the energy and the one dictated by the super-
algebra signals gross violation of supersymmetry.
Because we are using a curvilinear coordinate basis, the

usual supersymmetry BPS equations should be supple-
mented where needed with the corresponding supergravity
equations. Since we are in geometrically flat space, these
simplify considerably, with one notable exception: the
Killing spinor equation. It is a component of the gravitino
supertransformation, thus ensuring no gravitinos are gen-
erated by curvature effects, but it is also effectively a check
that parallel spinors can be found in this spacetime, in other
words checking that one can define covariant spinors
everywhere in space. We must solve the following equa-
tion, for η a full Dirac spinor and ωμνρ the spin-connection
of spacetime:

Dμη¼̂
�
∂μ −

1

8
ωμνρ½Γν;Γρ�

�
η ¼ 0: ð3:48Þ

This equation obviously has a solution, as it is fully
covariant and Cartesian coordinates admit constant spinors.
A solution in our coordinates can be found,

η ¼
�

Aϵ1ei
θ
2

Bϵ2e−i
θ
2

�
; ð3:49Þ

where ϵ1;2 are Grassmann-valued Lorentz scalars and A, B
c-numbers. An equivalent solution is found for the lower
component of the Dirac spinor. This form is entirely
expected and results directly from the fact that in our
coordinate system P3 is an angular momentum operator in
the usual Lorentz group.
As a final exercise, we can demonstrate that the mass of

the settled object is a proper Hopfion, that is, one that has
nontrivial Hopf index.

F. The Hopf invariant

Such toroidal objects with two types of topological
windings were observed in the form of particular field
configurations of the Oð3Þ sigma model (among others),
which are classified by the Hopf topological invariant,

H ¼ 1

8π2

Z
d3xϵμνρAμFνρ: ð3:50Þ

Such an integral also goes by the name of Chern-Simons
term and has been studied extensively in the context of field
theory, though usually as a term used in the construction of
Lagrangians.
This topological integer can be seen to synthesize two

types of winding; on very general grounds it can be
expressed as the product of two other topological indices
[13]. This is particularly clear for toroidal configurations
where we can parametrize three-dimensional space with a
coordinate system that splits into one compact coordinate
and an infinite plane:
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H ¼ 1

4π2

Z
R

Z
∞

0

Z
2π

0

ðdθAθÞðududxFxuÞ: ð3:51Þ

The gauge field can wind around the circular direction and
in the radial plane. The Hopf index is, therefore, an
automatic indication that a given theory possesses two
different types of nontrivial topological windings, and any
soliton for which this quantity is nonzero can broadly be
called a Hopfion.
Let us calculate (3.51) for our semilocal string

solution. The component Fxu of the field strength is
determined by the last formula in (3.7). Moreover, the
time and θ dependence of string moduli induce nonzero
time and θ components of the gauge potential; see [9].
For semilocal strings these components were calculated in
[12] for a non-Abelian string with n ¼ 1. The result
obtained in [12] for our case of Abelian semilocal string
reduces to

Ak ¼ −i
ρ̄∂kρ − ρ∂kρ̄

u2 þ jρj2 ; k ¼ 0; 3: ð3:52Þ

We use Eq. (3.14) in the expression above, then,
substituting Fxu and A3 into (3.51) and neglecting overlap
product terms, we get the following integral, whose value
can be computed exactly,

H ¼ 1

π
k
Z

∞

0

Z
R
ududx

×

� jρj4
Rððu − RÞ2 þ x2 þ jρj2Þ3 þ ðR ↔ −RÞ

�
ð3:53Þ

¼ k
ðρ2 þ 2R2Þ
2R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ R2

p ≃ k: ð3:54Þ

We can restore the dependence of H on the flux number
n considering n vortex rings located in parallel well-
separated planes as in the end of Sec. III. C. Each vortex
has H ≈ k and the Hopf invariant, being a topological
invariant, does not vary all throughout the fusion process.
We conclude that

H ≈ kn: ð3:55Þ

The overlap terms, terms formed by the product of two
vortex profiles with different centers, can be computed also

and are found to contribute terms that areOðρ2R2Þ, in the spirit
of Sec. III. D.
Now, once the soliton has settled at its minimal length,

the form of its energy (that is, its mass) is very conspicuous:
we recast Eq. (3.23) as

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tð8πnJnÞ

p
¼

ffiffiffiffĩ
T

p
jkjjnj ∼

ffiffiffi
ξ

p
jHj; ð3:56Þ

where T̃ is the effective string tension combining the
minimal string tension (T ¼ 2πξ) times all dimensionless
coefficients of the expression into a single parameter.6 We
see that the mass of the soliton is then directly proportional
to the absolute value of the Hopf invariant.
It is worth noting that, in the supersymmetric case, no

absolute value is needed as both these integers have the
same sign. This gives an alternate view of the case where
SUSY is badly broken. Since the supercharge algebra is
sensitive to the relative sign of these two windings, we can
hypothesize that the theoretical lowest mass attainable, as
dictated by the superalgebra, by a stable soliton is negative
and therefore unphysical. It would again be the case that the
actual lowest attainable mass is far removed in value from
the one predicted by the superalgebra, signalling a gross
violation of SUSY.
The most interesting feature of this result is that the mass

is linearly dependent on the index: in the case of the Oð3Þ
model, the energy functional depend nonlocally on the
gauge field, the fundamental degrees of freedom are scalars
valued as points on a spherical target space, and their
energy functional satisfies a nonanalytic lower bound, the
Vakulenko-Kapitanskii inequality [14]:

E ≥
�
3

16

�3
8jHj34: ð3:57Þ

This is, for the class of models the authors who proved this
relation were looking at, the exact maximal lower bound for
the system.
In the past, Hopfions have been constructed starting

from traditional gauge theories (i.e. not σ-models), as was
the case in [1] and in the review [15], but this was done
by looking at specific configurations in the scalar sector
after the gauge coupling was sent to infinity, turning the
gauge field into an auxiliary field and no longer keeping
it as a fundamental degree of freedom. In the process,
this transforms the scalar sector into a σ-model over the
theory’s vacuum manifold. We have been able to forgo
this process here and propose a construction of a Hopfion
where the topological twists are borne, either entirely or
in part, directly by a fundamental gauge field in the
theory.
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